光纤结构和类型课件

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

渐变型光纤的纤芯直径都很大,可以容纳 数百个模式,所以称为多模光纤。 渐变型多模光纤和单模光纤,包层外 径2b都选用125μ m。
特种单模光纤
最有用的若干典型特种单模光纤的横截面结
构和折射率分布下图所示:
n1 n2
n3
2a ′ 2a
(a)
(b)
(b)
(a) 双包层; (b) 三角芯; (c) 椭圆芯
2.1.2 光纤类型
1、光纤的主要成分 目前通信用的光纤主要是石英系光纤,其 主要成分是高纯度石英玻璃,即二氧化硅 ( SiO2 ) 。 如果在石英中掺入折射率高于石英的掺杂 剂,就可以制作光纤的纤芯。同样,如果在石 英中掺入折射率低于石英的掺杂剂,就可以作 为包层材料。
2、光纤分类
(1)按照制造光纤所用的材料分类有:
第2章
2.1 2.1.1
光纤
光纤结构
光纤结构和类型
2.1.2
2.2
光纤类型
光纤传输原理 2.2.1 2.2.2 几何光学方法 光纤传输的波动理论
2.3 光纤传输特性 2.3.1 2.3.2 2.3.3 光纤色散 光纤损耗 光纤标准和应用
Байду номын сангаас
教学重点及难点 重点:
一、分析光纤的导光原理; 二、理解光纤损耗和色散的概念 ;
2.2 光纤传输原理
分析光纤传输原理的常用方法:
几何光学法 麦克斯韦波动方程法
2.2.1
几何光学方法
用几何光学方法分析光纤传输原理,
我们关注的问题主要是光束在光纤中传
播的空间分布和时间分布,并由此得到 数值孔径和时间延迟的概念。
几何光学法分析问题的两个出发点: • 数值孔径 • 时间延迟 通过分析光束在光纤中传播的空间分布和 时间分布。 几何光学法分析问题的两个角度:
1.55μ m 色散移位光纤实现了 10Gb/s 容量的 100km 的超大容量超长距离系统。
色散平坦光纤适用于波分复用系统, 这种系统可以把传输容量提高几倍到几 十倍。
三角芯光纤有效面积较大,有利于提 高输入光纤的光功率,增加传输距离。
偏振保持光纤用在外差接收方式的相 干光系统,这种系统最大优点是提高接收 灵敏度,增加传输距离。
• 突变型多模光纤
• 渐变型多模光纤
一、突变型多模光纤 为简便起见,以突变型多模光纤的交
轴光线(子午光线)为例,进一步讨论光纤
的传输条件。
设纤芯和包层折射率分别为 n1 和 n2 , 空气的折射率 n0=1 ,纤芯中心轴线与 z 轴
一致。
二. 突变型多模光纤导光原理
突变型多模光纤导光原理图
与内光线入射角的临界角 θc 相对应,光 纤入射光的入射角 θi 有一个最大值 θmax 界角)。
突 然 变 为 n2 。 这 种 光 纤 一 般 纤 芯 直 径
2a=50~80μ m ,光线以折线形状沿纤芯中
心轴线方向传播,特点是信号畸变大。
突变型多模光纤
(多模阶跃折射率光纤)
渐变型多模光纤(Graded Index Fiber, GIF)
在纤芯中心折射率最大为n1 ,沿径向r向
外围逐渐变小,直到包层变为 n2 。这种光纤 一般纤芯直径 2a 为 50μ m ,光线以正弦形状 沿纤芯中心轴线方向传播,特点是信号畸变 小。
渐变型多模光纤 (多模渐变射率光纤)
单模光纤(Single Mode Fiber, SMF) 折射率分布和突变型光纤相似,纤芯直径 只有8~10 μ m,光线以直线形状沿纤芯中心轴 线方向传播。因为这种光纤只能传输一个模式 (只传输主模),所以称为单模光纤,其信号 畸变很小。
单模光纤
相对于单模光纤而言,突变型光纤和
都能在光纤中传输,如图。
光纤的数值孔径 NA 越大,纤芯对光能
量的束缚越强,光纤抗弯曲性能越好; 但 NA 越大,经光纤传输后产生的信号
畸变越大,因而限制了信息传输容量。
所以要根据实际使用场合,选择适当的 NA。
四、相对折射率差Δ
n1 和n2 差值的大小直接影响着光纤的性能,
为此引入相对折射率差这样一个物理量来表示 它们相差的程度,用Δ表示,即
石英系光纤; 多组分玻璃光纤; 塑料包层石英芯光纤; 全塑料光纤。
(2) 按折射率分布情况分类:光纤主 要有三种基本类型:
突变型多模光纤(多模阶跃折射率光纤) 渐变型多模光纤(多模渐变射率光纤)
单模光纤
突变型多模光纤(Step Index Fiber, SIF) 纤芯折射率为 n1 保持不变,到包层
双包层光纤:
色散平坦光纤(DFF)
色散移位光纤(DSF)
三角芯光纤: 改进的色散移位光纤
椭圆芯光纤:
双折射光纤或偏振保持光纤。
主要用途:
突变型多模光纤 只能用于小容量短距 离系统。 渐变型多模光纤 适用于中等容量中等 距离系统。
单模光纤 用在大容量长距离的系统。
特种单模光纤大幅度提高光纤通信 系统的水平:
纤的数值孔径为:
NA= n0 sin (θmax)
得光纤的数值孔径为:
NA= n0 sin (θmax) =
n n
2 1
2 2
光纤的数值孔径 NA仅决定于光纤的折 射率n1和n2 ,与光纤的直径无关。
光纤的数值孔径 NA表示光纤接收和传
输光的能力, NA( 或θmax) 越大,光纤接 收光的能力越强,从光源到光纤的耦合效 率越高。 对于无损耗光纤,在θmax内的入射光

θmax 称为光纤端面入射临界角(简称入射临
光纤端面入射临界角
当θi<θmax时,相应的光线将在交界面发
生全反射而返回纤芯,并以折线的形状向前传
播,如光线3。
由此可见,只有在半锥角为θi ≤θmax的圆 锥内入射的光束才能在光纤中传播。
半锥角
三、数值孔径
根据这个传播条件,定义入射临界角的正
弦为数值孔径 (Numerical Aperture, NA)。即光
三、掌握光纤单模传输条件的计算公式。
难点:
光纤传输的波动理论
2.1 光纤结构和类型
2.1.1 光纤结构 光纤(Optical Fiber)的典型结构是 多层同轴圆柱体,如图所示,自内向外 由纤芯、包层和涂敷层三部分组成。
光纤结构图
纤芯的折射率比包层稍高,损耗比包层更 低,光能量主要在纤芯内传输。 包层为光的传输提供反射面和光隔离,并 起一定的机械保护作用。 设纤芯和包层的折射率分别为n1和n2,光能 量在光纤中传输的必要条件是n1>n2。 涂覆层保护光纤不受水汽的侵蚀和机械擦 伤。
相关文档
最新文档