第六节:互感和自感教案

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六节互感和自感

【教学目标】

1、知识与技能

(1)、了解互感现象的电磁感应特点。

(2)、指导学生运用观察、实验、分析、综合的方法,认识自感现象及其特点。

(3)、明确自感系数的意义及决定条件。

(4)、了解日光灯的工作原理

2、过程与方法

(1)、能用电磁感应原理,解释生产和生活中的某些自感现象。

(2)、提高学生分析问题的能力和运用物理知识解决实际问题的能力。

3、情感态度和价值观

培养、提高学生尊重科学,利用实验探索研究自然的科学素养

【教学重点】自感现象产生的原因及特点。

【教学难点】运用自感知识解决实际问题。

【教学方法】讨论法、探究法、试验法、练习法

【教学用具】变压器原理说明器(用400匝线圈)、3.8V0.3A灯泡两只、滑动变阻器、电源(3V)、导线、开关,日光灯组件,多媒体课件

【教学过程】

一、复习旧课,引入新课

师:前面我们学习了电磁感应现象,了解了几种不同形式的电磁感应现象。如磁铁向线圈中插入或拔出时、闭合电路的一部分导体在磁场中做切割磁感线的运动时等,都会引起感应电动势,发生电磁感应现象。你们认为引起电磁感应现象最重要的条件是什么?

生:穿过电路的磁通量发生变化。

师:不论用什么方式,也不管是什么原因,只要穿过电路的磁通量发生了变化,都能引起电磁感应现象。如果电路是闭合的,电路中就会有感应电流。

二、新课教学

在法拉第的实验中两个线圈并没有用导线

连接,当一个线圈中的电流变化时,在另一个

线圈中为什么会产生感应电动势呢?(请同学

们用学过的知识加以分析说明)

当一个线圈中的电流变化时,它产生的磁

场就发生变化,变化的磁场在周围空间产生感生电场,在感生电场的作用下,另一个线圈中的自由电荷定向运动,于是产生感应电动势。

(一)互感现象

两个线圈之间并没有导线相连,但当一个线圈中的电流变化时,它所产生的变化的磁场会在另一个线圈中产生感应电动势。这种现象叫做互感,这种感应电动势叫做互感电动势。

利用互感现象可以把能量由一个线圈传递到另一个线圈。变压器就是利用互感现象制成的。如下图所示。

在电力工程中和电子电路中,互感现象有时会影响电路的正常工作,这时要设法减小电路间的互感现象。例如在电路板的刻制时就要设法减小电路间的互感现象。

(二)、自感现象:

教师:我们现在来思考第二个问题:当电路自身的电流发生变化时,会不会产生感应电动势呢?下面我们首先来观察演示实验。

[实验1]演示通电自感现象:

画出电路图(如图所示),A1、A2是规格完全一样的灯泡。闭合电键S,

调节变阻器R,使A1、A2亮度相同,再调节R1,使两灯正常发光,然后断开

开关S。重新闭合S,观察到什么现象?(实验反复几次)

现象:跟变阻器串联的灯泡A2立刻正常发光,跟线圈L串联的灯泡A1

逐渐亮起来。

提问:为什么A1比A2亮得晚一些?试用所学知识(楞次定律)加以分析说明。

(电路接通时,电流由零开始增加,穿过线圈L的磁通量逐渐增加,L中产生的

感应电动势的方向与原来的电流方向相反,阻碍L中电流增加,即推迟了电流达到

正常值的时间。)

[实验2]演示断电自感:

画出电路图(如图所示)接通电路,待灯泡A正常发光。然后断开电路,观察到什么现象?

现象:S断开时,A灯突然闪亮一下才熄灭。

提问:为什么A灯不立刻熄灭?

(当S断开时,L中的电流突然减弱,穿过L的磁通量逐渐减少,L中产生感应电动势,方向与原电流方向相同,阻碍原电流减小。L相当于一个电源,此时L与A构成闭合回路,故A中还有一段持续电流。灯A闪亮一下,说明流过A的电流比原电流大)

用多媒体课件在屏幕上打出i—t变化图,如下图所示.

结论:

导体本身电流发生变化而产生的电磁感应现象叫自感现象。自感现象中产生的电动势叫自感电动势。

(教师说明:在自感现象中,自感电动势的产生是由于导体本身的电流发生了变化而引起的,而自感电动势却总是阻碍导体中原来电流的变化的。)

特点:自感电动势总是阻碍导体中原来电流的变化的。

具体而言:①如果导体中原来的电流是增大的,自感电动势就要阻碍原来电流的增大。

I原↑,则ε自(I自)与I原相反

②如果导体中原来的电流是减小的,自感电动势就要阻碍原来电流的减小。

I原↓,则ε自(I自)与I原相同

[分析实验,深化理解]:

①实验1称为通电自感现象,实验2称为断电自感现象。那么,在实验1中电路接通

的瞬间,线圈是否发生自感?在实验2中,把开关断开时,线圈是否发生自感现象呢?

(都发生自感。只不过是我们观察不到。)

②实验1中,如果以很快的频率反复打开、闭合开关,会出现什么现象呢?

(灯1 不亮,灯2闪亮。)

③实验2中开关断开了,电源已不再给灯泡提供电能了,灯还闪亮一下。这些能量是哪里来的呢?是凭空产生了能量吗?

(线圈提供的。线圈中有电流时,线圈产生磁场,磁场也具有能量。当开关断开后,磁场能

通过电磁感应转化为电能,由线圈提供给灯泡。这说明电磁感应中也遵循能量守恒。) 练习:实验中,当电键闭合后,通过灯泡1的电流随时间变化的图像为图;通过灯泡2的电流随时间变化的图像为图。

答案:C;A

课本23页:做一做 24页:防止

(三)、自感系数

请同学们阅读教材内容。然后用自己的语言加以概括,并回答有关问题。

问:自感电动势的大小决定于哪些因素呢?说出自感电动势的大小的计算公式。

自感电动势的大小跟其它感应电动势的大小一样,跟穿过线圈的磁通量的变化快慢有关。而在自感现象中,穿过线圈的磁通量是由电流引起的,故自感电动势的大小跟导体中电流变化的快慢有关。

理论分析表明:

E=L△I/△t。

L称为线圈的自感系数,简称自感或电感。自感表示线圈产生自感电动势本领大小的物理量。

L的大小跟线圈的形状、长短、匝数、有无铁芯有关。

单位:亨利(H) 1H=103mH=106μH

(四)磁场中的能量:

提问:在断电自感的实验中,为什么开关断开后,灯泡的发光会持续一段时间?甚至会比原来更亮?试从能量的角度加以讨论。

开关闭合时线圈中有电流,电流产生磁场,能量储存在磁场中,开关断开时,线圈作用相当于电源,把磁场中的能量转化成电能。

教材最后一段说,线圈能够体现电的“惯性”,应该怎样理解?电的“惯性”大小与什么有关?

当线圈通电瞬间和断电瞬间,自感电动势都要阻碍线圈中电流的变化,使线圈中的电流不能立即增大到最大值或不能立即减小为零,因此可以借用力学中的术语,说线圈能够体现电的“惯性”。线圈的自感系数越大,这个现象越明显,可见,电的“惯性”大小决定于线圈的自感系数。

(五)、自感现象的应用——日光灯的原理:

日光灯就是利用自感现象的例子。灯管的两端各有一个灯丝,灯管内充有微量的氩和稀薄的天然汞蒸汽,灯管内壁涂有荧光物质。当灯管内的气体被击穿而导电时,灯管两端的灯丝就会释放出大量的电子,这些电子与汞原子碰撞而放出紫外线,涂在灯管内的荧光物质在紫外线的照射下发出可见光,根据不同的需要充以不同的气体,并在管的内壁上涂上不同的荧光物质,就可制造出不同颜色的日光灯了。

日光灯的电路图如下图所示:

I

t

I

t

I

t

I

t

相关文档
最新文档