单自由度系统.

合集下载

单自由度系统的有阻尼自由振动

单自由度系统的有阻尼自由振动

0.8 (e nTd ) 20 0.16
ln5 20 nTd 20 n 2 n 1 2
由于 很小,ln5 40
ln5 W W ln5 1502 c 2 m k 2 2 40 g st 40 1980 0.122( Ns/cm)
nt
2 t n2 n
C2 e
2 t n2 n
)
代入初始条件 (t 0时 , x x0 , x x 0 )
C1
2 0 ( n n 2 n x ) x0
2 n
2
2 n
; C2
2 0 ( n n 2 n ) x0 x 2 2 n 2 n
可见阻尼使自由振动的周期增大,频率降低。当阻尼小时, 影响很小,如相对阻尼系数为5%时,为1.00125,为20%时, 影响为1.02,因此通常可忽略。
14
振幅的影响: 为价评阻尼对振幅衰减快慢的影响,引入减 幅系数η ,定义为相邻两个振幅的比值。
Ai Aewnti wnti td ewntd Ai 1 Ae
5
也可写成
x Ae nt sin(d t )
2 d n n2
—有阻尼自由振动的圆频率
x 0 , 则 设 t 0 时, x x0 , x
2 2 2 x n ( x nx ) 0 n 2 A x0 0 2 02 ; tg1 0 nx0 n n x
16
例4 如图所示,静载荷P去除后质量块越过平衡位置的最大 位移为10%,求相对阻尼系数。
17
x(t ) e
wnt
0 wn x0 x ( x0 cos wd t sin wd t ) wd
18

2-单自由度自由振动

2-单自由度自由振动

第2章 单自由度系统自由振动
2.5 具有黏性阻尼的振动系统
31
给出初始条件:t=0时 x x0 , x v0
则可确定系数B和D B v0 ( 2 1)n x0 2n 2 1
D v0 ( 2 1)n x0 2n 2 1
第2章 单自由度系统自由振动
2.5 具有黏性阻尼的振动系统
不大,特别是当阻尼很小(<<1)时,可
以忽略阻尼对振动频率和周期的影响。
第2章 单自由度系统自由振动
2.5 具有黏性阻尼的振动系统
40
2.6 对数衰减率
振幅衰减的快慢程度可用相邻振幅 的比值来表示,称为衰减率或减幅率或 减缩率;也可以用衰减率的自然对数来 表示,称为对数衰减率。
第2章 单自由度系统自由振动
第2章 单自由度系统自由振动
2.3 能量法
22
P15例2-3-2 利用能量法求纯滚动圆盘 系统作微幅振动的固有频率。
第2章 单自由度系统自由振动
2.3 能量法
23
2.4 瑞利法
一般不考虑弹性元件的质量对振动系统的 影响,若这些质量不可忽略的时候,“瑞利法” 的思想,是将这些弹性元件所具有的多个集中 质量或分布质量简化到系统的集中质量上去, 从而变成典型的单自由度振动系统。
T 2 n
周期是系统振动一次所需要的时间,单位 为秒(s)。
周期的倒数称为频率,是系统每秒钟振动 的次数,单位为1/秒(1/s)或赫兹(Hz)。记作 f
f 1 n T 2
第2章 单自由度系统自由振动
2.2 自由振动系统
13
固有频率n和频率 f 只相差常数2,因
此经常通称为固有频率。是振动分析中极
已知质量为m,弹簧的刚 度系数为k。取质量的静平衡 位置为坐标原点,当重物偏离 x 时,利用牛顿定律可得到运 动微分方程:

单自由度振动系统固有频率及阻尼的测定-实验报告

单自由度振动系统固有频率及阻尼的测定-实验报告
3、根据幅频特性测试数据,在同一图上绘出几条幅频( )特性曲线,分析阻尼的影响并计算系统的固有频率及阻尼比。
4、根据相频特性的测试数据,在同一图上绘出几条相位差频率( 特性曲线,由此分析阻尼的影响并计算系统的固有频率及阻尼比。
5、根据实验现象和绘制的幅频、相频特性曲线,试分析对于不同阻尼的振动系统,几种固有频率和阻尼比测量方法的优劣以及原因。
首先,在水平振动台面上不加任何重物,测量系统在自由衰减振动时的固有频率;之后在水平振动台面上放置一个质量已知的砝码,再次测量系统在自由振动时的固有频率。记录两次测得的固有频率,并根据其估算水平振动台面的等效质量。
4、测定自由衰减振动特性:
撤去水平振动台面上的砝码,调整励磁电流至0.6A。继续使用“自由衰减记录”功能进行测试。操作方法与步骤3基本相同,但需按照数据记录表的提示记录衰减振动的峰值、对应时间和周期数i等数据,以计算系统的阻尼。
假设实验使用的单自由度振动系统中,水平振动台面的等效质量为 ,系统的等效刚度为 ,在无阻尼或阻尼很小时,系统自由振动频率可以写作 。这一频率容易通过实验的方式测得,我们将其记作 ;此时在水平振动台面上加一个已知质量 ,测得新系统的自由振动频率为 。则水平振动台面的等效质量为 可以通过以下关系得到: 。
、 的意义同拾振器。但对激振器说, 的值表示单位电流产生的激振力大小,称为力常数,由厂家提供。JZ-1的力常数约为5N/A。频率可变的简谐电流由信号发生器和功率放大器提供。
4、计算机虚拟设备:
在计算机内部,插有A/D、D/A接口板。按照单自由系统按测试要求,进行专门编程,完成模拟信号输入、显示、信号分析和处理等功能。
6、教师签名的原始数据表附在实验报告最后,原始数据记录纸在实验课上提供,必须每人交一份,可以采用复印、拍照打印等方式进行复制。原始数据上要写清所有人的姓名学号,不得使用铅笔记录。

单自由度模态分析理论

单自由度模态分析理论

要点二
非线性模态分析的研 究
目前,大多数模态分析研究都集中在 线性系统上。然而,在许多工程应用 中,非线性因素对结构振动的影响是 不可忽视的。因此,未来可以进一步 研究非线性模态分析方法,以更准确 地描述这些非线性效应。
要点三
智能材料和结构的应 用
随着智能材料和结构的发展,它们在 许多领域的应用越来越广泛。这些材 料和结构具有独特的动态特性,需要 新的模态分析方法来描述。因此,未 来的研究可以探索适用于智能材料和 结构的模态分析方法。
背景
随着工程结构的日益复杂化,模态分析在结构健康监测、振 动控制、地震工程等领域的应用越来越广泛。单自由度模态 分析作为模态分析的基础,为多自由度模态分析提供了理论 支持。
模态分析的定义
模态
模态是结构的固有振动特性,包 括频率、阻尼比和振型。
模态分析
模态分析是通过试验或数值方法 识别结构的模态参数的过程。
模态振型之间具有正交性, 即不同模态的振动不会相 互干扰。
选择性
在实际工程中,可以根据需要 选择特定的模态进行分析,以 简化计算和提高分析效率。
Part
03
单自由度系统的01
激振器激励
STEP 02
自由衰减振动
通过激振器对系统施加激励 ,使其产生振动响应,然后 采集响应信号进行分析。
04
单自由度系统的模态特性分析
模态正交性分析
模态正交性是指在模态空间中,不同的模态之间相互独立, 没有耦合关系。在单自由度系统中,模态正交性表现为各模 态振型函数的正交性,即它们的内积为零。
模态正交性的意义在于,它使得各模态之间互不干扰,各自 独立地响应外部激励,从而使得系统的响应可以通过叠加各 模态的响应得到。

第3章 单自由度体系1(时域)

第3章 单自由度体系1(时域)

第三章单自由度体系自由振动和强迫振动时域分析3.1力学模型•单自由度体系:SDOF(Single-Degree-of-Freedom )System•结构的运动状态仅需要一个几何参数即可以确定•分析单自由度体系的意义:1、单自由度系统包括了结构动力分析中涉及的所有物理量及基本概念。

2、很多实际的动力问题可以直接按单自由度体系进行分析计算。

3、多自由度系统在很多情况下可以转变为单自由度系统进行分析重力的影响1、考虑重力影响时,结构体系的运动方程与无重力影响时的运动方程完全一样,此时u是由动荷载引起的动力反应。

在研究结构的动力反应时,可以完全不考虑重力的影响,建立体系的运动方程,直接求解动力荷载作用下的运动方程,即得到结构体系的动力解。

2、当需要考虑重力影响时,结构的总位移为总位移=静力解+动力解应用叠加原理将结构的动力反应和静力反应相加即得到结构的总体反应。

在结构反应问题中,应用叠加原理可将静力问题(一般是重力问题)和动力问题分开计算。

重力的影响3、注意1:由于应用了叠加原理,上述结论是用于线弹性体系。

4、注意2,在以上推导过程中,假设悬挂的弹簧―质点体系只发生竖向振动,在动荷载作用之前,重力被弹簧的弹性变形所平衡,而施加荷载后,重力始终被弹性变形所平衡。

如果重力的影响没有预先被平衡,则在施加动力荷载产生进一步变形后,可以产生二阶影响问题,例如P―Δ效应。

1.1无阻尼自由振动运动方程的通解为:121212()n n i ti ts ts tu t c e c ec ec eωω−=+=+指数函数与三角函数的关系:cos sin cos sin ixixe x i x ex i x−=+=−运动方程的解:()cos sin n n u t A t B tωω=+A ,B —待定常数,由初始条件确定。

一些重要性质:(1)自振周期只与结构的质量和结构的刚度有关,与外界的干扰因素无关。

(2)自振周期与质量的平方根成正比,质量越大,周期越大(频率越小);自振周期与刚度的平方根成反比,刚度越大,周期越小(频率越大);要改变结构的自振周期,只有从改变结构的质量或刚度着手。

单自由度系统(自由振动)

单自由度系统(自由振动)

第二章 单自由度系统的自由振动本章以阻尼弹簧质量系统为模型,讨论单自由度系统的自由振动。

§2-1 无阻尼系统的自由振动无阻尼单自由度系统的动力学模型如图1.1所示。

设质量为m ,单位是kg 。

弹簧刚度为K ,单位是N /m ,即弹簧单位变形所需的外力。

弹簧在自由状态位置如图中虚线所示。

当联接质量块后,弹簧受重力W=mg 作用而产生拉伸变形∆:,同时也产生弹簧恢复力K ∆,当其等于重力W 时,则处于静平衡位置,即 W=K ⋅∆若系统受到外界某种初始干扰,使系统静平衡状态遭到破坏.则弹簧力不等于重力,这种不平衡的弹性恢复力,便使系统产生自由振动。

首先建立座标,为简便起见,可选静平衡位置为座标原点,建立铅垂方向的座标x ,从原点算起,向下为正,向上为负,表示振动过程中质量块的位置。

现设质量m 向下运动到x ,此时弹簧恢复力为K(∆+x),显然大于重力W ,由于力不平衡,质量块在合力作用下,将产生加速度运动,故可按牛顿运动定律(作用于一个质点上所有力的合力,等于该质点的质量和沿合力方向的加速度的乘积),建立运动方程,取与x 正方向一致的力、加速度、速度为正,可列如下方程 改写为 0=+kx xm (1-1-1 令mkp =2(1-1-2)单自由度无阻尼系统自由振动运动方程为02=+x p x(1-1-3)设方程的特解为 ste x =将上式代入(1-1-3)处特征方程及特征根为ips p s ±==+2,1220则(1-1-3)的通解为ptD pt C e C e C x ipt ipt sin cos 11+=+=- (1-1-4)C 、D 为任意积分常数,由运动的初始条件确定,设t=0时00,x xx x == (1-1-5)()x m x k W F=+∆-=∑量位静平衡位置 一自由度弹簧—质量系统 ∆==k mgW xx)则pt pxpt x x sin cos 00 += (1-1-6)经三角变换,又可表示为)sin(α+=pt A x(1-1-7)其中 001220,x px tg p x x A -=⎪⎪⎭⎫ ⎝⎛+=α (1-1-8) 自由振动的振幅A 和初相位角α与系统的参数和初始条件有关。

单自由度体系自由振动,速度相位与位移相位的关系

单自由度体系自由振动,速度相位与位移相位的关系

单自由度体系(Single Degree of Freedom System, SDOF)是工程动力学中的一个重要概念,它对于描述系统的振动特性有着重要的作用。

在自由振动过程中,速度相位与位移相位之间存在着密切的关系。

本文将从单自由度体系自由振动的基本原理入手,探讨速度相位与位移相位之间的关系,希望通过本文的介绍,读者能够对这一问题有更加清晰的认识。

一、单自由度体系自由振动的基本原理1. 自由振动的基本概念自由振动是指在没有外界干扰的情况下,系统在一定的初位移或初速度作用下,由于其自身的惯性和弹性特性而产生的振动现象。

在工程领域中,自由振动是一种非常常见的振动形式,因此研究自由振动对于工程设计和分析有着重要的意义。

2. 单自由度体系的定义单自由度体系是指系统中只有一个自由度可以自由变化的体系。

在动力学领域中,单自由度体系被广泛应用于描述各种机械、土木和航空航天结构的振动特性。

它是一种简化模型,但对于许多实际工程问题的分析具有较高的适用性。

3. 自由振动的基本方程单自由度体系的自由振动可以通过一阶微分方程来描述。

其基本方程可以表示为:\[m\ddot{x}+c\dot{x}+kx=0\]其中,\(m\)为系统的质量,\(c\)为系统的阻尼系数,\(k\)为系统的刚度,\(x\)为系统的位移函数,\(t\)为时间。

二、速度相位与位移相位的定义1. 速度相位的定义在振动过程中,速度相位是指速度\(v\)相对于位移\(x\)的相位差。

通常用一个角度来表示,它可以用来描述振动的快慢和超前滞后关系。

2. 位移相位的定义位移相位是指位移\(x\)相对于某一固定参考点的相位差。

它也通常用一个角度来表示,可以用来描述振动的相对位置。

三、速度相位与位移相位的关系速度相位与位移相位之间存在着密切的关系。

在自由振动过程中,它们之间满足以下关系:\[tan(\phi_v-\phi_x)=\frac{2\zeta}{1-\omega^2}\]其中,\(\phi_v\)为速度相位,\(\phi_x\)为位移相位,\(\zeta\)为系统的阻尼比,\(\omega\)为系统的固有频率。

振动系统的自由度和阻尼对振动的影响如何

振动系统的自由度和阻尼对振动的影响如何

振动系统的自由度和阻尼对振动的影响如何一、振动系统的自由度振动系统的自由度是指系统在空间中独立运动的数量。

在物理学中,一个自由度通常指的是一个物体在某个参考系下可以独立运动的程度。

对于振动系统来说,自由度决定了系统的复杂程度和可能的状态。

1.单自由度系统:指系统在空间中只能沿一个方向或一个轴进行振动。

例如,一根弹簧振子就是一个单自由度系统。

2.多自由度系统:指系统在空间中有多个方向或多个轴可以进行振动。

例如,一个弹簧-质量系统,如果它可以在三维空间中的任意方向振动,则它是一个三自由度系统。

二、阻尼对振动的影响阻尼是振动系统中能量耗散的机制,它会使振动的振幅逐渐减小,直至振动停止。

阻尼对振动的影响主要表现在以下几个方面:1.阻尼比:阻尼比是描述阻尼特性的一个参数,定义为阻尼力与恢复力的比值。

阻尼比越大,系统的振动衰减越快,振幅减小得越迅速。

2.阻尼对振动幅值的影响:在初始阶段,阻尼对振动幅值的影响较小,但随着振动时间的增加,阻尼作用逐渐明显,振幅逐渐减小。

3.阻尼对振动周期的影响:阻尼对振动周期没有直接影响,振动周期仅与系统的弹性特性和质量有关。

4.阻尼对振动稳定性的影响:适当的阻尼可以提高振动的稳定性,防止系统发生过度振动或共振。

然而,过大的阻尼可能会导致系统过早地停止振动,影响某些应用中的振动性能。

三、自由度和阻尼的相互作用自由度和阻尼的相互作用表现在以下几个方面:1.自由度越多,系统可能出现的振动状态越多,同时阻尼对振动的影响也越复杂。

2.在多自由度系统中,各个自由度之间的振动可能会相互耦合,使得系统的振动特性更加复杂。

3.阻尼的存在可能会影响自由度之间的耦合关系,从而改变系统的振动特性。

综上所述,振动系统的自由度和阻尼对振动的影响是多方面的,它们相互作用决定了系统的振动特性。

了解这些知识点有助于我们更好地分析和解决实际问题。

习题及方法:1.习题:一个单自由度弹簧振子在无阻尼状态下做简谐振动,其质量为m,弹簧常数为k,振动的初始位移为A。

机械系统动力学第四章 固有频率的实用计算方法

机械系统动力学第四章 固有频率的实用计算方法

瑞利法从单自由度振动系统固有频率计算的能量方法出 发,对于多自由度振动系统,在作无阻尼自由振动时,
Tmax Umax 响应为同步振动。系统的动能可表示为:
T 1 X&T MX& 2
系统的势能
U 1 X T KX 2
设 X {ui}sin nit
带入得最大动能
Tmax

2 ni 2
2k 2m k
=0
k k 22m
即: (2k 2m)(k 22m) k 2=0
可得固有频率
12
=0.2192
k m

22
=2.2808
k m
第4章 固有频率的实用计算方法
4-2 多自由度系统 4-2-2计算固有频率的近似法 一、瑞利法(Rayleigh法)
{ui }T
M {ui}
最大势能
U max

1 2
{ui
}T
K{ui }
第4章 固有频率的实用计算方法
4-2 多自由度系统 4-2-2计算固有频率的近似法 一、瑞利法(Rayleigh法)
带入公式 Tmax Umax 得:
2 ni

{ui}T K{ui} {ui}T M{ui}
4-2-7
利用4-2-7精确计算多自由度振动系统的固有频率,前
K{u2} M {u2}
=
{1
1} k
1}
m 0
k

1
0 1 2m 1

5k 3m

1.667
k m
与精确解相比,一阶固有频率的相对计算误差 1.35%
二阶固有频率的相对计算误差 -26.92%

03-单自由度系统:阻尼自由振动

03-单自由度系统:阻尼自由振动

整理得:
2W 2 2 T1 T gAT 1 T
μ的物理意义是单位面积的阻尼系数。
23
第2章 单自由度系统--阻尼自由振动
24
第2章 单自由度系统--阻尼自由振动
25
第2章 单自由度系统--阻尼自由振动

习题课—单自由度系统阻尼简谐振动

26 Theory of Vibration with Applications
返回首页
--阻尼自由振动 第 2章 --阻尼自由振动 第 2章 单自由度系统 单自由度系统 引言
粘性阻尼-若物体以较大速度在空气或液体中运 动,阻尼与速度平方成正比。但当物体以低速度在粘 性介质中运动(包括两接触面之间有润滑剂时)可以 认为阻尼与速度成正比。
物体运动沿润滑表面的阻力与速度的关系
Fc cx
4 Theory of Vibration with Applications
返回首页
--阻尼自由振动 第 2章 --阻尼自由振动 第 2章 单自由度系统 单自由度系统 引言
• 振动系统的无阻尼振动是对实际问题的理论抽象。 如果现实世界没有阻止运动的话,整个世界将处在 无休止的运动中。客观实际是和谐的,有振动又有 阻尼,保证了我们生活在一个相对安静的世界里。 • 最常见的阻尼是
2 2
xe
nt
(C1e
n2 - p2 t
C2 e
n2 - p2 t
)
临界阻尼(n = p )情形 r1 r2 n
Theory of Vibration with Applications
x e nt (C1 C2 t )
返回首页
第2章
单自由度系统--阻尼自由振动 运动微分方程

单自由体系名词解释

单自由体系名词解释

单自由体系名词解释
单自由度系统(Single Degree of Freedom System)是指工程动力学和振动学中常用的一个概念,用来描述一个仅有一个自由度运动的系统。

这个自由度通常是指系统的一个独立运动参数,如质点在一维空间内的位移或者转角。

在单自由度系统中,该自由度的运动可以完全描述整个系统的动态特性。

单自由度系统的经典例子是弹簧质点振子系统,也就是简谐振动系统。

这种系统由一个质点 (质量为m)通过一根弹簧 (弹性系数为k)与一个固定支点相连构成。

该质点在弹簧的作用下可以在水平方向上作简谐振动。

单自由度系统的重要特征包括:
- 自由度: 单自由度系统中仅有一个运动自由度。

- 动力学方程: 可以使用牛顿运动定律和哈克定律等原理来建立该系统的运动方程,描述质点运动的规律。

- 简谐振动: 如果系统的回复力服从胡克定律,并且没有阻尼和外力的作用,系统将表现出理想的简谐振动。

- 阻尼和非线性: 通常情况下,单自由度系统可能会有阻尼和非线性因素的存在,这会使得其振动特性发生变化。

单自由度系统的研究对于理解振动学原理、分析结构动力学响应、设计工程结构等方面都具有重要意义。

它为工程师和研究人员提供了一种简化模型来分析和预测结构或系统的振动行为,对于许多工程应用和设计过程都具有指导意义。

1/ 1。

单自由度系统无阻尼振动讲义

单自由度系统无阻尼振动讲义

单自由度系统无阻尼振动
单自由度系统的自 由振动——简谐振

1 运动微分方程的建立
弹簧—质量系统放在竖直方向,质量运动方向有重力。
重力只影 响质量块 的平衡位 置,并不 影响其振 动规律。
以系统的静平衡位置o为坐标原点,以垂直向下为轴 正向,建立如图所示的坐标系。
在静平衡位置有:
当物体在任意位置x时:
当质量块m在某一瞬时的速度为 弹簧在x处的微段d x的相应速度为
设r为弹簧单位长度的质量,则弹簧的动能为:
单自由度系统无阻尼振动
弹簧质量 弹簧的等效质量
例7 在长为l,抗弯刚度为EJ的简支梁的中点放一重量为W的物 体,梁的单位长度的质量为r,当考虑梁的分布质量时,求系 统的固有频率。
解:首先假定梁的振型。假设梁在自由振 动时动挠度曲线和简支梁中间有集中静载 荷作用下的静挠度曲线一样。
B点的等效刚度:
N个弹簧串联:
两个弹簧并联,在B端施加力F后,两个弹簧均伸长xB: 两个弹簧受力不同,分别为:
并联弹簧的等效刚度是原来弹簧刚度的总和, 比原来各弹簧单自的由刚度系度统无都阻要尼振大动 。
混联弹簧
等效刚度:
单自由度系统无阻尼振动
设计系统时:若需要减小刚度,采用串联弹性元件; 若需要增大刚度,采用并联弹性元件。
平面运动的刚体 T12mvc2 12Jc2
常见物体的势能计算
拉伸弹簧
扭转弹簧
U x kxdx 1 kx2
U
x
0
Kd
2 1
K2
0
2
刚体的重力势能 U mgzc 单自由度系统无阻尼振动
K 为抗扭弹簧系数
例1 可绕水平轴转动的细长杆,下端附有重锤(直杆的重量和 锤的体积都可以不计),组成单摆,杆长为l,锤重为mg,试 求摆的运动微分方程。

单自由度系统固有频率的计算方法

单自由度系统固有频率的计算方法

=
Hale Waihona Puke ������ሶ���2��������������� 2
������������ (3)
显然,系统的全部动能应该是质量块的最大动能与弹簧的最大 动能之和:
������max
=
1 2
m������ሶ���2���������������
+
������ሶ ���2��������������� 2
������������ 3
以弹簧质量系统为例
假设弹簧上距固定端为h处的位移为: x
xh = h ������ 式中 L-处于平衡位置时弹簧的长度;
x-弹簧在联结质量块一端的位移。
单自由度系统固有频率的计算方法
当质量块在某一瞬时的速度为xሶ 时,弹簧在h处的微段dh的速度
应为hxሶ 。令������表示弹簧单位长度的质量,则弹簧微段dh的质量为
所以系统的固有圆频率为:
kg wn = m = λs
由此可见,只要知道质量块处的弹簧静变形λs,就可以计算出 系统的固有频率。
单自由度系统固有频率的计算方法
(3)能量法 在无阻尼自由振动系统中,由于没有能量损失,所以振幅始终保 持为一常数,我们将这样的系统称为保守系统。 根据能量守恒定律,保守系统动能变化量等于势能变化量
U=12 k x + ������������������ 2 − ���������2��������� − ������������������ 在静平衡位置处有:k������������������=mg
势能: 动能:
U=12
kx2
=
1 2
k������2������������������2(������������������

振动理论03(1)-单自由度系统自由振动

振动理论03(1)-单自由度系统自由振动
如果水在U形管中往复地振动,那么运 动质量就是 。 注意到,在这个问 题中,没有涉及弹簧。实际上,重力的 作用把水柱恢复到它的平衡位置,因此 在题目中有一个重力弹簧,按定义它的 弹性常数是单位位置变化所需要的力。
42
2014/9/28
管中其中一个臂的水位升高1厘米,另一个臂的水位就
降低1厘米,因此就给出2厘米水柱的失衡重量,产生
-任意瞬时的位置与平衡位置 之间的距离)?
10
2014/9/28
弹簧力
阻尼力
作用在质量块的力总计 sin
应用牛顿第二定律: 单自由度系统运动微分方程
mx cx kx P0 sin t
惯性力 阻尼力 弹性力 外来的谐力
单自由度扭转系统振动方程
圆盘的惯性矩为 轴的抗扭刚度为 外加扭矩 0 用于转动物体的广义牛顿定律
弹簧-质量系统
研究系统的振动问题时,常常把它简化成由若干个“ 无质量”的弹簧和“无弹性”的质量所组成的模型, 称为弹簧-质量系统(spring mass system)
角振动(angular vibration):以角位移作为独立坐标的系 统。例如后面将要介绍的圆盘的扭振(Torsional vibration)。
用一根弹簧把一个质量m悬挂 在刚性天花板上。弹簧的刚度 由弹性系数 表示
在质量和刚性天花板之间有油 或者空气缓冲器机构
质量静止时,缓冲器不传递力 质量运动时,缓冲器的阻尼力与
速度成正比,即 c:阻尼常数或粘性阻尼常数
9
2014/9/28
假设一个交变外力作用在质 量上
计算外力造成的质量的运动 ,即求出质量运动距离 的时 间函数
振动理论(3) 第3章 单自由度系统自由振动
自由度
自由度

结构动力学习题解答(一二章)

结构动力学习题解答(一二章)

第一章 单自由度系统1。

1 总结求单自由度系统固有频率的方法和步骤。

单自由度系统固有频率求法有:牛顿第二定律法、动量距定理法、拉格朗日方程法和能量守恒定理法。

1、 牛顿第二定律法适用范围:所有的单自由度系统的振动。

解题步骤:(1) 对系统进行受力分析,得到系统所受的合力;(2) 利用牛顿第二定律∑=F x m,得到系统的运动微分方程;(3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率.2、 动量距定理法适用范围:绕定轴转动的单自由度系统的振动。

解题步骤:(1) 对系统进行受力分析和动量距分析;(2) 利用动量距定理J ∑=M θ,得到系统的运动微分方程;(3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。

3、 拉格朗日方程法:适用范围:所有的单自由度系统的振动.解题步骤:(1)设系统的广义坐标为θ,写出系统对于坐标θ的动能T 和势能U 的表达式;进一步写求出拉格朗日函数的表达式:L=T —U ; (2)由格朗日方程θθ∂∂-∂∂∂LL dt )( =0,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。

4、 能量守恒定理法适用范围:所有无阻尼的单自由度保守系统的振动。

解题步骤:(1)对系统进行运动分析、选广义坐标、写出在该坐标下系统的动能T 和势能U 的表达式;进一步写出机械能守恒定理的表达式 T+U=Const (2)将能量守恒定理T+U=Const 对时间求导得零,即0)(=+dtU T d ,进一步得到系统的运动微分方程;(3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。

1.2 叙述用衰减法求单自由度系统阻尼比的方法和步骤.用衰减法求单自由度系统阻尼比的方法有两个:衰减曲线法和共振法。

方法一:衰减曲线法.求解步骤:(1)利用试验测得单自由度系统的衰减振动曲线,并测得周期和相邻波峰和波谷的幅值i A 、1+i A .(2)由对数衰减率定义 )ln(1+=i iA A δ, 进一步推导有 212ζπζδ-=,因为ζ较小, 所以有πδζ2=。

单自由度体系杜哈梅积分对应的的时程曲线

单自由度体系杜哈梅积分对应的的时程曲线

一、概述单自由度体系是指系统中只有一个可以自由运动的质点,它的运动可以由一个广义坐标来描述。

对于单自由度体系,可以采用杜哈姆积分的方法求解系统的运动方程,并绘制出对应的时程曲线。

本文将对单自由度体系的杜哈姆积分与时程曲线进行探讨。

二、杜哈姆积分的基本原理杜哈姆积分是一种对变阻尼振动系统非定常响应的数值积分方法。

对于线性系统,杜哈姆积分可以简化为一个积分型的微分方程,其基本原理可以用以下公式表示:其中,x(t)为系统的位移,x0表示系统的初始位移,v(t)为位移的导数,ω为系统的固有频率,t为时间,F(t)为外力。

利用杜哈姆积分方法,可以求解系统在给定外力作用下的位移和速度。

三、杜哈姆积分的应用杜哈姆积分广泛应用于工程实践中,尤其是在机械振动、结构动力学和地震工程中。

在求解单自由度体系的非定常响应时,我们可以利用杜哈姆积分方法得到系统的位移和速度随时间的变化规律。

四、时程曲线的绘制通过杜哈姆积分方法求解得到系统的位移和速度随时间的变化规律后,我们可以利用这些数据绘制出对应的时程曲线。

时程曲线可以直观地展示系统在外力作用下的振动情况,有利于工程师对系统的动态响应进行分析和评估。

五、实例分析以弹簧振子为例,假设有一个质量为m的弹簧振子,弹簧的刚度为k,外力为F(t),系统的初始位移和初始速度分别为x0和v0。

利用杜哈姆积分方法,我们可以得到弹簧振子在外力作用下的位移和速度随时间的变化规律,并绘制出对应的时程曲线。

六、结论杜哈姆积分方法是一种对变阻尼振动系统非定常响应进行数值积分的有效方法。

通过对单自由度体系的杜哈姆积分和时程曲线的分析,我们可以更好地理解系统在外力作用下的动态响应规律,并为工程实践提供重要参考。

七、展望未来,我们可以进一步研究杜哈姆积分方法在多自由度体系和非线性系统中的应用,探索更加精确和高效的变阻尼振动系统响应预测方法,为工程实践和科研工作提供更加可靠的理论基础和技术支持。

单自由度体系的杜哈姆积分与时程曲线是工程动力学研究中的重要内容,它对于理解和预测系统动态响应具有重要意义。

第二章 振动结构模态分析

第二章 振动结构模态分析
x(t) Acos(t )
2.2 单自由度系统自由振动 ——有阻尼
m x(t) c x(t) k x(t) f (t)
mx cx kx 0
x Aet
m2 c k 0
2 2 2 0
1,2 2 1
2 k
m
c 2
m
2.2 单自由度系统自由振动——有阻尼
n
x(t) qi (t)i q(t) i1 T M q(t) T Cq(t) T Kq(t) T f (t)
miqi (t) ciqi (t) kiqi (t) iT f (t)
2.6 多自由度系统振动响应
频响函数:
Mx(t) Cx(t) K x(t) f (t)
x(t) Xeit
m x(t) c x(t) k x(t) f (t)
t
x(t) 0 f (t )h( )d
2.3 单自由度系统强迫振动——频响函数与单位脉冲函数
m x(t) c x(t) k x(t) f (t)
定义:
(1)简谐激励时,稳态输出相量与输入相量之比。
(2)瞬态激励时,输出的傅里叶变换与输入的傅里叶变换之比。
表示体系可能存在的n个振型
对应的频率。具有最低频率的阵型称之为第一阶振型,第二低频率
对应的振型为第二阶振型。
2.5 多自由度无阻尼系统自由振动
振型分析:Mx(t) K x(t) 0
x(t) Xsin( t )
1
(K 2M)X 0 1.特征向量,或振型,
一般用i来表示;
(K i2M)Xi 0
/
2.3 单自由度系统强迫振动——简谐激励
x(t) 2 x(t) 2 x(t) F0 sin t
m
通解: xc (t) A1 cosdt A2 sin dtexp(t)

3-单自由度强迫振动解析

3-单自由度强迫振动解析

前面已经得出方程
x
的全解为:
2wnx
x
wn2 x
F0 m
sin wt
x
exwnt
x0
xwn wd
x0
sin wd t
x0
cos wd t
X
exwnt
0
xwn
sin
wd
w
cos
sin
wd t
sin
cos
wd t
X0 sin(w t )
第3章 单自由度系统强迫振动
3.1 单自由度系统在谐和激振下的强迫振动
Rmax=
2x
1
1x2
而r=1时
R= 1
2x
由此看出:当r=1,x很小时的R和Rmax相 差很小,所以在工程中仍认为当w=wn 时发
生共振。
第3章 单自由度系统强迫振动
3.1 单自由度系统在谐和激振下的强迫振动
28
3. 相频特性曲线(P37)
以x为参 数,画出f- r 曲线即 f
相频特性曲 线,表明了阻 尼和激振频 率对相位差 的影响。
1 r2
分别取 z*式的实部和虚部就是对应于
余弦和正弦激励的稳态响应。
第3章 单自由度系统强迫振动
3.1 单自由度系统在谐和激振下的强迫振动
21
稳态响应分析(P34-39)
1. 稳态响应xp=X0sin(wt-f)的性质(P34)
(1)在谐和激振条件下,响应也是谐和的, 其频率与激振频率相同; (2)谐和激励强迫振动的振幅X0和相位角φ 决定于系统本身的物理性质和激振力的大小 和频率,与初始条件无关;
• r →∞时,f→p,系统平稳运行。
第3章 单自由度系统强迫振动

单自由度系统实验报告

单自由度系统实验报告

单自由度系统实验报告单自由度系统实验报告引言单自由度系统是力学中的基础概念,通过对其进行实验研究,可以更好地理解和掌握力学的相关原理。

本实验旨在通过对单自由度系统的研究,探索其振动特性和动力学行为。

实验目的1. 了解单自由度系统的基本概念和特性;2. 掌握单自由度系统的振动实验方法;3. 研究单自由度系统的振动频率和振幅与参数之间的关系;4. 分析单自由度系统的动力学行为。

实验装置和方法实验装置主要由弹簧、质点和振动台组成。

首先,将质点与弹簧固定在振动台上,调整弹簧的初始位置和质点的质量。

然后,施加一个外力使系统发生振动,并记录振动的频率和振幅。

根据实验数据,分析单自由度系统的振动特性和动力学行为。

实验结果与分析通过实验记录的数据,我们可以得出以下结论:1. 振动频率与弹簧刚度成正比:实验中我们改变了弹簧的刚度,发现振动频率随着弹簧刚度的增加而增加。

这符合单自由度系统的基本原理,即振动频率与系统的刚度相关。

2. 振动频率与质点质量无关:实验中我们改变了质点的质量,发现振动频率与质点质量无关。

这是因为单自由度系统的振动频率只与系统的刚度相关,与质点的质量无关。

3. 振幅与外力频率成正比:实验中我们改变了施加在系统上的外力频率,发现振幅随着外力频率的增加而增加。

这符合单自由度系统的共振现象,即当外力频率接近系统的固有频率时,振幅会增大。

4. 动力学行为的分析:通过实验数据的分析,我们可以了解单自由度系统的动力学行为。

例如,当外力频率小于系统的固有频率时,系统会发生简谐振动;当外力频率接近系统的固有频率时,系统会发生共振现象;当外力频率大于系统的固有频率时,系统会发生强迫振动。

结论通过本次实验,我们深入了解了单自由度系统的振动特性和动力学行为。

实验结果表明,振动频率与弹簧刚度成正比,与质点质量无关;振幅与外力频率成正比。

这些结果对于我们理解力学的相关原理以及应用于实际工程中的振动问题具有重要意义。

实验的局限性和改进本实验中,我们只研究了单自由度系统的基本特性和动力学行为,未考虑其他因素对系统的影响。

结构振动理论2-单自由度系统自由振动

结构振动理论2-单自由度系统自由振动

由 dE 0 1、求出运动方程: mx kx 0
dt
有常力作用的机械能: E 1 mx&2 1 k( x)2 Fx
2
2
dE mx&&x& k( x)x& Fx& x&(m&x& kx) 0
dt
由 Ek max E p max E 2、求固有频率
假设 x Asin( pt ) 则 x Apcos(pt )
2
l 0
/
2
y02{3(
x l
)
4(
x l
)3}2
dx
1 2
0.486
ly02
Ek
1 2
me
y02
me 0.486 l
n
ke me
00:03
单自由度系统自由振动
例 铰接式直升机旋翼挥舞振动分析
取微元做受力分析,微元
cos
R
L
2(R cos)d 离心力对铰链轴o的力矩为
θ
ξ
(2 (R cos )d )( sin )
则系统的自由振动方程为: me ke 0
固有频率为:
n
ke me
需要注意的是,me不是梁的总质量,它可以通过梁上各 点位移关系和动能等效的原则求得。
00:03
单自由度系统自由振动
y( x, t )
y0
(t
)[3x l
4(
x )3 ] l
(x 1) l2
Ek
1 2
l y2dm 1 2
0
由此可见,弹性元件并联将提高总刚度,串联将降低总刚
度。这与电学中电阻的并联、串联结论是相反的。阻尼器串联
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章 单自由度系统
1.1 总结求单自由度系统固有频率的方法和步骤。

1.2 叙述用衰减法求单自由度系统阻尼比的方法和步骤。

1.3 叙述用正选弦激励求单自由度系统阻尼比的方法和步骤。

1.4 求图1-33中标出参数的系统的固有频率。

1.5 求图1-34所示系统的固有频率。

图中匀质轮A 半径R,重物B 的重量为P/2,弹簧刚度为k.
1.6求图1-35所示系统的固有频率。

图中磙子半径为R ,质量为M ,作纯滚动。

弹簧刚度为K 。

1.7求图1-36所示齿轮系统的固有频率。

已知齿轮A 的质量为A m ,半径为A r ,齿轮B 的质量为B m ,半径为B r ,杆AC 的扭转刚度为A k , ,杆BD 的扭转刚度为B k 。

1.8已知图1-37所示振动系统中,匀质杆长为l ,质量为m ,两弹簧刚度皆为K ,阻尼系数
为C ,求当初始条件00
0==θθ 时
(1)t F t f ωsin )(=的稳态解;
(2)t t t f )()(δ=的解;
1.9图1-38所示盒内有一弹簧振子,其质量为m ,阻尼为C ,刚度为K ,处于静止状态,方盒距地面高度为H ,求方盒自由落下与地面粘住后弹簧振子的振动历程及振动频率。

1.10汽车以速度V 在水平路面行使。

其单自由度模型如图1-39。

设m 、k 、c 已知。

路面波动情况可以用正弦函数sin()y h at =表示。

求:(1)建立汽车上下振动的数学模型;(2)汽车振动的稳态解。

1.11.若电磁激振力可写为t H t F 02sin )(ω=,求将其作用在参数为m 、 k 、 c 的弹簧振子上的稳态响应。

1.1
2.若流体的阻尼力可写为3x
b F d -=,求其等效粘性阻尼。

相关文档
最新文档