高中物理动量守恒定律提高训练
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理动量守恒定律提高训练
一、高考物理精讲专题动量守恒定律
1.如图所示,质量为M =2kg 的小车静止在光滑的水平地面上,其AB 部分为半径R =0.3m
的光滑
1
4
圆孤,BC 部分水平粗糙,BC 长为L =0.6m 。
一可看做质点的小物块从A 点由静止释放,滑到C 点刚好相对小车停止。
已知小物块质量m =1kg ,取g =10m/s 2。
求:
(1)小物块与小车BC 部分间的动摩擦因数;
(2)小物块从A 滑到C 的过程中,小车获得的最大速度。
【答案】(1)0.5(2)1m/s 【解析】 【详解】
解:(1) 小物块滑到C 点的过程中,系统水平方向动量守恒则有:()0M m v += 所以滑到C 点时小物块与小车速度都为0 由能量守恒得: mgR mgL μ= 解得:0.5R
L
μ=
= (2)小物块滑到B 位置时速度最大,设为1v ,此时小车获得的速度也最大,设为2v 由动量守恒得 :12mv Mv = 由能量守恒得 :221211
22
mgR mv Mv =+ 联立解得: 21/ v m s =
2.如图甲所示,物块A 、B 的质量分别是 m A =4.0kg 和m B =3.0kg .用轻弹簧拴接,放在光滑的水平地面上,物块B 右侧与竖直墙相接触.另有一物块C 从t =0时以一定速度向右运动,在t =4s 时与物块A 相碰,并立即与A 粘在一起不再分开,物块C 的v -t 图象如图乙所示.求:
①物块C 的质量?
②B 离开墙后的运动过程中弹簧具有的最大弹性势能E P ? 【答案】(1)2kg (2)9J
【解析】
试题分析:①由图知,C 与A 碰前速度为v 1=9 m/s ,碰后速度为v 2=3 m/s ,C 与A 碰撞过程动量守恒.m c v 1=(m A +m C )v 2 即m c =2 kg
②12 s 时B 离开墙壁,之后A 、B 、C 及弹簧组成的系统动量和机械能守恒,且当A 、C 与B 的速度相等时,弹簧弹性势能最大 (m A +m C )v 3=(m A +m B +m C )v 4
得E p =9 J
考点:考查了动量守恒定律,机械能守恒定律的应用
【名师点睛】分析清楚物体的运动过程、正确选择研究对象是正确解题的关键,应用动量守恒定律、能量守恒定律、动量定理即可正确解题.
3.如图所示,质量M=1kg 的半圆弧形绝缘凹槽放置在光滑的水平面上,凹槽部分嵌有cd 和ef 两个光滑半圆形导轨,c 与e 端由导线连接,一质量m=lkg 的导体棒自ce 端的正上方h=2m 处平行ce 由静止下落,并恰好从ce 端进入凹槽,整个装置处于范围足够大的竖直方向的匀强磁场中,导体棒在槽内运动过程中与导轨接触良好。
已知磁场的磁感应强度B=0.5T ,导轨的间距与导体棒的长度均为L=0.5m ,导轨的半径r=0.5m ,导体棒的电阻R=1Ω,其余电阻均不计,重力加速度g=10m/s 2,不计空气阻力。
(1)求导体棒刚进入凹槽时的速度大小;
(2)求导体棒从开始下落到最终静止的过程中系统产生的热量;
(3)若导体棒从开始下落到第一次通过导轨最低点的过程中产生的热量为16J ,求导体棒第一次通过最低点时回路中的电功率。
【答案】(1) 210/v m s = (2)25J (3)9W 4
P = 【解析】 【详解】
解:(1)根据机械能守恒定律,可得:212
mgh mv =
解得导体棒刚进入凹槽时的速度大小:210/v m s =
(2)导体棒早凹槽导轨上运动过程中发生电磁感应现象,产生感应电流,最终整个系统处于静止,圆柱体停在凹槽最低点
根据能力守恒可知,整个过程中系统产生的热量:()25Q mg h r J =+=
(3)设导体棒第一次通过最低点时速度大小为1v ,凹槽速度大小为2v ,导体棒在凹槽内运动时系统在水平方向动量守恒,故有:12mv Mv = 由能量守恒可得:
22
12111()22
mv mv mg h r Q +=+- 导体棒第一次通过最低点时感应电动势:12E BLv BLv =+
回路电功率:2
E P R
=
联立解得:94
P W =
4.如图所示,两块相同平板P 1、P 2置于光滑水平面上,质量均为m 。
P 2的右端固定一轻质弹簧,左端A 与弹簧的自由端B 相距L 。
物体P 置于P 1的最右端,质量为2m 且可以看作质点。
P 1与P 以共同速度v 0向右运动,与静止的P 2发生碰撞,碰撞时间极短,碰撞后P 1与P 2粘连在一起,P 压缩弹簧后被弹回并停在A 点(弹簧始终在弹性限度内)。
P 与P 2之间的动摩擦因数为μ,求:
(1)P 1、P 2刚碰完时的共同速度v 1和P 的最终速度v 2; (2)此过程中弹簧最大压缩量x 和相应的弹性势能E p 。
【答案】(1) 201v v =,4
302v v = (2)L g v x -=μ3220,1620
p mv E = 【解析】(1) P 1、P 2碰撞过程,动量守恒,102mv mv =,解得2
1v v =。
对P 1、P 2、P 组成的系统,由动量守恒定律 ,204)2(mv v m m =+,解得4
30
2v v =
(2)当弹簧压缩最大时,P 1、P 2、P 三者具有共同速度v 2,对P 1、P 2、P 组成的系统,从
P 1、P 2碰撞结束到P 压缩弹簧后被弹回并停在A 点,用能量守恒定律
)(2)2()2(212212212
22021x L mg u v m m m mv mv ++++=⨯+⨯ 解得L g
v x -=μ3220 对P 1、P 2、P 系统从P 1、P 2碰撞结束到弹簧压缩量最大,用能量守恒定律
p 222021))(2()2(2
1221221E x L mg u v m m m mv mv +++++=+
最大弹性势能16
20
P mv E =
注意三个易错点:碰撞只是P 1、P 2参与;碰撞过程有热量产生;P 所受摩擦力,其正压力为2mg
【考点定位】碰撞模型、动量守恒定律、能量守恒定律、弹性势能、摩擦生热。
中档题
5.如图所示,固定的凹槽水平表面光滑,其内放置U 形滑板N ,滑板两端为半径R=0.45m 的1/4圆弧面.A 和D 分别是圆弧的端点,BC 段表面粗糙,其余段表面光滑.小滑块P 1和P 2的质量均为m .滑板的质量M=4m ,P 1和P 2与BC 面的动摩擦因数分别为μ1=0.10和μ2=0.20,最大静摩擦力近似等于滑动摩擦力.开始时滑板紧靠槽的左端,P 2静止在粗糙面的B 点,P 1以v 0=4.0m/s 的初速度从A 点沿弧面自由滑下,与P 2发生弹性碰撞后,P 1处在粗糙面B 点上.当P 2滑到C 点时,滑板恰好与槽的右端碰撞并与槽牢固粘连,P 2继续运动,到达D 点时速度为零.P 1与P 2视为质点,取g=10m/s 2
.问:
(1)P 1和P 2碰撞后瞬间P 1、P 2的速度分别为多大? (2)P 2在BC 段向右滑动时,滑板的加速度为多大? (3)N 、P 1和P 2最终静止后,P 1与P 2间的距离为多少?
【答案】(1)1
0v '=、25m/s v '= (2)220.4m/s a = (3)△S=1.47m 【解析】
试题分析:(1)P 1滑到最低点速度为v 1,由机械能守恒定律有:220111
22
mv mgR mv += 解得:v 1=5m/s
P 1、P 2碰撞,满足动量守恒,机械能守恒定律,设碰后速度分别为1v '、2v ' 则由动量守恒和机械能守恒可得:11
2mv mv mv ''=+ 22211
2111
222mv mv mv ''=+ 解得:1
0v '=、25m/s v '= (2)P 2向右滑动时,假设P 1保持不动,对P 2有:f 2=μ2mg=2m (向左) 设P 1、M 的加速度为a 2;对P 1、M 有:f=(m+M )a 2
2220.4m/s 5f m
a m M m
=
==+ 此时对P 1有:f 1=ma 2=0.4m <f m =1.0m ,所以假设成立. 故滑块的加速度为0.4m/s 2
;
(3)P 2滑到C 点速度为2
v ',由22
1
2
mgR mv '=
得2
3m/s v '= P 1、P 2碰撞到P 2滑到C 点时,设P 1、M 速度为v ,由动量守恒定律得:
22
()mv m M v mv '=++ 解得:v=0.40m/s 对P 1、P 2、M 为系统:2222
11
()22
f L mv m M v '=++ 代入数值得:L=3.8m
滑板碰后,P 1向右滑行距离:2
110.08m 2v s a ==
P 2向左滑行距离:22
22
2.25m 2v s a '==
所以P 1、P 2静止后距离:△S=L-S 1-S 2=1.47m
考点:考查动量守恒定律;匀变速直线运动的速度与位移的关系;牛顿第二定律;机械能守恒定律.
【名师点睛】本题为动量守恒定律及能量关系结合的综合题目,难度较大;要求学生能正确分析过程,并能灵活应用功能关系;合理地选择研究对象及过程;对学生要求较高.
6.卢瑟福用α粒子轰击氮核发现质子。
发现质子的核反应为:。
已
知氮核质量为m N =14.00753u ,氧核的质量为m O =17.00454u ,氦核质量m He =4.00387u ,质子(氢核)质量为m p =1.00815u 。
(已知:1uc 2=931MeV ,结果保留2位有效数字)求: (1)这一核反应是吸收能量还是放出能量的反应?相应的能量变化为多少?
(2)若入射氦核以v 0=3×107m/s 的速度沿两核中心连线方向轰击静止氮核。
反应生成的氧核和质子同方向运动,且速度大小之比为1:50。
求氧核的速度大小。
【答案】(1)吸收能量,1.20MeV ;(2)1.8×106m/s 【解析】
(1)这一核反应中,质量亏损:△m=m N +m He -m O -m p =14.00753+4.00387-17.00454-1.00815=-0.00129u
由质能方程,则有△E=△m c 2=-0.00129×931=-1.20MeV 故这一核反应是吸收能量的反应,吸收的能量为1.20MeV (2)根据动量守恒定律,则有:m He v 0=m H v H +m O v O 又:v O :v H =1:50 解得:v O =1.8×106m/s
7.如图所示,光滑固定斜面的倾角Θ=30°,一轻质弹簧一端固定,另一端与质量M=3kg 的物体B 相连,初始时B 静止.质量m=1kg 的A 物体在斜面上距B 物体处s1=10cm 静止释放,A 物体下滑过程中与B 发生碰撞,碰撞时间极短,碰撞后与B 粘在一起,已知碰后整体经t=0.2s 下滑s2=5cm 至最低点. 弹簧始终处于弹性限度内,A 、B 可视为质点,g 取10m/s 2.
(1)从碰后到最低点的过程中,求弹簧最大的弹性势能; (2)碰后至返回到碰撞点的过程中,求弹簧对物体B 的冲量大小.
【答案】(1)1.125J ;(2)10Ns 【解析】 【分析】
(1)A 物体下滑过程,A 物体机械能守恒,求得A 与B 碰前的速度;A 与B 碰撞是完全非弹性碰撞,A 、B 组成系统动量守恒,求得碰后AB 的共同速度;从碰后到最低点的过程中,A 、B 和弹簧组成的系统机械能守恒,可求得从碰后到最低点的过程中弹性势能的增加量. (2)从碰后至返回到碰撞点的过程中,A 、B 和弹簧组成的系统机械能守恒,可求得返回碰撞点时AB 的速度;对AB 从碰后至返回到碰撞点的过程应用动量定理,可得此过程中弹簧对物体B 冲量的大小. 【详解】
(1)A 物体下滑过程,A 物体机械能守恒,则:0
2101302
mgS sin mv = 解得:0012302100.10.51m m v gS sin s s
=
=⨯⨯⨯=
A 与
B 碰撞是完全非弹性碰撞,据动量守恒定律得:
01()mv m M v =+
解得:10.25m v s
= 从碰后到最低点的过程中,A 、B 和弹簧组成的系统机械能守恒,则:
20121
()()302
PT E m M v m M gS sin =
+++增 解得: 1.125PT E J =增
(2)从碰后至返回到碰撞点的过程中,A 、B 和弹簧组成的系统机械能守恒,可求得返回碰撞点时AB 的速度大小210.25m v v s == 以沿斜面向上为正,由动量定理可得:
[]021()302()()T I m M gsin t m M v m M v -+⨯=+--+
解得:10T I N s =⋅
8.如图所示,在光滑的水平面上,质量为4m 、长为L 的木板右端紧靠竖直墙壁,与墙壁不粘连.质量为m 的小滑块(可视为质点)以水平速度v 0滑上木板左端,滑到木板右端时速度恰好为零.现小滑块以水平速度v 滑上木板左端,滑到木板右端时与竖直墙壁发生弹
性碰撞,小滑块弹回后,刚好能够滑到木板左端而不从木板上落下,求0
ν
ν的值.
【答案】
【解析】
试题分析:小滑块以水平速度v 0右滑时,有:2
1=0-
2
fL mv -(2分) 小滑块以速度v 滑上木板到运动至碰墙时速度为v 1,则有22
111=-22
fL mv mv -(2分) 滑块与墙碰后至向左运动到木板左端,此时滑块、木板的共同速度为v 2,
则有12=(4)mv m m v +(2分) 由总能量守恒可得:221211=
-(4)22
fL mv m m v +(2分) 上述四式联立,解得
03
2
v v =(1分) 考点:动能定理,动量定理,能量守恒定律.
9.如图所示,一质量为M 的平板车B 放在光滑水平面上,在其右端放一质量为m 的小木块A ,m <M,A 、B 间粗糙,现给A 和B 以大小相等、方向相反的初速度v0,使A 开始向左运动,B 开始向右运动,最后A 不会滑离B ,求:
(1)A 、B 最后的速度大小和方向;
(2)从地面上看,小木块向左运动到离出发点最远处时,平板车的速度大小和方向.
【答案】(1)0M m
v M m
-+(2)2022M m v Mg μ- 【解析】
试题分析:(1)由A 、B 系统动量守恒定律得: Mv0—mv0=(M +m )v ① 所以v=v0
方向向右
(2)A 向左运动速度减为零时,到达最远处,设此时速度为v′,则由动量守恒定律得:
Mv0—mv0="Mv′"00
Mv mv v M
-'=
方向向右 考点:动量守恒定律;
点评:本题主要考查了动量守恒定律得直接应用,难度适中.
10.在竖直平面内有一个半圆形轨道ABC ,半径为R ,如图所示,A 、C 两点的连线水平,B 点为轨道最低点.其中AB 部分是光滑的,BC 部分是粗糙的.有一个质量为m 的乙物体静止在B 处,另一个质量为2m 的甲物体从A 点无初速度释放,甲物体运动到轨道最低点与乙物体发生碰撞,碰撞时间极短,碰撞后结合成一个整体,甲乙构成的整体滑上BC 轨
道,最高运动到D 点,OD 与OB 连线的夹角θ60.=o
甲、乙两物体可以看作质点,重力加
速度为g ,求:
(1)甲物与乙物体碰撞过程中,甲物体受到的冲量.
(2)甲物体与乙物体碰撞后的瞬间,甲乙构成的整体对轨道最低点的压力. (3)甲乙构成的整体从B 运动到D 的过程中,摩擦力对其做的功. 【答案】(1)2
23m gR (2)压力大小为:
17
3
mg ,方向竖直向下.(3)W f =1
6
mgR -. 【解析】 【分析】
(1)先研究甲物体从A 点下滑到B 点的过程,根据机械能守恒定律求出A 刚下滑到B 点时的速度,再由动量守恒定律求出碰撞后甲乙的共同速度,即可对甲,运用动量定理求甲物与乙物体碰撞过程中,甲物体受到的冲量.
(2)甲物体与乙物体碰撞后的瞬间,对于甲乙构成的整体,由牛顿第二定律求出轨道对整体的支持力,再由牛顿第三定律求得整体对轨道最低点的压力.
(3)甲乙构成的整体从B 运动到D 的过程中,运用动量定理求摩擦力对其做的功. 【详解】
()1甲物体从A 点下滑到B 点的过程,
根据机械能守恒定律得:2012mgR 2mv 2
=⋅, 解得:0v 2gR =
甲乙碰撞过程系统动量守恒,取向左方向为正,根据动量守恒定律得:
()02mv m 2m mv =+,
解得:2
v 2gR 3
=
甲物与乙物体碰撞过程,对甲,由动量定理得:02
I 2mv 2mv m 2gR 3
=-=-
甲
向:水平向右;
()2甲物体与乙物体碰撞后的瞬间,对甲乙构成的整体,
由牛顿第二定律得:()()2
v F m 2m g m 2m R
-+=+, 解得:17
F mg 3
=
, 根据牛顿第三定律,对轨道的压力17
F'F mg 3
==
,方向:竖直向下; ()3对整体,从B 到D 过程,由动能定理得:()2f 13mgR 1cos60W 03mv 2
--+=-⋅o
解得,摩擦力对整体做的功为:f 1
W mgR 6
=-; 【点睛】
解决本题的关键按时间顺序分析清楚物体的运动情况,把握每个过程的物理规律,知道碰撞的基本规律是动量守恒定律.摩擦力是阻力,运用动能定理是求变力做功常用的方法.
11.如图所示,小球A 质量为m ,系在细线的一端,线的另一端固定在O 点,O 点到水平面的距离为h .物块B 质量是小球的5倍,置于粗糙的水平面上且位于O 点正下方,物块与水平面间的动摩擦因数为μ.现拉动小球使线水平伸直,小球由静止开始释放,运动到最低点时与物块发生正碰(碰撞时间极短),反弹后上升至最高点时到水平面的距离为
16
h
.小球与物块均视为质点,不计空气阻力,重力加速度为g ,求碰撞过程物块获得的冲量及物块在地面上滑行的距离.
【答案】
16h μ
【解析】 【分析】
对小球下落过程由机械能守恒定律可求得小球与物块碰撞前的速度;对小球由机械能守恒可求得反弹的速度,再由动量守恒定律可求得物块的速度;对物块的碰撞过程根据动量定理列式求解获得的冲量;对物块滑行过程由动能定理可求得其滑行的距离. 【详解】
小球的质量为m,设运动到最低点与物块相撞前的速度大小为v 1,取小球运动到最低点时的重力势能为零,根据机械能守恒定律有:mgh=
1
2
mv 12
解得:v 1=2gh
设碰撞后小球反弹的速度大小为v′1,同理有:'2
11162
h mg mv ⋅= 解得:v′1=
8
gh 设碰撞后物块的速度大小为v 2,取水平向右为正方向,由动量守恒定律有: mv 1=-mv′1+5mv 2 解得:v 2=
8
gh 由动量定理可得,碰撞过程滑块获得的冲量为I=5mv 2=5
24
m gh 物块在水平面上滑行所受摩擦力的大小为F=5μmg 设物块在水平面上滑行的时间为t,由动能定理有:
2
21052
Fs mv -=-⋅
解得:16h s μ
= 【点睛】
本题综合考查动量守恒定律、机械能守恒定律及动能定理,要注意正确分析物理过程,选择合适的物理规律求解.
12.如图所示,物块质量m =4kg ,以速度v =2m /s 水平滑上一静止的平板车上,平板车质量M =16kg ,物块与平板车之间的动摩擦因数μ=0.2,其他摩擦不计(g =10m /s 2),求:
(1)物块相对平板车静止时,物块的速度; (2)物块在平板车上滑行的时间;
(3)物块在平板车上滑行的距离,要使物块在平板车上不滑下,平板车至少多长? 【答案】(1)0.4m/s (2)(3)
【解析】
解:物块滑下平板车后,在车对它的摩擦力作用下开始减速,车在物块对它的摩擦力作用下开始加速,当二者速度相等时,物块相对平板车静止,不再发生相对滑动。
(1)物块滑上平板车的过程中,二者组成的系统动量守恒,取v 的方向为正方向。
mv=
(M+m)v′,,即物块相对平板车静止时,物块速度为0.4m/s。
(2)由动量定理,
(3)物块在平板车上滑行时,二者都做匀变速直线运动,且运动时间相同,因此,对物块,对板车,物块在板车上滑行的距离,要
使物块在平板车上不滑下,平板车至少长0.8m。
本题考查的是对动量守恒定律和动量定理问题的应用,根据动量守恒定律可求出物块相对平板车静止时的速度,再由动量定理得到时间;由匀变速直线运动的特点,可得结果。