实验四 窗函数法设计FIR数字滤波器
数字信号处理实验——用窗函数设计FIR滤波器
实验四 用窗函数设计FIR 滤波器一、 实验目的1、熟悉FIR 滤波器设计的基本方法。
2、掌握用窗函数设计FIR 数字滤波器的原理及方法,熟悉相应的计算机高级语言编程。
3、熟悉线性相位FIR 滤波器的幅频特性和相位特性。
4、了解各种不同窗函数对滤波器性能的响应。
二、 实验原理和方法窗函数法设计的任务在于寻找一个可实现有限长单位脉冲响应的传递函数H(e jw )=∑-=10N n h(n)e -jwn 去逼近h d (n)=1/2π⎰π20H d (e jw )e jwn dw即h(n)=h d (n)w (n ) (一)几种常用的窗函数1、矩形窗 w(n)=R N (n)2、Hanning 窗 w(n)=0.5[1-cos(2πn /N-1)]R N (n)3、Hamming 窗 w(n)=[0.54-0.46cos(2πn /N-1)]R N (n)4、Blackman 窗 w(n)=[0.42-0.5 cos(2πn /N-1)+0.08 cos(4πn /N-1)] R N (n)5、Kaiser 窗 w(n)=I 0(β(1-[(2n /(N-1))-1]2)½)/I 0(β)(二)窗函数法设计线性相位FIR 滤波器的步骤1、确定数字滤波器的性能要求。
确定各临界频率{w k }和滤波器单位脉冲响应长度N 。
2、根据性能要求和N 值,合理地选择单位脉冲响应h(n)有奇偶对称性,从而确定理想频率响应h d (e jw)的幅频特性和相位特性。
3、用傅里叶反变换公式求得理想单位脉冲响应h d (n)。
4、选择适当的窗函数W (n ),求得所设计的FIR 滤波器单位脉冲响应。
5、用傅里叶变换求得其频率响应H (e jw),分析它的幅频特性,若不满足要求,可适当改变窗函数形式或长度N ,重复上述过程,直至得到满意的结果。
三、实验内容和步骤1、分别用矩形窗、Hanning 窗、Hamming 窗、Blackman 窗、Kaiser 窗(β=8.5)设计一个长度N=8的线性相位FIR 滤波器。
窗函数法设计FIR滤波器
FIR 数字滤波器的设计方法IIR 数字滤波器最大缺点:不易做成线性相位,而现代图像、语声、数据通信对线性相位的要求是普遍的。
正是此原因,使得具有线性相位的FIR 数字滤波器得到大力发展和广泛应用。
1. 线性相位FIR 数字滤波器的特点FIR DF 的系统函数无分母,为∑∑-=--=-==11)()(N n n N i ii z n h zb z H ,系统频率响应可写成:∑-=-=10)()(N n jwn jwe n h e H ,令)(jw e H =)()(w j e w H Φ,H(w)称为幅度函数,)(w Φ称为相位函数。
这与模和幅角的表示法有所不同,H(w)为可正可负的实数,这是为了表达上的方便。
如某系统频率响应)(jw e H =wj we34sin -,如果采用模和幅角的表示法,w 4sin 的变号相当于在相位上加上)1(ππj e =-因,从而造成相位曲线的不连贯和表达不方便,而用)()(w j e w H Φ这种方式则连贯而方便。
线性相位的FIR 滤波器是指其相位函数)(w Φ满足线性方程:)(w Φ=βα+-w (βα,是常数)根据群时延的定义,式中α表示系统群时延,β表示附加相移。
线性相位的FIR 系统都具有恒群时延特性,因为α为常数,但只有β=0的FIR 系统采具有恒相时延特性。
问题:并非所有的FIR 系统都是线性相位的,只有当它满足一定条件时才具有线性相位。
那么应满足什么样的条件?从例题入手。
例题:令h(n)为FIR 数字滤波器的单位抽样相应。
N n n ≥<或0时h(n)=0,并假设h(n)为实数。
(a ) 这个滤波器的频率响应可表示为)()()(w j jwew H e H Φ=(这是按幅度函数和相位函数来表示的,不是用模和相角的形式),)(w H 为实数。
(N 要分奇偶来讨论) (1) 当h(n)满足条件)1()(n N h n h --=时,求)(w H 和)(w Φ(π≤≤w 0) (2) 当h(n)满足条件)1()(n N h n h ---=时,求)(w H 和)(w Φ(π≤≤w 0)(b ) 用)(k H 表示h(n)的N 点DFT(1) 若h(n)满足)1()(n N h n h ---=,证明H(0)=0; (2) 若N 为偶数,证明当)1()(n N h n h --=时,H(N/2)=0。
实验四FIR数字滤波器的设计
实验四FIR数字滤波器的设计
FIR(有限冲击响应)数字滤波器是一种常见的数字信号处理器件,
可以用于滤波、降噪等应用。
下面是一种FIR数字滤波器的设计流程:
1.确定滤波器的需求:首先确定需要滤除的频率范围和滤波的类型,
例如低通、高通、带通、带阻等等。
2.设计滤波器的频率响应:根据滤波器的需求,设计其理想的频率响应。
可以使用窗函数、最小二乘法等方法获得一个理想的滤波器响应。
3.确定滤波器的阶数:根据设计的频率响应,确定滤波器的阶数。
阶
数越高,滤波器的响应越陡峭,但计算复杂度也会增加。
4.确定滤波器的系数:根据滤波器的阶数和频率响应,计算滤波器的
系数。
可以使用频域窗函数或时域设计方法。
5.实现滤波器:根据计算得到的滤波器系数,实现滤波器的计算算法。
可以使用直接形式、级联形式、传输函数形式等。
6.评估滤波器的性能:使用所设计的FIR滤波器对输入信号进行滤波,评估其滤波效果。
可以使用频率响应曲线、幅频响应、群延时等指标进行
评估。
7.调整滤波器设计:根据实际的滤波效果,如果不满足需求,可以调
整滤波器的频率响应和阶数,重新计算滤波器系数,重新实现滤波器。
以上是FIR数字滤波器的基本设计流程,设计过程中需要考虑滤波器
的性能、计算复杂度、实际应用需求等因素。
实验四 用窗函数法设计FIR滤波器 实验报告
实验四 用窗函数法设计FIR 滤波器(一)实验目的1. 掌握窗函数法设计FIR 滤波器的原理和方法,观察用几种常用窗函数设计的FIR 数字滤波器技术指标;2. 掌握FIR 滤波器的线性相位特性;3. 了解各种窗函数对滤波特性的影响。
(二)实验原理如果所希望的滤波器的理想频率响应函数为Hd(e jω),则其对应的单位脉冲响应为ωπωππωd e e H n h n j j d ⎰-=)(21)(,用窗函数wN(n)将hd(n)截断,并进行加权处理,得到实际滤波器的单位脉冲响应h(n)=hd(n)wN(n),其频率响应函数为n j N n j e n h e H ωω--=∑=10)()(。
如果要求线性相位特性,则h(n)还必须满足)1()(n N h n h --±=。
可根据具体情况选择h(n)的长度及对称性。
(三)实验内容1、生成四种窗函数:矩形窗、三角窗、汉宁窗、海明窗,并观察其频率响应。
实验代码以及运行结果%矩形窗及其频响n=15;window1=rectwin(n);[h1,w1]=freqz(window1,1);subplot(2,1,1);stem(window1);title('矩形窗');subplot(2,1,2);plot(w1/pi,20*log(abs(h1))/abs(h1(1)));title('矩形窗频响');%三角窗及其频响n=15;window2=triang(n);[h2,w2]=freqz(window2,1);subplot(2,1,1);stem(window2);title('三角窗');subplot(2,1,2); plot(w2/pi,20*log(abs(h2))/abs(h2(1)));title('三角窗频响'); %汉宁窗及其频响n=15;window3=hann(n);window3=hann(n);[h3,w3]=freqz(window3,1);subplot(2,1,1);stem(window3);title('汉宁窗');subplot(2,1,2); plot(w3/pi,20*log(abs(h3))/abs(h3(1)));title('汉宁窗频响');%海明窗频响n=15;window4=hamming(n);[h4,w4]=freqz(window4,1); subplot(2,1,1);stem(window4);title('海明窗');subplot(2,1,2); plot(w4/pi,20*log(abs(h4))/abs(h4(1)));title('海明窗频响');运行结果:2、根据下列技术指标,设计一个FIR数字低通滤波器:wp=0.2π,ws=0.4π,ap=0.25dB,as=50dB,选择一个适当的窗函数,确定单位冲激响应,绘出所设计的滤波器的幅度响应。
数字信号实验(4) 用窗函数设计FIR滤波器
实验四用窗函数设计FIR滤波器一、实验目的1.熟悉FIR滤波器设计的基本方法。
2.掌握用窗函数设计FIR数字滤波器的原理及方法,熟悉相应的计算机高级语言编程。
3.熟悉线性相位FIR滤波器的幅频特性和相位特性。
4.了解各种不同窗函数对滤波器性能的响应。
二、实验原理与方法(一)FIR滤波器的设计目前FIR滤波器的设计方法主要有三种:窗函数法、频率取样法和切比雪夫等波纹逼近的最优化设计方法。
常用的是窗函数法和切比雪夫等波纹逼近的最优化设计方法。
本实验中的窗函数法比较简单,可应用现成的窗函数公式,在技术指标要求不高的时候是比较灵活方便的。
它是从时域出发,用一个窗函数截取理想的得到h(n),以有限长序列h(n)近似理想的;如果从频域出发,用理想的在单位圆上等角度取样得到H(k),根据h(k)得到H(z)将逼近理想的,这就是频率取样法。
(二)窗函数设计法同其它的数字滤波器的设计方法一样,用窗函数设计滤波器也是首先要对滤波器提出性能指标。
一般是给定一个理想的频率响应,使所设计的FIR滤波器的频率响应去逼近所要求的理想的滤波器的相应。
窗函数法设计的任务在于寻找一个可实现(有限长单位脉冲响应)的传递函数。
去逼近。
我们知道,一个理想的频率响应的傅理叶变换所得到的理想单位脉冲响应往往是一个无限长序列。
对经过适当的加权、截断处理才得到一个所需要的有限长脉冲响应序列。
对应不同的加权、截断,就有不同的窗函数。
所要寻找的滤波器脉冲响应就等于理想脉冲响应和窗函数的乘积。
即,由此可见,窗函数的性质就决定了滤波器的品质。
以下是几种常用的窗函数:1.矩形窗:2.Hanning窗:3.Hamming窗:4.Blackman窗:5.Kaiser窗:窗函数法设计线性相位FIR滤波器可以按如下步骤进行:1.确定数字滤波器的性能要求。
确定各临界频率{}和滤波器单位脉冲响应长度N。
2.根据性能要求和N值,合理地选择单位脉冲响应h(n)有奇偶对称性,从而确定理想频率响应的幅频特性和相位特性。
实验四FIR数字滤波器设计与软件实现
实验四FIR数字滤波器设计与软件实现
实验目的:
FIR(Finite Impulse Response)数字滤波器是一种常用的数字滤波器,本实验旨在通过设计和软件实现FIR数字滤波器,加深对数字滤波器的理解和应用。
实验材料和设备:
1.个人电脑
2. 数字信号处理软件(如MATLAB、Python等)
实验步骤:
1.确定滤波器的类型和设计要求,如低通滤波器、高通滤波器、带通滤波器等。
给定滤波器的截止频率、通带衰减和阻带衰减等参数。
2.使用指定的设计方法,如窗函数法、频率采样法等,进行FIR滤波器的设计。
根据设计要求选择合适的窗函数(如矩形窗、汉宁窗、布莱克曼窗等)或频率采样点。
3.进行FIR滤波器的软件实现。
在数字信号处理软件中,根据设计好的滤波器系数(也称为权值),通过卷积操作对输入信号进行滤波。
可以使用已有的滤波器设计函数或自行编写代码实现。
4.对输入信号进行滤波,观察滤波效果。
可以通过绘制输入信号和输出信号的时域图和频域图,分析滤波效果。
根据需要,可以对滤波器进行调整和优化。
5.根据实验结果,对滤波器的性能进行评估。
可以对比不同设计方法和参数选择的滤波器性能,分析其优缺点。
注意事项:
1.在选择滤波器的设计方法时,要根据实际需求和要求来选择。
不同方法有不同的适用范围和设计效果。
2.在进行滤波器实现时,要注意系数计算的精度和卷积操作的效率。
3.在进行滤波效果评估时,要综合考虑时域和频域等多个指标,避免单一指标的片面评价。
实验四FIR数字滤波器的设计
实验四FIR数字滤波器的设计
FIR数字滤波器也称作有限脉冲响应数字滤波器,是一种常见的数字滤波器设计方法。
在设计FIR数字滤波器时,需要确定滤波器的阶数、滤波器的类型(低通、高通、带通、带阻)以及滤波器的参数(截止频率、通带波纹、阻带衰减、过渡带宽等)。
下面是FIR数字滤波器的设计步骤:
1.确定滤波器的阶数。
阶数决定了滤波器的复杂度,一般情况下,阶数越高,滤波器的性能越好,但计算量也越大。
阶数的选择需要根据实际应用来进行权衡。
2.确定滤波器的类型。
根据实际需求,选择低通、高通、带通或带阻滤波器。
低通滤波器用于去除高频噪声,高通滤波器用于去除低频噪声,带通滤波器用于保留一定范围内的频率信号,带阻滤波器用于去除一定范围内的频率信号。
3.确定滤波器的参数。
根据实际需求,确定滤波器的截止频率、通带波纹、阻带衰减和过渡带宽等参数。
这些参数决定了滤波器的性能。
4.设计滤波器的频率响应。
使用窗函数、最小二乘法等方法,根据滤波器的参数来设计滤波器的频率响应。
5.将频率响应转换为滤波器的系数。
根据设计的频率响应,使用逆快速傅里叶变换(IFFT)等方法将频率响应转换为滤波器的系数。
6.实现滤波器。
将滤波器的系数应用到数字信号中,实现滤波操作。
7.优化滤波器性能。
根据需要,可以对滤波器进行进一步优化,如调整滤波器的阶数、参数等,以达到较好的滤波效果。
以上是FIR数字滤波器的设计步骤,根据实际需求进行相应的调整,可以得到理想的滤波器。
窗函数法设计FIR滤波器实验报告
窗函数法设计FIR滤波器实验报告实验一窗函数法设计FIR滤波器数字滤波是数字信号处理的一种重要算法,广泛用于对信号的过滤、检测与参数的估计等信号处理中。
数字滤波器是使用最为广泛的装置,在工业、农业和其他行业均有应用数字滤波器按其单位脉冲响应的长度可分为有限脉冲响应(FIR)滤波器和无限脉冲响应(IIR)滤波器两类。
FIR 滤波器的线性与稳定性使其应用更为广泛。
1.FIR滤波器数字滤波器是一个能够完成特定任务的离散时间系统,它可以利用有限精度算法来实现。
当采用一个因果稳定的离散线性移不变系统的系统函数去逼近滤波器所要求的性能指标时,由于系统函数有无限长单位冲激响应(IIR)系统函数和有限长单位冲激响应(FIR)系统函数两种,相应地数字滤波器也就有无限长单位冲激响应(IIR)滤波器和有限长单位冲激响应(FIR)滤波器两种。
FIR 滤波器的设计问题实质上是确定能满足所要求的转移序列或脉冲响应的常数的问题,设计方法主要有窗函数法、频率采样法和等波纹最佳逼近法等。
FIR 滤波器的基本结构可以理解为一个分节的延时线,把每一节的输出加权累加,可得到滤波器的输出。
FIR 滤波器的冲激响应h(n)是有限长的,数学上M阶FIR 滤波器可以表示为:y(n) = ∑h(i)x(n-i) (1)其系统函数为:H (z) =Y(Z)/X(Z)=∑b(n)z-n (2)2.窗函数法窗函数是一种用一定宽度窗函数截取无限长脉冲响应序列获取有限长脉冲响应序列的设计方法。
而其设计FIR 滤波器的基本思想: 根据给定的滤波器技术指标选取滤波器长度N和窗函数wd(n), 使其具有最窄宽度的主瓣和最小的旁瓣。
其核心是从给定的频率特性, 通过加窗确定有限长单位脉冲响应序列h(n)即实际滤波器的系数向量, 其是由理想滤波器脉冲响应hd(n)与窗函数函数hd(n)相乘得到。
工程上常用的窗函数有5种:矩形窗(Rectangular Window),三角窗(Triangular Window),汉宁窗(Hanning),汉明窗(Hanming)和凯泽窗(Kaiaser-Bassel Window)。
用窗函数法设计FIR滤波器
用窗函数法设计FIR滤波器窗函数法是一种常用的数字滤波器设计方法,特别是FIR(Finite Impulse Response)滤波器设计的一种方法。
FIR滤波器是一种非递归滤波器,可以实现信号的滤波,特定频率的增强或抑制,抗混叠等功能。
FIR滤波器设计过程可以分为两个步骤:确定滤波器的理论参数和设计窗函数。
第一步,确定滤波器的理论参数。
这些参数包括滤波器的采样频率,截止频率,通带和阻带的衰减要求等。
一般情况下,FIR滤波器的理论参数由滤波器的应用需求决定。
第二步,设计窗函数。
窗函数是用来限制FIR滤波器的单位冲激响应的长度的。
它决定了滤波器的频率响应特性和频率选择性。
窗函数可以通过Fourier级数展开来实现。
常用的窗函数有矩形窗、汉宁窗、汉明窗、布莱克曼窗等。
例如,以汉宁窗为例,下面是使用窗函数法设计FIR滤波器的具体步骤:1. 确定滤波器的理论参数。
如采样频率为fs,截止频率为fc,通带衰减要求为d1,阻带衰减要求为d22.将截止频率转化为数字频率。
由于数字信号是离散的,需要将模拟信号的截止频率转化为数字频率。
数字频率的单位为π。
3.根据截止频率和采样频率计算滤波器的长度N。
通常情况下,滤波器的长度N取一个奇数值,以确保能满足线性相位要求。
4.根据窗函数的性质确定窗函数的参数。
汉宁窗的参数为α=0.55.根据窗函数的长度N和参数α计算窗函数的系数。
例如,对于汉宁窗,窗函数的系数可通过下式计算得到:w(n) = 0.5 - 0.5 * cos(2πn/N) ,其中0≤ n ≤ N-16.根据窗函数的系数计算滤波器的单位冲激响应h(n)。
滤波器的单位冲激响应即为窗函数系数的离散时间傅里叶变换(DTFT),用于表示滤波器的频率响应特性。
7.根据滤波器的单位冲激响应h(n)可以计算出滤波器的频率响应H(f)。
频率响应可以通过滤波器的单位冲激响应h(n)的离散时间傅里叶变换(DTFT)计算得到。
8.根据设计要求来检验滤波器的频率响应特性是否满足要求。
用窗函数设计FIR滤波器实验报告
实验 用窗函数设计FIR 滤波器一、实验目的1、熟悉FIR 滤波器设计的基本方法。
2、熟悉线性相位FIR 滤波器的幅频特性和相位特性。
3、掌握用窗函数设计FIR 数字滤波器的原理及方法,了解各种不同窗函数对滤波器性能的影响。
二、实验原理1、FIR 滤波器的设计 在前面的实验中,我们介绍了IIR 滤波器的设计方法并实践了其中的双线性变换法,IIR 具有许多诱人的特性;但与此同时,也具有一些缺点。
例如:若想利用快速傅立叶变换技术进行快速卷积实现滤波器,则要求单位脉冲响应是有限长的。
此外,IIR 滤波器的优异幅度响应,一般是以相位的非线性为代价的,非线性相位会引起频率色散。
FIR 滤波器具有严格的相位特性,这对于许多信号的处理和数据传输是很重要的。
目前FIR 滤波器的设计方法主要有三种:窗函数法、频率采样法和切比雪夫等波纹逼近的最优化设计方法。
窗函数法比较简单,可应用现成的窗函数公式,在技术指标要求不高的时候是比较灵活方便的。
它是从时域出发,用一个窗函数截取理想的[]d h n 得到[]h n ,以有限长序列[]h n 近似理想的[]d h n ;如果从频域出发,用理想的[]j d h e ω在单位圆上等角度取样得到[]H k ,根据[]H k 得到[]H z 将逼近理想的[]d h z ,这就是频率采样法。
2 、窗函数设计法同其他的数字滤波器的设计方法一样,用窗函数设计滤波器也是首先要对滤波器提出性能指标。
一般是给定一个理想的频率响应[]j d H e ω,使所设计的FIR 滤波器的频率响应[]j H e ω去逼近所要求的理性的滤波器的响应[]j d H e ω。
窗函数法设计的任务在于寻找一个可实现(有限长单位脉冲响应)的传递函数1()[]N j j nn H e h n e ωω--==∑ (4.1)去逼近[]j d H e ω。
我们知道,一个理想的频率响应[]j d H e ω的傅立叶反变换201[]()2j j n d d h n H e e d πωωωπ=⎰(4.2)所得到的理想单位脉冲响应[]d h n 往往是一个无限长序列。
实验四 FIR数字滤波器的设计(实验报告)
实验四 FIR数字滤波器的设计(实验报告)《数字信号处理》实验报告学院专业电子信息工程班级姓名学号时间实验四FIR数字滤波器的设计一、实验目的1、掌握用窗函数法、频率采样法及优化算法设计FIR 滤波器的原理及步骤,学会相应的MATLAB编程。
2、熟悉具有线性相位的FIR滤波器的幅频特性和相频特性。
3、了解各种不同窗函数对滤波器性能的影响。
二、实验内容1、用窗函数法设计一个FIR数字低通滤波器LPDF,验证设计结果的幅频特性和相频特性。
要求:通带截止频率ωp=π,通带波纹Rp=,阻带截止频率ωs=π,阻带衰减As=50dB。
50Magnitude (dB) Frequency ( rad/sample) (degrees)- Frequency ( rad/sample)图1-1 低通滤波器LPDF的频率响应图1-2 低通滤波器LPDF的零极点图单位脉冲响应h(n)的数据长度= 45 对称性为:偶对称得到的滤波器通带边界点( 326 )和阻带边界点参数2、用窗函数法设计一个FIR数字高通滤波器HPDF,验证设计结果的幅频特性和相频特性。
要求:通带截止频率ωp=π,通带波纹Rp=,阻带截止频率ωs=π,阻带衰减As=50dB。
Real Part50Magnitude (dB) Frequency ( rad/sample) (degrees) Frequency ( rad/sample)图2-1 高通滤波器HPDF的频率响应图2-2 高通滤波器HPDF的零极点图-滤波器H(z)零点个数= h(n)对称性为:偶对称得到的滤波器通带边界点( 426 )和阻带边界点参数3、用窗函数法设计一个FIR数字带通滤波器BPDF,验证设计结果的幅频特性和相频特性。
要求:阻带截止频率ωs1=π,衰减65dB,通带截止频率ωp1=π→ωp2=π范围内衰减,高端阻带截止频率ωs2=π,阻带衰减As=65dB。
501Magnitude (dB)0-50-100Imaginary Frequency ( rad/sample) Frequency ( rad/sample) (degrees)0-20XX-4000-6000图3-1 带通滤波器BPDF的频率响应图3-2 带通滤波器BPDF的零极点图 FIR滤波器的阶次= 111 h(n)对称性为:偶对称得到的滤波器通带边界点( 298、704 )和阻带边界点参数中心频率:通带带宽:4、用窗函数法设计一个FIR数字带阻滤波器BSDF,验证设计结果的幅频特性和相频特性。
用窗函数法设计FIR滤波器
1.用窗函数法设计一线性相位FIR低通滤波器,要求通带截止频率 ,
(1)选择一个合适的窗函数(如hamming窗),取单位冲击响应h(n)的长度N=15,观察所设计滤波器的幅频特性,分析是否满足设计要求;
(2)取N=45,重复上述设计,观察幅频和相频特性的变化,分析长度N变化的影响;
(3)保持N=45不变,改变窗函数(如hamming窗变为blackman窗),观察并记录窗函数对滤波器幅频特性的影响。
xlabel('n');ylabel('h(n)');
title('hamming窗设计的h(n)'2);
hw=fft(hn,512);
w=2*[0:511]/512;
plot(w,20*log10(abs(hw)));
xlabel('w/pi');ylabel('Magnitude(dB)');
(4)由 ,得出单位脉冲响应 ;
(5)对 作离散时间傅立叶变换,得到 。
2.在MATLAB中,可以用b=fir1(N,Wn,’ftype’,taper)等函数辅助设计FIR数字滤波器。N代表滤波器阶数;Wn代表滤波器的截止频率(归一化频率),当设计带通和带阻滤波器时,Wn为双元素相量;ftype代表滤波器类型,如’high’高通,’stop’带阻等;taper为窗函数,默认为海明窗,窗函数实现需要用窗函数blackman,hamming,hanningchebwin,kaiser产生。
用窗函数法设计FIR滤波器是在时域进行的,先用傅里叶变换求出理想滤波器单位抽样相应hd(n),然后加时间窗w(n)对其进行截断,以求得FIR 滤波器的单位抽样响应h(n)。
FIR数字滤波器设计与软件实现
实验四:FIR数字滤波器设计与软件实现1.实验目的(1)掌握用窗函数法设计FIR数字滤波器的原理和方法。
(2)学会调用MA TLAB函数设计FIR滤波器。
(3)通过观察频谱的相位特性曲线,建立线性相位概念。
(4)掌握FIR数字滤波器的MATLAB软件实现方法。
2.实验原理设计FIR数字滤波器一般采用直接法,如窗函数法和频率采样法。
本实验采用窗函数法设计FIR滤波器,要求能根据滤波需求确定滤波器指标参数,并按设计原理编程设计符合要求的FIR数字滤波器。
本实验软件实现是调用MATLAB提供的fftfilt函数对给定输入信号x(n)进行滤波,得到滤波后的输出信号y(n)。
3. 实验内容及步骤(1) FIR数字滤波器设计根据窗函数法设计FIR数字滤波器的原理和步骤,设计一个线性数字低通滤波器,要求通带临界频率fp=120Hz,阻带临界频率fs=150Hz,通带内的最大衰减Ap=0.1dB,阻带内的最小衰减As=60db,采样频率Fs=1000Hz。
观察设计的滤波器频率特性曲线,建立线性相位概念。
(2) FIR数字滤波器软件实现利用第(1)步设计的数字滤波器,调用fftfilt函数对信号进行滤波,观察滤波前后的信号波形变化。
4.思考题(1)简述窗函数法设计FIR数字滤波器的设计步骤。
(2)简述信号在传输过程中失真的可能原因。
5.实验报告要求(1)结合实验内容打印程序清单和信号波形。
(2)对实验结果进行简单分析和解释。
(3)简要回答思考题。
常用窗函数技术参数及性能比较一览表窗类型最小阻带衰减主瓣宽度精确过渡带宽窗函数矩形窗21dB 4π/M 1.8π/M boxcar三角窗25dB 8π/M 6.1π/M bartlett汉宁窗44dB 8π/M 6.2π/M hanning哈明窗53dB 8π/M 6.6π/M hamming 布莱克曼窗74dB 12π/M 11π/M blackman 取凯塞窗时用kaiserord函数来得到长度M和βkaiser附录:(1)FIR数字滤波器设计clear;clc;close all;format compactfp=120, Ap=0.1, fs=150, As=60 ,Fs=1000,wp=2*pi*fp/Fs,ws=2*pi*fs/Fs ,Bt=ws-wp; M=ceil(11*pi/Bt);if mod(M,2)==0; N=M+1, else N=M, end;wc=(wp+ws)/2,n=0:N-1;r=(N-1)/2;hdn=sin(wc*((n-r)+eps))./(pi*((n-r)+eps));win=blackman(N); hn=hdn.*win',figure(1);freqz(hn,1,512,Fs);grid on;图(一)FIR数字滤波器(2)FIR数字滤波器软件实现n=[0:190];xn=sin((2*pi*120/1000)*n)+sin((2*pi*150/1000)*n);yn=fftfilt(hn,xn);figure(2)subplot(2,1,1);plot(xn);title('滤波前信号') ;subplot(2,1,2);plot(yn);title('滤波后信号');图(2)FIR数字滤波器软件实现思考题:(1) 用升余弦窗设计一线性相位低通FIR数字滤波器,并读入窗口长度。
FIR数字滤波器的设计
四、实验内容
2、fir2函数:设计具有任意频率特性的FIR滤波器 b=fir2(n,f,m): 设计一个n阶滤波器,幅频响应向量由
输入参数f,a决定。 f频率向量,取值范围为(0.0,1.0),1对应0.5fs. f的元
素以升序排列。 2 、b=fir2(n, f,m,window): window: 指定所使用的窗函数的类型,其长度为n+1,默
四、实验内容
subplot(2,2,3); plot(rad,20*log(abs(mag3))); grid on; subplot(2,2,4); plot(rad,20*log(abs(mag4))); grid on;
四、实验内容
1、fir1函数:设计具有标准频率特性的FIR滤波器 (1)b=fir1(n,wn): 返回所设计的阶的低通FIR滤波器,
2、根据性能要求,合理选择单位脉冲响应h(n)的奇偶对称性,从而确定 理想频率响应 H d (的e jw幅) 频择适当的窗函数w(n),根据 h(n) hd (n) 求w所N (需n)设计
的FIR滤波器单位脉冲响应
5、求 H d (e分jw )析其幅频特性,若不满足要求,可适当改变窗函数形式 或长度N,重复上述设计过程,以得到满意的结果。
三、实验原理
分别用以上函数生成n=50的窗函数,并观察其频率特性 (使用归一化的幅值和频率)
三、实验原理
n=51; window=boxcar(n); [h,w]=freqz(window,1); subplot(2,1,1) stem(window); subplot(2,1,2) plot(w/pi,20*log(abs(h)/abs(h(1))));
三、实验原理
n=51; window=triang(n); [h,w]=freqz(window,1); subplot(2,1,1) stem(window); subplot(2,1,2) plot(w/pi,20*log(abs(h)/abs(h(1))));
实验四 FIR滤波器的设计
实验五 FIR滤波器的设计(一)一、实验目的(1) 掌握用窗函数法设计FIR滤波器的原理及方法,熟悉响应的计算机编程;(2) 熟悉线性相位FIR滤波器的幅频特性和相频特性;(3)了解各种不同窗函数对滤波器性能的影响。
二、实验原理与方法线性相位实系数FIR滤波器按其N值奇偶和h(n)的奇偶对称性分为四种: 1、h(n)为偶对称,N为奇数H(e jω)的幅值关于ω=0,π,2π成偶对称。
2、h(n)为偶对称,N为偶数H(e jω)的幅值关于ω=π成奇对称,不适合作高通。
3、h(n)为奇对称,N为奇数H(e jω)的幅值关于ω=0,π,2π成奇对称,不适合作高通和低通。
4、h(n)为奇对称,N为偶数H(e jω)ω=0、2π=0,不适合作低通。
窗函数法设计线性相位FIR滤波器步骤a)确定数字滤波器的性能要求:临界频率{ωk},滤波器单位脉冲响应长度N;b)根据性能要求,合理选择单位脉冲响应h(n)的奇偶对称性,从而确定理想频率响应Hd(e jω)的幅频特性和相频特性;c)求理想单位脉冲响应h d(n),在实际计算中,可对H d(e jω)按M(M远大于N)点等距离采样,并对其求IDFT得hM (n),用hM(n)代替hd(n);d)选择适当的窗函数w(n),根据h(n)= h d(n)w(n)求所需设计的FIR滤波器单位脉冲响应;e)求H(e jω),分析其幅频特性,若不满足要求,可适当改变窗函数形式或长度N,重复上述设计过程,以得到满意的结果。
窗函数的傅式变换W(e jω)的主瓣决定了H(e jω)过渡带宽。
W(e jω)的旁瓣大小和多少决定了H(e jω)在通带和阻带范围内波动幅度,常用的几种窗函数有:a)矩形窗 w(n)=R N(n);b)Hanning窗;c)Hamming窗;d)Blackmen窗;e)Kaiser窗。
(x)为零阶贝塞尔函数。
式中Io三、实验内容。
用Hanning窗设计一线性相位带通滤波器,(1)N=15,观察它的实际3dB和20dB带宽。
实验四--FIR数字滤波器设计与软件实现
&实验四 FIR数字滤波器设计与软件实现1.实验目的(1)掌握用窗函数法设计FIR数字滤波器的原理和方法。
(2)掌握用等波纹最佳逼近法设计FIR数字滤波器的原理和方法。
(3)掌握FIR滤波器的快速卷积实现原理。
(4)学会调用MATLAB函数设计与实现FIR滤波器。
2.实验内容及步骤'(1)认真复习第七章中用窗函数法和等波纹最佳逼近法设计FIR数字滤波器的原理;(2)调用信号产生函数xtg产生具有加性噪声的信号xt,并自动显示xt及其频谱,如图所示;图具有加性噪声的信号x(t)及其频谱如图(3)请设计低通滤波器,从高频噪声中提取xt中的单频调幅信号,要求信号幅频失真小于,将噪声频谱衰减60dB。
先观察xt的频谱,确定滤波器指标参数。
(4)根据滤波器指标选择合适的窗函数,计算窗函数的长度N,调用MATLAB函数fir1设计一个FIR低通滤波器。
并编写程序,调用MATLAB快速卷积函数fftfilt实现对xt的滤波。
绘图显示滤波器的频响特性曲线、滤波器输出信号的幅频特性图和时域波形图。
(4)重复(3),滤波器指标不变,但改用等波纹最佳逼近法,调用MATLAB函数remezord 和remez设计FIR数字滤波器。
并比较两种设计方法设计的滤波器阶数。
提示:○1MATLAB函数fir1和fftfilt的功能及其调用格式请查阅本书第7章和第8章;*○2采样频率Fs=1000Hz,采样周期T=1/Fs;○3根据图和实验要求,可选择滤波器指标参数:通带截止频率fp=120Hz,阻带截至频率fs=150Hz,换算成数字频率,通带截止频率p 20.24pfωπ=T=π,通带最大衰为,阻带截至频率s 20.3sfωπ=T=π,阻带最小衰为60dB。
]○4实验程序框图如图所示,供读者参考。
图实验程序框图;3.信号产生函数xtg程序清单function xt=xtg(N)%实验五信号x(t)产生,并显示信号的幅频特性曲线%xt=xtg(N) 产生一个长度为N,有加性高频噪声的单频调幅信号xt,采样频率Fs=1000Hz %载波频率fc=Fs/10=100Hz,调制正弦波频率f0=fc/10=10Hz.N=2000;Fs=1000;T=1/Fs;Tp=N*T;t=0:T:(N-1)*T;'fc=Fs/10;f0=fc/10; %载波频率fc=Fs/10,单频调制信号频率为f0=Fc/10;mt=cos(2*pi*f0*t); %产生单频正弦波调制信号mt,频率为f0ct=cos(2*pi*fc*t); %产生载波正弦波信号ct,频率为fcxt=mt.*ct; %相乘产生单频调制信号xtnt=2*rand(1,N)-1; %产生随机噪声nt%=======设计高通滤波器hn,用于滤除噪声nt中的低频成分,生成高通噪声======= fp=150; fs=200;Rp=;As=70; % 滤波器指标fb=[fp,fs];m=[0,1]; % 计算remezord函数所需参数f,m,dev (dev=[10^(-As/20),(10^(Rp/20)-1)/(10^(Rp/20)+1)];[n,fo,mo,W]=remezord(fb,m,dev,Fs); % 确定remez函数所需参数hn=remez(n,fo,mo,W); % 调用remez函数进行设计,用于滤除噪声nt中的低频成分yt=filter(hn,1,10*nt); %滤除随机噪声中低频成分,生成高通噪声yt%================================================================xt=xt+yt; %噪声加信号fst=fft(xt,N);k=0:N-1;f=k/Tp;subplot(3,1,1);plot(t,xt);grid;xlabel('t/s');ylabel('x(t)');(axis([0,Tp/5,min(xt),max(xt)]);title('(a) 信号加噪声波形')subplot(3,1,2);plot(f,abs(fst)/max(abs(fst)));grid;title('(b) 信号加噪声的频谱')axis([0,Fs/2,0,]);xlabel('f/Hz');ylabel('幅度')4、滤波器参数及实验程序清单1)、滤波器参数选取根据节实验指导的提示③选择滤波器指标参数:通带截止频率fp=120Hz,阻带截至频率fs=150Hz。
实验四 窗函数法设计FIR数字滤波器
实验四 窗函数法设计FIR 数字滤波器一、实验目的1、掌握窗函数法设计FIR 数字滤波器的原理及具体方法。
2、掌握频率取样法设计FIR 数字滤波器的原理和基本方法。
3、学习利用窗函数法和频率取样法设计低通、带通、高通、带阻数字滤波器。
二、实验环境计算机、MATLAB 软件 三、实验基础理论窗函数设计FIR 滤波器 1.基本原理窗函数设计法的基本思想为,首先选择一个适当的理想的滤波器()j d H e ω,然后用窗函数截取它的单位脉冲响应(n)d h ,得到线性相位和因果的FIR 滤波器。
这种方法的重点是选择一个合适的窗函数和理想滤波器,使设计的滤波器的单位脉冲响应逼近理想滤波器的单位脉冲响应。
2.设计步骤(1)给定理想滤波器的频率响应()j d H e ω,在通带上具有单位增益和线性相位,在阻带上具有零响应。
一个带宽为()c c ωωπ<的低通滤波器由下式给定:πωωωωωωω≤<=≤=-||,0)(,||,)(c j d c ja j d e H e e H其中α为采样延迟,其作用是为了得到一个因果系统。
(2)确定这个滤波器的单位脉冲响应)())(sin()(a n a n n h c d --=πω为了得到一个(n)h 长度为N 的因果的线性相位FIR 滤波器,我们令21-=N a (3)用窗函数截取(n)d h 得到所设计FIR 数字滤波器:)()()(n R n h n h N d = 3.窗函数的选择常用的窗函数有矩形(Rectangular )窗,汉宁(Hanning )窗,海明(Hamming )窗、布莱克曼(Blackman )窗、凯瑟(Kaiser )窗等表4-1 MATLAB 中产生窗函数的命令表4-2 常用窗函数的特性00()[]I n I ωβ⎡⎢⎣⎦=其中[]0I x 是修正的零阶贝塞尔函数,参数β控制最小阻带衰减,这种窗函数对于相同的N 可以提供不同的过渡带宽。
fir数字滤波器设计实验报告
fir数字滤波器设计实验报告fir数字滤波器设计实验报告引言数字滤波器是一种常见的信号处理工具,用于去除信号中的噪声或者滤波信号以达到特定的目的。
其中,FIR(Finite Impulse Response)数字滤波器是一种常见且重要的数字滤波器,其特点是具有有限冲击响应。
本实验旨在设计并实现一个FIR数字滤波器,通过对滤波器的设计和性能评估,加深对数字滤波器的理解。
设计过程1. 确定滤波器的要求在设计FIR数字滤波器之前,首先需要明确滤波器的要求。
这包括滤波器类型(低通、高通、带通或带阻)、截止频率、滤波器阶数等。
在本实验中,我们选择设计一个低通滤波器,截止频率为1kHz,滤波器阶数为32。
2. 设计滤波器的传递函数根据滤波器的要求,我们可以利用Matlab等工具设计出滤波器的传递函数。
在本实验中,我们选择使用窗函数法设计滤波器。
通过选择合适的窗函数(如矩形窗、汉宁窗等),可以得到滤波器的传递函数。
3. 确定滤波器的系数根据滤波器的传递函数,我们可以通过离散化的方法得到滤波器的系数。
这些系数将决定滤波器对输入信号的响应。
在本实验中,我们使用了Matlab的fir1函数来计算滤波器的系数。
4. 实现滤波器在得到滤波器的系数之后,我们可以将其应用于输入信号,实现滤波器的功能。
这可以通过编程语言(如Matlab、Python等)来实现,或者使用专用的数字信号处理器(DSP)来进行硬件实现。
实验结果为了评估设计的FIR数字滤波器的性能,我们进行了一系列的实验。
首先,我们使用了一个具有噪声的输入信号,并将其输入到滤波器中。
通过比较滤波器输出信号和原始信号,我们可以评估滤波器对噪声的去除效果。
实验结果显示,设计的FIR数字滤波器能够有效地去除输入信号中的噪声。
滤波后的信号更加平滑,噪声成分明显减少。
此外,滤波器的截止频率也得到了有效控制,滤波器在截止频率之后的信号衰减明显。
讨论与总结通过本次实验,我们深入了解了FIR数字滤波器的设计和实现过程。
fir数字滤波器设计实验报告
fir数字滤波器设计实验报告fir数字滤波器设计实验报告引言:数字滤波器是一种广泛应用于信号处理和通信系统中的重要工具。
其中,有一类常见的数字滤波器是FIR(Finite Impulse Response)数字滤波器。
FIR数字滤波器具有线性相位特性、稳定性好、易于设计和实现等优点,被广泛用于音频处理、图像处理、通信系统等领域。
本实验旨在通过设计一个FIR数字滤波器,探索其设计原理和实际应用。
一、实验目的本实验的目的是通过设计一个FIR数字滤波器,实现对特定信号的滤波处理。
具体来说,我们将学习以下几个方面的内容:1. FIR数字滤波器的基本原理和特点;2. FIR数字滤波器的设计方法和流程;3. 使用MATLAB软件进行FIR数字滤波器的设计和仿真。
二、实验原理1. FIR数字滤波器的基本原理FIR数字滤波器是一种线性时不变系统,其输出仅与当前输入和过去若干个输入有关,没有反馈回路。
这种特性使得FIR数字滤波器具有线性相位特性,适用于对信号的频率响应要求较高的应用场景。
FIR数字滤波器的输出可以通过卷积运算来计算,即将输入信号与滤波器的冲激响应进行卷积运算。
2. FIR数字滤波器的设计方法FIR数字滤波器的设计方法有很多种,常见的包括窗函数法、频率采样法和最优化方法等。
在本实验中,我们将使用窗函数法进行FIR数字滤波器的设计。
窗函数法的基本思想是将理想滤波器的频率响应与一个窗函数相乘,从而得到实际可实现的滤波器。
三、实验步骤1. 确定滤波器的设计要求在设计FIR数字滤波器之前,我们首先需要明确滤波器的设计要求。
包括滤波器的通带、阻带、过渡带的频率范围和响应要求等。
2. 选择窗函数和滤波器的阶数根据设计要求,选择合适的窗函数和滤波器的阶数。
常见的窗函数有矩形窗、汉宁窗、汉明窗等。
不同的窗函数对滤波器的性能有一定影响,需要根据实际情况进行选择。
3. 计算滤波器的冲激响应利用所选窗函数和滤波器的阶数,计算滤波器的冲激响应。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验四 窗函数法设计FIR 数字滤波器一、实验目的1、掌握窗函数法设计FIR 数字滤波器的原理及具体方法。
2、掌握频率取样法设计FIR 数字滤波器的原理和基本方法。
3、学习利用窗函数法和频率取样法设计低通、带通、高通、带阻数字滤波器。
二、实验环境计算机、MATLAB 软件 三、实验基础理论窗函数设计FIR 滤波器 1.基本原理窗函数设计法的基本思想为,首先选择一个适当的理想的滤波器()j d H e ω,然后用窗函数截取它的单位脉冲响应(n)d h ,得到线性相位和因果的FIR 滤波器。
这种方法的重点是选择一个合适的窗函数和理想滤波器,使设计的滤波器的单位脉冲响应逼近理想滤波器的单位脉冲响应。
2.设计步骤(1)给定理想滤波器的频率响应()j d H e ω,在通带上具有单位增益和线性相位,在阻带上具有零响应。
一个带宽为()c c ωωπ<的低通滤波器由下式给定:πωωωωωωω≤<=≤=-||,0)(,||,)(c j d c ja j d e H e e H其中α为采样延迟,其作用是为了得到一个因果系统。
(2)确定这个滤波器的单位脉冲响应)())(sin()(a n a n n h c d --=πω为了得到一个(n)h 长度为N 的因果的线性相位FIR 滤波器,我们令21-=N a (3)用窗函数截取(n)d h 得到所设计FIR 数字滤波器:)()()(n R n h n h N d = 3.窗函数的选择常用的窗函数有矩形(Rectangular )窗,汉宁(Hanning )窗,海明(Hamming )窗、布莱克曼(Blackman )窗、凯瑟(Kaiser )窗等表4-1 MATLAB 中产生窗函数的命令表4-2 常用窗函数的特性00()[]I n I ωβ⎡⎢⎣⎦=其中[]0I x 是修正的零阶贝塞尔函数,参数β控制最小阻带衰减,这种窗函数对于相同的N 可以提供不同的过渡带宽。
由于贝塞尔函数比较复杂,这种窗函数的设计方程很难推导,然而幸运的是,有一些经验设计方程可以直接使用。
已知给定的指标,,R p st p s A ωω和 ,滤波器长度N 和凯瑟窗参数β可以按如下凯瑟窗方程给出过渡带带宽:st p ωωω∆=-7.9512.285s A N ω-≈+∆0.40.1102(8.7),500.5842(21)0.07886(21),2150s s s s s A A A A A β-≥⎧⎪=⎨-+-<<⎪⎩频率取样设计FIR 滤波器 1.基本原理频率取样法从频域出发,把理想的滤波器()j d H e ω等间隔采样得到()d H k ,将()d H k 作为实际设计滤波器的()H k :2()()()|0,1,,1j d k NH k H k H e k N ωπω====-L得到()H k 以后可以由()H k 来确定唯一确定滤波器的单位脉冲响应()h n ,()j H e ω可以由()H k 求得:10()[()]2()()()N j k h n IDFT H k H e H k k Nωπφω-===-∑其中()x φ为内插函数:12sin(/2))sin(/2)N j N e N ωωφωω--=⋅(有()H k 求得的频率响应()j H e ω将逼近()j d H e ω。
如果我们设计的是线性相位FIR 滤波器,则()H k 的幅度和相位满足线性相位滤波器的约束条件。
我们将()H k 表示为如下形式()()()=()()j k j k r H k H k e H k e θθ=当()h n 为实数,则*()()H k H N k =-由此得到()()r r H k H N k =-即()/2r H k k N =以为中心偶对称。
在利用线性相位条件可知,对于1型和2型线性相位滤波器:121()0,,22()121()()1,122N kN k N k N N N k k N N πθπ⎧--⎢⎥-=⎪⎢⎥⎪⎣⎦=⎨--⎢⎥⎪-=+-⎢⎥⎪⎣⎦⎩L L对于3型和4型线性相位滤波器121()0,,222()121()()1,1222N kN k N k N N N k k N N ππθππ⎧--⎢⎥±-=⎪⎢⎥⎪⎣⎦=⎨--⎢⎥⎪-=+-⎢⎥⎪⎣⎦⎩L m L2.设计步骤(1)由给定的理想滤波器给出()r H k 和()k θ。
(2)由()()()=()()j k j k r H k H k eH k e θθ=求得()H k(3)根据()H k 求得()h n 或()j H e ω四、实验内容1、设计一个数字低通FIR 滤波器,其技术指标如下:0.2,0.25p p R dB ωπ==0.3,50st s A dB ωπ==分别采用矩形窗、汉宁窗、海明窗、布莱克曼窗、凯瑟窗设计该滤波器。
结合实验结果,分别讨论采用上述方法设计的数字滤波器是否都能满足给定指标要求。
(1)矩形窗 程序代码:wp=0.2*pi;wst=0.3*pi;tr_width=wst-wp; N=ceil(1.8*pi/tr_width) n=0:N-1;wc=(wst+wp)/2; alpha=(N-1)/2;hd=(wc/pi)*sinc((wc/pi)*(n-alpha)); w_boxcar=boxcar(N)'; h=hd.*w_boxcar; subplot(221);stem(n,hd,'filled');axis tight ;xlabel('n');ylabel('hd(n)'); [Hr,w1]=zerophase(h); subplot(222); plot(w1/pi,Hr);axis;xlabel('\omega/\pi');ylabel('H(\omega)'); subplot(223);stem(n,h,'filled');axis tight ;xlabel('n');ylabel('h(n)'); [H,w]=freqz(h,1); subplot(224);plot(w/pi,20*log10(abs(H)/max(H)));axis tight ;xlabel('\omega/\pi');ylabel('dB'); grid on ;MATLAB 图形:(2)汉宁窗 程序代码:wp=0.2*pi;wst=0.3*pi;tr_width=wst-wp; N=ceil(6.2*pi/tr_width) n=0:N-1;wc=(wst+wp)/2; alpha=(N-1)/2;hd=(wc/pi)*sinc((wc/pi)*(n-alpha)); w_boxcar=hanning(N)'; h=hd.*w_boxcar; subplot(221);stem(n,hd,'filled');axis tight ;xlabel('n');ylabel('hd(n)'); [Hr,w1]=zerophase(h); subplot(222); plot(w1/pi,Hr);axis;xlabel('\omega/\pi');ylabel('H(\omega)'); subplot(223);stem(n,h,'filled');axis tight ;xlabel('n');ylabel('h(n)'); [H,w]=freqz(h,1); subplot(224);plot(w/pi,20*log10(abs(H)/max(H)));n h d (n )0.51-0.500.511.5ω/πH (ω)n h (n)0.20.40.60.8-80-60-40-20ω/πd Baxis tight ;xlabel('\omega/\pi');ylabel('dB'); grid on ; MATLAB 图形:(3)海明窗 程序代码:wp=0.2*pi;wst=0.3*pi;tr_width=wst-wp; N=ceil(6.6*pi/tr_width) n=0:N-1;wc=(wst+wp)/2;alpha=(N-1)/2;hd=(wc/pi)*sinc((wc/pi)*(n-alpha)); w_boxcar=hamming(N)'; h=hd.*w_boxcar; subplot(221);stem(n,hd,'filled');axis tight ;xlabel('n');ylabel('hd(n)'); [Hr,w1]=zerophase(h); subplot(222); plot(w1/pi,Hr);axis;xlabel('\omega/\pi');ylabel('H(\omega)'); subplot(223);stem(n,h,'filled'); axis tight ; xlabel('n');nh d (n )0.51-0.500.511.5ω/πH (ω)nh (n )0.20.40.60.8-120-100-80-60-40-200ω/πd Bylabel('h(n)'); [H,w]=freqz(h,1); subplot(224);plot(w/pi,20*log10(abs(H)/max(H)));axis tight ;xlabel('\omega/\pi');ylabel('dB'); grid on ; MATLAB 图形:(4)布莱克曼窗 程序代码:wp=0.2*pi;wst=0.3*pi;tr_width=wst-wp; N=ceil(11*pi/tr_width) n=0:N-1;wc=(wst+wp)/2;alpha=(N-1)/2;hd=(wc/pi)*sinc((wc/pi)*(n-alpha)); w_boxcar=blackman(N)'; h=hd.*w_boxcar; subplot(221);stem(n,hd,'filled');axis tight ;xlabel('n');ylabel('hd(n)'); [Hr,w1]=zerophase(h); subplot(222); plot(w1/pi,Hr);axis;xlabel('\omega/\pi');ylabel('H(\omega)'); subplot(223);stem(n,h,'filled');axis tight ;xlabel('n');ylabel('h(n)');nh d (n )-0.500.511.5ω/πH (ω)nh (n )0.20.40.60.8-100-50ω/πd B[H,w]=freqz(h,1); subplot(224);plot(w/pi,20*log10(abs(H)/max(H)));axis tight ;xlabel('\omega/\pi');ylabel('dB'); grid on ;MATLAB 图形为:(5)凯瑟窗 程序代码:wp=0.2*pi;wst=0.3*pi;tr_width=wst-wp;As=50; N=ceil((As-7.95)/(2.285*tr_width))+1; beta=0.1102*(As-8.7); n=0:N-1;wc=(wst+wp)/2;alpha=(N-1)/2;hd=(wc/pi)*sinc((wc/pi)*(n-alpha)); w_boxcar=kaiser(N,beta)'; h=hd.*w_boxcar; subplot(221);stem(n,hd,'filled');axis tight ;xlabel('n');ylabel('hd(n)'); [Hr,w1]=zerophase(h); subplot(222); plot(w1/pi,Hr);axis;xlabel('\omega/\pi');ylabel('H(\omega)'); subplot(223);stem(n,h,'filled');nh d (n )-0.500.511.5ω/πH (ω)nh (n )-150-100-50ω/πd Baxis tight ;xlabel('n');ylabel('h(n)'); [H,w]=freqz(h,1); subplot(224);plot(w/pi,20*log10(abs(H)/max(H)));axis tight ;xlabel('\omega/\pi');ylabel('dB'); grid on ; MATLAB 图形:2、设计一个数字带通FIR 滤波器,其技术指标如下: 下阻带边缘:10.2,60st s A dB ωπ== 下通带边缘:10.35,1p p R dB ωπ== 上通带边缘:20.65,1p p R dB ωπ== 上阻带边缘:20.8,60st s A dBωπ==程序代码:wp1=0.2*pi;Rp1=1; wst1=0.35*pi;A1=60; width1=wst1-wp1;N1=ceil(11*pi/width1)+1; n1=0:(N1-1);wc1=(wp1+wst1)/2; alpha=(N1-1)/2;wp2=0.65*pi;Rp2=1;wst2=0.8*pi;A2=60;nh d (n )-0.50.511.5ω/πH (ω)nh (n )-100-50ω/πd Bwidth2=wst2-wp2;N2=ceil(11*pi/width2)+1; n2=0:(N2-1);wc2=(wp2+wst2)/2; alpha=(N2-1)/2;hd=(wc2/pi)*sinc((wc2/pi)*(n2-alpha))-(wc1/pi)*sinc((wc1/pi)*(n1-alpha)); w_w=blackman(N1)'; h=hd.*w_w; subplot(221);stem(n1,h,'filled'); subplot(222); [H,w]=freqz(h,1);plot(w/pi,20*log10(abs(H)/max(abs(H)))); subplot(223);[Hr,w1]=zerophase(h); plot(w1/pi,Hr); subplot(224);stem(n1,hd,'filled'); [Hr,wl]=zerophase(h); grid on ; MATLAB 图形:3.采用频率取样法设计FIR 数字低通滤波器,满足以下指标2040608000.51-150-100-500.51-0.500.511.50204060800.2,0.250.3,50p p st s R dB A dBωπωπ====(1)取N=20,过渡带没有样本。