平面问题有限单元法《弹性力学》

合集下载

《弹性力学问题的有限单元法》

《弹性力学问题的有限单元法》

《弹性力学问题的有限单元法》弹性力学问题的有限单元法(FiniteElementMethod,简称FEM)是一种经典的多学科跨领域的计算方法,它用于估算连续体结构中非线性材料力学性能,如强度、刚度和破坏。

有限单元法已成为工程和材料科学中最重要的数值计算方法,可用于解决各种复杂多学科优化和设计问题。

有限单元法的基本思想是把复杂的连续体结构划分成许多小的、较容易处理的有限元素,而不是像一般的解析方法那样求取整体的解析解。

基于有限元素重要的性质,即小元素经过一系列的连接后就可以构成整个结构的模型,有限单元法的本质是数值分析,也就是根据模型的物理知识,选择有效的数值化方法,用数值计算的方法求解所要求的结果,从而使这些数值计算结果符合实际结构物理知识。

有限单元法是一种有效计算弹性力学问题的方法,它可以用来求解任意形状的结构问题,无论是有边界条件还是无边界条件,无论是线性或者非线性的形状变化,有限单元法都能够有效地应用。

其优势在于以节省计算时间和消耗的成本,在特殊的材料条件下,它可以比较快速地获得弹性力学问题的有效精确解。

其精度依赖于计算模型元素的类型、形状和几何尺寸等,因此通常需要调节元素的类型、形状和尺寸,以满足计算需要。

在计算机技术的发展下,有限单元法的计算能力越来越强大,可以对更多的复杂问题进行分析,可以更有效地解决工程设计中的实际问题。

由于计算机可以模拟各种变形和应力的变化,因此有限单元法可以为工程设计和材料研究提供更可靠的结果。

有限单元法在工程应用中的实际作用是显而易见的。

它不仅可以用来计算弹性结构中的材料力学特性,还可以分析复杂结构的动态响应。

此外,有限单元法还可以用来计算弹性结构中的表面张力、刚度,以及各种材料的裂缝扩展。

通过有限单元法的应用,可以获得有效的数值结果,从而提高设计效果和工程安全性。

因此,有限单元法对于材料科学和工程设计都具有重要价值,今后还将发挥更多的功能。

有限单元法是多学科跨学科的计算方法,它可以用来有效地分析复杂形状结构的力学特性,计算出精确的结果,从而提高工程设计的效果和安全性。

弹性力学—第六章—用有限单元法解平面问题

弹性力学—第六章—用有限单元法解平面问题
- 在整体刚度矩阵中引入边界条件
1
需求解的结点还剩:
2
I III IV II 4 5 3
因此关于这六个零分量的六个平衡方程不 用建立,须将整体刚度矩阵的第1,3,7, 8,10,12以及同序列的各列去掉。最后 得到:
6
结构整体分析(10)
- 结点载荷
j
I II IV
1N/m
i
III i
m
1
I
m
j
2
例如,设单元 ij 边上受有x方向上的均布面力q,试求等效 结点载荷
载荷向结点移臵(7)
结构整体分析(1)
对于每个单元,我们已经知道了如何计算单元的劲度矩 阵以及载荷列阵:
结构整体分析(2)
根据虚功原理,我们也推导了结点力与结点位移的关系:
对于 i 点, 一个单元上的结点力为:
i 点的力平衡要求围绕 i 点的各单元产生的结点力与各单 元分配到 i 点的结点载荷相等。
3
6
结构整体分析(15)
1. 有限元法的求解步骤: 2. 划分有限元, 3. 利用已知的结点坐标以及结构的物理特性写出单元劲度 矩阵, 4. 利用整体编码与局部编码的关系写出整体刚度矩阵以及 力列阵, 5. 在整体刚度矩阵以及力列阵中将对应于零位移的行与列 划去,得到引入边界条件后的平衡方程组。 6. 求解平衡方程组,得到结点位移,并由此分析应力分布。
有限单元法的单元划分(2)

当结构具有凹槽或孔洞时,为了正确地描述应力集中效 应,必须把该处的网格画得很密。

当计算容量不允许时,可以分两次计算。第一次计算时, 将需要细化网格的目标区域的网格画得稀疏一点,甚至 和其他区域的网格大致相同,第二次计算时,将需要细 化的部分区域(区域边界上的结点位移是第一次计算后 的已知值)取出,利用第一次计算的计算结果,就可以 计算分析网格很密的目标区域了。

弹性力学与有限元分析-第四章 平面问题有限元分析及程序设计

弹性力学与有限元分析-第四章 平面问题有限元分析及程序设计
有限单元法及程序设计
第四章 平面问题有限元分析及程序设计
§4.1 平面问题单元离散 §4.2 平面问题单元位移模式 §4.3 平面问题单元分析 §4.4 平面问题整体分析 §4.5 平面问题有限元程序设计
有限元网格划分的基本原则
• 网格数目 • 网格疏密 • 单元阶次 • 网格质量 • 网格分界面和分界点 • 位移协调性 • 网格布局 • 结点和单元编号 • 网格自动剖分
f
y
面力
f
f y
xy
xy
基本量和方程的矩阵表示
位移
d
u
v
物理方程 简写为
x y
xy
E
1 2
1
0
1
0
0 0
x y
1
xy
2
D
§4.2 单元位移模式
几何方程:
ux
v y
xvuyT
只要知道了单元的位移函数,就可由几何方程求出应变,再由物理 方程就可求出应力。
(1)位移模式必须能够反映单元的刚体位移; (2)位移模式必须能够反映单元的常应变;
必要条件
(3)位移模式尽可能反映位移的连续性;
u12x3y12x5 23y5 23y v4 5x6y46y5 23x5 23x
u0 1
v0 4
5 3
2
刚体平动
刚体转动
充分条件
u
v
u0 v0
y x
作业: P141 6-1
u12x3y N iuiNjujN m um
其中, N i 、N j 、N m 是系数,是 x、 y 的线性函数;
可以求得:
N i a i b ix ciy2A (i, j, m )

现代设计方法4-1弹性力学平面问题的基本方程

现代设计方法4-1弹性力学平面问题的基本方程

些概念和方程,作为弹性力学有限单元法
的预备知识。
弹性力学—区别与联系—材料力学
1、研究的内容:基本上没有什么区别。
弹性力学也是研究弹性体在外力作用下的平衡和运动,
以及由此产生的应力和变形。
2、研究的对象:有相同也有区别。
材料力学基本上只研究杆、梁、柱、轴等杆状构件,即 长度远大于宽度和厚度的构件。弹性力学虽然也研究杆 状构件,但还研究材料力学无法研究的板与壳及其它实 体结构,即两个尺寸远大于第三个尺寸,或三个尺寸相 当的构件。
y
x
某一个截面上的外法线方向是沿坐标轴的正方向,这个截面称 正面,面上的应力沿正向为正,负方向为负。相反如果某截 面上的外法线是沿坐标轴的负方向,截面为负面,面上的应 力以沿坐标轴负向为正,正向为负。 空间问题有九个应力分量:三个正应力&六个剪应力三个独立
剪应力:txy = tyx 线应变:ex
s De
e x e e y g xy
1 E D 2 1 0

1 0
0 0 1 2
[D]平面应力问题的弹性矩阵,对称与E,有关
(3)平面应变问题的物理方程
角应变:gxy
tyz = tzy tzx = txz
空间应力状态有6个独立应力分量,对应6个应变分量:
ey
ez
gyz gzx
完全弹性,各向同性物体应变与应力关系(胡克定律导出) 胡克定律:在单向应力 状态下,处于弹性阶段
1 e x E s x (s y s z ) 1 e y s y (s x s z ) E 1 e z s z (s x s y ) E 1 1 1 g xy G t xy , g yz G t yz , g zx G t zx

有限元 2-弹性力学平面问题有限单元法(2.3程序设计,2.4矩形单元,2.5六节点三角形单元)

有限元 2-弹性力学平面问题有限单元法(2.3程序设计,2.4矩形单元,2.5六节点三角形单元)

2.3 平面问题有限元程序设计一、程序设计方法与结构分析程序的特点1.程序设计方法论简述借助计算机来完成某项工作,通常都要先编写相应的计算机程序,或叫程序设计。

完成一个结构分析或结构CAD系统也必然要经过程序设计才能实现。

程序设计要使用专门的程序语言。

我国结构程序设计中所采用的语言,在60年代和70年代初以ALGOL语言为主。

此后逐步广泛使用的主要是BASIC语言和FORTRAN语言,随着CAD 和人工智能技术的发展,PASCAL、 C、LISP、 PROLOG等有着各自特长的程序语言也逐步进入土木工程领域的计算机程序设计中。

过去人们通常认为,程序设计的中心问题就是学会使用一种程序语言,用以编写程序。

然而学会用程序语言编程只是整个程序设计中的一部分。

据有关资料介绍,编写程序在整个系统的研制过程中仅占15%的工作量。

在一个大型程序系统的整个存在阶段的工作量中,在系统投入使用后的维护工作量为原来研制工作量总和的两倍(这一点在作者所从事的软件开发工作中也得到充分的证明)。

维护工作量是如此之高,这就使我们必须注意到,在程序研制阶段便即应当考虑为以后的维护工作提供方便,哪怕是为此要增加一些额外的工作量也是值得的。

要编制一个好的程序系统并没有一种绝对的规则,就象是工程设计没有一种绝对规则一样。

但对于程序设计的好坏现在已逐渐形成了一套评价的客观标准。

这些标准大致分为以下几个主要方面:(1) 程序的可读性;(2) 正确性与可靠性;(3) 使用方便且效率高;(4) 软件的可移置性;(5) 易于调试与维护。

直到1970年代中期人们才认识到软件的维护是软件研究的一个关键领域。

造成软件维护工作量大的原因之一是与程序研制过程中所采用的设计方法不够科学化有关。

为了解决这一问题,人们开展了对于程序设计方法论的研究与实践,其目标是使软件正确、可靠和降低整个软件研制活动的费用。

总的来说,程序设计已从强调灵活的技巧和局部效率向着强调程序结构化和整体功能的方向发展。

弹性力学第6章---用有限单元法求平面问题

弹性力学第6章---用有限单元法求平面问题

2.FEM分析的主要步骤:
1.将连续体变换为离散化结构 2.对单元进行分析 位移模式 应变列阵 应力列阵
结点力列阵 等效结点荷载列阵 3.整体分析
§6-3 单元的位移模式与解答的收敛性
e T
位移模式 三角形单元
FEM是取结点位移δi 为基本未知数的。问题是如何求 应变、应力。
( δ 来求出单元 首先,必须解决由单元的结点位移 δ i δ j δ m T d ((, u xy ) v (, xy ) 。 的位移函数 e 该插值公式表示了单 δ 应用插值公式,可由 求出位移 d 。 元中位移的分布形式,因此称为位移模式。 在结点三角形单元中,可以假定位移分量只是坐标的线性 函数,也就是假定:
FEM的分析过程(2) 2.单元分析
求解方法
每个三角形单元仍然假定为连续的、均匀的、各向同 性的完全弹性体。因单元内部仍是连续体,应按弹性力学 方法进行分析。 T 取各结点位移 δ 为基本未知量,然后 ( uv ) ( i 1 , 2 , ) i i i 对每个单元,分别求出各物理量,并均用 δ i 1 ,2 , )来表示。 i( 单元分析的主要内容: (1)应用插值公式, 由单元结点位移
e T δ ( δ δ δ ) i j m 求单元的位移函数
,
T d ((, u xyvxy ) , (, ) ) .
该插值公式称为单元的位移模式,记为 d Νδe .
(2)应用几何方程,由单元的位移函数d,求出单元的应变 ε Bδe .
FEM的分析过程(2) 2.单元分析
单元分析的主要内容: (1)应用插值公式, 由单元结点位移
FEM的分析过程(3) 3.整体分析
求解方法
作用于结点i上的力有:

有限元2-弹性力学平面问题(24矩形单元,25六节点三角形单元)

有限元2-弹性力学平面问题(24矩形单元,25六节点三角形单元)

u 1 1 2 3 4 u 2 1 2 3 4
u 3 1 2 3 4
u 4 1 2 3 4
有限单元法
土木工程学院
P-9/44
解方程组便可求得待定常数。将这些参数代回式 (2-4-4),经整理得:
(1,1)
有限单元法
土木工程学院
P-6/44
二、结点位移列阵和结点力列阵
每个结点2个位移分量,共8个位移分量, 设结点位移和结点力列阵分别为:
d u v u v u v u v
e
2 4 2 e T F X Y X Y X Y X Y 1 1 2 2 3 3 4 4 2 4 3
有限单元法
土木工程学院
P-18/44
第2章 弹性力学平面问题有限单元法
2.1 三角形单元 2.2 三角形单元中几个问题的讨论 2.3 平面问题有限元程序设计 2.4 矩形单元 2.5 六结点三角形单元 2.6 四结点四边形单元 2.7 八结点曲线四边形等参元 2.8 几个问题的补充
有限单元法
土木工程学院
3

1
2
(1 ,1 )
(1,1)
有限单元法
土木工程学院
P-11/44
如果引进参数: ξ0=ξiξ, η0=ηiη(i=1, 2, 3, 4), (ξi, ηi)是矩形单元4个结点的局部坐标。结点i(ξi, ηi)的 坐标值分别是 (-1,-1), (1,-1),(1,1), (-1,-1)。代入 上式,则可将上式简记成:
Ai Li A
Lj Aj A
Am Lm A
i
m
Aj

第2章 弹性力学平面问题有限单元法(1-3节)

第2章 弹性力学平面问题有限单元法(1-3节)

第二章 弹性力学平面问题有限单元法§2-1 三角形单元(triangular Element)三角形单元是有限元分析中的常见单元形式之一,它的优点是:①对边界形状的适应性较好,②单刚形式及其推导比较简单,故首先介绍之。

一、结点位移和结点力列阵设右图为从某一结构中取出的一典型三角形单元。

在平面应力问题中,单元的每个结点上有沿x 、y 两个方向的力和位移,单元的结点位移列阵规定为: 相应结点力列阵为: (式2-1-1)二、单元位移函数和形状函数前已述及,有限单元法是一种近似方法,在单元分析中,首先要求假定(构造)一组在单元内有定义的位移函数作为近似计算的基础。

即以结点位移为已知量,假定一个能表示单元内部(包括边界)任意点位移变化规律的函数。

构造位移函数的方法是:以结点(i,j,m)为定点。

以位移(u i ,v i ,…u m v m )为定点上的函数值,利用普通的函数插值法构造出一个单元位移函数。

在平面应力问题中,有u,v 两个方向的位移,若假定单元位移函数是线性的,则可表示成:(,)123u u x y x y ααα==++546(,)v v x y x y ααα==++ (2-1-2)a{}⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=m j i m ed d d d m j j i v u v u v u i {}ii j j m X Y X (2-1-1)Y X Y iej m m F F F F ⎧⎫⎪⎪⎪⎪⎧⎫⎪⎪⎪⎪⎪⎪==⎨⎬⎨⎬⎪⎪⎪⎪⎩⎭⎪⎪⎪⎪⎪⎪⎩⎭式中的6个待定常数α1 ,…, α6 可由已知的6个结点位移分量(3个结点的坐标)确定。

将3个结点坐标(x i,y i ),(x j,y j ),(x m,y m )代入上式得如下两组线性方程:123i i i u x y ααα=++123j j j u x y ααα=++ (a)123m m m u x y ααα=++和546i i i v x y ααα=++546j j j v x y ααα=++ (b)546m m m v x y ααα=++利用线性代数中解方程组的克来姆法则,由(a)可解出待定常数1α 、2α 、3α :11A Aα=22A Aα=33A Aα=式中行列式:1i i i j j j m m m u x y A u x y u x y =2111i i j j m mu y A u y u y =3111i i j jm mx u A x u x u =2111i i j j m mAx y A x y x y ==A 为△ijm 的面积,只要A 不为0,则可由上式解出:11()2m m i ij j a u a u a u A α=++ 21()2m m i ij j bu b u b u A α=++ (C )31()2m mi i j j c u c u c u A α=++式中:m m i j j a x y x y =- m m j i i a x y x y =- m i j j i a x y x y =-m i j b y y =- m j i b y y =- m i j b y y =- (d )m i j c x x =- m j i c x x =- m j i c x x =-为了书写方便,可将上式记为:m m i j i a x y x y =-m ij by y =- (,,)i j mm i jc x x =-(,,)i j m表示按顺序调换下标,即代表采用i,j,m 作轮换的方式便可得到(d)式。

有限元 2-弹性力学平面问题有限单元法(2.6四结点四边形等参元,2.7八结点曲线四边形等参元,2.8问题补充)

有限元 2-弹性力学平面问题有限单元法(2.6四结点四边形等参元,2.7八结点曲线四边形等参元,2.8问题补充)

存在的。换句话说,为了使上述等参元能保持较好的精度,整体坐标系下所划分的任意四边形单元必须是
凸四边形,即任意内角都不能大于180°。四边形也不能太歪斜,否则会影响其精度。
利用雅可比的逆矩阵,即可求出整体坐标系下形函数的偏导数:
⎧∂Ni ⎫
⎧∂Ni ⎫
⎪ ⎪ ⎨
∂x


⎪ ⎬
=
[J
]−1
⎪ ⎨
∂ξ
⎪ ⎪ ⎬
i=i,j,m,p
为了实现上述结点坐标之间的变换,可利用母元的形函数,得出(ξ,η)和(x,y)之间的坐标变换式。
图形变换具有如下性质: 1. 母元中的坐标线对应于等参元的直线; 2. 四结点正方形母元对应于四个结点可以任意布置的直边四边形等参元; 3. 变换式(2-6-1)能保证相邻等参元的边界位移彼此协调。
《有限元》讲义
2.6 四结点四边形单元
(The four-node quadrilateral element)
前面介绍了四结点的矩形单元 其位移函数:
U = α1 + α 2 x + α3 y + α 4 xy V = α5 + α 6 x + α 7 y + α8 xy
为双线性函数,应力,应变在单元内呈线性变化, 比常应力三角形单元精度高。但它对边界要求严格。本 节介绍的四结点四边形等参元,它不但具有较高的精度,而且其网格划分也不受边界的影响。
对任意四边形单元(图见下面)若仍直接采用前面矩形单元的位移函数,在边界上它便不再是线性 的(因边界不与x,y轴一致),这样会使得相邻两单元在公共边界上的位移可能会出现不连续现象(非协 调元),而使收敛性受到影响。可以验证,利用坐标变换就能解决这个问题,即可以通过坐标变换将整体 坐标中的四边形(图a)变换成在局部坐标系中与四边形方向无关的边长为2的正方形。

弹性力学第6章:用有限元法解平面问题(徐芝纶第五版)

弹性力学第6章:用有限元法解平面问题(徐芝纶第五版)
其中,
Ni (ai bi x ci y) / 2A。 (i, j, m)
第六章 用有限单元法解平面问题
应变
应用几何方程,求出单元的应变列阵 :
ε ( u v v u )T x y x y
ui
1 2A
b0i ci
0 ci bi
bj 0 cj
0 cj bj
bm 0 cm
0
vi
cm bm
于单元,称为结点力,以正标向为正。
Fi (Fix Fiy T
--单元对结点的 作用力,与 Fi 数值 相同,方向相反,作 用于结点。
Fiy vi
Fix i
ui
Fiy
y v j Fjy i
Fix
j
uj
F jx
vm Fmy
um
m Fmx
o
x
第六章 用有限单元法解平面问题
求解方法
(5)将每一单元中的各种外荷载,按虚功 等效原则移置到结点上,化为结点荷 载,表示为
第六章 用有限单元法解平面问题
FEM的概念
§6-2 有限单元法的概念
FEM的概念,可以简述为:采用有限自由度的离 散单元组合体模型去描述实际具有无限自由度的 考察体,是一种在力学模型上进行近似的数值计 算方法,其理论基础是分片插值技术与变分原理。
FEM的分析过程:
1.将连续体变换为离散化结构; 2.单元分析; 3.整体分析。
第六章 用有限单元法解平面问题
FEM
第六章 用有限单元法解平面问题
概述 1.有限元法(Finite Element Method)
简称FEM,是弹性力学的一种近似解法。 首先将连续体变换为离散化结构,然后再利用 分片插值技术与虚功原理或变分方法进行求解。

第五章弹性力学平面问题的有限单元法解析

第五章弹性力学平面问题的有限单元法解析
严格地说,实际的弹性结构都是空间结构,并处于空间受力状 态,属于空间问题,然而,对于某些特定问题,根据其结构和外力 特点可以简化为平面问题来处理。这种近似,可大大减少计算工作 工作量,为有限元分析提供方便。弹性力学平面问题可分为两类:
(1) 平面应变问题: 如图柱形管道和长柱形坝体,具有如下特点:a纵向尺寸远大 于横向尺寸,且各横截面尺寸都相同;b 载荷和约束沿纵向不变, 因此可以认为,沿纵向的位移分量 等于零。
一悬臂梁的力学模型简化和单元划分如图: 在确立了力学模型的基础上,再把原来连续的弹性体离散化, 分为有限个单元,这些单元可以是三结点三角形、四结点任意四边 形、八结点曲边四边形等等。单元之间只在结点处相联结。平面问 题的结点为铰结点。完成单元划分以后,需要对所有单元按次序编 号,就得到了有限元的计算模型。
A
S
U
(
A
*
xx
*
yy
xy
* xy
)
t
dx
dy
上面三个积分的意义为:
W 中的第一个积分表示全部体积力作的虚功;第二个积分表示
自由边界S 上的表面力作的虚功。U 中的积分为
dU
(
x
* x
y
* y
xy
* xy
)
t
dx
dy
它表示单面体四个侧面上的应力在虚应变上作的虚功。
1 力学模型的简化 用有限元法研究实际工程结构的强度与刚度问题,首先要从工 程实际问题中抽象出力学模型,即要对实际问题的边界条件,约束 条件和外载荷进行简化,这种简化应尽可能反映实际情况,使简化 后的弹性力学问题的解答与实际相近,但也不要带来运算上的过分 复杂。 在力学模型简化过程中,必须明确以下几点 ①判断实际结构的问题类型,是 二维问题还是三维 问题;对于 平面问题,是平面应变 问题还是平面应力 问题。 ②结构是否对称 。如果是对称的,要充分利用对称条件,以简 化计算。 ③简化的力学模型必是静定 的或超静定的。

8 第四章 用常应变三角形单元解力学平面问题 (2)解析

8 第四章 用常应变三角形单元解力学平面问题 (2)解析

um xm ym
1 um ym
1 xm um
其中
1 xi yi
2 1 x j y j
1 xm ym
(c) (d) (1)
从解析几何可知,式中的 就是三角形i、j、m的面积。
为保证求得的面积为正值,节点i、j、m的编排次序必须是逆 时针方向,如图1所示。
7. 由单元的节点位移列阵计算单元应力
解出整体结构的节点位移列阵 后,再根据单元节点的 编号找出对应于单元的位移列阵 e,将 e代入(3-3)式就
可求出各单元的应力分量值。
8. 计算结果输出
求解出整体结构的位移和应力后,可有选择 地整理输出某些关键点的位移值和应力值,特别 要输出结构的 变形图、应力图、应变图、结构仿 真变形过程动画图及整体结构的弯矩、剪力图等 等。
平面问题可用三角元,四边元等。
例如:
3. 选择单元的位移模式
结构离散化后,要用单元内结点的位移通过插值来获得 单元内各点的位移。在有限元法中,通常都是假定单元的位 移模式是多项式,一般来说,单元位移多项式的项数应与单 元的自由度数相等。它的阶数至少包含常数项和一次项。至 于高次项要选取多少项,则应视单元的类型而定。
有限元法的实质是:把有无限个自由度的连续体, 理想化为只有有限个自由度的单元集合体,使问题简化 为适合于数值解法的结构型问题。
二、经典解与有限元解的区别:
微分 经 典 解 法 —— (解析法)
数目增到∞ 大小趋于 0
建立一个描述连续体 性质的偏微分方程
有限单元 离散化 集合
总体分析解
有限元法——连续体——单元——代替原连续体
式中:
Re ke e
(3-4)
——单元刚度矩阵
ke BT DBdxdydz

弹性力学复习重点+试题及答 案【整理版】

弹性力学复习重点+试题及答    案【整理版】
答:按照边界条件的不同,弹性力学问题可分为两类边界问题: (1)平面应力问题 : 很薄的等厚度板,只在板边上受有平行于板面并 且不沿厚度变化的面力。这一类问题可以简化为平面应力问题。例如深 梁在横向力作用下的受力分析问题。在该种问题中只存在三个应力分 量。 (2)平面应变问题 : 很长的柱形体,在柱面上受有平行于横截面并且 不沿长度变化的面力,而且体力也平行于横截面且不沿长度变化。这一 类问题可以简化为平面应变问题。例如挡土墙和重力坝的受力分析。该 种问题
平面应变问题:所对应的弹性体主要为长截面柱体,其特征为:面 力、体力的作用面平行于xy平面,外力沿z轴无变化,只有平面应变分 量,,存在,且仅为x,y的函数。
3. (8分)常体力情况下,按应力求解平面问题可进一步简化为 按应力函数求解,应力函数必须满足哪些条件?
答:(1)相容方程:
(2)应力边界条件(假定全部为应力边界条件,):
平面问题的几何方程: 揭示的是形变分量与位移分量间的相互关 系。应注意当物体的位移分量完全确定时,形变量即完全确定。反之, 当形变分量完全确定时,位移分量却不能完全确定。
平面问题中的物理方程:揭示的是形变分量与应力分量间的相互关 系。应注意平面应力问题和平面应变问题物理方程的转换关系。
2.按照边界条件的不同,弹性力学问题分为那几类边界问题?试作 简要说明。
5. 利用有限单元法求解弹性力学问题时,简单来说包含 结构离散化 、 单元分析 、 整体分析 三个主要步骤。
2. 绘图题(共10分,每小题5分)
分别绘出图3-1六面体上下左右四个面的正的应力分量和图3-2极坐标 下扇面正的应力分量。
图3-1
图3-2
3. 简答题(24分) 1. (8分)弹性力学中引用了哪五个基本假定?五个基本假定在

弹性力学试题及答案

弹性力学试题及答案

《弹性力学》试题参考答案(答题时间:100分钟)一、填空题(每小题4分)1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。

2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。

3.等截面直杆扭转问题中, M dxdy D=⎰⎰2ϕ的物理意义是 杆端截面上剪应力对转轴的矩等于杆截面内的扭矩M 。

4.平面问题的应力函数解法中,Airy 应力函数ϕ在边界上值的物理意义为 边界上某一点(基准点)到任一点外力的矩 。

5.弹性力学平衡微分方程、几何方程的张量表示为:0,=+i j ij X σ ,)(21,,i j j i ij u u +=ε。

二、简述题(每小题6分)1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。

圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显着的改变,但远处的应力所受影响可以忽略不计。

作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。

(2)将次要的位移边界条件转化为应力边界条件处理。

2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数ϕ的分离变量形式。

题二(2)图(a )⎩⎨⎧=++= )(),(),(222θθϕϕf r r cy bxy ax y x (b )⎩⎨⎧=+++= )(),(),(33223θθϕϕf r r dy cxy y bx ax y x 3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比 ? 已知。

试求薄板面积的改变量S ∆。

题二(3)图设当各边界受均布压力q 时,两力作用点的相对位移为l ∆。

由q E)1(1με-=得,设板在力P 作用下的面积改变为S ∆,由功的互等定理有: 将l ∆代入得:显然,S ∆与板的形状无关,仅与E 、μ、l 有关。

4.图示曲杆,在b r =边界上作用有均布拉应力q ,在自由端作用有水平集中力P 。

平面问题有限元

平面问题有限元

aj = xm yi − xi ym = 0
cj = xi − xm = a
am = xi yj − xj yi = a2 bm = yi − yj = −a
3-2 平面问题的常应变(三角形 单元 平面问题的常应变 三角形)单元 三角形
• 据弹性力学几何方程得 单元的应变分量
∂u α2 ∂x εx ∂v ε = εy = = α6 ∂y γ α + α 5 xy ∂u + ∂v 3 ∂x ∂y
INm δ j δ m
ui v i Nm 0 uj 0 Nm vj um δi vm
[I]是单位矩阵, 是单位矩阵, 是单位矩阵 [N]称为形函数矩阵, 称为形函数矩阵, 称为形函数矩阵 Ni只与单元节点坐标有关,称为单元 只与单元节点坐标有关, 的形状函数
1 v = [(ai + bx + ci y)vi + (aj + bj x + cj y)vj + (am + bmx + cm y)vm] i 2A 3/12/2011
3-2 平面问题的常应变 三角形)单元 平面问题的常应变(三角形 单元 三角形

1 下标i, , 轮换 轮换) Ni = (ai + bx + ci y) (下标 ,j,m轮换) i 2A
边界不协调产生重迭
3-2 平面问题的常应变(三角形 单元 平面问题的常应变 三角形)单元 三角形
例题:图示等腰三角形单元,求其形函数矩阵 。 例题:图示等腰三角形单元,求其形函数矩阵[N]。
ci = xm − xj = 0

弹性力学的平面问题解法

弹性力学的平面问题解法

弹性力学的平面问题解法摘要:本文从弹性力学最基本的平面问题出发,通过求解平面问题的解析法、数值法和试验方法来感受弹性力学研究问题的手段、方法,体会弹性力学的魅力,并为其它力学学科的学习打下基础。

着眼于弹性力学求解方法中一些方法,通过其在平面问题中的应用来介绍几种方法的研究思路,研究方法以及优缺点。

弹性力学作为固体力学的一个重要分支,它的研究对象是板、壳、实体以及单根杆件,它是研究弹性固体由于受外力作用,边界约束或者温度改变及其他一种或多种外界条件作用下产生的应力、应变和位移。

它的研究对象是板、壳、实体以及单根杆件。

关键词:弹性力学;平面问题;解法前言:弹性力学是材料力学问题的精确解,是结构力学,塑性力学等力学学科的基础,其广泛应用于土木工程、航空航天工程及机械工程等多个学科领域。

并且随着科学技术手段的进步,电子计算机得以应用到弹性力学的计算分析中,这极大地促进了弹性力学问题的分析计算更加深入,促使了有限单元法得以实现。

本文从弹性力学最基本的平面问题出发,通过求解平面问题的解析法、数值法和试验方法来感受弹性力学研究问题的手段、方法,体会弹性力学的魅力,并为其它力学学科的学习打下坚实的基础。

1 问题解法1.1解析法解析法是根据研究对象在结构中的静力平衡条件,几何关系和物理关系建立边界条件,平衡微分方程,几何方程和物理方程,并以此求解应力分量,应变分量和位移分量的一种平面问题的精确解法。

按求解时的基本未知量选取不同可分为按位移求解的位移法和按应力求解的应力法。

第一个位移法:以位移为基本未知量时的基本方程如下:位移边界条件如下从上面的公式可以看出位移法求解平面问题时的基本未知量只有两个,与应力法的三个基本未知量相比求解简单很多,并且不但能求解位移边界条件,还能求解应力边界条件与混合边界条件。

第二个应力法:应力法以应力分量作为基本未知量,由此平面问题的平衡微分方程,几何方程,物理方程以及边界条件经过推导可变为如下形式:基本方程:应力边界条件:值得注意的是按应力求解时边界条件应全部为应力边界条件。

有限元法基础-3弹性力学问题有限元法

有限元法基础-3弹性力学问题有限元法

插值函数--线性完备的多项式
u 1 2 x 3 y v 4 5 x 6 y
1 u φ 0 v 0 φ u = 6
φ [1, x, y]
i 为待定系数,称为广义坐标
ai x j ym xm y j bi y j ym ci x j xm
1 xi yi yj ym
1 (ci vi c j v j cm vm ) 2A
1 ui 1 2 1 uj 2A 1 um
1 xi 1 3 1 xj 2A 1 xm
1 yj (bi ui b j u j bmum ) 2A ym
16
有限元法基础
3.1 弹性力学平面问题的有限元格式
单元等效节点载荷列阵
e T T e e Q6 1 N 63 F31 tdxdy e N 63 T31 tdS QF QT e S
1)均质等厚单元质量
0 F g
Qix N Qi i e 0 Qiy
function).
位移插值函数的矩阵表示为
Ni u Nq 0
e
0 Ni
Nj 0
0 Nj
Nm 0
0 T ui , vi , u j , v j , um , vm Nm
6
有限元法基础
3.1 弹性力学平面问题的有限元格式 形函数的性质
(1) Ni ( x j , y j ) ij
矩阵表达式
1 p (u) ( TCε F T u)tdxdy T T u tdS 2 S
应用到离散系统
1 p ep ( TCε F T u)tdxdy e T T u tdS S e e e 2 1 T T q eT TCB tdxdy q e q eT N F tdxdy N T tdS e e e S 2 e e
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章 用有限单元法解平面问题
收敛性条件
为了保证FEM的收敛性:

(1)和(2)是必要条件, 而加上(3)就为充分条件。
第六章 用有限单元法解平面问题
思考题
• 1.应用泰勒级数公式来选取位移模式,为什么
必须从低次项开始选取?
2.试考虑:将结构力学解法引入到求解连续体的
问题时,位移模式的建立是一个关键性工作,
i
uj
Fjx
ui Fix
vm
Fmy
m x
um
Fmx
第六章 用有限单元法解平面问题
求解方法
• (5)将每一单元中的各种外荷载,按虚
功等效原则移置到结点上,化为结点荷载,
表示为
F L ( F Li F Lj F Lm .
e
e
第六章 用有限单元法解平面问题
求解方法
3.整体分析
作用于结点i上的力有:
u N i ui N j u j N m u m , v N i vi N j v j N m vm。
或用矩阵表示为:
( b)
第六章 用有限单元法解平面问题
三角形单元
u Ni d v 0
0 Ni
Nj 0
0 Nj
Nm 0
求解方法
• (2)应用几何方程,由单元的位移函数d, e 求出单元的应变,表示为 ε Bδ 。
(3)应用物理方程,由单元的应变 ε , 求出单元的应力,表示为 σ S δ e。 (4)应用虚功方程,由单元的应力 求出单元的结点力,表示为
σ

F ( Fi F j Fm k δ 。
e e
第六章 用有限单元法解平面问题
概述 第一节
第二节
基本量及基本方程的矩阵表示
有限单元法的概念
第三节
第四节
单元的位移模式与解答的收敛性
单元的应变列阵和应力列阵
第五节
第六节
单元的结点力列阵与劲度矩阵
荷载向结点移置 单元的结点荷载列阵
第六章 用有限单元法解平面问题
第七节
结构的整体分析结点平衡方程组
第八节
第九节 第十节
第六章 用有限单元法解平面问题
求解方法
2.单元分析
每个三角形单元仍然假定为连续的、均匀的、 各向同性的完全弹性体。因单元内部仍是连续体, 应按弹性力学方法进行分析。 取各结点位移 δ i ( u i v i ) T ( i 1, 2 , ) 为基本未 知量。然后对每个单元,分别求出各物理量,并均 用 δ (i 1, 2 , ) 来表示。 i
FEM的分析过程:
1.将连续体变换为离散化结构; 2.单元分析;
3.整体分析。
第六章 用有限单元法解平面问题
结构离散化
• 结构力学研究的对象是离散化结构。如桁架, 各单元(杆件)之间除结点铰结外,没有其他联 系(图(a))。 弹力研究的对象,是连续体(图(b))。
1. 结构离散化--将连续体变换为离散化结构
各单元对i 结点的结点力 Fi ,
各单位移置到i 结点上的结点荷载 FLi , 其中
表示对围绕i 结点的单元求和;
e
F F
i e e
Li
,
(i 1, 2,)
FLi 为已知值, Fi 是用结点位移表示的值。 通过求解联立方程,得出各结点位移值,从而求 出各单元的应变和应力。
第六章 用有限单元法解平面问题
第六章 用有限单元法解平面问题
基本物理量
基本物理量: 体力: f ( f x
f y )T 。
f y )T 。
T
面力: f ( f x
应变: 应力:
位移函数: d (u ( x , y ) , v ( x , y )) 。
ε ( ε x ε y γ xy ) T 。 σ ( σ x σ y τ xy ) T 。
5 3
与刚体位移相比,
u u 0 y , v v0 x ,
可见刚体位移项在式(a)中均已反映。
第六章 用有限单元法解平面问题
收敛性条件
• 对式(a)求应变,得:
x 2 ,
y 6 ,
xy 3 5 ,
可见常量应变也已反映。
(3)位移模式应尽可能反映位移的连续性。 即应尽可能反映原连续体的位移连续 性。在三角形单元内部,位移为连续;在两 单元边界ij 上, 之间均为线性变化, 也为连续。 δ i和 δ j
xj ai xm
(i , j , m )
(i , j , m )
yj 1 yi 1 xi , bi , ci ym 1 ym 1 xm
i,
A为三角形 ijm 的面积(图示坐标系中, j , m 按逆时针编号),有:
1 2A 1 1 xi xj xm yi yj 。 ym
第六章 用有限单元法解平面问题
A
(ε * )T σdxdyt
Fjx ,u* j
Fix ,ui*
--结点虚位移;
o
x
图6-1
ε* --对应的虚应变。 在FEM中,用结点的平衡方程代替平衡 微分方程,后者不再列出。
第六章 用有限单元法解平面问题
FEM的概念
§6-2
有限单元法的概念
• FEM的概念,可以简述为:采用有限自由度 的离散单元组合体模型去描述实际具有无限自由 度的考察体,是一种在力学模型上进行近似的数 值计算方法。 其理论基础是分片插值技术与变分原理。
因为当单元 位移。
0 时,单元中的位移和
应变都趋近于基本量--刚体位移和常量
第六章 用有限单元法解平面问题
收敛性条件
将式(a)写成
u 1 2 x y y, 2 2 5 3 5 3 v 4 6 y x x。 2 2
5 3
(b )
0 0 1 μ 2
其中D为弹性矩阵,对于平面应力问题是:
1 E D μ 2 1 μ 0 μ 1 0 (c )
第六章 用有限单元法解平面问题
应用的方程
虚功方程:
(δ ) F
* T
y
Fiy ,vi*
i
Fjy , v* j
j

其中:
• δ*
第六章 用有限单元法解平面问题
求解方法
• Fi ( Fix Fiy T
--结点对单元的作用力,作用
于单元,称为结点力,以正标向为正。
Fi ( Fix Fiy
T
Fix
Fiy vi
i
Fiy
--单元对结点的 作用力,与 Fi 数 值相同,方向相反, 作用于结点。
y v j Fjy j o
F ( Fix Fiy F jx F jy ) T 。
T δ ( u v u v ) 。 结点位移列阵: i i j j
结点力列阵:
第六章 用有限单元法解平面问题
应用的方程
FEM中应用的方程:
几何方程:
u v u v T ε( ) x y x y
(a )
物理方程: σ D ε
应用插值公式,可由 因此称为位移模式。
δ
e 求出位移
d。
这个插值公式表示了单元中位移的分布形式,
第六章 用有限单元法解平面问题
三角形单元

泰勒级数展开式中,低次幂项是最重要的。 所以三角形单元的位移模式,可取为:
u 1 2 x 3 y , ( a) v 4 5 x 6 y。
力学方法求解,为什么?
2. 在平面问题中,是否也可以考虑其它的单 元形状,如四边形单元?
第六章 用有限单元法解平面问题
位移模式
§6-3 单元的位移模式与 解答的收敛性
FEM是取结点位移
δi 为基本未知数的。问
题是如何求应变、应力。
e T δ ( δ δ δ 首先必须解决:由单元的结点位移 i j m 来求出单元的位移函数 d (u ( x , y ) v ( x , y ) T 。
求解方法
归纳起来,FEM分析的主要步骤:
1.将连续体变换为离散化结构 2.对单元进行分析 (1)单元的位移模式 (2)单元的应变列阵
(3)单元的应力列阵
(4)单元的结点力列阵 (5)单元的等效结点荷载列阵 3.整体分析 建立结点平衡方程组,求解各结点的位移。
第六章 用有限单元法解平面问题

思考题

1.桁架的单元为杆件,而平面体的单元为三角 形块体,在三角形内仍是作为连续体来分析的。 前者可用结构力学方法求解,后者只能用弹性
插值公式(a)在结点 x i , y i ( i , j , m ) 应等于结
点位移值 u i , v i ( i , j , m ) 。由此可求出 1 ~ 6。
第六章 用有限单元法解平面问题
三角形单元
1 ~ 6 • 其中
xi , yi , 及 ui , vi ,。 包含
将式(a)按未知数 ui , vi , 归纳为:
ui vi 0 u j N m v j ( c) u m v m
Nδ e。
• N -- 称为形(态)函数矩阵。
第六章 用有限单元法解平面问题
三角形单元
• 其中:
N i ( ai bi x ci y ) 2 A ,
(a) 桁架
(b) 深梁(连续体)
第六章 用有限单元法解平面问题
结构离散化
• 将连续体变换为离散化结构(图(c)): 即将连续体划分为有限多个、有限大小的单元, 并使这些单元仅在一些结点处用绞连结起来,构 成所谓‘离散化结构’。
相关文档
最新文档