DDS概述
dds协议解读及测试开发实践
一、引言DDS(Data Distribution Service)协议是Object Management Group(OMG)于2004 年发布的中间件协议和应用程序接口(API)标准,它为分布式系统提供了低延迟、高可靠性、可扩展的通信架构标准。
DDS 目前在工业、医疗、交通、能源、国防领域都有广泛的应用。
本文将对DDS 协议进行解读,并探讨测试开发实践方面的内容。
二、DDS 协议概述DDS 协议旨在解决分布式系统中数据通信的实时性、可靠性和扩展性问题。
它提供了一种面向对象的发布/订阅通信模式,允许分布式系统中的各个节点实时地发布、订阅和交换数据。
DDS 协议具有以下特点:1. 实时性:DDS 协议保证了数据在发布者和订阅者之间的传输延迟较低,适用于对实时性要求较高的场景。
2. 可靠性:DDS 协议采用了可靠的数据传输机制,如数据重复和传输确认,确保数据在传输过程中的可靠性。
3. 可扩展性:DDS 协议支持大规模分布式系统的通信需求,具有良好的可扩展性。
4. 灵活性:DDS 协议支持多种编程语言和平台,适用于各种类型的分布式系统。
5. 标准化:DDS 协议是OMG 发布的标准,具有广泛的应用和兼容性。
三、DDS 协议解读1. 发布/订阅模式:DDS协议采用了面向对象的发布/订阅模式,发布者发布数据,订阅者订阅数据。
当数据发生变化时,发布者将新数据传递给订阅者,实现数据的双向传递。
2. 数据类型:DDS 协议支持多种数据类型,包括基本数据类型(如整数、浮点数、布尔值等)、复合数据类型(如结构体、数组等)以及自定义数据类型。
3. 数据传输:DDS 协议采用了高效的数据传输机制,如消息队列、缓冲区管理等,以降低数据传输延迟。
4. 数据过滤:DDS 协议支持数据过滤功能,允许订阅者根据需要筛选感兴趣的数据。
5. 服务质量(QoS):DDS 协议提供了多种服务质量参数,如传输延迟、数据可靠性等,以满足不同场景的需求。
DDS概述
DDS概述DDS是OMG在2004年发布的中间件协议和应用程序接口(API)标准,它为分布式系统提供了低延迟、高可靠性、可扩展的通信架构标准。
DDS目前在工业、医疗、交通、能源、国防领域都有广泛的应用。
OMG(Object Management Group)成立于1989年,是一个开放性的非营利性的计算机行业标准联盟。
OMG多年来致力于为工业分布式系统提供可互操作的,可移植的,可复用的软件标准。
它的成员包括IT行业的设备供应商,终端用户,政府部门,以及学术组织等。
很多我们熟知的标准都来自OMG,比如UML(Unified Modeling Language),CORBA(Common Object Request Broker Architecture)等。
在去年关于SOME/IP的文章中我们曾简单解释过中间件的概念,即在分布式系统中,中间件是位于操作系统和用户应用程序之间的软件层,它将操作系统提供的资源进行抽象和封装,为应用程序提供各种各样的高级的服务和功能,比如通信或数据共享。
中间件的存在简化了应用程序开发者的工作,这使他们能够将注意力放在应用程序本身上,而不必在不同应用程序之间或不同系统之间的数据传输上花太多精力。
DDS最重要的特性是以数据为中心,这是与其他很多通信中间件不同的地方。
DDS的数据共享以Topic为单元,应用程序能够通过Topic判断其所包含的数据类型,而不必依赖其他的上下文信息。
同时,DDS能够按照用户定义的方式自动地进行存储、发布或订阅数据,使应用程序能够像访问本地数据一样去写入或者读取数据。
DDS实现的数据共享可以理解成一个抽象的“全局数据空间”,任何应用程序,不论开发语言,或者运行的操作系统类型,都可以通过相同的方式访问这个“全局数据空间”,就好像访问本地的存储空间一样。
当然“全局数据空间”仅仅是一个抽象的概念,在实现时仍然是分别存储在每个应用程序的本地空间当中。
在系统运行时,数据是按需传输或存储的,数据的发布者仅仅发送对方需要的数据,而订阅者仅接收并存储本地应用程序当前需要的数据。
dds原理
dds原理
DDS(数据分发服务)原理是一种用于实时数据传输的通信协议和架构。
它提供了一种分布式系统中的组件之间进行数据传输和通信的方式,以支持实时应用的开发和部署。
DDS的核心是一种基于发布-订阅模型的消息传递范式。
在DDS中,数据发布者(Publisher)将数据发布到一个或多个特定的主题(Topic)上,而数据订阅者(Subscriber)则通过订阅这些主题,以接收相应的数据。
DDS采用了一种分散式的数据管理和传输机制,以保证高效和实时性。
它通过在网络上建立一种称为数据分发域(Domain)的逻辑区域,将发布者和订阅者组织在同一个域中。
在域内,DDS负责管理数据的传输和分发,包括数据发布和订阅、消息传输、数据筛选和过滤等。
DDS的数据传输是以数据样本(Sample)为单位进行的。
发布者将数据以样本的形式发送给DDS,DDS在域内将样本传输给所有订阅该主题的订阅者。
订阅者同样以样本的形式接收数据,并可以根据需要对数据进行处理、存储或展示。
为了保证实时性,DDS使用了多种优化技术。
例如,DDS支持基于时间的数据筛选和过滤,订阅者可以指定只接收特定时间范围内的数据。
此外,DDS还支持数据压缩和数据分区等技术,以提高数据传输的效率和可扩展性。
总之,DDS通过发布-订阅模型和分布式的数据管理和传输机
制,为实时应用的开发和部署提供了一种高效和可靠的通信方式。
它可以广泛应用于各种实时系统中,包括航天航空、智能交通、工业控制、医疗设备等领域。
DDS基础介绍
DDS基础介绍⽬录什么是DDS?DDS(Data Distribution Service)数据分发服务:采⽤分布式发布/订阅体系架构,以中间件的形式提供通信服务,强调以数据为中⼼,提供多种QoS策略,保障数据进⾏实时、⾼效、灵活的分发,可满⾜各种分布式实时通信应⽤需求。
1. 分布式发布/订阅体系架构以上流程图的解释说明如下:1.全局数据空间是⼀个抽象的概念。
在实现时,数据仍然是分别存储在每⼀个应⽤程序的本地空间中。
在系统运⾏时,数据是按需传输或存储的,数据的发布者仅仅发送对⽅需要的数据,订阅者仅接受本地应⽤程序中需要的数据。
2.实际场景中,每个应⽤程序既可以是发布者⼜可以是订阅者2. 以中间件的形式提供通信服务在分布式系统中,中间件是介于操作系统和应⽤程序之间的软件层,使系统的各个组件能够更容易地通信和共享数据。
中间件简化了分布式系统的开发,使软件开发⼈员专注于应⽤程序的业务本⾝,⽽不是花费精⼒研究应⽤程序和系统之间传递信息的机制。
DDS中间件是⼀个软件层,它将应⽤程序从操作系统、⽹络传输和底层数据格式的细节中抽象出来。
DDS提供多种编程语⾔的API,允许应⽤程序跨操作系统、跨语⾔、跨处理器体系结构交换信息。
数据格式、发现匹配机制、连接⽅式、可靠性、⽹络协议、传输⽅式选择、QoS、安全性等底层细节由中间件管理。
3. 强调以数据为中⼼以数据为中⼼(Data Centricity)的通信中,通信的应⽤程序间的数据分发是重点。
以数据为中⼼由数据的发布者和订阅者组成,通信基于已命名的数据流,数据流从发布者向订阅者传送已知类型的数据。
简单的解释就是,只关⼼数据,订阅者只⽤关⼼接收订阅的主题中的数据即可。
以数据为中⼼的本质是DDS知道它存储什么数据,并控制如何共享这些数据。
数据中⼼性保证应⽤程序能够理解其接收到的数据,因⽽所有消息都包含应⽤程序能够理解其含义所需要的上下⽂信息。
使⽤传统的以消息为中⼼的中间件的程序员必须编写发送消息的代码;⽽使⽤以数据为中⼼的中间件的时,只需指定数据如何共享、何时共享,编写少量代码即可直接共享数据值。
dds协议实现基本流程_概述及解释说明
dds协议实现基本流程概述及解释说明1. 引言1.1 概述本文旨在介绍DDS(Data Distribution Service)协议的基本流程,并对其进行解释和说明。
DDS是一种分布式系统中常用的通信协议,用于在不同节点间传输和共享数据。
它具有高效、可靠和实时性强等特点,被广泛应用于物联网、工业控制、医疗保健等领域。
1.2 文章结构本文主要分为四个部分:引言、DDS协议实现基本流程、解释说明和结论。
其中,“引言”部分介绍了文章的背景和目的;“DDS协议实现基本流程”部分将详细阐述DDS的概述、协议架构和通信机制;“解释说明”部分将对DDS协议实现步骤、数据发布与订阅过程以及常见问题进行解答;最后,“结论”部分对整篇文章进行总结并展望未来发展趋势。
1.3 目的本文旨在提供一个清晰明了的指南,帮助读者理解DDS协议的基本流程,并能够正确地实现和应用该协议。
通过对DDS协议相关内容的全面介绍和详细解释,读者将能够深入了解DDS的工作原理和实现方式,并能够在实际应用中解决遇到的问题。
同时,本文也对未来DDS协议的发展趋势进行了展望,希望能为读者提供一些参考和思路。
2. DDS协议实现基本流程:2.1 DDS概述:DDS(Data Distribution Service)是一种使用发布-订阅模式的数据分发协议,它提供了高效可靠的数据交换机制,常被用于分布式系统和实时系统中。
DDS 协议的设计目标是为了满足大规模和复杂性的应用需求,同时具备低延迟、高可靠性以及良好的可扩展性。
2.2 DDS协议架构:DDS协议采用了三层架构:发布-订阅层、中间件服务层和传输层。
发布-订阅层是整个DDS系统的核心部分,它负责数据的发布者和订阅者之间的通信管理。
中间件服务层提供了诸如消息过滤、路由选择和安全验证等功能。
传输层则负责实际数据在网络上的传输。
2.3 DDS通信机制:DDS协议通过以下几个步骤实现数据交换:1. 发布者创建并配置数据以及相关属性,并将其注册到DDS系统中。
DDS简介
直接数字频率合成(Digital Direct Frequency Synthesis ,DDS )技术是DDS 简介一种新的频率合成技术。
它将先进的数字处理理论和方法引入信号合成领域。
随着电子工程领域的实际需要以及数字集成电路和微电子技术的发展,DDS 技术日益显露出它的优势。
利用DDS 的办法可以产生点频、线性调频,FSK 等各种形式信号,其幅度和相位一致性都很好,并且电路控制简单、方便灵活、可靠性高等优点。
DDS 的工作原理是以数控振荡器的方式产生频率、相位可控制的正弦波。
电路一般包括基准时钟、频率累加器、相位累加器、幅度/相位转换电路、D/A 转换器和低通滤波器(LPF )。
频率累加器对输入信号进行累加运算,产生频率控制数据X (frequency data 或相位步进量)。
相位累加器由N 位全加器和N 位累加寄存器级联而成,对代表频率的2进制码进行累加运算,是典型的反馈电路,产生累加结果Y 。
幅度/相位转换电路实质上是一个波形寄存器,以供查表使用。
读出的数据送入D/A 转换器和低通滤波器。
下图所示是一个基于的DDS 电路的工作原理框图:相位(频X'相位累加器D D S 电路的基本工作原理框图工作过程如下:每来一个时钟脉冲Fclk ,N 位加法器将频率控制数据X 与累加寄存器输出的累加相位数据相加,把相加后的结果Y 送至累加寄存器的输入端。
累加寄存器一方面将在上一时钟周期作用后所产生的新的相位数据反馈到加法器的输入端,以使加法器在下一时钟的作用下继续与频率控制数据X 相加;另一方面将这个值作为取样地址值送入幅度/相位转换电路,幅度/相位转换电路根据这个地址输出相应的波形数据。
最后经D/A 转换器和低通滤波器将波形数据转换成所需要的模拟波形。
相位累加器在基准时钟的作用下,进行线性相位累加,当相位累加器加满量时就会产生一次溢出,这样就完成了一个周期,这个周期也就是DDS 信号的频率周期。
DDS介绍
DDS介绍(自己整理)DDS概要1971年,美国学者J.Tierney等人撰写的“A DIGITAL Frequency Synthesizer”-文首次提出了以全数字技术,从相位概念出发直接合成所需波形的一种新给成原理。
限于当时的技术和器件产,它的性牟指标尚不能与已有的技术盯比,故未受到重视。
近1年间,随着微电子技术的迅速发展,直接数字频率合成器(Direct DIGITAL Frequency Synthesis简称DDS或DDFS)得到了飞速的发展,它以有别于其它频率合成方法的优越性能和特点成为现代频率合成技术中的姣姣者。
具体体现在相对带宽宽、频率转换时间短、频率分辨率高、输出相位连续、可产生宽带正交信号及其他多种调制信号、可编程和全数字化、控制灵活方便等方面,并具有极高的性价比。
DDS是直接数字式频率合成器(Direct Digital Synthesizer)的英文缩写。
与传统的频率合成器相比,DDS具有低成本、低功耗、高分辨率和快速转换时间等优点,广泛使用在电信与电子仪器领域,是实现设备全数字化的一个关键技术。
一、DDS原理和结构DDS的基本大批量是利用采样定量,通过查表法产生波形。
DDS的结构有很多种,其基本的电路原理可用图1来表示。
相位累加器由N位加法器与N位累加寄存器级联构成。
每来一个时钟脉冲fs,加法器将控制字k与累加寄存器输出的累加相位数据相加,把相加后的结果送到累加寄存器的数据输入端,以使加法器在下一个时钟脉冲的作用下继续与频率控制字相加。
这样,相位累加器在时钟作用下,不断对频率控制字进行线性相位加累加。
由此可以看出,相位累加器在每一个中输入时,把频率控制字累加一次,相位累加器输出的数据就是合成信号的相位,相位累加器的出频率就是DDS输出的信号频率。
用相位累加器输出的数据作为波形存储器(ROM)的相位取样地址。
这样就可把存储在波形存储器内的波形抽样值(二进制编码)经查找表查出,完成相位到幅值转换。
dds协议格式
dds协议格式【实用版】目录1.DDS 协议概述2.DDS 协议的基本结构3.DDS 协议的数据表示方法4.DDS 协议的优点5.DDS 协议的应用场景正文1.DDS 协议概述DDS(Data Distribution Service)协议是一种用于实现分布式系统的数据分发服务。
它的设计初衷是为了满足复杂分布式系统中数据传输的高效性、可靠性和灵活性需求。
通过使用 DDS 协议,开发者可以更加便捷地构建具有高性能、高可用性和高可扩展性的分布式应用。
2.DDS 协议的基本结构DDS 协议的基本结构包括以下几个部分:- DDS 参与者(Participant):参与者是 DDS 协议中的基本实体,它代表了一个与数据分发服务相关的应用程序、设备或者子系统。
参与者可以发布、订阅和接收数据。
- DDS 主题(Topic):主题是数据分发的基本单元,它表示一组相关数据的集合。
主题可以是持久的,也可以是临时的。
- DDS 数据类型(DataType):数据类型定义了数据的结构和表示方式。
DDS 协议支持多种数据类型,包括基本数据类型、复合数据类型和用户自定义数据类型。
- DDS 服务质量(QoS):服务质量定义了数据分发的性能、可靠性和安全性要求。
DDS 协议支持多种服务质量策略,包括数据传输速率、数据可靠性和数据完整性等。
3.DDS 协议的数据表示方法DDS 协议采用二进制数据表示方法,以实现高效的数据传输。
它将数据类型分为两大类:内置数据类型和用户自定义数据类型。
内置数据类型包括整数、浮点数、布尔值、字符串和日期时间等。
用户可以自定义数据类型,以满足特定的应用需求。
4.DDS 协议的优点DDS 协议具有以下几个优点:- 高效性:DDS 协议采用二进制数据表示方法,实现了数据传输的高效性。
- 可靠性:DDS 协议支持数据可靠性策略,确保了数据在传输过程中的完整性和正确性。
- 灵活性:DDS 协议支持多种数据类型和服务质量策略,以满足不同应用场景的需求。
DDS概述
消息中间件包括点到点、消息队列和发布/订阅三种工作模式。
点到点摸式具有很强的时间和空间耦合性,使得通信灵活性受到很大限制。
消息队列模式通过一个消息队列来传递消息,解决了通信双方时间和空间松耦合的问题,但不能实现消息消费者通信的异步,并且还存在服务器瓶颈和单点失效的问题,可靠性得不到保障。
发布/订阅模型中发布者和订阅者通过主题相关联,双方不必知道对方在何处。
也不必同时在线,实现了通信双方时间、空间和数据通信的多维松耦合。
DDS规范DDS(DataDistribution Service数据分发服务)是对象管理组织OMG的有关分布式实时系统中数据发布的一个较新的规范(2004年12月发布1.0版,2007年1月发布1.2版)。
DDS规范采用了发布/订阅体系结构,对实时性要求提供更好的支持。
DDS是以数据为中心的发布/订阅通信模型,针对强实时系统进行了优化,提供低延迟、高吞吐量、对实时性能的控制级别,从而使DDS能够广泛应用于航空、国防、分布仿真、工业自动化、分布控制、机器人、电及网络化的消费电器等多个领域。
DDS标准规范了实时分布式系统中数据发布、传递和接收的接口和行为,定义了以数据为中心的发布/订阅机制。
DDS规范使用UML语言描述服务,提供了一个与平台无关的数据模型(这个模型能够映射到各种具体的平台和编程语言),使得实时分布式系统中数据能够高效、可靠地发布,它主要应用在要求高性能、可预见性和对资源有效使用的关键任务领域。
DDS规范列举并正式定义了一整套全面的QoS策略,能利用QoS进行系统控制。
每一个DCPS 实体都有自身的QoS策略,而且在每一对发布者和订阅者之间又都可以建立独立的QoS协定。
这使得DDS可以很好地配置和利用系统资源,协调可预言性与执行效率间的平衡,并能支持复杂多变的数据流需求。
DDS的通信模型应用程序在处理以数据为中心的分布式系统时,DDS标准中间件可以帮助用户使用更加简单的编程模型,不需要开发特定的事件/消息机制或手动创建封装的CORBA对象来获取远程数据。
dds多相位合成
dds多相位合成
DDS(直接数字频率合成)是一种通过累加相位来合成所需波形的频率合成技术。
它主要由参考时钟、相位累加器、波形存储器、数模转换器和滤波器组成,具有精度高、稳定性好、频率和波形易于控制等优点。
DDS的工作原理是将正弦波的相位均分为2^n份,在每个时钟周期出现时,相位从0°开始步进一次,一直加2^n次,即可将整个360°相位加完,每次加完赋予其一个特定的幅值,最终得到一个新的周期信号。
在实际应用中,DDS常用于频率合成、通信、仪器测量等领域。
通过建立不同的存储表,即可输出相应的波形,也可以通过外部输入波形表来完成任意波形的输出。
此外,DDS还具有频率范围高、精度高等优点,方便与其他设备接口。
dds协议解读及测试开发实践
dds协议解读及测试开发实践一、DDS协议简介1.DDS协议定义与背景DDS(Data Distribution Service)协议,即数据分发服务协议,是一种面向对象的数据发布/订阅协议。
DDS协议起源于分布式系统领域,主要用于解决分布式环境下数据共享与通信的问题。
它在实时性、可靠性、灵活性等方面具有显著优势,被广泛应用于航空航天、工业自动化、物联网等领域。
2.DDS协议的核心概念DDS协议的核心概念包括:Domain、Participant、Topic、Publisher、Subscriber、DataWriter和DataReader。
其中,Domain用于划分不同主题域,Participant是DDS系统的参与者,负责管理Topic、Publisher、Subscriber等组件。
T opic是数据发布与订阅的主题,Publisher和Subscriber分别表示数据发布者和订阅者。
DataWriter和DataReader负责实现数据的生产与消费。
二、DDS协议架构与组件1.DDS PublisherPublisher负责将数据发布到指定的Topic,它将数据包装成消息并通过DataWriter进行发布。
Publisher可以通过动态发现机制找到合适的DataWriter。
2.DDS SubscriberSubscriber负责订阅T opic上的数据,它通过DataReader接收数据。
Subscriber也可以通过动态发现机制找到合适的DataReader。
3.DDS DomainParticipantDomainParticipant是DDS系统中的核心组件,负责管理DDS域内的所有Topic、Publisher、Subscriber等资源。
Participant之间可以相互发现和通信,以实现分布式协同工作。
4.DDS TopicTopic是数据发布与订阅的主题,它将数据抽象为一个具有特定数据类型和标签的消息。
dds使用场景
dds使用场景DDS(分布式数据存储)使用场景DDS(Distributed Data Storage)是一种分布式数据存储技术,广泛应用于各种场景中。
本文将介绍DDS的使用场景,包括金融领域、物联网、大数据分析等。
一、金融领域在金融领域,DDS被广泛应用于交易数据的存储和分析。
金融市场的交易数据量庞大,对实时性和可靠性要求极高。
DDS通过将数据分布式存储在多个节点上,提供高速的读写能力和高可用性,保证了交易数据的安全性和一致性。
同时,DDS还能够对交易数据进行实时分析,帮助金融机构进行风险控制和决策支持。
二、物联网在物联网应用中,DDS被用来存储和管理海量的传感器数据。
物联网设备通常分布在不同的地理位置,产生的数据量巨大且具有高实时性要求。
DDS通过将数据分布式存储在边缘节点上,实现了数据的高效采集、存储和传输。
同时,DDS还支持多种通信协议,能够与各种物联网设备进行无缝集成,提供灵活的数据存储和访问能力。
三、大数据分析在大数据分析场景中,DDS被用来存储和处理海量的结构化和非结构化数据。
大数据分析需要处理不同来源、不同格式的数据,而DDS能够提供高度可扩展的存储能力和强大的数据处理能力。
DDS 支持多种查询语言和分布式计算框架,能够快速地进行数据查询和分析,帮助企业发现潜在的商业机会和优化业务流程。
四、医疗健康在医疗健康领域,DDS被广泛应用于医疗数据的存储和共享。
医疗数据通常包括患者的病历、影像数据、实时监测数据等。
DDS通过将医疗数据分布式存储在多个医疗机构之间,实现了数据的安全共享和远程访问。
同时,DDS还支持数据的实时更新和同步,保证了医疗数据的准确性和一致性,提高了医疗诊断和治疗的效率。
五、智能交通在智能交通领域,DDS被用来存储和传输交通数据。
智能交通系统需要实时采集和处理交通流量、车辆位置等数据,以提供实时的路况信息和交通管理。
DDS通过将交通数据分布式存储在不同的交通节点上,实现了数据的高效采集和传输。
数据库原理的dds英语缩写
数据库原理的dds英语缩写
数据库原理是计算机科学中一门非常重要的课程,它涉及到的领
域非常广泛,包括数据库设计、数据库管理、数据仓库、数据挖掘等等。
而DDS则是数据库原理的英文缩写,它代表的是一种实时数据分
发系统,下面将会分步骤阐述DDS的含义以及它的应用。
一、DDS的含义
DDS是一种实时数据分发系统,它是一种应用程序解决方案,能够有效地将数据从一个地方传递到另一个地方。
DDS的核心在于数据发布和订阅。
发布者将数据发布到DDS中心,而订阅者则在DDS中心订阅数据。
DDS中心负责将数据传递给订阅者,实现了数据实时传递的功能。
二、DDS的应用
DDS的应用非常广泛,可以用于实时数据传递、控制系统、模拟仿真、远程监测等领域。
例如,DDS可以应用于医疗设备系统,控制机器人的操作,实现智能家居等等。
DDS还可以应用于金融、物流、教育等领域,帮助企业提高效率,降低成本,提高安全性和可靠性。
三、DDS的优势
与传统的数据传输方式相比,DDS具有以下几个优势:
1. 实时性:DDS具有高效的数据传递速度和实时性,无需等待,能够
及时获取数据。
2. 可伸缩性:DDS支持异构系统的连接,能够扩展至大规模系统。
3. 可靠性:DDS支持数据冗余功能,能够实现数据备份和数据恢复。
4. 易于使用:DDS具有较为简单的API,易于使用和维护。
总之,DDS作为数据库原理的一种应用,具有非常广泛的应用领
域和优势,可以帮助企业实现数据传递、控制、模拟等功能,提高效
率和可靠性。
dds名词解释
dds名词解释
DDS(Direct Digital Synthesis)是一种数字信号处理技术,它
通过直接数字合成的方式生成模拟信号。
与传统的模拟信号合成技术相比,DDS具有更高的精度和灵活性,可以产生更高
质量的信号,并且可以通过数字控制进行精确的信号调节。
DDS技术的基本原理是通过一个高速的数字振荡器生成一个
数字信号,然后将这个数字信号通过数模转换器(DAC)转
换成模拟信号。
这个数字振荡器包括一个相位累加器、一个正弦表和一个频率控制字(FCW)输入端。
通过调整FCW的值,可以改变输出信号的频率。
同时,通过调整相位累加器的初始相位和正弦表的选择,可以实现多种不同的信号形式。
DDS技术的主要优点包括高精度、高灵活性、低噪声、易于
控制和集成化等。
它被广泛应用于通信、雷达、电子对抗、音频处理等领域,特别是在通信领域中,DDS技术是实现频率
合成和调制的重要手段之一。
DDS简单介绍
DDS的简单介绍DDS同DSP(数字信号处理)一样,是一项关键的数字化技术。
DDS是直接数字式频率合成器(Direct Digital Synthesizer)的英文缩写。
与传统的频率合成器相比,DDS具有低成本、低功耗、高分辨率和快速转换时间等优点,广泛使用在电信与电子仪器领域,是实现设备全数字化的一个关键技术。
一块DDS芯片中主要包括频率控制寄存器、高速相位累加器和正弦计算器三个部分(如Q2220)。
频率控制寄存器可以串行或并行的方式装载并寄存用户输入的频率控制码;而相位累加器根据频率控制码在每个时钟周期内进行相位累加,得到一个相位值;正弦计算器则对该相位值计算数字化正弦波幅度(芯片一般通过查表得到)。
DDS芯片输出的一般是数字化的正弦波,因此还需经过高速D/A转换器和低通滤波器才能得到一个可用的模拟频率信号。
另外,有些DDS芯片还具有调幅、调频和调相等调制功能及片内D/A变换器(如AD70 08)。
DDS有如下优点频率分辨率高,输出频点多,可达N个频点(N为相位累加器位数);频率切换速度快,可达us量级;频率切换时相位连续;可以输出宽带正交信号;输出相位噪声低,对参考频率源的相位噪声有改善作用;可以产生任意波形;全数字化实现,便于集成,体积小,重量轻。
在各行各业的测试应用中,信号源扮演着极为重要的作用。
但信号源具有许多不同的类型,不同类型的信号源在功能和特性上各不相同,分别适用于许多不同的应用。
目前,最常见的信号源类型包括任意波形发生器,函数发生器,RF信号源,以及基本的模拟输出模块。
信号源中采用DDS技术在当前的测试测量行业已经逐渐称为一种主流的做法。
DDS主要芯片介绍DDS主要芯片介绍任意波形发生器任意波形发生器(AWG)通常提供较深的存储器,较大的动态范围以及较宽的带宽,来满足各式各样的应用,包括通信、半导体和系统测试。
任意波形发生器AWG接收来自PC的用户自定义数据,并利用这些数据来生成任意波形。
DDS,什么是DDS,DDS的结构
DDS,什么是DDS,DDS的结构DDS,什么是DDS,DDS的结构DDS概述直接数字式频率综合器DDS(Direct Digital Synthesizer),实际上是一种分频器:通过编程频率控制字来分频系统时钟(SYSTEM CLOCK)以产生所需要的频率。
DDS 有两个突出的特点,一方面,DDS工作在数字域,一旦更新频率控制字,输出的频率就相应改变,其跳频速率高;另一方面,由于频率控制字的宽度宽(48bit 或者更高),频率分辨率高。
DDS工作原理Error! Reference source not found. 是DDS 的内部结构图,它主要分成3 部分:相位累加器,相位幅度转换,数模转换器(DAC)。
图 1,DDS的结构相位累加器一个正弦波,虽然它的幅度不是线性的,但是它的相位却是线性增加的。
DDS 正是利用了这一特点来产生正弦信号。
如图 2,根据DDS 的频率控制字的位数N,把360° 平均分成了2的N次等份。
图2,相位累加器原理假设系统时钟为Fc,输出频率为Fout。
每次转动一个角度360°/2N,则可以产生一个频率为Fc/2N 的正弦波的相位递增量。
那么只要选择恰当的频率控制字M,使得 Fout / Fc= M / 2N,就可以得到所需要的输出频率Fout,Fout = Fc*M / 2N,相位幅度转换通过相位累加器,我们已经得到了合成Fout 频率所对应的相位信息,然后相位幅度转换器把0°~360°的相位转换成相应相位的幅度值。
比如当DDS 选择为2V p-p 的输出时,45°对应的幅度值为0.707V,这个数值以二进制的形式被送入DAC。
这个相位到幅度的转换是通过查表完成的。
DAC 输出代表幅度的二进制数字信号被送入DAC 中,并转换成为模拟信号输出。
注意DAC 的位数并不影响输出频率的分辨率。
输出频率的分辨率是由频率控制字的位数决定的。
dds协议格式
dds协议格式摘要:1.DDS 协议概述2.DDS 协议的基本结构3.DDS 协议的格式4.DDS 协议的应用5.总结正文:1.DDS 协议概述DDS(Direct Dial-In Service)协议,即直接拨号服务协议,是一种用于计算机远程访问的通信协议。
它最初由IBM 公司开发,用于允许用户通过拨号方式直接连接到IBM 主机系统。
随着网络技术的发展,DDS 协议逐渐被更先进的协议所取代,但它仍具有一定的历史意义和技术价值。
2.DDS 协议的基本结构DDS 协议的基本结构包括以下几个部分:- 头部:头部包含了协议的版本号、头部长度、命令码和校验和等信息。
- 选项:选项部分包含了诸如数据长度、数据类型、传输速率等参数,用于描述通信过程中的具体细节。
- 数据:数据部分是用户实际传输的信令或数据,其长度和内容由选项部分定义。
3.DDS 协议的格式DDS 协议采用二进制格式,各个部分之间用字节流分隔。
具体格式如下:- 头部:占用4 个字节,其中前两个字节表示协议版本和头部长度,后两个字节表示命令码和校验和。
- 选项:占用不定长度的字节,根据选项中的参数不同而有所变化。
常见的选项包括数据长度、数据类型、传输速率等。
- 数据:占用不定长度的字节,根据选项中的参数不同而有所变化。
数据部分的长度和内容由选项部分定义。
4.DDS 协议的应用DDS 协议主要用于计算机远程访问,尤其在分时系统和远程终端环境中广泛应用。
通过DDS 协议,用户可以通过拨号方式直接连接到主机系统,进行数据传输和远程控制。
此外,DDS 协议也可用于其他通信场景,如数据交换、文件传输等。
5.总结DDS 协议作为一种历史悠久的远程访问协议,虽然在现代网络技术中已经逐渐被淘汰,但它仍具有一定的技术价值和历史意义。
dds协议解读及测试开发实践
dds协议解读及测试开发实践一、DDS协议简介1.DDS协议定义与背景DDS(Data Distribution Service,数据分发服务)协议是一种面向对象的数据分发技术,起源于实时分布式系统领域。
随着物联网、云计算等技术的快速发展,DDS协议逐渐成为支撑各类复杂系统的基础设施。
2.DDS协议的核心概念DDS协议的核心概念包括以下几点:(1)发布/订阅模式:DDS提供了一种发布者发布数据,订阅者订阅并接收数据的机制。
(2)数据过滤:DDS允许订阅者根据一定的条件筛选感兴趣的数据。
(3)动态发现与注册:DDS支持动态发现和注册服务,以便参与者快速找到所需的服务。
二、DDS协议解读1.DDS数据传输机制DDS数据传输机制主要包括:(1)主题(Topic):发布者发布的数据归属于特定主题,订阅者根据主题进行订阅。
(2)数据发布与订阅:发布者将数据发布到主题,订阅者通过订阅主题获取数据。
2.DDS的动态发现与注册DDS的动态发现与注册机制使得参与者能够在不预先知道服务提供商的情况下,实时发现并注册服务。
这一机制提高了系统的灵活性和可扩展性。
3.DDS的质量保障机制DDS质量保障机制包括:(1)可靠性:DDS通过确认机制和重传策略保证数据传输的可靠性。
(2)实时性:DDS通过数据优先级、传输延迟等手段保证数据的实时性。
(3)安全性:DDS支持安全策略,以确保数据传输过程的安全性。
三、DDS测试开发实践1.DDS测试工具与技术DDS测试工具主要包括:(1)日志分析工具:用于分析系统日志,定位问题。
(2)性能测试工具:用于测试DDS系统的吞吐量、延迟等性能指标。
(3)网络监控工具:用于监控网络状况,分析数据传输过程中的问题。
2.DDS性能测试与优化通过对DDS性能测试,可以发现系统瓶颈,进而优化系统参数,提高性能。
例如:(1)调整数据发布频率,降低系统吞吐量。
(2)优化网络环境,降低数据传输延迟。
3.DDS应用案例分析DDS协议在诸多实际应用场景中发挥着重要作用,如:(1)工业控制系统:DDS为实时监控和控制提供数据传输保障。
直接数字频率合成知识点汇总(原理_组成_优缺点_实现)
直接数字频率合成知识点汇总(原理_组成_优缺点_实现)直接数字频率合概述DDS同DSP(数字信号处理)一样,也是一项关键的数字化技术。
DDS是直接数字式频率合成器(Direct Digital Synthesizer)的英文缩写。
DDS 是从相位概念出发直接合成所需要波形的一种新的频率合成技术。
直接数字频率合成是一种新的频率合成技术和信号产生的方法,具有超高速的频率转换时间、极高的频率分辨率分辨率和较低的相位噪声,在频率改变与调频时,DDS能够保持相位的连续,因此很容易实现频率、相位和幅度调制。
此外,DDS技术大部分是基于数字电路技术的,具有可编程控制的突出优点。
因此,这种信号产生技术得到了越来越广泛的应用,很多厂家已经生产出了DDS专用芯片,这种器件成为当今电子系统及设各中频率源的首选器件。
直接数字频率合成原理工作过程为:1、将存于数表中的数字波形,经数模转换器D/A,形成模拟量波形。
2、两种方法可以改变输出信号的频率:(1)改变查表寻址的时钟CLOCK的频率,可以改变输出波形的频率。
(2)、改变寻址的步长来改变输出信号的频率.DDS即采用此法。
步长即为对数字波形查表的相位增量。
由累加器对相位增量进行累加,累加器的值作为查表地址。
3、D/A输出的阶梯形波形,经低通(带通)滤波,成为质量符合需要的模拟波形。
直接数字频率合成系统的构成直接数字频率合成主要由标准参考频率源、相位累加器、波形存储器、数/模转换器、低通平滑滤波器等构成。
其中,参考频率源一般是一个高稳定度的晶体振荡器,其输出信号用于DDS中各部件同步工作。
DDS的实质是对相位进行可控等间隔的采样。
直接数字频率合成优缺点优点:(1)输出频率相对带宽较宽输出频率带宽为50%fs(理论值)。
但考虑到低通滤波器的特性和设计难度以及对输出信号杂散的抑制,实际的输出频率带宽仍能达到40%fs。
(2)频率转换时间短DDS是一个开环系统,无任何反馈环节,这种结构使得DDS的频率转换时间极短。
数字波形生成技术分类 dds
数字波形生成技术(DDS)是一种广泛应用于无线通信、测量仪器、医疗设备和工业控制等领域的关键技术。
它通过数字信号处理技术实现了对频率和相位的精确控制,可以产生复杂的波形信号,广泛应用于测试与测量领域和通信领域。
数字波形生成技术主要分为直接数字频率合成(DDS)和间接数字频率合成(IDDS)两大类。
DDS技术是指利用直接数字频率合成器实现的一种生成任意波形信号的技术。
而IDDS技术是指通过数字信号处理技术对采样到的信号进行数字化处理,并通过数字信号处理器完成频率合成的技术。
直接数字频率合成(DDS)技术能够实现高速、高精度的波形生成,其主要特点包括:1. 幅度、频率、相位均可精确控制2. 高速输出、精度高3. 输出信号稳定、失真小4. 可编程灵活性大5. 可实现大动态范围输出而间接数字频率合成(IDDS)技术则具有以下特点:1. 通过数字信号处理技术实现频率合成2. 实现频率转换、混频、滤波等信号处理功能3. 灵活性大,可根据需要实现不同的信号处理功能4. 适用于信号处理复杂、要求灵活性高的场合根据应用领域和技术特点的不同,DDS技术又可以分为直接数字频率合成器(DDFS)、低成本直接数字频率合成器(LC-DDFS)、时钟数字频率合成器(CLOCKED-DDFS)等几种类型。
1. 直接数字频率合成器(DDFS)是指采用直接数字频率合成技术的数字信号处理器,能够实现高速、高分辨率的波形生成。
2. 低成本直接数字频率合成器(LC-DDFS)是指在降低成本的前提下实现直接数字频率合成的技术,主要用于成本敏感型应用场合。
3. 时钟数字频率合成器(CLOCKED-DDFS)是指利用外部时钟信号实现频率合成的技术,主要用于需要与外部时钟同步的应用场合。
数字波形生成技术在现代通信、测量仪器和工业控制等领域扮演着重要的角色,不仅大大提高了波形生成的精度和灵活性,也推动了这些领域的发展和应用。
未来随着技术的发展和应用领域的拓展,数字波形生成技术将会继续发挥重要作用,为各行各业的发展带来新的机遇和挑战。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
楼主大中小发表于2007-10-26 15:05 只看该作者DDS介绍(自己整理)DDS概要1971年,美国学者J.Tierney等人撰写的“A DIGITAL Frequency Synthesizer”-文首次提出了以全数字技术,从相位概念出发直接合成所需波形的一种新给成原理。
限于当时的技术和器件产,它的性牟指标尚不能与已有的技术盯比,故未受到重视。
近1年间,随着微电子技术的迅速发展,直接数字频率合成器(Direct DIGITAL Frequency Synthesis简称DDS或DDFS)得到了飞速的发展,它以有别于其它频率合成方法的优越性能和特点成为现代频率合成技术中的姣姣者。
具体体现在相对带宽宽、频率转换时间短、频率分辨率高、输出相位连续、可产生宽带正交信号及其他多种调制信号、可编程和全数字化、控制灵活方便等方面,并具有极高的性价比。
DDS是直接数字式频率合成器(Direct Digital Synthesizer)的英文缩写。
与传统的频率合成器相比,DDS具有低成本、低功耗、高分辨率和快速转换时间等优点,广泛使用在电信与电子仪器领域,是实现设备全数字化的一个关键技术。
一、DDS原理和结构DDS的基本大批量是利用采样定量,通过查表法产生波形。
DDS的结构有很多种,其基本的电路原理可用图1来表示。
相位累加器由N位加法器与N位累加寄存器级联构成。
每来一个时钟脉冲fs,加法器将控制字k与累加寄存器输出的累加相位数据相加,把相加后的结果送到累加寄存器的数据输入端,以使加法器在下一个时钟脉冲的作用下继续与频率控制字相加。
这样,相位累加器在时钟作用下,不断对频率控制字进行线性相位加累加。
由此可以看出,相位累加器在每一个中输入时,把频率控制字累加一次,相位累加器输出的数据就是合成信号的相位,相位累加器的出频率就是DDS输出的信号频率。
用相位累加器输出的数据作为波形存储器(ROM)的相位取样地址。
这样就可把存储在波形存储器内的波形抽样值(二进制编码)经查找表查出,完成相位到幅值转换。
波形存储器的输出送到D/A转换器,D/A转换器将数字量形式的波形幅值转换成所要求合成频率的模拟量形式信号。
低通滤波器用于滤除不需要的取样分量,以便输出频谱纯净的正弦波信号。
DDS在相对带宽、频率转换时间、高分头放力、相位连续性、正交输出以及集成化等一系列性能指标方面远远超过了传统频率合成技术所能达到的水平,为系统提供了优于模拟信号源的性能。
下面以AD9850为例来谈一谈DDS的工作原理。
DDS系统的核心是相位累加器,每来一个时钟脉冲,它的内容就更新一次。
在每次更新时,相位增量寄存器的相位增量M就加到相位累加器中的相位累加值上。
假设相位增量寄存器的M为00...01,相位累加器的初值为00...00。
这时在每个时钟周期,相位累加器都要加上00...01。
如果累加器位宽n是32位,相位累加器就需要232个时钟周期才能恢复初值(见图2)。
相位累加器的输出作为正弦查找表的查找地址。
查找表中的每个地址代表一个周期的正弦波的一个相位点,每个相位点对应一个量化振幅值。
因此,这个查找表相当于一个相位/振幅变换器,它将相位累加器的相位信息映射成数字振幅信息,这个数字振幅值就作为D/A变换器的输入。
例如n=32,M=1, 这个相应的输出正弦波频率等于时钟频率除以232。
如果M=2,输出频率就增加1倍。
对于一个n-bit的相位累加器来说,就有2n个可能的相位点,相位增量寄存器中控制字M就是在每个时钟周期被加到相位累加器上的值。
假设时钟频率为fc,那么输出正弦波的频率就为:f0 = M*fc / 2n这就是DDS的“tuningequation”。
这个系统的分辨率达fc / 2n ,如果n = 32 ,分辨率比40亿分之一还要好,在一个实际应用的DDS系统里,相位累加器的所有输出位并没有全部送到查找表,一般只取高K位(AD9850就只取高13到15位),于是既减少了查找表的规模,又不影响系统的频率分辨率。
这个相位输出给最后的输出只带来小到可以接受的相位噪声。
相位噪声基本上来源于参考时钟。
在DDS系统中,最重要的是对带宽和频率纯度之间的折中。
如果时钟频率降低,则Nyquist频率下降,带宽减小,同时D/A变换器的分辨率提高,这样就可以得到更高的频率纯度。
所以,对DDS输出频率分频就可以减小带宽并且提高频谱纯度。
模拟信号频谱纯度主要取决于D/A变换器的性能。
上述基本DDS系统是相当灵活的。
而且拥有高分辨率。
它可以通过相位累加器来同时相位连续地改变频率。
然而,实际DDS系统首先要在相位累加器之前加入一个内部缓冲寄存器(即图中的Data and control inputregister),通常这个缓存串行输入相位累积值,按顺序字节输入(Byte-load)相位控制字。
由于相位增量寄存器和相位累加器是并行输入,加了缓存相当于串并转换,可以减少封装的管脚数。
控制字载入缓存与相位增量寄存器以及相位累加器的并行输出是同步的,因此不影响DDS的速率。
二、DDS的特点优点:(1)输出频率相对带宽较宽输出频率带宽为50%fs(理论值)。
但考虑到低通滤波器的特性和设计难度以及对输出信号杂散的抑制,实际的输出频率带宽仍能达到40%fs。
(2)频率转换时间短DDS是一个开环系统,无任何反馈环节,这种结构使得DDS的频率转换时间极短。
事实上,在DDS的频率控制字改变之后,需经过一个时钟周期之后按照新的相位增量累加,才能实现频率的转换。
因此,频率时间等于频率控制字的传输,也就是一个时钟周期的时间。
时钟频率越高,转换时间越短。
DDS的频率转换时间可达纳秒数量级,比使用其它的频率合成方法都要短数个数量级。
(3)频率分辨率极高若时钟fs 的频率不变,DDS的频率分辨率就是则相位累加器的位数N决定。
只要增加相位累加器的位数N即可获得任意小的频率分辨率。
目前,大多数DDS的分辨率在1Hz数量级,许多小于1mHz甚至更小。
(4)相位变化连续改变DDS输出频率,实际上改变的每一个时钟周期的相位增量,相位函数的曲线是连续的,只是在改变频率的瞬间其频率发生了突变,因而保持了信号相位的连续性。
(5)输出波形的灵活性只要在DDS内部加上相应控制如调频控制FM、调相控制PM和调幅控制AM,即可以方便灵活地实现调频、调相和调幅功能,产生FSK、PSK、ASK 和MSK等信号。
另外,只要在DDS的波形存储器存放不同波形数据,就可以实现各种波形输出,如三角波、锯齿波和矩形波甚至是任意的波形。
当DDS的波形存储器分别存放正弦和余弦函数表时,既可得到正交的两路输出。
(6)其他优点由于DDS中几乎所有部件都属于数字电路,易于集成,功耗低、体积小、重量轻、可靠性高,且易于程控,使用相当灵活,因此性价比极高。
缺点:DDS也有局限性,主要表现在:(1)输出频带范围有限由于DDS内部DAC和波形存储器(ROM)的工作速度限制,使得DDS输出的最高频有限。
目前市场上采用CMOS、TTL、ECL工艺制作的DDS工习片,工作频率一般在几十MHz至400MHZ左右。
采用GaAs工艺的DDS芯片工作频率可达2GHz左右。
(2)输出杂散大由于DDS采用全数字结构,不可避免地引入了杂散。
其来源主要有三个:相位累加器相位舍位误差造成的杂散;幅度量化误差(由存储器有限字长引起)造成的杂散和DAC非理想特性造成的杂散。
三、DDS与模拟PLL的比较输出分辨率小:只要相位累加器的位宽足够大,参考时钟频率足够小,则分辨率可以很小:AD9850(参考时钟频率fc=125MHz)的相位累加器为32位,分辨率0.03Hz;AD9830(参考时钟频率fc=50MHz)的相位累加器为32位,分辨率0.012Hz;AD9852(参考时钟频率fc=300MHz)的相位累加器为48位,分辨率1*10-6Hz。
相反,模拟锁相环的合成器的分辨率为1KHz,它缺乏数字信号处理的固有特性。
输出频率变换时间小:一个模拟锁相环的频率变换时间主要是它的反馈环处理时间和压控振荡器的响应时间,通常大于1ms。
整片DDS合成器的频率变换时间主要是DDS 的数字处理延迟,通常为几十个ns(AD9850最小43ns)。
调频范围大:一个负反馈环的带宽输出参考频率决定了模拟锁相环的稳定的调频范围;整片的DDS合成器是不受稳定性的影响的,在整个Nyquist 频率范围内是可调的。
相位噪声:DDS优于PLL的最大优势就是它的相位噪声。
由于数字正弦信号的相位与时间成线形关系,整片的DDS输出的相位噪声比它的参考时钟源的相位噪声小。
而模拟锁相环的相位噪声是它的参考时钟的相位噪声的加倍。
体积小、集成度高:整片的DDS封装成小面积芯片,因而比PLL的占板面积小得多。
功耗小:整片的DDS的功耗比早期的离散型DDS要小,例如AD9850在3.3V功耗为155mW,以100MHz为参考时钟,产生一个40MHz的信号。
这可以与离散型模拟锁相环相抗衡。
设计方便:整片DDS包括了信号D/A变换器,在系统设计时易于实现,而且现在的DDS不再需要专门的射频设计,简单的数字控制减少了硬件的复杂性。
但是DDS 频率合成目前还存在工作频率高端受限,主要是受DAC器件速率限制,杂波电平高(较好的有-70dBc),作为时钟发生器时边缘抖动大等缺点。
四、实现DDS的三种技术方案1采用高性能DDS单片电路的解决方案随着微电子技术的飞速发展,目前高超性能优良的DDS产品不断推出,主要有QUALCOMM、AD、Sciteg和Stanford等公司单片电路(monolithic)。
QUALCOMM公司推出了DDS系列Q2220、Q2230、Q2334、Q2240、Q2368,其中Q2368的时钟频率为130MHz,分辨率为0.03Hz,杂散控制为-76dBc,变频时间为0.1μs;美国AD公司也相继推出了他们的DDS系列:AD9850、AD9851、可以实现线性调频的AD9852、两路正交输出的AD9854以及以DDS为核心的QPSK调制器AD9853、数字上变频器AD9856和AD9857.AD公司的DDS系列产品以其较高的性能价格比,目前取得了极为广泛的应用。
AD公司的常用DDS芯片选用列表见表1.下面仅对比较常用的AD9850芯片作一简单介绍。
AD9850是AD公司采用先进的DDS技术1996年推出的高集成度DDS频率合成器,它内部包括可编程DDS系统、高性能DAC及高速比较器,能实现全数字编程控制的频率合成器和时钟发生器。
接上精密时钟源,AD9850可产生一个频谱纯净、频率和相位都可编程控制的模拟正弦波输出。
此正弦波可直接用作频率信号源或转换成方波用作时钟输出。
AD9850接口控制简单,可以用8位并行口或串行口经、相位等控制数据。