(完整word版)放大电路的工作原理和三种基本放大组态
三极管三种放大三种基本组态(共基、共射、共集)
单管放大电路是组成各种复杂放大电路的基本单元。
本章首先以单管共发射极放大电路为例,阐明放大电路的组成以及实现放大作用的基本原理。
然后介绍电子电路最常用的两种分析方法――图解法和微变等效电路法,并利用上述方法分析单管共发射极放大电路的静态工作点、电压放大倍数和输入、输出电阻。
由于温度变化将对半导体器件的参数产生影响,进而引起放大电路静态工作点的变动,为此,介绍了一种常用的分压式静态工作点稳定电路。
除了单管共发射极放大电路以外,也介绍了放大电路的另外两种组态――共集电术组态和共基极组态放大电路,并对三种不同组态的特点进行了列表比较。
在双极型三极管放大电路的基础上,介绍了场效应管放大电路的特点和分析方法。
在本章的最后,介绍了组成多级放大电路最常用的三种耦合方式,分析了多级放大电路的电压放大倍数和输入、输出电阻。
学习要求:①对于放大电路的两种基本分析方法,要求熟练掌握用简化的h参数等效电路分析放大电路的Au、Ri和Ro的方法,掌握rbe的近似估算公式。
正确理解如何利用图解分析放大电路的静态和动态工作情况。
②掌握放大电路的三种基本组态(共射、共集和共基组态)的工作原理和特点。
③正确理解温度变化对三极管参数的影响,掌握分压式工作点稳定电路的工作原理和计算方法。
④掌握由场效应管组成和共源和共漏放大电路和工作原理以及微变等效电路法分析Au、Ri和Ro的方法。
了解场效应管与双极型三极管相比有所特点。
⑤掌握直接耦合多级放大电路的工作原理,电压放大倍数的计算方法。
正确理解零点漂移现象。
一般了解其他两种耦合方式(阻容耦合、变压器耦合)的特点。
2.1 放大的概念放大电路的应用十分广泛,无论日常使用的收音机、扩音器,或者精密的量测仪器和复杂的自动控制系统等,其中通常都有各种各样的放大电路。
在这些电子设备中,放大电路的作用是将微弱的信号放大,以便于人们量测和利用。
例如,从收音机天线接收到的信号,或者人传感器得到的信号,有时只有微伏升毫伏数量级,必须经过放大才能驱动喇叭发出声音,或者驱动批示设备和执行机构,便于进行观察、记录和控制。
(完整word版)放大电路的工作原理和三种基本放大组态
放大电路的工作原理和三种基本放大组态放大电路里通常是晶体三极管、场效应管、集成运算放大器等,这些器件也称为有源器件。
共射放大电路如图所示。
V cc是集电极回路的直流电源,也是给放大电路提供能量的,一般在几伏到几十伏范围,以保证晶体三极管的发射结正向偏置、集电结反向偏置,使晶体三极管工作在放大区。
R c是集电极电阻,一般在几 K 至几十K 范围,它的作用是把集电极电流i C的变化变成集电极电压u CE的变化。
V BB是基极回路的直流电源,使发射结处于正向偏置,同时通过基极电阻R b提供给基极一个合适的基极电流I BQ,使三极管工作在放大区中适当的区域,这个电流I BQ常称为基极偏置电流,它决定着三极管的工作点,基极偏置电流I BQ是由V BB和基极电阻R b共同作用决定的,基极电阻R b一般在几十KΩ至几百KΩ范围。
如在输入端加上一个较小的正弦信号u i , 通过电容C1加到三极管的基极,从而引起基极电流i B在原来直流I BQ的基础上作相应的变化,由于u i是正弦信号,使i B随u i也相应地按正弦规律变化,这时的i B实际上是直流分流I BQ和交流分量i b迭加后的量。
同时i B的变化使集电极电流 i C 随之变化,因此i C也是直流分量I C和交流分量i c的迭加,但i C要比i B大得多(即β倍)。
电流i C在电阻R C上产生一个压降,集电极电压u CE =V CC-i C R L,这个集电极电压u CE也是由直流分量I C和交流分量 i C两部分迭加的。
这里的 u CE和 i C相位相反,即当 i C增大时, u CE减少。
由于C 2的隔直作用,使只有 u CE的交流分量通过电容C2作为放大电路的输出电压u O。
如电路参数选择适当,u O要比 u I的幅值要大得多,同时 u I与 u O的相位正好相反。
电路中各点的电流、电压波形如图所示。
放大电路的图解法放大电路有三种主要分析方法:一是图解法,二是微变等效电路法,三是计算机辅助分析法。
三极管放大电路原理和组态
三极管的根本工作管理构造与操作原理三极管的根本构造是两个反向连结的pn接面,如图1所示,可有pnp和npn两种组合。
三个接出来的端点依序称为射极〔emitter, E〕、基极〔base, B〕和集极〔collector, C〕,名称来源和它们在三极管操作时的功能有关。
图中也显示出npn与pnp三极管的电路符号,射极特别被标出,箭号所指的极为n型半导体,和二极管的符号一致。
在没接外加偏压时,两个pn接面都会形成耗尽区,将中性的p型区和n型区隔开。
图1 pnp(a)与npn(b)三极管的构造示意图与电路符号。
三极管的电特性和两个pn接面的偏压有关,工作区间也依偏压方式来分类,这里我们先讨论最常用的所谓〞正向活性区〞(forward active),在此区EB极间的pn接面维持在正向偏压,而BC极间的pn接面那么在反向偏压,通常用作放大器的三极管都以此方式偏压。
图2(a)为一pnp三极管在此偏压区的示意图。
EB接面的耗散区由于在正向偏压会变窄,载体看到的位障变小,射极的电洞会注入到基极,基极的电子也会注入到射极;而BC接面的耗尽区那么会变宽,载体看到的位障变大,故本身是不导通的。
图2(b)画的是没外加偏压,和偏压在正向活性区两种情况下,电洞和电子的电位能的分布图。
三极管和两个反向相接的pn二极管有什么差异呢?其间最大的不同部分就在于三极管的两个接面相当接近。
以上述之偏压在正向活性区之pnp三极管为例,射极的电洞注入基极的n型中性区,马上被多数载体电子包围遮蔽,然后朝集电极方向扩散,同时也被电子复合。
当没有被复合的电洞到达BC接面的耗尽区时,会被此区内的电场加速扫入集电极,电洞在集电极中为多数载体,很快藉由漂移电流到达连结外部的欧姆接点,形成集电极电流IC。
IC的大小和BC间反向偏压的大小关系不大。
基极外部仅需提供与注入电洞复合部分的电子流IBrec,与由基极注入射极的电子流InB? E〔这部分是三极管作用不需要的部分〕。
3-1放大电路基础资料
(2) 图解分析法
直流负载线
输入回路线性方程: IB
VCC VBE Rb
VCC Rb
1 Rb VBE
输出回路线性方程:VCE
VCC
IC RC
IC
VCC Rc
P4R12c 例V3CE.1
静态图解分析法步骤
❖ 写出输入回路的线性方程,根据该方程在三极管 输入特性图上作一条直线,由直线和输入特性曲 线的交点确定IBQ
单 位:无量纲
惯用符号:r
vbe hieib hrevce
ic
hfeib
hoevce
hfe
iC iB
VC E
定 义:VCE恒定(VCE= VCEQ:输出端交流电压短 路)时的正向电流传输比或电流放大系数
单 位:无量纲
惯用符号:
vbe hieib hrevce
ic
hfeib
hoevce
VCC的方向加反 了,导致管子不
直e电作接极用并间联,;管而子 能正常工作。
且不能直正流常电工压作源。
的方向加反了
3.3 放大电路的分析方法
3.3.1 放大电路的静态和动态
(1) 静态
当放大电路没有交流输入信号时,电路中各处的电 压和电流都是不变的直流,称为“直流工作状态”或 “静态”。
分析放大电路的“静态”,需要绘出电路的“直流 通路(道)”,此时保留直流电源,去除交流输入信号 (交流电压源短路、交流电流源开路),耦合电容作开 路处理。
VT IE
26mV (常温下) IE
rbe
200
(1
)
26mV (常温下) I E mA
(2) 例题
设=40
rbe
200
三种基本组态放大电路
2. 温度对工作点的影响
1. 温度变化对输入特性曲线的影响 温度T 输入特性曲线左移 2. 温度变化对ICBO的影响
Ri RB //rbe 1.35 KΩ
RO RC 5 KΩ
uo β(RC //R L ) Au 83.3 ui rbe
Aus uo uo ui Ri Au 48 us ui uS Rs Ri
(3) 当CE开路后,对直流没有影响 ( 为什么?)
ib
RB=RB1∥RB2=14.3K
–
B + RS RB 1K ui uS ~ – 14.3K
ib
ic C
rbe 1.53K
βib
+ RC u 5K o –
RL 5K
E
B + RS RB 1K ui uS ~ – 14.3K
ib
ic C
rbe 1.53K E
βib
+ RC uo 5K –
RL 5K
/mA iB A C/µ
I CBO I CBO( T0 25C) e k (T T0 )
温度T 输出特性曲线上移
Q Q1
Q1 Q
IB iB =0
vBE CE/V
3. 温度变化对 的影响
温度每升高1º C , 增加0.5%1.0% 温度T 输出特性曲线族间距增大
3.2.1 共发射极放大电路
Ri
ui RB1 //R B2 //rbe ii uo Ro RC io
放大电路的组成和工作原理
放大电路的组成和工作原理放大电路是指将输入信号的幅值放大到更大的幅度的电路。
它是电子设备中一种常见的电路,广泛应用于各种电子系统中,包括音频放大器、视频放大器、通信放大器等。
放大电路的组成和工作原理如下:一、放大电路的组成1.信号源:作为放大电路的输入信号,可以是电压、电流、光信号等。
信号源通常包括一个信号发生器,通过它产生的信号作为输入信号源。
2.放大器:放大器是放大电路的核心部分,用于放大输入信号的幅值。
放大器可以分为线性放大器和非线性放大器两种类型。
线性放大器能够放大输入信号的幅值,同时保持信号的波形不发生畸变。
非线性放大器有时会引入失真,但在一些应用中可以提供更高的放大系数。
3.反馈电路:反馈电路是将输出信号的一部分再次输入到放大器的输入端,以控制放大器的增益和稳定其工作状态。
反馈电路可以使放大电路具有更好的线性特性、增益稳定性和输出阻抗。
4.负载电阻:负载电阻是连接在放大器输出端的电阻,用于提取放大电路输出信号的能量。
二、放大电路的工作原理放大电路的工作原理可以分为几个阶段:输入阶段、放大器阶段和输出阶段。
1.输入阶段:输入阶段接收来自信号源的输入信号,并将其转化为放大器可以处理的信号。
在输入阶段中,可以使用耦合电容将直流信号分离,以保持输入端的直流偏移电压稳定。
此外,还可以使用调整电阻和带通滤波器对输入信号进行调整和滤波,以满足放大器的输入要求。
2.放大器阶段:在放大器阶段中,输入信号通过放大器进行增益处理。
放大器可以采用不同的放大原理,包括晶体管放大器、运放放大器、管放大器等。
放大器根据输入信号的幅值,通过放大器内部的放大元件(如晶体管、电子管等)进行放大处理。
放大器的增益可以通过改变放大器的工作点、电流源等参数来调节。
3.输出阶段:在输出阶段中,将放大器的输出信号提取出来,并传送到负载电阻中。
负载电阻将放大电路输出信号的能量提取出来,并使其符合负载要求。
输出阶段通常还包括对输出信号进行调整和滤波的部分,例如使用RC滤波器对输出信号进行滤波去除高频噪声。
双极型三极管放大电路的三种基本组态
41 × 2.8 = 1.6 + 41× 2.8 = 0.986
12
第五节 双极型三极管放大电路的三种基本组态
3. 输入、输出电阻
b ib
e - ie
+ Rs us+ ui
rbe Rb
iC βib
+
RL Re
uo
--
-
c
Ri = Rb //[ rbe + (1 + β) Re′] = 78.4 kΩ
-
b ib
ic c
rbe
Rb
e
βib
+
Re
RL uo
-
4
第五节 双极型三极管放大电路的三种基本组态
+ Rs
+ ui us
-
b ib
ic c
rbe
βib
Rb
e
Re
RL
ii
b ib
eie
io
R s +
rbe
+
+ ui
+ uo
u s-
-
-
βib
uo R e ic c
b ib
e - ie
+
rbe
+
Rs us+ ui Rb
ii +
ui
Re
ie e ic
ib
βib
rbe
io c +
uo
R´L
-
-
b 共基极放大电路的等效电路
共基接法的输出电阻比共射接法高得多 考虑Rc的作用 Ro= Rc // rcb ≈ Rc
放大电路的工作原理
放大电路的工作原理放大电路是电子设备中常见的一种电路,它的作用是将输入信号放大,以便输出更大的信号。
放大电路的工作原理涉及到许多电子元件和物理原理,下面我们来详细了解一下。
首先,我们来看看放大电路的基本组成。
放大电路通常由输入端、输出端和放大器三部分组成。
输入端接收输入信号,输出端输出放大后的信号,而放大器则是实现信号放大的关键部件。
放大器内部通常包含了晶体管、场效应管或者运放等电子元件,通过这些元件对输入信号进行放大处理。
放大电路的工作原理主要包括放大器的工作原理和电路的整体工作原理。
首先我们来看看放大器的工作原理。
放大器内部的晶体管、场效应管或者运放等元件能够对输入信号进行放大处理,其本质是通过电子元件的导电特性来控制输出信号的大小。
在放大器内部,输入信号经过放大器的放大作用后,输出信号的幅度会相应增大,实现了信号放大的目的。
其次,我们来了解一下放大电路的整体工作原理。
放大电路的整体工作原理是通过放大器对输入信号进行放大处理,从而得到更大幅度的输出信号。
在这个过程中,放大器内部的电子元件起到了关键作用,通过对输入信号的控制和放大,实现了信号放大的目的。
在实际应用中,放大电路的工作原理还涉及到一些其他因素,比如电路的稳定性、频率响应等。
对于不同的应用场景,放大电路的设计和选型也会有所不同。
因此,在设计放大电路时,需要充分考虑到电子元件的特性、电路的稳定性和输出信号的要求,以确保放大电路能够正常工作并达到预期的放大效果。
总的来说,放大电路的工作原理是通过放大器对输入信号进行放大处理,从而得到更大幅度的输出信号。
在实际应用中,放大电路的设计和选型需要考虑到多种因素,以确保其能够正常工作并达到预期的放大效果。
希望本文对放大电路的工作原理有所帮助,谢谢阅读!。
放大电路的工作原理
放大电路的工作原理
首先,放大器的基本原理是利用电子器件(如晶体管、场效应管等)的非线性
特性,将输入信号的能量转换为输出信号的能量,实现信号的放大。
通过控制输入信号和电源电压的大小,以及调节放大器的工作状态,可以实现对信号的放大和处理。
其次,放大器根据其工作方式和放大器的特性可以分为很多种类,如按照信号
类型可以分为模拟放大器和数字放大器;按照放大器的工作方式可以分为A类放
大器、B类放大器、C类放大器等;按照放大器的频率范围可以分为低频放大器、
中频放大器、高频放大器等。
不同类型的放大器在实际应用中有着不同的特点和适用范围。
接下来,放大电路的组成一般包括输入端、放大器、输出端和电源等部分。
其中,输入端接收待放大的信号,放大器对输入信号进行放大处理,输出端输出放大后的信号,电源为放大器提供工作所需的电能。
通过这些部分的协调配合,放大电路能够实现对信号的放大和处理。
最后,放大电路的工作过程是输入信号经过输入端进入放大器,在放大器内部
进行放大处理,最终通过输出端输出放大后的信号。
在这个过程中,放大器需要根据输入信号的大小和特性,调节自身的工作状态,以实现对信号的合理放大和处理。
总的来说,放大电路是一种重要的电子电路,它通过放大器的工作原理和放大
器的分类,实现对输入信号的放大和处理。
在实际应用中,放大电路有着广泛的应用,如音频放大器、射频放大器、微波放大器等,为各种电子设备和系统提供信号放大和处理的功能。
通过对放大电路的工作原理和组成的深入理解,可以更好地应用和设计放大电路,满足不同应用场景的需求。
放大电路的基本原理
2. 当 值一定时,IEQ 愈大则 rbe 愈小,可以得到较
大的 Au ,这种方法比较有效。
(三) 等效电路法的步骤(归纳)
1. 首先利用图解法或近似估算法确定放大电路 的静态工作点 Q 。
2. 求出静态工作点处的微变等效电路参数 和
rbe 。 3. 画出放大电路的微变等效电路。可先画出三
极管的等效电路,然后画出放大电路其余部分的交 流通路。
误差很小。
4. 电压放大倍数 Au;输入电阻 Ri、输出电阻 RO
Rb C1+ + Ui
Rc +C2
VT RL
+VCC
+
UO
b Ib
+
Ic c
+
Ui Rb
rbe Ib
Rc RLUo
e
图 2.4.12 单管共射放大电路的等效电路
Au 所以
Uo Ui
Au
而
Uo Ui
Ui Ibrbe
RL
rbe
该恒流源为受控源;
Q
iB
iB
为 iB 对 iC 的控制。
O
uCE
图 2.4.10(b)
3. 三极管的简化参数等效电路
iB b
+
uBE
iC c
+
iB b
+
iC c
+
uCE
uBE rbe
iB uCE
rce
e
e
图 2.4.11 三极管的简化 h 参数等效电路
注意:这里忽略了 uCE 对 iC与输出特性的影响,在 大多数情况下,简化的微变等效电路对于工程计算来说
1. 静态工作点
三种基本组态放大电路
3.2 三种基本组态放大电路掌握三极管三种组态放大电路的工作原理; 会对放大电路的主要性能指标进行分析;了解场效应管放大电路的工作原理。
一、共发射极放大电路(一)电路的组成直流电源V CC 通过R B1、R B2、R C 、R E 使三极管获得合适的偏置,为三极管的放大作用提供必要的条件, R B1、R B2称为基极偏置电阻,R E 称为发射极电阻,R C 称为集电极负载电阻,利用R C 的降压作用,将三极管 集电极电流的变化转换成集电极电压的变化,从而实现信号的电压放大。
与R E 并联的电容C E ,称为发射极 旁路电容,用以短路交流,使R E 对放大电路的电压放大倍数不产生影响,故要求它对信号频率的容抗越小 越好,因此,在低频放大电路中CE通常也采用电解电容器。
(二)直流分析断开放大电路中的所有电容,即得到直流通路,如下图所示,此电路又称为分压偏置式工作点 稳定直 电流通路。
电路工作要求:I 1≥ (5 ~ 10)I BQ ,U BQ ≥ (5 ~ 10)U BE Q求静态工作点Q:方法1.估算稳定Q点的原理:方法2.利用戴维宁定理求IBQ(三)性能指标分析将放大电路中的C1、C2、CE短路,电源VCC短路,得到交流通路,然后将三极管用H参数小信号电路模型代入,便得到放大电路小信号电路模型如下图所示。
E1.电压放大倍数2.输入电阻二、共集电极放大电路(射极输出器、射极跟随器) (二)性能指标分析1.电压放大倍数2.输入电阻R 'L = R E // R L3.输出电阻共集电极电路特点 共集电极电路用途 1.U o 与U i 同相,具有电压跟随作用 1.高阻抗输入级 2.无电压放大作用 A u <1 2. 低阻抗输出级 3.输入电阻高;输出电阻低 3.中间隔离级例题2.电路如图所示,已知三极管的β=120,R B = 300 k Ω,r 'bb = 200 Ω,U BEQ = 0.7 V R E = R L = R s = 1 k Ω,V CC = 12V 。
放大电路组成及三种组态
基本放大器的组成原则
基本放大器通常是指由一个晶体管或场效应管构成的单级放大器。
放大器条件:
1.要有控制元件:晶体管或场效应管;
2.要有电源--提供能量; 3.偏置在放大区; 4.待放大信号一定加在发射结(或栅源结),不可加到集电极(或漏极);
iC iE I S (e
信号从基极输入, 从发射极输出, ------共集电极
信号从发射极输入, 从集电极输出, ------共基极
第二章
以用途最为广泛的阻容耦合共发射极放大器为例:
▲ 管子--核心控制元件; ▲ RB--偏置电阻, 保证发射结正偏,(放大区); ▲ UCC---能源, 同时保证集电结反偏, 管子工 作在放大区; ▲ RC---集电极负载电阻, 将变化电流转变为 变化电压;
u u u i i i u i (R // R ) u
C
2 1000 10 10
晶体管放大器电路结构及放大原理
u BE UT
1) I S e
u BE UT
5.信号可从集电极或发射极输出,不可从基极(或栅极)输出; 6.要有一定的负载(RC或RE), 将变化电流转为变化电压。
第二章 根据输入、输出回路公共端所接的电极不同,实际有共发射极、 共集电极和共基极三种基本(组态)放大器。
信号从基极输入, 从集电极输出, ------共发射极
RB
C1 RS +
RC
C2 RL
+ UO
UCC
Us
+ Ui
-
-
控制
▲ 信号源通过耦合电容C1输入到管子基极; ▲ 放大了的信号又通过耦合电容C2输出到负载RL;
三种放大电路结构
电压跟随器作用及应用场景
电压跟随器作用
电压跟随器是一种特殊的共集放大电路,其主要作用是隔离前后级电路,减小输出阻抗,提高电路的 带负载能力。
应用场景
电压跟随器广泛应用于各种需要缓冲或隔离的电路中,如音频放大器、数据采集系统、电源电路等。
输入电阻、输出电阻和带宽特性
输入电阻
带宽特性
共集放大电路的输入电阻较高,可以 减小信号源内阻对电路的影响,提高 电路的抗干扰能力。
带宽要求
明确信号频率范围,确保放大 电路在该范围内具有稳定的增 益。
失真要求
规定输出信号的最大失真度, 以保证信号质量。
噪声要求
确定放大电路所需噪声水平, 以满足系统整体噪声指标。
选择合适拓扑结构和元器件类型
拓扑结构
根据设计需求选择共射、共基或共集电极等放大 电路拓扑结构。
元器件类型
选用合适的晶体管、场效应管、运算放大器等元 器件,以满足性能指标要求。
电源电压与极性检查
确保电路元件、连接方式和参数与设计图 一致。
确认电源电压符合设计要求,极性正确无 误。
元器件筛选与检测
仪器仪表校准
对使用的元器件进行筛选,确保其性能参 数符合要求;对于关键元器件,需进行详 细的性能检测。
对所使用的信号源、示波器、万用表等仪器 仪表进行校准,确保其测量准确。
信号源、示波器等仪器使用方法
失真度
在正常工作条件下,三种放大电路结构的失 真度均较低。然而,在极端条件下(如输入 信号过大、电源电压不稳定等),共射放大 电路可能出现较严重的失真现象;共集和共
基放大电路相对较为稳定。
应用场景选择建议
01
共射放大电路
适用于需要高电压放大倍数、较宽频率响应范围以及对失真度要求不高
放大电路的三种基本组态
放大电路的三种基本组态(共基、共射、共集)
2010-07-01 13:21
一、判断方法
方法一:共集组态是基极电流对射极电流的控制,以集电极为公共端;共基组态是射极电流对集电极电流的控制,以基极为公共端;共射组态是集电极电流对基极电流的控制,以射极为公共端;
方法二:前提,地端连接基极与射极。
从输出端看,若输出是取集电极和射极(与地相接的一端,或者可看着与地)之间,则为共射;若输出取在射极与地之间(脑海可近似认为与基极相接),则为共集电极;剩下的一种即为共基组态。
组态显现为没连接的那极,如图一,射极没连入输出,显现为共射;图二,集电极没连入输出,显现为共集电极(个人方法)
二、三种组态的小结
共基:输入与输出电压相位同向,电压增益为“+”,对电压有放大作用(放大倍数同共射),对电流
没有放大作用,主要用于高频电压的放大,多用于输出阻抗和电压增益高的小信号电路,即恒流源电
路,宽带放大电路,输入电阻最小。
共集:输入与输出电压相位同向,电压增益为“+”,对电流有放大做用,对电压没有放大作用,共集
放大电路又称电压跟随器/射极输出器/隔离器,放在电路首级,提高输入电阻,放在末级,降低输
出电阻,提高带负载能力,放在中间,可以起到电路的阻抗变换作用,这一级成为缓冲级或隔离级,输
出电阻最低。
共射:输入电压与输出电压相位相反,对电压电流都有放大作用,增益为“—”,输入电
阻比较适中,输出电阻较大,多用于中间级,频带较窄,多用于低频放大电路。
1、怎么判断三种组态
2、三种组态的应用及参数分析。
第五节三极管放大电路的三种基本组态解析资料课件
• 引言 • 三极管放大电路基础 • 三极管放大电路的三种基本组态 • 三极管放大电路的应用与实例 • 三极管放大电路的调试与优化
01
引言
背景介 绍
01
三极管放大电路在电子技术领域 中具有广泛应用,了解其基本组 态是学习电子工程的重要基础。
02
本课件旨在解析三极管放大电路 的三种基本组态,帮助学习者深 入理解其工作原理和应用。
04
三极管放大电路的应用与实例
三极管放大电路在音频信号处理中的应用
音频信号放大
三极管放大电路常用于音频信号 的放大,如音响设备、麦克风等。 通过放大音频信号,提高声音的 响度和清晰度。
音频功率放大
在音响系统中,三极管放大电路 也用于音频功率放大,将微弱的 音频信号转换成足够大的功率, 推动扬声器发声。
三极管放大电路在无线通信系统中的应用
信号放大
无线通信系统中,信号传输距离较远, 信号强度会逐渐减弱。三极管放大电 路用于接收天线后的信号放大,确保 信号能够正常接收和传输。
调制解调
在无线通信中,三极管放大电路也用 于调制解调过程,对信号进行放大和 变频处理,实现信号的调制和解调。
三极管放大电路在自动控制系统中的应用
课程目标
掌握三极管放大电路 的基本概念和原理。
能够分析不同组态下 的电路性能和应
02
三极管放大电路基础
三极管放大电路概述
三极管放大电路是一种利用三极管的放大作用将微弱信号转换为较大信号的电子电路。 它由三极管、电阻、电容等元件组成,通过合理配置元件参数,实现信号的放大。
通过调节基极偏置电阻,观察集电极电流和发射极电压的变化, 使静态工作点设置在合适的区域。
基本放大电路的概念及工作原理
基本放大电路的概念及工作原理里基本放大电路一般是指有一个三级管和场效应管组成的放大电路。
放大电路的功能是利用晶体管的控制作用,把输入的微弱电信号不失真的放到所需的数值,实现将直流电源的能量部分的转化为按输入信号规律变化且有较大能量的输出信号。
放大电路的实质,是用较小的能量去控制较大能量转换的一种能量装换装置。
利用晶体管的以小控大作用,电子技术中以晶体管为核心元件可组成各种形式的放大电路。
其中基本放大电路共有三种组态:共发射极放大电路、共集电极放大电路和共基极放大电路,如图1所示。
(a)共发射极放大电路(b)共集电极放大电路(c)共基极放大电路图1基本放大电路的三种组态无论基本放大电路为何种组态,构成电路的主要目的是相同的:让输入的微弱小信号通过放大电路后,输出时其信号幅度显著增强。
1、放大电路的组成原则需要理解的是,输入的微弱小信号通过放大电路,输出时幅度得到较大增强,并非来自于晶体管的电流放大作用,其能量的提供来自于放大电路中的直流电源。
晶体管再放大电路中只是实现的对能量的控制,是指转换信号能量,并传递给负载。
因此放大电路组成的原则首先是必须有直流电源,而且电源的设置应保证晶体管工作在线性放大电路状态。
其次,放大电路中各元件的参数和安排上,要保证被传输信号能够从放大电路的输入端尽量不衰减地输出,在信号传输的过程中能够不失真的放大,最后经放大电路输出端输出,并且满足放大电路的性能指标要求。
综上所述,放大电路必须具备以下条件。
○1保证放大电路的核心元件晶体管工作在放大电路状态,及要求其发射极正偏,集电结反偏。
○2输入回路的设置应当是输入信号耦合到晶体管的输入电极,并形成变化的基极电流i B ,进而产生晶体管的电流控制关系,变成集电极电流i C 的变化。
○3输出回路的设置应当保证晶体管放大后的电流信号转换成负载需要的电压形式。
○4信号通过放大电路时不允许失真。
2、共射放大电路的组成及各部分作用图 2(a)所示是一个双电源的单管共发射极放大电路,但由于实际应用中通常采用单电源供电方式,所以实际单电源供电的单管共发射极放大电路如图 2 所示(a) 双电源的单管共发射极放大电路(a) 单电源的单管共发射极放大电路图 2 固定偏置电阻共发射极放大电路固定偏置电阻共发射极放大电路中各个元件的作用如下。
5.2放大电路的三种组态
放大电路的三种 基本组态
5.2.1 共发射极放大电路
5.2.2 共集电极放大电路 5.2.3 共基极放大电路
基本放大电路的组成
5.2.1 共发射极放大电路 一、 电路组成
+VCC
RB1 C1 RC C2
VCC(直流电源): • 使发射结正偏,集电结反偏 • 向负载和各元件提供功率 C1、C2(耦合电容): • 隔直流、通交流 RB1 、RB2(基极偏置电阻): • 提供合适的基极电流
+VCC RB1 RC C2
[ 解]
20 15 RS U BQ 3. 7 ( V ) RL 20 62 + RB2 + RE us 3.7 0.7 C E I CQ I EQ 2 (mA ) 1.5 I BQ 2 / 100 0.02 (mA) 20 (A)
1. Re 愈大,同样的 IEQ 产生的 UEQ 愈大,则 温度稳定性愈好。但 Re 增大,UEQ 增大,要保持输 出量不变,必须增大 VCC。 2. 接入 Re ,电压放大倍数将大大降低。在 Re 两端并联大电容 Ce ,交流电压降可以忽略,则 Au 基 本无影响。 Ce 称旁路电容 3. 要保证 UBQ 基本稳定,IR >> IBQ,则需要 Rb1、 Rb2 小一些,但这会使电阻消耗功率增大,且电路的 输入电阻降低。实际选用 Rb1、Rb2 值,取 IR = (5 ~ 10)IBQ,UBQ = (5 ~ 10)UBEQ。
RL Au rbe (1 ) RE
100 3//5.6 1.3 1.5 101 1.5
Ri 13.8( 1.3) Aus Au 1.2 Ri Rs 1 13.8 Ri RB1 // RB2 // [r be (1 ) RE ] 20 // 62 // [1.5 101 1.5] 13.8 (k)
放大电路基本原理
第二章放大电路基本原理本章内容简介本章首先讨论半导体三极管(BJT )的结构、工作原理、特性曲线和主要参数。
随后着重讨论BJT放大电路的三种组态,即共发射极、共集电极和共基极三种放大电路。
内容安排上是从共发射极电路入手,再推及其他两种电路,并将图解法和小信号模型法,作为分析放大电路的基本方法。
(一)主要内容:✧半导体三极管的结构及工作原理,放大电路的三种基本组态✧静态工作点Q的不同选择对非线性失真的影响✧用H参数模型计算共射极放大电路的主要性能指标✧共集电极电路和共基极电路的工作原理✧三极管放大电路的频率响应(二)教学要点:从半导体三极管的结构及工作原理入手,重点介绍三种基本组态放大电路的静态工作点、动态参数(电压增益、源电压增益、输入电阻、输出电阻)的计算方法,H参数等效电路及其应用。
(三)基本要求:✧了解半导体三极管的工作原理、特性曲线及主要参数✧了解半导体三极管放大电路的分类✧掌握用图解法和小信号分析法分析放大电路的静态及动态工作情况✧理解放大电路的工作点稳定问题掌握放大电路的频率响应及各元件参数对其性能的影响2.1 半导体三极管(BJT )2.1.1 BJT 的结构简介:半导体三极管有两种类型:NPN 型和PNP 型。
结构特点:发射区的掺杂浓度最高;集电区掺杂浓度低于发射区,且面积大;基区很薄,一般在几个微米至几十个微米,且掺杂浓度最低。
2.1.2 BJT 的电流分配与放大原理三极管的放大作用是在一定的外部条件控制下,通过载流子传输体现出来的。
外部条件:发射结正偏,集电结反偏。
1. 内部载流子的传输过程发射区:发射载流子;集电区:收集载流子; 基区:传送和控制载流子(以NPN 为例)以上看出,三极管内有两种载流子(自由电子和空穴)参与导电,载流子的传输过程故称为双极型三极管,或BJT (Bipolar Junction Transistor)。
2. 电流分配关系2. 三极管的三种组态共发射极接法,发射极作为公共电极,用CE 表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
放大电路的工作原理和三种基本放大组态放大电路里通常是晶体三极管、场效应管、集成运算放大器等,这些器件也称为有源器件。
共射放大电路如图所示。
V cc是集电极回路的直流电源,也是给放大电路提供能量的,一般在几伏到几十伏范围,以保证晶体三极管的发射结正向偏置、集电结反向偏置,使晶体三极管工作在放大区。
R c是集电极电阻,一般在几 K 至几十K 范围,它的作用是把集电极电流i C的变化变成集电极电压u CE的变化。
V BB是基极回路的直流电源,使发射结处于正向偏置,同时通过基极电阻R b提供给基极一个合适的基极电流I BQ,使三极管工作在放大区中适当的区域,这个电流I BQ常称为基极偏置电流,它决定着三极管的工作点,基极偏置电流I BQ是由V BB和基极电阻R b共同作用决定的,基极电阻R b一般在几十KΩ至几百KΩ范围。
如在输入端加上一个较小的正弦信号u i , 通过电容C1加到三极管的基极,从而引起基极电流i B在原来直流I BQ的基础上作相应的变化,由于u i是正弦信号,使i B随u i也相应地按正弦规律变化,这时的i B实际上是直流分流I BQ和交流分量i b迭加后的量。
同时i B的变化使集电极电流 i C 随之变化,因此i C也是直流分量I C和交流分量i c的迭加,但i C要比i B大得多(即β倍)。
电流i C在电阻R C上产生一个压降,集电极电压u CE =V CC-i C R L,这个集电极电压u CE也是由直流分量I C和交流分量 i C两部分迭加的。
这里的 u CE和 i C相位相反,即当 i C增大时, u CE减少。
由于C 2的隔直作用,使只有 u CE的交流分量通过电容C2作为放大电路的输出电压u O。
如电路参数选择适当,u O要比 u I的幅值要大得多,同时 u I与 u O的相位正好相反。
电路中各点的电流、电压波形如图所示。
放大电路的图解法放大电路有三种主要分析方法:一是图解法,二是微变等效电路法,三是计算机辅助分析法。
图解法是根据晶体管的输入和输出特性曲线,以及电路参数,在特性曲线上确定静态工作点Q的位置,并根据输入信号的波形,画出晶体管各点的电流电压波形,以及输出信号的波形。
因此图解法分析放大电路可以分为静态分析和动态分析两步来做。
用图解法对放大电路的静态分析可分为两步,先根据输入回路的I B与 U BE的关系式在输入特性曲线上确定输入回路的静态工作点Q,随后根据输出回路的I C与U CE关系式式确定输出回路的静态工作点,求出I CQ和U CEQ。
其中需要分别在输入特性图和输出图上作出直流负载线。
(a) (b)图解法求静态工作点(a) 输入回路的图解法 (b) 输出回路的图解法动态工作情况分析:首先根据u I在输入特性上求i B的波形,然后根据i B在输出特性上求i C和u CE的波形。
要注意,放大电路中电压电流包含两个分量,一个是无输入信号时由静态工作情况决定的直流分量I BQ、I CQ、U CEQ;另一个是由输入电压引起的交流分量i b、i c和u ce。
共射基本放大电路一个晶体三极管可以看作为一个双口有源网络,由于晶体三极管只有三个极端,因此其中必须有一个极端作输入和输出的公共端。
如果以其中发射极e作为输入和输出的公共端,基极b 作为输入,集电极c 作为输出,则该放大电路称为共射放大电路。
相应地以基极b作为输入和输出公共端,发射极e作为输入,集电极c 作为输出的称为共基放大电路。
以集电极c 作为输入和输出公共端,基极b作为输入,发射极e作为输出的称为共集放大电路。
这称为晶体三极管放大电路的三种基本放大组态。
放大电路三种基本组态(a)共射放大电路 (b)共基放大电路 (c)共集放大电路微变等效电路分析法在放大电路输入信号电压很小时,就可以把晶体管小范围内特性曲线近似用直线来代替,从而把晶体管这个非线形元件用一个等效的线形电路来近似代替,然后利用分析线性电路的一些方法来分析晶体管的放大电路,这就是微变等效电路法的指导思想。
因此微变电路法只适用于小信号时电路分析,另外微变等效电路法只能用来求交流特性,即动态分析,不能求静态工作点,即微变的概念。
(1)晶体管的h参数及等效电路晶体管h参数等效电路(2)用h参数等效电路分析共射放大电路对放大电路进行静态分析,主要是确定其静态工作点Q,即求出I BQ,I CQ,U CEQ。
对放大电路进行动态分析,主要是计算放大电路的电压放大倍数、输入电阻和输出电阻。
用h参数微变等效电路分析共射放大电路(a)共射放大电路 (b) h参数微变等效电路静态工作点的计算I CQ=ßI BQU CEQ=V CC-I CQ R C交流性能参数的计算电压放大倍数输入电阻输出电阻 R o=R c其他基本放大电路的分析(1)射极偏置电路射极偏置电路能稳定静静态工作点,当温度变化或其他原因使晶体管参数变化时,其工作点能稳定在合适的位置。
这个电路是交流放大电路中最常用的一个基本电路。
能稳定工作点的射极偏置电路(a) 射极偏置电路 (b) 微变等效电路静态工作点计算交流性能计算从上式可知,接R e以后,虽然工作点稳定提高了,但放大倍数A u下降了,而且R e越大则A u越小,如果在R e上并联一个大电容C e,它对交流近似可看作短,使晶体管的发射极交流接地,这时与基本共射电路相同,使放大倍数不致下降,而工作仍能得到稳定。
R i=R b1//R b2//R iˊ其中R o=R c(2)共集电极电路共集放大电路信号从基极输入,从发射极输出,集电极作为输入输出的公共端。
该电路又称为射极输出器,或称射极跟随器,也是最常用的一种基本电路。
共集电极电路的特点是:输入阻抗高,输出阻抗低,电压放大倍数小于1接近于1,主要用作输入极、输出极和极间缓冲极。
用微变等效电路分析共集放大电路(a)共集放大电路 (b) h参数微变等效电路静态工作点计算再由I CQ=βI BQ , U CEQ=V CC-I CQ R e可求出静态工作点。
交流性能的计算共集电路的输入电阻很大而输出电阻很小;另外它的电压放大倍数虽然小于1,但它的电流放大倍数仍较大,约为(1+β)倍。
(3)共基极电路共基极电路的输入信号加在晶体管的发射极,输出是集电极,基极是输入输出的公共端。
用微变等效电路分析共基极放大电路(a)共基极放大电路(b)微变等效电路静态工作点分析交流性能分析其中与共射放大电路比较,共基放大电路的特点是:(1)电压放大倍数数值上同相,而共基电路是正值,表明输入与输出同相;电流放大倍数共基电路是略小于1。
(2)输入电阻比共射电路小,输出电阻相同。
(3)共基电路的频率响应好,在要求频率特性高的场合多采用共基电路。
场效应管放大电路场效应管与双极型晶体管一样能实现信号的控制,所以也能组成放大电路。
场效应管的三个极G、D、S分别与晶体管的三个极b、c、e相对应,因此从放大电路的组成上看也可以有三种基本放大组态,即共源放大电路﹑共漏放大电路﹑共栅放大电路,其中共栅放大电路因不常用。
(1)共源放大电路与晶体管的共射放大电路相对应,由N沟道结型场效应管和MOS场效应管组成的共源放大电路分别如图(a)和(b)所示。
共源放大电路(a) N沟道结型场效应管共源放大电路 (b) MOS场效应管共源放大电路静态分析场效应管组成放大电路和晶体管一样,要建立合适的静态工作点,所不同是,场效应管是电压控制器件,因此它需要有合适的栅极电压。
通常场效应管的偏置电路形式有两种:自偏压电路和分压式自偏压电路,分别如图(a)﹑(b)所示。
自偏压电路只适用于结型场效应管或耗尽型MOS管:分压式自偏压电路既适用于增强型场效应管,也能用于耗尽型场效应管。
栅极电压:对场效应管放大电路静态工作点的确定,可以采用图解法或公式计算,图解法的原理和晶体管相似。
用公式进行计算可通过特性方程:或交流分析共源放大电路的微变等效电R i=(R g1//R g2)+R g3R o=R d共源放大电路与共射电路形式相类似。
只是共源放大电路的输入电阻要比共射电路的大得多(R g s通常很大),故需要高输入电阻时多宜采用场效应管放大电路。
(2)共漏放大电路共漏放大电路是与共集放大电路类似的一种电路形式。
电路如图所示。
共漏放大电路也常称为源极跟随器或源极输出器。
javasc ript:if(this.width>screen.width-333)this.width=screen.width-333" onmousewheel='return bbimg(this)'>共漏放大电路(a)共漏放大电路 (b) 微变等效电路确定静态工作点时,可列出回路方程与特性方程联立求解:交流性能分析共漏电路的特点与共集电极电路相似,电压极放大倍数小于1,但场效应管的导跨比双极型晶体管的ß低,所以共漏电路的电压放大倍数一般比共射电路低,另外它的输出电阻也较低。
例题分析例2.1画出图P2.1 (a) 所示放大电路交流通路和直流通路。
图P2.1(a)共基放大电路(b)直流通路(c)交流通路解:对于直流通路,可以把电路中电容C1 、C2、C b看作为开路,这时电路如图P2.1 (b) 所示,即为它的直流通路。
对于交流通路,把电路中的电容C1、C2、C b看作为短路,把直流电压源V CC也看作为短路,因这时V CC两端的交流压降(即变化量)为零。
由于C b和V CC看作为短路,电路中的电阻R b1、R b2也被短路,得到如图P2.1(c)的电路,这也就是它的交流通路。
从交流通路来看,该放大电路实际上是一个共基放大电路。
例2.2 共射放大电路如图P2.2 (a) 所示,晶体管的输出特性曲线如图P2.2 (b) 所示,设晶体的U BEQ=0.6V。
(1)S断开时,分别作出R b 为285KΩ和570KΩ时的静态工作点Q及Q′,并分别求出这两种情况下的最大木失真输出幅值。
(2)当S闭合,R b=285KΩ时,作出此时的静态工作点Q〞及求最大不失真输出幅值。
图 P2.2(a)共射放大电路(b)图解法求最大不失真输出幅值解:(1) 因为当R b=285KΩ时I BQ=40μA I CQ=1.5 I BQ mAU CEQ=6V U om≈5V当R b=570KΩ时I BQ=20μA I CQ=0.8mAU CEQ=8.8V U om≈3.2V(2)经Q点作斜率为-1/ R L′(R L′=2KΩ)的交流负载线如图P2.2(b)所示,这时U C′=I CQ R L′+U CEQ=9V U om≈3V例2.3 放大电路如图P2.3 所示,设晶体管的β=20, r bbˊ=300Ω,U BEQ=0.7V,D Z为理想稳压二极管,其稳压值U Z=6V,各电容对交流均可视为短路。