固体物理 第一章 晶体结构习题
固体物理习题与答案
![固体物理习题与答案](https://img.taocdn.com/s3/m/c94f502ecaaedd3382c4d313.png)
《固体物理学》习题解答黄昆 原著 韩汝琦改编 (志远解答,仅供参考)第一章 晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06r 8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r 344a r 344x 3333≈π=π⨯=π⨯= (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062r224r 346x 33≈π=π⨯= (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a334.063r 338r 348a r 348x 33333≈π=π⨯=π⨯=1.2、试证:六方密排堆积结构中633.1)38(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
《固体物理学》房晓勇主编教材-习题解答参考01第一章 晶体的结构
![《固体物理学》房晓勇主编教材-习题解答参考01第一章 晶体的结构](https://img.taocdn.com/s3/m/1d42a950f01dc281e53af099.png)
(h
2 1
2 + k + l12 ) i( h22 + k22 + l2 ) 2 1 12
h1h2 + k1k2 + l1l2
12
பைடு நூலகம்
解:三个晶轴相互垂直且等于晶格常数 a,则晶胞基矢为
a1 = ai, a2 = a j, a3 = ak ,
其倒格子基矢为
b1 =
2π 2π 2π i, b2 = i, b3 = i a a a 2π ( hi + k j + lk ) a
a 2 +j a 0 − 2
a 2
a 2 +k a 0 2
0 a 2
=−
b 1=
a2 a2 a2 i+ j+ k 4 4 4
2π 2π a 2 ⎛ a 2 a2 a2 a 2 × a3 = 3 − i + j + ⎜ a Ω 2 ⎝ 4 4 4 4 2π 2π b 2= i − j + k ,b 3= i+ j−k a a
i = −( h + k )
得证 (2)由上可知,h,k,i 不是独立的, ( 001) , 133 , 110 , 323 , (100 ) , ( 010 ) , 213 . 中各 i 等于
( )( )( )
( )
i1 = −(h1 + k1 ) = −(0 + 0) = 0, i2 = 2 , i3 = 0 , i4 = 1 , i5 = 1 i6 = 1 , i7 = 3 即得
a1 ⋅ n = h1d , a2 ⋅ nh2 d , a3 ⋅ n = h3d ,
假定 h1 , h2 , h3 不是互质的数,则有公约数 p,且 p>1;设 k1 , k2 , k3 为互质的三个数,满足
固体物理考题第一章晶体的结构
![固体物理考题第一章晶体的结构](https://img.taocdn.com/s3/m/656ad81e773231126edb6f1aff00bed5b9f373eb.png)
第一章晶体的结构简单回答下面的问题:1 a原胞与单胞有什么不同?何谓布拉菲格子?何谓倒格子?以一结点为顶点,以三个不同方向的周期为边长的平行六面体可作为晶格的一个重复单元.体积最小的重复单元,称为原胞或固体物理学原胞.它能反映晶格的周期性.原胞的选取不是惟一的,但它们的体积都相等.为了同时反映晶体对称的特征,结晶学上所取的重复单元,体积不一定最小,结点不仅在顶角上,还可以是体心或面心.这种重复单元称作晶胞、惯用晶胞或布喇菲原胞.晶体内部结构可以看成是由一些相同的点子在空间作规则的周期性无限分布,这些点子的总体称为布喇菲点阵。
布拉菲格子:由基元代表点(格点)在空间中的周期性排列所形成的晶格。
倒格子*(Reciprocal Lattice,Reciprocal有相互转换的含意)已知有正格子基矢,定义倒格矢基矢为:;; .其中为正格子原胞体积。
由平移操作所产生的格点叫倒格点:为倒格矢;倒格点的总体叫倒格子,叫一组倒格基矢。
由与所决定的点阵为互为倒格子b晶体的宏观对称性可以概括为多少点群?晶体中有几种基本对称素?多少个晶系?这些晶系分别包括哪些布拉菲格子?晶体学中共有32种点群八种基本对称素C1 (1)、C2 (2)、C3 (3)、C4 (4)、C6 (6)、Ci (i)、CS (m)和 S4七大晶系十四种布拉菲格子c什么是晶体、准晶体和非晶体?晶体:组成固体的原子(或离子)在微观上的排列具有长程周期性非晶体:组成固体的粒子只有短程序(在近邻或次近邻原子间的键合:如配位数、键长和键角等具有一定的规律性),无长程周期性准晶:有长程的取向序,沿取向序的对称轴方向有准周期性,但无长程周期性2试推导面心和体心立方点阵的x射线衍射的系统消光规律3多晶体与单晶体的x射线衍射图有什么区别?多晶(衍射环对应一个晶面);单晶(衍射点对应一个晶面)4a)何谓晶体、准晶体及非晶体?它们的x光或电子衍射有何区别?黄昆第45页晶体:衍射图样是一组组清晰的斑点非晶体:由于原子排列是长程无序的,衍射图样呈现为弥散的环,没有表征晶态的斑点准晶体:衍射图样具有五重对称的斑点分布,斑点的明锐程度不亚于晶体的情况(b)何谓布拉菲格子、晶体学点群、晶系和晶体学空间群?C1 (1)、C2 (2)、C3 (3)、C4 (4)、C6 (6)及S1,S2,S3,S4,S5这十种对称素组成32个不同的点群结晶学中把a, b, c满足同一类要求的一种或数种布喇菲格子称为一个晶系。
固体物理题库-zzk-第一至第五章
![固体物理题库-zzk-第一至第五章](https://img.taocdn.com/s3/m/06769725524de518974b7d71.png)
第一章 晶体结构和X 射线1、试证体心立方和面心立方各自互为正、倒格子2、如果基矢a,b,c 构成正交关系,证明晶面族(h k l )的面间距满足:222)()()(1c l b k a hd hkl ++=3、证明以下结构晶面族的面间距:(1) 立方晶系:d hkl =a [h 2+k 2+l 2]-1/2(2) 六角晶系:2/12222])()(34[-+++=c l ahk k h d hkl 4、等体积的硬球堆积成体心立方结构和面心立方结构,试求他们在这两种结构中的致密度分别为0.68和0.74。
5、试证密积六方结构中,c/a=1.633。
6、在立方晶胞中,画出(1 0 1),(0 2 1),(221)和(012)晶面。
7、如下图,B 和C 是面心立方晶胞上的两面心。
(1) 求ABC 面的密勒指数;(2) 求AC 晶列的指数,并求相应原胞坐标系中的指数。
8、六角晶胞的基矢为.,223,223k c c j a i a b j a i a a =+-=+=求其倒格子基矢。
9、求晶格常数为a 的面心立方和体心立方晶体晶面族(h 1 h 2 h 3)之间的面间距(指导p30,10)。
10、讨论六角密积结构,X 光衍射的消光条件。
11、求出体心立方、面心立方的几何因子和消光条件。
12、原胞和晶胞的区别?13、倒空间的物理意义?14、布拉格衍射方程,原子和几何结构因子在确定晶格结构上分别起何作用?15、什么是布拉格简单格子,什么是复式格子?第二章 自由电子气1、设有一个长度为L 的一维金属线,它有N 个导电电子,若把这些导电电子看成自由电子气,试求:(1) 电子的状态密度(2) 绝对零度下的电子费米能级,以及费米能级随温度的变化关系。
(3) 电子的平均能量。
(4) 电子的比热。
2、二维电子气的能态密度2)( πm E N =,证明费米能 ]1ln[/2-=T mk n B F b eT k E π 3、求出一维金属中自由电子的能态密度、费米能级、电子的平均动能以及一个电子对于比热的贡献。
固体物理学_答案(黄昆 原著 韩汝琦改编)
![固体物理学_答案(黄昆 原著 韩汝琦改编)](https://img.taocdn.com/s3/m/b5431b2858fb770bf78a551c.png)
《固体物理学》习题解答黄昆 原著 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06r 8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯=(3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r 344a r 344x 3333≈π=π⨯=π⨯= (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062r224r346x 33≈π=π⨯= (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.063r 338r 348a r 348x 33333≈π=π⨯=π⨯=1.2、试证:六方密排堆积结构中633.1)38(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
(参考资料)固体物理习题带答案
![(参考资料)固体物理习题带答案](https://img.taocdn.com/s3/m/08284b04b9f3f90f76c61bff.png)
D E ( ) ,其中 , 表示沿 x , y , z 轴的分量,我们选取 x , y , z
沿立方晶体的三个立方轴的方向。
显然,一般地讲,如果把电场 E 和晶体同时转动, D 也将做相同转动,我们将以 D' 表示转
动后的矢量。
设 E 沿 y 轴,这时,上面一般表达式将归结为:Dx xyE, Dy yyE, Dz zy E 。现在
偏转一个角度 tg 。(2)当晶体发生体膨胀时,反射线将偏转角度
tg , 为体胀系数
3
解:(1)、布拉格衍射公式为 2d sin ,既然波长改变,则两边同时求导,有
2d cos ,将两式组合,则可得 tg 。
(2)、当晶体发生膨胀时,则为 d 改变,将布拉格衍射公式 2d sin 左右两边同时对 d
考虑把晶体和电场同时绕 y 轴转动 / 2 ,使 z 轴转到 x 轴, x 轴转到 z 轴, D 将做相同
转动,因此
D'x Dz zy E
D'y Dy yyE
D'z Dx xy E 但是,转动是以 E 方向为轴的,所以,实际上电场并未改变,同时,上述转动时立方晶体
的一个对称操作,所以转动前后晶体应没有任何差别,所以电位移矢量实际上应当不变,即
第一章:晶体结构 1. 证明:立方晶体中,晶向[hkl]垂直于晶面(hkl)。
证 明 : 晶 向 [hkl] 为 h1 k2 l3 , 其 倒 格 子 为
b1
2
a1
a2
a3
(a2 a3 )
b2
2
a1
a3 a1 (a2 a3)
b3
2
a1
a1
a2
(a2 a3)
。可以知道其倒格子矢量
固体物理参考答案(前七章)
![固体物理参考答案(前七章)](https://img.taocdn.com/s3/m/7dccb57c31b765ce050814e7.png)
固体物理习题参考答案(部分)第一章 晶体结构1.氯化钠:复式格子,基元为Na +,Cl -金刚石:复式格子,基元为两个不等价的碳原子 氯化钠与金刚石的原胞基矢与晶胞基矢如下:原胞基矢)ˆˆ()ˆˆ()ˆˆ(213212211j i a a i k a a k j a a +=+=+= , 晶胞基矢 ka a j a a ia a ˆˆˆ321===2. 解:31A A O ':h:k;l;m==-11:211:11:111:1:-2:1 所以(1 1 2 1) 同样可得1331B B A A :(1 1 2 0); 5522A B B A :(1 1 0 0);654321A A A A A A :(0 0 0 1)3.简立方: 2r=a ,Z=1,()63434r 2r a r 3333πππ===F体心立方:()πππ833r4r 342a r 3422a 3r 4a r 4a 33333=⨯=⨯=∴===F Z ,,则面心立方:()πππ622r 4r 34434442r 4a r 4a 233ar 33=⨯=⨯=∴===F Z ,,则 六角密集:2r=a, 60sin 2c a V C = a c 362=,πππ622336234260sin 34223232=⨯⨯⨯=⨯=⎪⎭⎫ ⎝⎛a a c a r F a金刚石:()πππ163r 38r 348a r 3488Z r 8a 33333=⨯=⨯===F ,, 4. 解:'28109)31arccos(312323)ˆˆˆ()ˆˆˆ(cos )ˆˆˆ()ˆˆˆ(021*******12211=-=-=++-⋅+-=⋅=++-=+-=θθa a k j i a k j i a a a a a kj i a a kj i a a 5.解:对于(110)面:2a 2a a 2S =⋅=所包含的原子个数为2,所以面密度为22a2a22=对于(111)面:2a 2323a 22a 2S =⨯⨯= 所包含的原子个数为2,所以面密度为223a34a 232=8.证明:ABCD 是六角密堆积结构初基晶胞的菱形底面,AD=AB=a 。
固体物理课后习题答案
![固体物理课后习题答案](https://img.taocdn.com/s3/m/0fafc716a76e58fafab0035a.png)
(
)
⎞ 2π k⎟= −i + j + k 同理 ⎠ a
(
)
(
)
(
)
2π ⎧ ⎪b1 = a −i + j + k ⎪ 2π ⎪ i− j+k ⎨b 2 = a ⎪ 2π ⎪ ⎪b3 = a i + j − k ⎩
(
)
(
)
(
)
由此可得出面心立方格子的倒格子为一体心立方格子; 所以体心立方格子和面心立方格子互为正倒格子。 2.2 在六角晶系中,晶面常用四个指数(hkil)来表示,如图 所示,前三个指数表示晶面族中最靠近原点的晶面在互成 1200的 共面轴 a1 , a2 , a3 上的截距为
设两法线之间的夹角满足
K 1 i K 2 = K1 i K 2 cos γ
K 1iK 2 cos γ = = K1 i K 2 2π 2π (h1 i + k1 j + l1 k )i (h2 i + k2 j + l2 k ) a a 2π 2π 2π 2π (h1 i + k1 j + l1 k )i (h1 i + k1 j + l1 k ) i (h2 i + k2 j + l2 k )i (h2 i + k2 j + l2 k ) a a a a
a1 a2 a3 , , ,第四个指数表示该晶面 h k i
在六重轴c上的截距为
c 。证明: l
i = −(h + k )
并将下列用(hkl)表示的晶面改用(hkil)表示:
2
第一章 晶体的结构
( 001) , (133) , (110 ) , ( 323) , (100 ) , ( 010 ) , ( 213) .
黄昆固体物理习题-第一章 晶体结构
![黄昆固体物理习题-第一章 晶体结构](https://img.taocdn.com/s3/m/5597a6563c1ec5da50e2709b.png)
第一章习题参考解答解答:设立方晶格的边长为a,一个晶胞中的原子数为n,原子球半径为R,晶胞体积为V,则致密度(或叫填充率)K为:V Rn K3 34π•= ch1.1 题略3343===0.52(2)6R K R ππ(1) 简单立方,晶胞内含有一个原子n=1,原子球半径为R ,立方晶格的顶点原子球相切,立方边长a=2R ,体积为(2R)3,所以VR n K 334π•=(2)体心立方晶胞内有2个原子,n=2,原子球半径为R ,晶胞边长为a ,立方晶格的体对角线原子球相切,体对角线长为4个原子半径,所以ππ83)34(342,3433=⨯=R R K R =0.68ππ83)34(342,3433=⨯==R R K R a(3)面心立方晶胞内有4个原子,晶胞的面对角线原子球相切,面对角线长度为4个原子半径,立方体边长为a ,ππ62)24(34433=⨯=R RK =0.74,24R a =(4)六角密排原胞内中含2个原子,正四面体四个顶点处的原子球相切,边长为a ,六角柱高h =0.74ππ62322]321)2[(34223=•⨯⨯⨯=a R R K hs 斜边2R=a[(2R)2-[(2Rsin60)х2/3]2=(h/2)2底边竖直边ππ16383433=⨯=a R K =0.34(5)金刚石在单位晶格中含有8个原子,碳原子最近邻长度2R 为体对角线1/4长,体对角线为,38a R =证明1:设六角层内最近邻原子间距为a ,相邻两层间的最近邻为d ,则633.13/8,])2()3[(,])2()3[(21222122≈=+==+=a c c a a a d c a d 由此解出此时有构,时构成理想的密堆积结当ch1.2 题略a d证明2:设六角层内最近邻原子间距为a,相邻两层间的最近邻为d,则a dch1.3 题略解:对于体心立方,原胞基矢为:对于体心立方原胞体积为:1.3)(21k j a a +=)(22i k a a +=)(23j i a a +=对于面心立方,原胞基矢为:根据倒格子基矢定义,并将体心原胞基矢代入计算之,可得:将计算所得到的倒格子基矢与面心立方原胞基矢相同,可知体心立方的倒格子是面心立方。
固体物理期末复习题目
![固体物理期末复习题目](https://img.taocdn.com/s3/m/af7bf694c281e53a5802ffb6.png)
第一章 晶体结构1、把等体积的硬球堆成下列结构,求球可能占据的最大体积和总体积之比。
(1)简立方 (2)体心立方 (3)面心立方(4)金刚石 解:(1)、简立方,晶胞内含有一个原子n=1,原子球半径为R ,立方晶格的顶点原子球相切,立方边长a=2R,体积为()32R ,所以 ()33344330.5262n R R K V R πππ⋅==== (2)、体心立方晶胞内含有2个原子n=2,原子球半径为R ,晶胞边长为a ,立方晶格的体对角线原子球相切,体对角线长为4个原子半径,所以3a R =3334423330.6843n R R K V R πππ⋅⨯====⎛⎫⎪⎝⎭(3)、面心立方晶胞内含有4个原子n=4,晶胞的面对角线原子球相切,面对角线长度为4个原子半径,立方体边长为a,所以2a R =3334442330.7442n R R K V R πππ⋅⨯====⎛⎫⎪⎝⎭(4)、金刚石在单位晶格中含有8个原子,碳原子最近邻长度2R 为体对角线14长,体对角线为83R a = 3334483330.3483n R R K V R πππ⋅⨯====⎛⎫⎪⎝⎭2、证明面心立方和体心立方互为倒格子。
09级微电子学专业《固体物理》期末考复习题目至诚 学院 信息工程 系 微电子学 专业 姓名: 陈长彬 学号: 2109918033、证明:倒格子原胞体积为()3*2cvvπ=,其中v c为正格子原胞的体积。
4、证明正格子晶面 与倒格矢正交。
5能写出任一晶列的密勒指数,也能反过来根据密勒指数画出晶列;能写出任一晶面的晶面指数,也能反过来根据晶面指数画出晶面。
见课件例题 以下作参考: 15.如图1.36所示,试求:(1) 晶列ED ,FD 和OF 的晶列指数;(2) 晶面AGK ,FGIH 和MNLK 的密勒指数; (3) 画出晶面(120),(131)。
密勒指数:以晶胞基矢定义的互质整数( )。
[截a,b,c.] 晶面指数:以原胞基矢定义的互质整数( )。
固体物理题库第一章晶体的结构
![固体物理题库第一章晶体的结构](https://img.taocdn.com/s3/m/f10c75fa2f60ddccdb38a033.png)
固体物理题库第一章晶体的结构(总14页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第一章晶体的结构一、填空体(每空1分)1. 晶体具有的共同性质为长程有序、自限性、各向异性。
2. 对于简立方晶体,如果晶格常数为a,它的最近邻原子间距为 a ,,原胞与晶胞的体积比 1:1 ,配位数为6 。
3. 对于体心立方晶体,如果晶格常数为a,它的最近邻原子间距为,次近邻原子间距为 a ,原胞与晶胞的体积比 1:2 ,配位数为 8 。
4. 对于面心立方晶体,如果晶格常数为a,它的最近邻原子间距为,次近邻原子间距为 a ,原胞与晶胞的体积比 1:4 ,配位数为 12 。
5. 面指数(h1h2h3)所标志的晶面把原胞基矢a1,a2,a3分割,其中最靠近原点的平面在a1,a2,a3上的截距分别为__1/h1_,_1/h2__,__1/h3_。
6. 根据组成粒子在空间排列的有序度和对称性,固体可分为晶体、准晶体和非晶体。
7. 根据晶体内晶粒排列的特点,晶体可分为单晶和多晶。
8. 常见的晶体堆积结构有简立方(结构)、体心立方(结构)、面心立方(结构)和六角密排(结构)等,例如金属钠(Na)是体心立方(结构),铜(Cu)晶体属于面心立方结构,镁(Mg)晶体属于六角密排结构。
9. 对点阵而言,考虑其宏观对称性,他们可以分为7个晶系,如果还考虑其平移对称性,则共有14种布喇菲格子。
10.晶体结构的宏观对称只可能有下列10种元素: 1 ,2 ,3 ,4 ,6 ,i , m ,3,4,6,其中3和6不是独立对称素,由这10种对称素对应的对称操作只能组成32个点群。
11. 晶体按照其基元中原子数的多少可分为复式晶格和简单晶格,其中简单晶格基元中有 1 个原子。
12. 晶体原胞中含有 1 个格点。
13. 魏格纳-塞茨原胞中含有 1 个格点。
二、基本概念1. 原胞原胞:晶格最小的周期性单元。
本科阶段固体物理期末重点计算题
![本科阶段固体物理期末重点计算题](https://img.taocdn.com/s3/m/d6dd362c8e9951e79a89270d.png)
第一章 晶体结构1. 氯化钠与金刚石型结构是复式格子还是布拉维格子,各自的基元为何写出这两种结构的原胞与晶胞基矢,设晶格常数为a 。
解:氯化钠与金刚石型结构都是复式格子。
氯化钠的基元为一个Na +和一个Cl -组成的正负离子对。
金刚石的基元是一个面心立方上的C原子和一个体对角线上的C原子组成的C原子对。
由于NaCl 和金刚石都由面心立方结构套构而成,所以,其元胞基矢都为:123()2()2()2a a a ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩a j k a k i a i j 相应的晶胞基矢都为:,,.a a a =⎧⎪=⎨⎪=⎩a ib jc k2. 六角密集结构可取四个原胞基矢123,,a a a 与4a ,如图所示。
试写出13O A A '、1331A A B B 、2255A B B A 、123456A A A A A A 这四个晶面所属晶面族的晶面指数()h k l m 。
解:(1).对于13O A A '面,其在四个原胞基矢上的截矩分别为:1,1,12-,1。
所以,其晶面指数为()1121。
(2).对于1331A A B B 面,其在四个原胞基矢上的截矩分别为:1,1,12-,∞。
所以,其晶面指数为()1120。
(3).对于2255A B B A 面,其在四个原胞基矢上的截矩分别为:1,1-,∞,∞。
所以,其晶面指数为()1100。
(4).对于123456A A A A A A 面,其在四个原胞基矢上的截矩分别为:∞,∞,∞,1。
所以,其晶面指数为()0001。
3. 如将等体积的硬球堆成下列结构,求证球体可能占据的最大体积与总体积的比为:简立方:6π;面心立方:6616。
证明:由于晶格常数为a ,所以:(1).构成简立方时,最大球半径为2m aR =,每个原胞中占有一个原子, 334326m a V a ππ⎛⎫∴== ⎪⎝⎭36m V a π∴=(2).构成体心立方时,体对角线等于4倍的最大球半径,即:4m R ,每个晶胞中占有两个原子,33422348m V a a π⎛⎫∴=⨯= ⎪ ⎪⎝⎭328m V a ∴=(3).构成面心立方时,面对角线等于4倍的最大球半径,即:4m R ,每个晶胞占有4个原子,33444346m V a a π⎛⎫∴=⨯= ⎪ ⎪⎝⎭34m V a ∴= (4).构成六角密集结构时,中间层的三个原子与底面中心的那个原子恰构成一个正四面体,其高则正好是其原胞基矢c 的长度的一半,由几何知识易知3m R =c 。
固体物理学答案-王矜奉
![固体物理学答案-王矜奉](https://img.taocdn.com/s3/m/5bd6ee074531b90d6c85ec3a87c24028915f85b2.png)
第一章、晶体的结构习题1.以刚性原子球堆积模型,计算以下各结构的致密度分别为:(1)简立方,;(2)体心立方,6π;83(3)面心立方,(4)六角密积,;62;62π(5)金刚石结构,;163[解答]设想晶体是由刚性原子球堆积而成,一个晶胞中刚性原子球占据的体积与晶胞体积的比值称为结构的致密度,设n 为一个晶胞中的刚性原子球数,r 表示刚性原子球半径,V 表示晶胞体积,则致密度=ρVr n 334π(1)对简立方晶体,任一个原子有6个最近邻,若原子以刚性球堆积,如图1.2所示,中心在1,2,3,4处的原子球将依次相切,因为,,433a V r a ==面1.2简立方晶胞晶胞内包含1个原子,所以=ρ6)(33234π=a a (2)对体心立方晶体,任一个原子有8个最近邻,若原子刚性球堆积,如图1.3所示,体心位置O 的原子8个角顶位置的原子球相切,因为晶胞空间对角线的长度为晶胞内包含2个原子,所以,,433a V r a ===ρππ83(*2334334=aa图1.3体心立方晶胞(3)对面心立方晶体,任一个原子有12个最近邻,若原子以刚性球堆积,如图1.4所示,中心位于角顶的原子与相邻的3个面心原子球相切,因为,1个晶胞内包含4个原子,所以3,42a V r a ===.ρ62(*4334234ππ=a a图1.4面心立方晶胞(4)对六角密积结构,任一个原子有12个最近邻,若原子以刚性球堆积,如图1。
5所示,中心在1的原子与中心在2,3,4的原子相切,中心在5的原子与中心在6,7,8的原子相切,图 1.5六角晶胞图 1.6正四面体晶胞内的原子O 与中心在1,3,4,5,7,8处的原子相切,即O 点与中心在5,7,8处的原子分布在正四面体的四个顶上,因为四面体的高h =223232c r a ==晶胞体积V =,222360sin ca ca =�一个晶胞内包含两个原子,所以ρ=.ππ62)(*22233234=ca a(5)对金刚石结构,任一个原子有4个最近邻,若原子以刚性球堆积,如图1.7所示,中心在空间对角线四分之一处的O 原子与中心在1,2,3,4处的原子相切,因为,83r a =晶胞体积,3a V=图1.7金刚石结构一个晶胞内包含8个原子,所以ρ=.163)83(*83334ππ=aa 2.在立方晶胞中,画出(102),(021),(1),和(2)晶面。
固体物理第章习题
![固体物理第章习题](https://img.taocdn.com/s3/m/ee2f517bb14e852459fb57a9.png)
第一章 晶体的结构习题一、填空题1.固体一般分为晶体 非晶体 准晶体2.晶体的三大特征是 原子排列有序 有固定的熔点 各向异性3.___原胞__是晶格中最小的重复单元, 晶胞 既反映晶格的周期性又反映晶格的对称性。
4.__配位数___和_致密度____均是表示晶体原子排列紧密程度。
5.独立的对称操作有 平移、旋转、镜反射、中心反演 二、证明题1.试证明体心立方格子和面心立方格子互为正倒格子。
解:我们知体心立方格子的基矢为:2.⎪⎪⎪⎩⎪⎪⎪⎨⎧-+=+-=++-=)(2)(2)(2321k j i a k j i a k j i a a a a根据倒格子基矢的定义,我们很容易可求出体心立方格子的倒格子基矢为:3.⎪⎪⎪⎩⎪⎪⎪⎨⎧+=Ω⨯=+=Ω⨯=+=Ω⨯=)(2][2)(2][2)(2][2213132321j i a a b k i a a b k j a a b a a aππππππ 由此可知,体心立方格子的倒格子为一面心立方格子。
同理可得出面心立方格子的倒格子为一体心立方格子,所以体心立方格子和面心立方格子互为正倒格子4.证明倒格子矢量112233G hb h b h b =++垂直于密勒指数为123()h h h 的晶面系。
解答:因为ij j i b a πδ2=⋅,332211b h b h b h G ++=3311h a h a CA -=,3322h ah a CB -= 很容易证明:0=⋅CA G ,0=⋅CB G 即321h h h G 与晶面族(321h h h )正交5.对于简方晶格,证明密勒单立指数为(,,)h k l 的晶面系,面间距d 满足:22222()d a h k l =++,其中a 为立方边长;并说明面指数简单的晶面,其面密度较大,容易解理。
证明如下:晶面方程可以写为:n x b h b h b h π2)(332211=⋅++,n 取不同整数代表晶面系中不同的晶面,各晶面到原点的垂直距离||||2332211b h b h b h n d n ++=π,面间距为:|||2332211b h b h b h d n ++=π=||2321h h h G π,剩下的东西就是代公式了6.证明不存在5度旋转对称轴。
辽宁科技大学(固体物理习题与思考题)
![辽宁科技大学(固体物理习题与思考题)](https://img.taocdn.com/s3/m/16835fea951ea76e58fafab069dc5022aaea46dc.png)
辽宁科技⼤学(固体物理习题与思考题)第⼀章晶体结构思考题1. 以堆积模型计算由同种原⼦构成的同体积的体⼼和⾯⼼⽴⽅晶体中的原⼦数之⽐. [解答] 设原⼦的半径为R , 体⼼⽴⽅晶胞的空间对⾓线为4R , 晶胞的边长为3/4R , 晶胞的体积为()33/4R , ⼀个晶胞包含两个原⼦, ⼀个原⼦占的体积为()2/3/43R ,单位体积晶体中的原⼦数为()33/4/2R ; ⾯⼼⽴⽅晶胞的边长为2/4R , 晶胞的体积为()32/4R , ⼀个晶胞包含四个原⼦, ⼀个原⼦占的体积为()4/2/43R , 单位体积晶体中的原⼦数为()32/4/4R . 因此, 同体积的体⼼和⾯⼼⽴⽅晶体中的原⼦数之⽐为2/323??=0.272.2. 解理⾯是⾯指数低的晶⾯还是指数⾼的晶⾯?为什么? [解答]晶体容易沿解理⾯劈裂,说明平⾏于解理⾯的原⼦层之间的结合⼒弱,即平⾏解理⾯的原⼦层的间距⼤. 因为⾯间距⼤的晶⾯族的指数低, 所以解理⾯是⾯指数低的晶⾯.3. 基⽮为=1a i a , =2a aj , =3a ()k j i ++2a的晶体为何种结构? 若=3a ()k j +2a +i 23a , ⼜为何种结构? 为什么?[解答]有已知条件, 可计算出晶体的原胞的体积23321a ==a a a Ω.由原胞的体积推断, 晶体结构为体⼼⽴⽅. 按照本章习题14, 我们可以构造新的⽮量=-=13a a u 2a()k j i ++-,=-=23a a v 2a()k j i +-,=-+=321a a a w 2a()k j i -+.w v u ,,对应体⼼⽴⽅结构. 根据14题可以验证, w v u ,,满⾜选作基⽮的充分条件.可见基⽮为=1a i a , =2a aj , =3a ()k j i ++2a若=3a ()k j +2a +i 23a,则晶体的原胞的体积23321a Ω==a a a ,该晶体仍为体⼼⽴⽅结构.4. 与晶列[l 1l 2l 3]垂直的倒格⾯的⾯指数是什么? [解答]正格⼦与倒格⼦互为倒格⼦. 正格⼦晶⾯(h 1h 2h 3)与倒格式=h K h 11b +h 22b +h 33b 垂直, 则倒格晶⾯(l 1l 2l 3)与正格⽮=l R l 11a + l 22a + l 33a 正交. 即晶列[l 1l 2l 3]与倒格⾯(l 1l 2l 3) 垂直.5. 在结晶学中, 晶胞是按晶体的什么特性选取的? [解答]在结晶学中, 晶胞选取的原则是既要考虑晶体结构的周期性⼜要考虑晶体的宏观对称性.6.六⾓密积属何种晶系? ⼀个晶胞包含⼏个原⼦? [解答]六⾓密积属六⾓晶系, ⼀个晶胞(平⾏六⾯体)包含两个原⼦. 7.⾯⼼⽴⽅元素晶体中最⼩的晶列周期为多⼤? 该晶列在哪些晶⾯内? [解答]周期最⼩的晶列⼀定在原⼦⾯密度最⼤的晶⾯内. 若以密堆积模型, 则原⼦⾯密度最⼤的晶⾯就是密排⾯. 由图 1.9可知密勒指数(111)[可以证明原胞坐标系中的⾯指数也为(111)]是⼀个密排⾯晶⾯族, 最⼩的晶列周期为2/2a . 根据同族晶⾯族的性质, 周期最⼩的晶列处于{111}⾯内.8. 在晶体衍射中,为什么不能⽤可见光? [解答]晶体中原⼦间距的数量级为1010-⽶,要使原⼦晶格成为光波的衍射光栅,光波的波长应⼩于1010-⽶. 但可见光的波长为7.6?4.0710-?⽶, 是晶体中原⼦间距的1000倍. 因此, 在晶体衍射中,不能⽤可见光.9. ⾼指数的晶⾯族与低指数的晶⾯族相⽐, 对于同级衍射, 哪⼀晶⾯族衍射光弱? 为什么?[解答]对于同级衍射, ⾼指数的晶⾯族衍射光弱, 低指数的晶⾯族衍射光强. 低指数的晶⾯族⾯间距⼤, 晶⾯上的原⼦密度⼤, 这样的晶⾯对射线的反射(衍射)作⽤强. 相反, ⾼指数的晶⾯族⾯间距⼩, 晶⾯上的原⼦密度⼩, 这样的晶⾯对射线的反射(衍射)作⽤弱. 另外, 由布拉格反射公式λθn sin 2=hkl d 可知, ⾯间距hkl d ⼤的晶⾯, 对应⼀个⼩的光的掠射⾓θ. ⾯间距hkl d ⼩的晶⾯, 对应⼀个⼤的光的掠射⾓θ. θ越⼤, 光的透射能⼒就越强, 反射能⼒就越弱. 10. 温度升⾼时, 衍射⾓如何变化? X 光波长变化时, 衍射⾓如何变化? [解答]温度升⾼时, 由于热膨胀, ⾯间距hkl d 逐渐变⼤. 由布拉格反射公式λθn sin 2=hkl d 可知, 对应同⼀级衍射, 当X 光波长不变时, ⾯间距hkl d 逐渐变⼤, 衍射⾓θ逐渐变⼩.所以温度升⾼, 衍射⾓变⼩.当温度不变, X 光波长变⼤时, 对于同⼀晶⾯族, 衍射⾓θ随之变⼤.11. 证明:⾯⼼⽴⽅的倒格⼦是体⼼⽴⽅;体⼼⽴⽅的倒格⼦是⾯⼼⽴⽅。
《固体物理学》思考题解答参考01第一章_晶体的结构
![《固体物理学》思考题解答参考01第一章_晶体的结构](https://img.taocdn.com/s3/m/5e6a132905087632301212c1.png)
易在晶体生长过程中显露在外表面,所以面指数简单的晶面往往暴露在外表面。
1.2 任何晶面族中最靠近原点的那个晶面必定通过一个或多个基矢的末端吗?
解答:
根据《固体物理学》式(1-10a)
( ) ⎧⎪a1 cos a1, n = h1d ( ) ⎪⎨a2 cos a2 , n = h2d ( ) ⎪
⎪⎩a3 cos a3, n = h3d
原子间距的数量级为10−10 m ,要使原子晶格成为光波的衍射光栅,光波的波长应小于10−10 m 。但可见光
的波长为 (4.0 ∼ 7.6) ×10−7 m ,是晶体中原子间距的 1000 倍。因此,在晶体衍射中,不能用可见光。
1.17 在晶体的 X 射线衍射中,为了实现来自相继晶面的辐射发生相长干涉,对于高指数的晶面,应采用 长的还是短的波长? 解答: 1.18 高指数的晶面族与低指数的晶面族相比,对于同级衍射,哪一晶面衍射光弱?为什么? 解答:(参考王矜奉 1.1.14)
如果是立方晶系, cosθ = 1 ,表示平行,即晶列 hkl 垂直于同指数的晶面(hkl)
如果不是立方晶系,例如四方晶系 (α = β = γ = π , a = b ≠ c) 2
cosθ = n ⋅ R = n⋅R
( ) h2 + k 2 + l2
h2 + k2 + l2 × a2 a2 c2
h2a2 + k2a2 + l2c2
1.9 晶面指数为(123)的晶面 ABC 是离原点 O 最近的晶面,OA、OB、和 OC 分别与基矢 a1, a2, a3 重合,
除 O 点外,,OA、OB、和 OC 上是否有格点?若 ABC 的面指数为(234),情况又如何? 解答:参考 1.2.5
黄昆固体物理习题解答
![黄昆固体物理习题解答](https://img.taocdn.com/s3/m/ddeb2b1d650e52ea551898aa.png)
π
同理
2π (k + i ) a 2π (i + j) b3 = a b2 =
说明体心立方晶格的 与面心立方晶格基矢对比,正是晶格常数为 4π / a 的面心立方的基矢, 倒格子确实是面心立方。注意,倒格子不是真实空间的几何分布,因此该面心立方只是形式 上的,或者说是倒格子空间中的布拉菲格子。 根据定义,面心立方的倒格子基矢为
α = 2[1 − + − + ]
因为
1 1 1 2 3 4
∵ ln(1 + x ) =
x x 2 x3 x 4 − + − + 1 2 3 4
当 x = 1 时,有
1 12 13 14 ∵ ln(1 + 1) = − + − + 1 2 3 4
α = 2 ln 2 所以 (排斥势看作不变) 2.2 讨论使离子电荷加倍引起的对 NaCl 晶格常数及结合能的影响。 解:按照与书中同样的思路,系统内能为
⎡ ε11 ε12 ε =⎢ ⎢ε 21 ε 22 ⎢ ⎣ε 31 ε 32
如果介电常数张量为
ε13 ⎤ ε 23 ⎥ ⎥ ε 33 ⎥ ⎦
将 Ax −π 代入变换关系,而且该变换为对称变换,得
⎡ ε11 ε12 ⎢ε ⎢ 21 ε 22 ⎢ ⎣ε 31 ε 32
所以
ε13 ⎤ ⎡ ε11 −ε12 −ε13 ⎤ ⎢ ε 23 ⎥ ε 23 ⎥ ⎥ = ⎢ −ε 21 ε 22 ⎥ ⎢ ⎥ ε 33 ⎥ − ε ε ε 32 33 ⎦ ⎦ ⎣ 31
= (2π )3
υc
1.5 证明:倒格子矢量 G = h1b1 + h2b2 + h3b3 垂直于密勒指数为 ( h1h2 h3 ) 的晶面系。 证明:根据定义,密勒指数为 ( h1h2 h3 ) 的晶面系中距离原点最近的平面 ABC 交于基矢的截 距分别为
固体物理学课后题答案
![固体物理学课后题答案](https://img.taocdn.com/s3/m/ecb85807763231126edb1180.png)
第一章 晶体结构1.1、 如果将等体积球分别排成下列结构,设x 表示钢球所占体积与总体积之比,证明:结构 X简单立方52.06=π体心立方68.083≈π 面心立方74.062≈π 六角密排74.062≈π 金刚石34.063≈π解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1) a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06834343333====πππrra r x (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)334(3423423333≈=⨯=⨯=πππr r a r x (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)22(3443443333≈=⨯=⨯=πππr r a r x (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062)22(3443443333≈=⨯=⨯=πππr r a r x (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.06333834834833333≈=⨯=⨯=πππr r a r x 1.3、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。
固体物理考题汇总(无答案)
![固体物理考题汇总(无答案)](https://img.taocdn.com/s3/m/fea7cce8fbb069dc5022aaea998fcc22bcd1438a.png)
固体物理考题汇总(⽆答案)第⼀章晶体结构⼀、填空1、晶⾯有规则,对称配置的固体,具有长程有序特点的固体称为;在凝结过程中不经过结晶(即有序化)的阶段,原⼦的排列为长程⽆序的固体称为。
由晶粒组成的固体,称为。
2、化合物半导体材料GaAs晶体属于闪锌矿类结构,晶格常数为a,其配位数为。
⼀个惯⽤元胞(结晶学元胞)内的原⼦数,其布喇菲格⼦是。
其初基原胞(固体物理学原胞)包含原⼦数,体积为。
初基元胞的基⽮为,,。
3、半导体材料Si具有⾦刚⽯型晶体结构,晶格常数为a,其配位数为。
⼀个惯⽤元胞(结晶学元胞)内的原⼦数。
属于布喇菲格⼦。
写出其初基元胞(固体物理学元胞)的基⽮________,_______,_______。
晶格振动⾊散关系中⽀声学波,⽀光学波,其总的格波数。
4、简⽴⽅结构如果晶格常数为a,其倒格⼦元胞基⽮为是_______,______,_________ 。
在倒格⼦空间中是结构,第⼀布⾥渊区的形状为______,体积为______ 。
5、某元素晶体的结构为体⼼⽴⽅布喇菲格⼦,其格点⾯密度最⼤的晶⾯的密勒指数____ ,并求出该晶⾯系相邻晶⾯的⾯间距________。
(设其晶胞参数为a )。
6、根据三个基⽮的⼤⼩和夹⾓的不同,⼗四种布喇菲格⼦可归属于_____ 晶系,其中当 90,=====γβαc b a 时称为 _____类晶系,该晶系的布喇菲格⼦有 ______ 。
7、NaCl 晶体是由两个 _ 格⼦沿体对⾓线滑移1/4长度套构⽽成;设惯⽤原胞的体积为a 3,⼀个惯⽤元胞内的原⼦数;其配位数为,最近邻距离;初基原胞体积为,第⼀布⾥渊区体积为______;晶体中有⽀声学波,⽀光学波。
8、对晶格常数为a 的SC ,与倒格⽮ 242K i j k a a aπππ=+- 正交的晶⾯族的晶⾯指数为____,其⾯间距为 __ 。
9、半导体材料Si 具有⾦刚⽯型晶体结构,晶格常数为a ,⼀个惯⽤元胞内的原⼦数,⼀个固体物理学原胞内的原⼦数;固体物理学原胞的体积,倒格⼦原胞的体积 __ ,第⼀布⾥渊区的体积为;晶格振动⾊散关系中⽀声学波,______ ⽀光学波。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章晶体结构1.试述晶态、非晶态、准晶、多晶和单晶的特征性质。
解:晶态固体材料中的原子有规律的周期性排列,或称为长程有序。
非晶态固体材料中的原子不是长程有序地排列,但在几个原子的范围内保持着有序性,或称为短程有序。
准晶态是介于晶态和非晶态之间的固体材料,其特点是原子有序排列,但不具有平移周期性。
另外,晶体又分为单晶体和多晶体:整块晶体内原子排列的规律完全一致的晶体称为单晶体;而多晶体则是由许多取向不同的单晶体颗粒无规则堆积而成的。
2.晶格点阵与实际晶体有何区别和联系?解:晶体点阵是一种数学抽象,其中的格点代表基元中某个原子的位置或基元质心的位置,也可以是基元中任意一个等价的点。
当晶格点阵中的格点被具体的基元代替后才形成实际的晶体结构。
晶格点阵与实际晶体结构的关系可总结为:晶格点阵+基元=实际晶体结构3.晶体结构可分为Bravais格子和复式格子吗?解:晶体结构可以分为Bravais格子和复式格子,当基元只含一个原子时,每个原子的周围情况完全相同,格点就代表该原子,这种晶体结构就称为简单格子或Bravais格子;当基元包含2个或2个以上的原子时,各基元中相应的原子组成与格点相同的网格,这些格子相互错开一定距离套构在一起,这类晶体结构叫做复式格子。
解:(a)“面心+体心”立方不是布喇菲格子。
从“面心+体心”立方体的任一顶角上的格点看,与它最邻近的有12个格点;从面心任一点看来,与它最邻近的也是12个格点;但是从体心那点来看,与它最邻近的有6个格点,所以顶角、面心的格点与体心的格点所处的几何环境不同,即不满足所有格点完全等价的条件,因此不是布喇菲格子,而是复式格子,此复式格子属于简立方布喇菲格子。
(b)“边心”立方不是布喇菲格子。
从“边心”立方体竖直边心任一点来看,与它最邻近的点子有八个;从“边心”立方体水平边心任一点来看,与它最邻近的点子也有八个。
虽然两者最邻近的点数相同,距离相等,但他们各自具有不同的排列。
竖直边心点的最邻近的点子处于相互平行、横放的两个平面上,而水平边心点的最邻近的点子处于相互平行、竖放的两个平面上,显然这两种点所处的几何环境不同,即不满足所有格点完全等价的条件,因此不是布喇菲格子,而是复式格子,此复式格子属于简立方布喇菲格子。
(c)“边心+体心”立方不是布喇菲格子。
从“边心+体心”立方任一顶点来看,与它最邻近的点子有6个;从边心任一点来看,与它最邻近的点子有2个;从体心点来看,与它最邻近的点子有12个。
显然这三种点所处的几何环境不同,因而也不是布喇菲格子,而是属于复式格子,此复式格子属于简立方布喇菲格子。
(d )“面心四方”从“面心四方”任一顶点来看,与它最邻近的点子有4个,次最邻近点子有8个;从“面心四方”任一面心点来看,与它最邻近的点子有4个,次最邻近点子有8个,并且在空间的排列位置与顶点的相同,即所有格点完全等价,因此“面心四方”格子是布喇菲格子,它属设一种晶体的正格基矢为1a 、2a 、3a ,根据倒格子基矢的定义:⎪⎪⎪⎭⎪⎪⎪⎬⎫Ω⨯=Ω⨯=Ω⨯=][2][2][2213132321a a b a a b a a b πππ 式中Ω是晶格原胞的体积,即][321a a a ⨯⋅=Ω,由此可以唯一地确定相应的倒格子空间。
同样,反过来由倒格矢也可唯一地确定正格矢。
所以一种晶体的正格矢和相应的倒格矢有一一对应的关系。
7.为什么说晶面指数(321h h h )和Miller 指数(hkl )都能反映一个平行晶面族的方向?解:晶面指数(321h h h )是以固体物理学原胞的基矢1a 、2a 、3a 为坐标轴来表示面指数的,而Miller 指数(hkl )是以结晶学原胞的基矢a 、b 、c 为坐标轴来表示面指数的,但它们都是以平行晶面族在坐标轴上的截距的倒数来表示的,而这三个截距的倒数之比就等于晶面族的法线与三个基矢的夹角余弦之比,从而反映了一个平行晶面族的方向。
8.试画出体心立方、面心立方的(100),(110)和(111)面上的格点分布。
些对称操作?解:对于一个物体或体系,我们首先必须对其经过测角和投影以后,才可对它的对称规律,进行分析研究。
如果一个物体或体系含有的对称操作元素越多,则其对称性越高;反之,含有的对称操作元素越少,则其对称性越低。
晶体的许多宏观物理性质都与物体的对称性有关,例如六角对称的晶体有双折射现象。
而立方晶体,从光学性质来讲,是各向同性的。
正八面体中有3个4度轴,其中任意2个位于同一个面内,而另一个则垂直于这个面;6个2度轴;6个与2度轴垂直的对称面;3个与4度轴垂直的对称面及一个对称中心。
解:7种典型的晶体结构的配位数如下表1.1所示:晶体结构配位数 晶体结构 配位数 面心立方六角密积12 氯化钠型结构 6 体心立方8 氯化铯型结构 8 简立方 6 金刚石型结构 411.利用刚球密堆模型,求证球可能占据的最大体积与总体积之比为(1)简单立方6π;(2)体心立方83π;(3)面心立方62π (4)六角密积62π;(5)金刚石163π。
解:(1)在简立方的结晶学原胞中,设原子半径为R ,则原胞的晶体学常数R a 2=,则简立方的致密度(即球可能占据的最大体积与总体积之比)为:6)2(3413413333πππα=⋅=⋅=R R a R (2)在体心立方的结晶学原胞中,设原子半径为R ,则原胞的晶体学常数3/4R a =,则体心立方的致密度为:83)3/4(3423423333πππα=⋅=⋅=R R a R (3)在面心立方的结晶学原胞中,设原子半径为R ,则原胞的晶体学常数R a 22=,则面心立方的致密度为:62)22(3423443333πππα=⋅=⋅=R R a R(4)在六角密积的结晶学原胞中,设原子半径为R ,则原胞的晶体学常数R a 2=,R a c )3/64()3/62(==,则六角密积的致密度为:62)3/64(4)2(363464363462323πππα=⋅⋅=⋅⋅=R R R c a R (5)在金刚石的结晶学原胞中,设原子半径为R ,则原胞的晶体学常数R a )3/8(=,则金刚石的致密度为:163)3/8(34834833333πππα=⋅=⋅=RR a R 12.试证明体心立方格子和面心立方格子互为正倒格子。
解:我们知体心立方格子的基矢为:⎪⎪⎪⎩⎪⎪⎪⎨⎧-+=+-=++-=)(2)(2)(2321k j i a k j i a k j i a a a a 根据倒格子基矢的定义,我们很容易可求出体心立方格子的倒格子基矢为:⎪⎪⎪⎩⎪⎪⎪⎨⎧+=Ω⨯=+=Ω⨯=+=Ω⨯=)(2][2)(2][2)(2][2213132321j i a a b k i a a b k j a a b a a a ππππππ 由此可知,体心立方格子的倒格子为一面心立方格子。
同理可得出面心立方格子的倒格子为一体心立方格子,所以体心立方格子和面心立方格子互为正倒格子。
13. 对于六角密积结构,固体物理学原胞基矢为j i a a a 2321+= j i a a a 2322+-= k a c =3试求倒格子基矢。
解:根据倒格子基矢的定义可知:][2321321a a a a a b ⨯⋅⨯=π)]()232[()232()()232(2k j i j i k j i c a a a a c a a ⨯+-⋅+⨯+-=π c a ac ac 2232232j i +=π=)32(2j i +a π ][2321132a a a a a b ⨯⋅⨯=π)]()232[()232()232()(2k j i j i j i k c a a a a a a c ⨯+-⋅++-⨯=π c a ac ac 2232232j i +-=π=)32(2j i +-a π ][2321213a a a a a b ⨯⋅⨯=π)]()232[()232()232()232(2k j i j i j i j i c a a a a a a a a ⨯+-⋅++-⨯+=π c a a 2223232k π==k c π2 14. 一晶体原胞基矢大小m a 10104-⨯=,m b 10106-⨯=,m c 10108-⨯=,基矢间夹角 90=α, 90=β, 120=γ。
试求:(1) 倒格子基矢的大小;(2) 正、倒格子原胞的体积;(3) 正格子(210)晶面族的面间距。
解:(1) 由题意可知,该晶体的原胞基矢为:ai =1a)2321(2j i a +-=b k a c =3由此可知: ][2321321a a a a a b ⨯⋅⨯=π=abc bc 23)2123(2j i +π=)31(2j i +a π ][2321132a a a a a b ⨯⋅⨯=π=abc ac 232jπ=j 322⋅b π ][2321213a a a a a b ⨯⋅⨯=π=abc ab23232k π=k ⋅c π2 所以1b =22)31(12+⋅a π=110108138.134-⨯=m a π 2b =2)32(2⋅b π=110102092.134-⨯=m b π 3b =212⋅c π=110107854.02-⨯=m cπ (2) 正格子原胞的体积为:][321a a a ⨯⋅=Ω=)]()2321([)(k j i i c b a ⨯+-⋅=328106628.123m abc -⨯= 倒格子原胞的体积为:][321b b b ⨯⋅=Ω*=)](2)32(2[)31(2k j j i c b a πππ⨯⋅+=3303104918.1316-⨯=m abc π (3)根据倒格子矢量与正格子晶面族的关系可知,正格子(210)晶面族的面间距为:h h d K π2==3210122b b b ++π=j i )3434(42ba a ππππ++ =m b a a 1022104412.1)3131()1(142-⨯=++⋅ππ 15.如图1.36所示,试求:(1) 晶列ED ,FD 和OF 的晶列指数;(2) 晶面AGK ,FGIH 和MNLK 的密勒指数;(为晶面AGK 在x ,y 和z 三个坐标轴上的截距依次为1,-1和1,则其倒数之比为1:1:111:11:11=-,故该晶面的密勒指数为(111)。
晶面FGIH 在x ,y 和z 三个坐标轴上的截距依次为1/2,∞和1,则其倒数之比为1:0:211:1:2/11=∞,故该晶面的密勒指数为(201)。
2/1116.矢量a ,b ,c 构成简单正交系。
证明晶面族)(hkl 的面间距为222)()()(1c lb ka hd hkl ++=解:由题意可知该简单正交系的物理学原胞的基矢为:⎪⎩⎪⎨⎧===ka j a ia cb a 321由此可求得其倒格子基矢为:⎪⎪⎪⎩⎪⎪⎪⎨⎧==⨯⋅⨯===⨯⋅⨯===⨯⋅⨯=kk a a a aa b j j a aa a ab ii a a a a a b cab abc bac abc abc abc πππππππππ2)(2][][22)(2][][22)(2][][2321213321132321321根据倒格子矢量的性质有:32122b b b K l k h d hkl hkl ++==ππ222)()()(12222clb k a h lc k b h a ++=++=k j i ππππ17.设有一简单格子,它的基矢分别为i a 31=,j a 32=,)(5.13k j i a ++=。