列不等式解应用题

合集下载

列不等式组解决实际问题

列不等式组解决实际问题

列一元一次不等式组解应用题的一般步 骤是: (1):审题,分析题目中已知什么,求 什么,明确各数量之间的关系 (2):设适当的未知数 (3):找出题目中的所有不等关系 (4):列不等式组 (5):求出不等式组的解集 (6):写出符合题意的答案 答:审、设、找、列、解、答。
某工人在生产中, 例1 某工人在生产中,经过第一次改进技 每天所做的零件的个数比原来多10个 术,每天所做的零件的个数比原来多 个, 因而他在8天内做完的零件就超过 因而他在 天内做完的零件就超过200个, 个 天内做完的零件就超过 后来,又经过第二次技术的改进, 后来,又经过第二次技术的改进,每天又多 个零件, 做37个零件,这样他只做 天,所做的零件 个零件 这样他只做4天 的个数就超过前8天的个数 天的个数, 的个数就超过前 天的个数,问这位工人原 先每天可做零件多少个? 先每天可做零件多少个?
例2、某中学为八年级寄宿学生安 排宿舍,如果每间4人,那么有20 人无法安排,如果每间8人,那么 有一间不空也不满,求宿舍间数 和寄宿学生人数。
例3、 某校为了奖励在数学竞赛中获奖 、 的学生,买了若干本课外读物准备送给他 的学生 买了若干本课外读物准备送给他 们. 如果每人送3本 则还余 则还余8本 如果前面每 如果每人送 本,则还余 本;如果前面每 人送5本 最后一人得到的课外读物不足 最后一人得到的课外读物不足3 人送 本,最后一人得到的课外读物不足 设该校买了m本课外读物 本.设该校买了 本课外读物 有x名学生 设该校买了 本课外读物,有 名学生 获奖,请解答下列问题 请解答下列问题: 获奖 请解答下列问题 (1)用含 的代数式表示 用含x的代数式表示 用含 的代数式表示m; (2)求出该校的获奖人数及所买课外读物 求出该校的获奖人数及所买课外读物 的本数. 的本数

基本不等式实际应用题

基本不等式实际应用题

得最小值为( ) B
(2009年天津理6)
A. 8
B. 4 C. 1
D.
11 ab
1 4
2.(2010四川文)设ab0, 则a2 1 1 的最小值是( D )
ab a(ab) A1 B 2 C3 D 4
3.(2009山东理12T)设 x满,足y约束条件
3x y 6 0,
x
y若 目2 标 函0 ,数
2(x+y)=20
即 x+y=10
∴ xy ( x y )2 =25
当且仅当x=y=5时取等号
2
∴ 当这个矩形的长、宽都是5m的时候面积最大,
为25
m2
y x
(5)一段长为30m的篱笆围成一个一边靠墙的 矩形菜园,墙长18m,问这个矩形的长、宽各 为多少时,菜园的面积最大,最大面积时多少?
解: 设菜园的长和宽分别为xm,ym
5000 + 16× 2
x·3025 = 6760 x
只 有 x = 3025 即 x = 55取 " = "
x
4 8 4 0 = 8 8 ,a = 5 5 < 1
x
88
例2:某种生产设备购买时费用为10万元,每年的设备管理费共计9千元,这种生产设备的维修费各年为:第一 年2千元,第二年4千元,第三年6千元,依每年2千元的增量递增。问这种生产设备最多使用多少年报废最合 算(即使用多少年的平均费用最少?)
a2
16 b(a
b)
a2
64 a2
2
a
2
64 a2
16,
a 2 2,b 2
1. 两个不等式 (1)
a,bR,那么 a2b2 2ab (2) (当且 当且仅仅 当aa=b当 时,b等时 号成立取 ""号)

列不等式(组)解应用题专项练习

列不等式(组)解应用题专项练习

第三讲 列不等式(组)解应用题专项练习1.某学校组织八年级学生参加社会实践活动,若单独租用35座客车若干辆,则刚好坐满;若单独租用55座客车,则可以少租一辆,且余45个空座位.(1)求该校八年级学生参加社会实践活动的人数;(2)已知35座客车的租金为每辆320元,55座客车的租金为每辆400元.根据租车资金不超过1500元的预算,学校决定同时租用这两种客车共4辆(可以坐不满).请你计算本次社会实践活动所需车辆的租金.解:(1)设单独租用35座客车需x 辆,由题意得:3555(1)45x x =--,解得:5x =.∴35355175x =⨯=(人).答:该校八年级参加社会实践活动的人数为175人. ··································· 3分(2)设租35座客车y 辆,则租55座客车(4y -)辆,由题意得:3555(4)175320400(4)1500y y y y +-⎧⎨+-⎩≥≤, ······························· 6分 解这个不等式组,得111244y ≤≤. ∵y 取正整数,∴y = 2.∴4-y = 4-2 = 2.∴320×2+400×2 = 1440(元).所以本次社会实践活动所需车辆的租金为1440元. ································· 8分2.某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.相关资料表明:甲、乙两种鱼苗的成活率分别为90%和95%.(1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾?(2)若购买这批鱼苗的钱不超过4200元,应如何选购鱼苗?(3)若要使这批鱼苗的成活率不低于93%,且购买鱼苗的总费用最低,应如何选购鱼苗?解:(1)设购买甲种鱼苗x 尾,则购买乙种鱼苗(6000)x -尾,由题意得:0.50.8(6000)3600x x +-= ………………………………………(1分)解这个方程,得:4000x =∴60002000x -=答:甲种鱼苗买4000尾,乙种鱼苗买2000尾. …………………(2分)(2)由题意得:0.50.8(6000)4200x x +-≤ ……………………………(3分) 解这个不等式,得: 2000x ≥即购买甲种鱼苗应不少于2000尾. ………………………………(4分)(3)设购买鱼苗的总费用为y ,则0.50.8(6000)0.34800y x x x =+-=-+ (5分)由题意,有909593(6000)6000100100100x x +-≥⨯………………………(6分) 解得: 2400x ≤…………………………………………………………(7分) 在0.34800y x =-+中 ∵0.30-<,∴y 随x 的增大而减少∴当2400x =时,4080y =最小.即购买甲种鱼苗2400尾,乙种鱼苗3600尾时,总费用最低. (9)3.为支持玉树搞震救灾,某市A 、B 、C 三地现分别有赈灾物资100吨、100吨、80吨,需全部运往玉树重灾地区D 、E 两县,根据灾区情况,这批赈灾物资运往D 县的数量比运往E 县的数量的2倍少20吨。

列一元一次不等式解应用题

列一元一次不等式解应用题

列一元一次不等式解应用题小明最近在家里过得可开心了,他决定搞个小聚会,邀请几个好朋友来家里一起玩。

可是,问题来了,家里的小沙发就只有三个座位。

他想,这可是个大问题啊,毕竟朋友可不止三个呢。

他心里嘀咕,怎么才能让大家都坐得舒舒服服呢?想着想着,突然脑海中闪过一个念头,为什么不算一算呢?于是,小明就拿出了纸和笔,准备来个简单的计算。

先说说情况吧,他这次打算请五个好友,名叫小红、小华、小刚、小丽和小翠,听名字就知道都是一帮热情的小伙伴。

沙发上挤着三个人,那可真是要像沙丁鱼一样了。

他心想,嗯,那不行呀,得让大家都坐下才行。

他琢磨着,如果有些朋友不来,沙发上的位置就够了。

于是,小明决定列出一个不等式来帮自己解这个难题。

嘿,他的数学可不是白学的,想想还是得用一下。

所以,他设定了一个变量,x,表示参加聚会的人数。

根据他的计划,x要小于或等于3,这样沙发上的座位才不会出现“你挤我碰”的尴尬情况。

小明心里默念,不等式的意思就是,参加的人数不能超过三个。

他写下了这个不等式,x ≤ 3。

心里想着,怎么才能让这个不等式成立呢?这可就得看他的朋友们的“意愿”了。

小明心里又开始盘算,万一每个人都想来,那就有点麻烦了。

他忍不住笑了,想象着大家一起来的时候,那场面简直就是个“大杂烩”,沙发上坐满人,连个空位都没有,肯定要推来推去的。

他决定给朋友们发个群消息,问问大家的意向,看看谁有空。

小明一边发消息,一边想着,大家的回复一定会热烈,毕竟聚会总是让人兴奋的。

没过多久,小明的手机就响了,朋友们陆续回复过来了。

有的小红说:“我可以来,但小华可能有事。

”小华则表示:“我想来,但得看看工作。

”小刚、小丽和小翠纷纷表示自己一定会到场。

小明一边看回复,一边心里盘算,唉,看来有点棘手啊,要是他们都能来,那可真是麻烦了。

小明意识到,要把人头控制在3个以内,还真得动动脑筋。

他突然想到,不如给每个朋友发个小调查,问问大家谁最想来,谁又能让座,反正大家都是好朋友,这事应该能搞定。

列不等式(组)解应用题

列不等式(组)解应用题

例析列不等式(组)解应用题列一元一次不等式组解应用题的一般步骤如下:1、审:审清题意,弄懂已知什么,求什么,以及各个数量之间的关系。

2、设:只能设一个未知数,一般是与所求问题有直接关系的量。

3、找:找出题中所有的不等关系,特别是隐含的数量关系。

4、列:列出不等式组。

5、解:分别解出每个不等式的解集,再求其公共部分,得出结果。

6、答:根据所得结果作出回答。

例 1 为节约用电,某学校于本学期初制订了详细的用电计划。

如果实际每天比计划多用电2kW·h,那么本学期的用电量将会超过2530kW·h;如果实际每天比计划节约用电2kW·h,那么本学期的用电量将不会超过2200kW·h。

若本学期学生在校时间按110天计算,那么学校每天用电量应控制在什么范围内?例2 小宝和爸爸、妈妈三人在操场上玩跷跷板,爸爸体重为72kg,坐在跷跷板的一端;体重只有妈妈一半的小宝和妈妈一同坐在跷跷板的另一端。

这时,跷跷板倾向爸爸的一端。

后来,小宝借来一副质量为6kg的哑铃,加在他和妈妈坐的一端,结果,跷跷板变为倾向妈妈的一端,请计算小宝的体重约是多少千克。

(精确到1kg)例3 (哈尔滨市)双蓉服装店老板到厂家选购A、B两种型号的服装,若销售一件A型服装可获利18元,销售一件B型服装可获利30元,根据市场需求,服装店老板决定,购进A型服装的数量要比购进B型服装数量的2倍还多4件,且A型服装最多可购进28件,这样服装全部售出后,可使总获利不少于699元,问有几种进货方案?如何进货?例4(连云港市)光明农场有某种植物10000千克,打算全部用于生产高科技药品和保健食品。

若生产高科技药品,1千克该植物可提炼出0.01千克的高科技药品,将产生污染物0.1千克,每1千克高科技药品可获利润5000元;每生产1千克保健食品可获利润100元。

1千克该植物可生产0.2千克保健食品,将产生污染物0.04千克。

要使总利润不低于410000元,所产生的污染物总量不超过880千克,求用于生产高科技药品的该植物重量的范围。

不等式应用题大全-附答案

不等式应用题大全-附答案

1.一家游泳馆每年6~8月出售夏季会员证,每张会员证80元,只限本人使用,凭证购入场券每张1元,不凭证购入场券每张3元:⑴什么情况下,购会员证与不购会员证付一样的钱⑵什么情况下,购会员证比不购会员证更合算⑶什么情况下,不够会员证比购会员证更合算注意:解题过程完整,分步骤,能用方程解的用方程解80+X=3x80=2XX=40X=40,购会员证与不购会员证付一样的钱X>40购会员证比不购会员证更合算(X<40不够会员证比购会员证更合算2.下列是3家公司的广告:甲公司:招聘1人,年薪3万,一年后,每年加薪2000元乙公司:招聘1人,半年薪1万,半年后按每半年20%递增.丙公司:招聘1人,月薪2000元,一年后每月加薪100元你如果应聘,打算选择哪家公司(合同期为2年)甲:3+=万乙:1++*+**=1+++=万丙:*24+++++……=+=万}甲工资最高,去甲3.某风景区集体门票的收费标准是:20人以内(含20人)。

每人25元,超过20人的,超过的部分每人10元,某班51名学生该风景区浏览,购买门票要话多少钱20*25+(51-20)*10=810(元)4.某公司推销某种产品,付给推销员每月的工资有两种方案:方案一:不计推销多少都有600元底薪,每推销一件产品加付推销费2元;方案二:不付底薪,每推销一件产品,付给推销费5元;若小明一个月推销产品300件,那么他应选择哪一种工资方案比较合算为什么/方案一:600+2×300=1200(元)方案二:300×5=1500(元)所以方案二合算。

5.某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖出这两件衣服总的是盈利还是亏损,或是不盈不亏设其中一件衣服原价是X无,另一件是Y元,那么X(1+25%)=60,得X=40Y(1-25%)=60,得Y=80总的情况是售价-原价,40+80-60*2=0所以是不盈不亏?验的平均成绩不少于90分均成绩不少于90分,则总分不少于3*90=270分。

不等式应用题(带答案)

不等式应用题(带答案)

不等式应用 题1、去年某市空气质量良好的天数与全年的天数(365)之比达到60%,如果明年(365天)这样的比值要超过70%,那么明年空气质量良好的天数要比去年至少增加多少?解:设明年空气质量良好的天数比去年增加了x6036570100365100x +⨯>则: 36.5x >解得:37x x ≥依题意,应为整数,所以:答:明年空气质量良好的天数要比去年至少增加37,才能使这一年空气质量良好的天数超过全年天数的70%。

2、甲、乙两商场以同样价格出售同样商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费;顾客到哪家商场购物花费少?解: (1)当累计购物不超过50元时,到两商场购物花费一样。

(2)当累计购物超过50元时而不超过100元时,到乙商场购物花费少。

(3)当累计购物超过100元时,设累计购物(100)x x >元。

①500.95(50)1000.9(100)150x x x +->+->由:解得:所以,累计购物超过150元时,到甲商场购物花费少②500.95(50)1000.9(100)150x x x +-+-由:<解得:<所以,累计购物超过100元而不超过150元时,到乙商场购物花费少③500.95(50)1000.9(100)150x x x +-+-由:=解得:=所以,累计购物超为150元时,到两商场购物花费一样。

3、某工程队计划在10天内修路6km ,施工前两天修完1.2 km 以后,计划发生变化,准备提前2天完成修路任务,以后几天内平均每天至少要修路多少?解:设以后几天内平均每天至少要修路x km 。

则6 1.26x +≥ 解得:0.8x ≥答:以后几天内平均每天至少要修路0.8 km.4、某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少要答对多少分?解:设小明至少要答对x 道题。

基本不等式应用题型

基本不等式应用题型

基本不等式应用题型1. 一个长方形的长是x+3,宽是x-2,求长方形的周长和面积。

解答:周长=2(x+3+x-2)=2(2x+1)=4x+2,面积=(x+3)(x-2)=x^2+x-6。

2. 一个三角形的两边长分别是x和x+2,第三边长是2x-1,求三角形的周长。

解答:周长=x+(x+2)+(2x-1)=4x+1。

3. 一个矩形的长是x+4,宽是x-1,求矩形的周长和面积。

解答:周长=2(x+4+x-1)=2(2x+3)=4x+6,面积=(x+4)(x-1)=x^2+3x-4。

4. 一个正方形的边长是2x-1,求正方形的周长和面积。

解答:周长=4(2x-1)=8x-4,面积=(2x-1)^2=4x^2-4x+1。

5. 一个圆的半径是x+2,求圆的周长和面积。

解答:周长=2π(x+2)=2πx+4π,面积=π(x+2)^2=π(x^2+4x+4)。

6. 一个等腰三角形的底边长是2x-1,两腿长分别是x和x+3,求三角形的周长。

解答:周长=(2x-1)+x+(x+3)=4x+2。

7. 一个梯形的上底长是x+2,下底长是2x-1,高是x,求梯形的面积。

解答:面积=((x+2)+(2x-1))×x/2=(3x+1)×x/2=3x^2+x/2。

8. 一个圆的直径是2x+1,求圆的周长和面积。

解答:周长=π(2x+1)=2πx+π,面积=π[(2x+1)/2]^2=π(x+1/2)^2。

9. 一个等边三角形的边长是2x-1,求三角形的周长和面积。

解答:周长=3(2x-1)=6x-3,面积=(2x-1)^2=4x^2-4x+1。

10. 一个平行四边形的边长分别是x和x+3,高是x-1,求平行四边形的周长和面积。

解答:周长=2(x+x+3)=4x+6,面积=(x+3)(x-1)=x^2+2x-3。

不等式应用题

不等式应用题

【例题讲解】类型一:分配问题(一元一次不等式组)例一:某旅游团有48人到某宾馆住宿,若全安排住宾馆的底层,每间住4人,房间不够;每间住5人,有一个房间没有住满5人。

问该宾馆底层有客房多少间?课堂练习:1、某宾馆一楼房间比二楼房间少5间,一旅游团有48人,若全部安排在一楼,每间住4人,房间不够,每间住5人,有房间没住满。

若全部安排在二楼,每间住3人,房间不够,每间住4人,则有房间没住满。

问宾馆一楼有多少房3、开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小亮用31元买了同样的钢笔2支和笔记本5本.(1)求每支钢笔和每本笔记本的价格;(2)校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件作为奖品,奖给校运会中表现突出的同学,要求笔记本数不少于钢笔数,共有多少种购买方案?请你一一写出.第1 页共8 页4、初中毕业了,孔明同学准备利用暑假卖报纸赚取140~200元钱,买一份礼物送给父母.已知:在暑假期间,如果卖出的报纸不超过1000份,则每卖出一份报纸可得0.1元;如果卖出的报纸超过1000份,则超过..部分..每份可得0.2元.(1)请说明:孔明同学要达到目的,卖出报纸的份数必须超过1000份.(2)孔明同学要通过卖报纸赚取140~200元,请计算他卖出报纸的份数在哪个范围内.4.为执行中央“节能减排,美化环境,建设美丽新农村”的国策,我市某村计划建造A、B两种型号的沼气池共20个,以解决该村所有农户的燃料问题.两种型号沼气池的占地面积、使用农户数及造价见下表:已知可供建造沼气池的占地面积不超过365m2,该村农户共有492户.(1)满足条件的方案共有几种?写出解答过程.(2)通过计算判断,哪种建造方案最省钱.第2 页共8 页二.下列情况列一元一次不等式组解应用题1.应用题中含有两个(或两个以上,下同)不等量的关系.它们是由两个明显的不等关系体现出来,一般是讲两件事或两种物品的制作、运输等.例3.已知服装厂现有A种布料70米,B种布料52米,现计划用这两种面料生产M,N两种型号的时装共80套.已知做一套M型号的时装需用A种布料0.6米,B种布料0.9米,可获利45元;做一套N型号的时装需用A种布料1.1米,B种布料0.4米,可获利润50元.若设生产N型号码的时装套数为x,用这批布料生产这两种型号的时装所获的总利润为y元.(1)求y(元)与x(套)的函数关系式,并求出自变量x的取值范围;(2)服装厂在生产这批时装中,当N型号的时装为多少套时,所获利润最大?最大利润是多少?分析:本题存在的两个不等量关系是:①合计生产M、N型号的服装所需A种布料不大于70米;②合计生产M、N型号的服装所需B种布料不大于52米.2.两个不等关系直接可从题中的字眼找到,这些字眼明显存在着上下限.例4.某校为了奖励在数学竞赛中获胜的学生,买了若干本课外读物准备送给他们.如果每人送3本,则还余8本;如果前面每人送5本,则最后一人得到的课外读物不足..3.本..设该校买了m本课外读物,有x名学生获奖.请回答下列问题:(1)用含x的代数式表示m;(2)求出该校的获奖人数及所买课外读物的本数.第3 页共8 页例5.某城市的出租汽车起步价为10元(即行驶距离在5千米以内都需付10元车费),达到或超过5千米后,每行驶1千米加1.2元(不足1千米也按1千米计).现某人乘车从甲地到乙地,支付车费17.2元,问从甲地到乙地的路程大约是多少?练习:1、(2002重庆市)韩日“世界杯”期间,重庆球迷一行56人从旅馆乘出租车到球场为中国队加油,现有A、B两个出租车队,A队比B队少3辆车,若全部安排乘A队的车,每辆坐5人,车不够,每辆坐6人,有的车未坐满;若全部安排乘B队的车,每辆车坐4人,车不够,每辆车坐5人,有的车未坐满,则A队有出租车()A.11辆B.10辆C.9辆D.8辆2、(2001荆州)在双休日,某公司决定组织48名员工到附近一水上公园坐船游园,公司先派一个人去了解船只的租金情况,这个人看到的租金价格表如下:那么,怎样设计租船方案才能使所付租金最少?(严禁超载)第4 页共8 页3、(佳木斯)某公司经营甲、乙两种商品,每件甲种商品进价12万元,•售价14.5万元.每件乙种商品进价8万元,售价10万元,且它们的进价和售价始终不变.•现准备购进甲、乙两种商品共20件,所用资金不低于190万元不高于200万元.(1)该公司有哪几种进货方案?(2)该公司采用哪种进货方案可获得最大利润?最大利润是多少?(3)利用(2)中所求得的最大利润再次进货,•请直接写出获得最大利润的进货方案.4、(苏州)苏州地处太湖之滨,有丰富的水产养殖资源,•水产养殖户李大爷准备进行大闸蟹与河虾的混合养殖,他了解到如下信息:①每亩水面的年租金为500元,水面需按整数亩出租;②每亩水面可在年初混合投入4kg蟹苗和20kg虾苗;③每千克蟹苗的价格为75元,其饲养费用为525元,当年可获1 400元收益;④每千克虾苗的价格为15元,其饲养费用为85元,当年可获160元收益.(1)若租用水面n亩,则年租金共需_________元;(2)水产养殖的成本包括水面年租金、苗种费用和饲养费用,求每亩水面蟹虾混合养殖的年利润(利润=收益-成本);(3)李大爷现有资金25 000元,他准备再向银行贷不超过25 000元的款,•用于蟹虾混合养殖,已知银行贷款的年利率为8%,试问李大爷应该租多少亩水面,•并向银行贷款多少元,可使年利润超过35 000元?第5 页共8 页5、(哈尔滨)双蓉服装店老板到厂家选购A、B两种型号的服装,若购进A种型号服装9件,B种型号服装10件,需要1 810元;若购进A种型号服装12件,B种型号服装8件,需要1 880元.(1)求A、B两种型号的服装每件分别为多少元?(2)若销售1件A型服装可获得18元,销售1件B型服装可获得30元.根据市场需求,服装店老板决定,购进A型服装的数量要比购进B型服装数量的2倍还多4件,且A型服装最多可购进28件,这样服装全部售出后,可使总的获利不少于699元.问有几种进货方案?如何进货?6、(河南)某公司为了扩大经营,决定购进6台机器用于生产某种活塞.现有甲、•乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示.经过预算,本次购买机器所耗资金不能超过34万元.(1)按该公司要求可以有几种购买方案?(2)若该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择哪种方案?7、某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机的进货量的一半.电视机与洗衣机的进价和售价如下表:计划购进电视机和洗衣机共100台,商店最多可筹集资金161 800元.(1)请你帮助商店算一算有多少种进货方案?(不考虑除进价之外的其它费用)(2)哪种进货方案待商店销售购进的电视机与洗衣机完毕后获得利润最多?并求出最多利润.(利润=售价-进价)第6 页共8 页8、绵阳市“全国文明村”江油白玉村果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.(1)王灿如何安排甲、乙两种货车可一次性地运到销售地?有几种方案?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?9、2007年我市某县筹备20周年县庆,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭,两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉80盆,乙种配A B花卉40盆,搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.(2)若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?10、一手机经销商计划购进某品牌的A型、B型、C型三款手机共60部,每款手机至少要购进8部,且恰好用完购机款61000元.设购进A型手机x部,B型手机y部.三款手机的进价和预售价如下表:Array(1)用含x,y的式子表示购进C型手机的部数;(2)求出y与x之间的函数关系式;(3)假设所购进手机全部售出,综合考虑各种因素,该手机经销商在购销这批手机过程中需另外支出各种费用共1500元.①求出预估利润P(元)与x(部)的函数关系式;(注:预估利润P=预售总额-购机款-各种费用)②求出预估利润的最大值,并写出此时购进三款手机各多少部.第7 页共8 页11、某公司有员工50人,为了提高经济效益,决定引进一条新的生产线并从现有员工中抽调一部分员工到新的生产线上工作,经调查发现:分工后,留在原生产线上工作的员工每月人均产值提高40%;到新生产线上工作的员工每月人均产值为原来的3倍,设抽调x人到新生产线上工作.⑴填空:若分工前员工每月的人均产值为a元,则分工后,留在原生产线上工作的员工每月人均产值是元,每月的总产值是元;到新生产线上工作的员工每月人均产值是元,每月的总产值是元;⑵分工后,若留在原生产线上的员工每月生产的总产值不少于分工前原生产线每月生产的总产值;而且新生产线每月生产的总产值又不少于分工前生产线每月生产的总产值的一半。

常考经典不等式应用题6道

常考经典不等式应用题6道

1、某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表,设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W关于x的函数关系式,并求出x的取值范围;(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;(3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润。

甲店的B型产品以及乙店的A,B型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大2、某公司有甲种原料260kg,乙种原料270kg,计划用这两种原料生产A、B两种产品共40件.生产每件A种产品需甲种原料8kg,乙种原料5kg,可获利润900元;生产每件B种产品需甲种原料4kg,乙种原料9kg,可获利润1100元.设安排生产A种产品x件.(1)完成下表甲(kg)已(kg)件数(件)A5x xB4(40-x)40-x(3)设生产这批40件产品共可获利润y元,将y表示为x的函数,并求出最大利润.3、我市花石镇组织10辆汽车装运完A、B、C三种不同品质的湘莲共100吨到外地销售,按计划10辆汽车都要装满,且每辆汽车只能装同一种湘莲,根据下表提供的信息,解答以下问题:湘莲品种A B C每辆汽车运载量(吨)12108每吨湘莲获利(万元)342设装运A种湘莲的车辆数为x,装运B种湘莲的车辆数为y,求y与x之间的函数关系式;(2)如果装运每种湘莲的车辆数都不少于2辆,那么车辆的安排方案有几种并写出每种安排方案;(3)若要使此次销售获利最大,应采用哪种安排方案并求出最大利润的值。

4、为支持四川抗震救灾,重庆市A、B、C三地现在分别有赈灾物资100吨,、100吨、80吨,需要全部运往四川重灾地区的D、E两县.根据灾区的情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20吨.(1)求这批赈灾物资运往D、E两县的数量各是多少(2)若要求C地运往D县的赈灾物资为60吨,A地运往D的赈灾物资为x吨(x为整数),B地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍.其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25吨.则A、B两地的赈灾物资运往D、E两县的方案有几种请你写出具体的运送方案;(3)已知A、B、C三地的赈灾物资运往D、E两县的费用如下表:A地B地C地运往D县的费用(元/吨)220200200运往E县的费用(元/吨)250220210为及时将这批赈灾物资运往D、E两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少5、我州鼓苦荞茶、青花椒、野生蘑菇,为了让这些珍宝走出大山,走向世界,州政府决定组织21辆汽车装运这三种土特产共120吨,参加全国农产品博览会.现有A型、B型、C型三种汽车可供选择.已知每种型号汽车可同时装运2种土特产,且每辆车必须装满.根据下表信息,解答问题.苦荞茶 青花椒 野生蘑菇每辆汽车运载量(吨)A 型2 2 B 型 4 2 C 型16(1)设A 型汽车安排x 辆,B 型汽车安排y 辆,求y 与x 之间的函数关系式.(2)如果三种型号的汽车都不少于4辆,车辆安排有几种方案并写出每种方案. (3)为节约运费,应采用(2)中哪种方案并求出最少运费.6、小明到一家批发兼零售的文具店给九年级学生购买考试用2B 铅笔,请根据下列情景解决问题。

小学列不等式解应用题60道

小学列不等式解应用题60道

小学列不等式解应用题60道问题1某公司年底奖金的发放规则是:工龄不满1年的员工发放500元,工龄1年以上但不满5年的员工发放1000元,工龄5年以上的员工发放2000元。

已知公司有500名员工,请通过列不等式解应用题的方法计算发放奖金的总金额。

解答1设工龄不满1年的员工人数为x,工龄1年以上但不满5年的员工人数为y,工龄5年以上的员工人数为z。

根据题意,可以列出以下不等式:- x + y + z = 500 (员工总人数为500)- 500x + 1000y + 2000z = 总金额根据不等式解应用题的方法,我们需要对以上两个不等式进行求解。

由于要求总金额,我们可以先将x、y、z的系数分别调整为1、2、4。

得到以下等价的不等式:- x + y + z = 500- x + 2y + 4z = 总金额现在我们可以通过求解这个等价的不等式组,得到发放奖金的总金额。

总金额 = 4z + 2(500 - z) + z = 1000 + 2z因此,发放奖金的总金额为1000 + 2z。

根据题意,发放奖金的总金额应为整数,且大于0。

因此,z的取值范围为1至250。

故一共有250种可能的总金额。

问题2某餐厅营业额的计算规则如下:每位客人上座时间不满30分钟的,收取10元;上座时间不满1小时的,收取30元;上座时间不满2小时的,收取60元。

已知某天餐厅共接待了150位客人,求这天的营业额。

解答2设上座时间不满30分钟的客人数为x,上座时间不满1小时但不满2小时的客人数为y,上座时间不满2小时的客人数为z。

根据题意,可以列出以下不等式:- x + y + z = 150 (客人总数为150)- 10x + 30y + 60z = 营业额根据不等式解应用题的方法,我们需要对以上两个不等式进行求解。

由于要求营业额,我们可以先将x、y、z的系数分别调整为1、3、6。

得到以下等价的不等式:- x + y + z = 150- x + 3y + 6z = 营业额现在我们可以通过求解这个等价的不等式组,得到这天的营业额。

不等式应用题(带答案)

不等式应用题(带答案)

不等式应用题(带答案)不等式应用题1. 某商场正在举行打折活动,标有原价为x元的商品打7折出售,小明买了一个售价为y元的商品打了折后用了z元购买,设不等式x>y>z,请计算头一个不等式。

解: 原价为x元的商品打7折后的价格为0.7x元,由题意可知小明买的商品在打折后售价为0.7x元,且小明用z元购买了该商品。

根据不等式的性质,可得到如下关系式:0.7x > z即,x > z/0.7所以,头一个不等式为x > z/0.7。

2. 一辆汽车每小时以v公里的速度行驶,已知行驶t小时后行驶了s 公里,求不等式v < s/t。

解: 汽车行驶t小时后行驶的路程为vt公里,已知行驶了s公里,则可得到如下关系式:vt > s即,v > s/t所以,不等式为v > s/t。

3. 小明参加了一场马拉松比赛,他总共用时t小时,已知他的平均速度为v千米每小时,求不等式t > d/v,其中d为比赛的总路程。

解: 小明参加马拉松比赛用时t小时,根据速度的定义可知,平均速度v等于总路程d除以用时t,即:v = d/t由于不等式是要求t > d/v,将v的表达式代入可得:t > d/(d/t)化简后得到:t > t,该不等式恒成立。

所以,不等式为t > d/v。

4. 一个三角形的两边长分别为a和b,夹角为θ (0° < θ < 180°),求不等式a + b > 2absin(θ)。

解: 根据三角形的余弦定理可得 a² = b² + c² - 2bc cos(θ),将此式代入不等式中可得:a +b > 2ab sin(θ) + 2bc cos(θ)又因为sin(θ) ≤ 1,所以2ab sin(θ) ≤ 2ab,化简后得到:a +b > 2bc cos(θ)由于夹角θ位于 (0°, 180°) 之间,所以cos(θ) > 0,即2bc cos(θ) > 0。

不等式应用题(附答案)

不等式应用题(附答案)

如图是用矩形厚纸片(厚度不计)做长方体包装盒的示意图,阴影部分是裁剪掉的部分.沿图中实线折叠做成的长方体纸盒的上下底面是正方形,有三处矩形形状的“舌头”用来折叠后粘贴或封盖.(1)若用长31cm,宽26cm的矩形厚纸片,恰好能做成一个符合要求的包装盒,盒高是盒底边长的2.5倍,三处“舌头”的宽度相等.求“舌头”的宽度和纸盒的高度;(2))现有一张40cm×35 cm的矩形厚纸片,按如图所示的方法设计包装盒,用来包装一个圆柱形工艺笔筒,已知该种笔筒的高是底面直径2.5倍,要求包装盒“舌头”的宽度为2cm(如有多余可裁剪),问这样的笔筒底面直径最大可以为多少?分析:找出题中的折叠规律,空间思维的,想象一下纸盒折叠后的形状,设“舌头”的宽为x,长为y,利用矩形硬纸的长宽,正确的列出方程,即可求出,(2)做成的包装盒的长宽必不大于纸盒的长宽列不等式.解答:解:(1)设“舌头”的宽度为xcm,盒底边长为ycm.根据题意得解得6×2.5=15(cm)答:“舌头”的宽度为2cm,纸盒的高度为15cm.(2)设瓶底直径为dcm,根据题意得解得:d≤8答:这样的笔筒的底面直径最大可以为8cm.水是人类最宝贵的资源之一,我国水资源均占有量远远低于世界平均水平,为了节约用水,保护环境,学校于本学期初便制定了详细的用水计划,如果实际每天比计划多用1t水,那么本学期的用水总量将会超过2300t如果实际每天比计划节约1t水,那么本学期的用水总量将会不足2100t.在本学期得在校时间按110天计算,那么学校计划每天用水量应控制在什么范围?解:设每天用水X吨(X+1)*110>2300(X-1)*110<2100解得:11分之219<X<11分之221答:在11分之219到11分之221之间.已知二元一次方程组{2X+Y=5M+6,X-2Y=-17}的接X,Y都是正数,且X的值小于Y的值,求M的取值范围。

列不等式组解应用题专项练习60题(有答案)

列不等式组解应用题专项练习60题(有答案)

列一元一次不等式组解应用题60题1.某工厂计划生产A,B两种产品共10件,其生产成本和利润如下表:A种产品B种产品成本(万元∕件) 3 5利润(万元∕件) 1 2(1)若工厂计划获利14万元,问A,B两种产品应分别生产多少件?(2)若工厂投入资金不多于44万元,且获利多于14万元,问工厂有哪几种生产方案?(3)在(2)条件下,哪种方案获利最大?并求最大利润.2.某校某年级秋游,若租用48座客车若干辆,则正好坐满;若租用64座客车,则能少租1辆,且有一辆车没有坐满,但超过一半.(1)需租用48座客车多少辆?解:设需租用48座客车x辆.则需租用64座客车___辆.当租用64座客车时,未坐满的那辆车还有___个空位(用含x的代数式表示).由题意,可得不等式组:_____解这个不等式组,得:______.因此,需租用48座客车_________辆.(2)若租用48座客车每辆250元,租用64座客车每辆300元,应租用哪种客车较合算?4.某班有学生55人,其中男生与女生的人数之比为6:5.(1)求出该班男生与女生的人数;(2)学校要从该班选出20人参加学校的合唱团,要求:①男生人数不少于7人;②女生人数超过男生人数2人以上.请问男、女生人数有几种选择方案?5.某小区前坪有一块空地,现想建成一块面积大于48平方米,周长小于34米的矩形绿化草地,已知一边长为8米,设其邻边长为x米,求x的整数解.6.2011年4月25日,全国人大常委会公布《中华人民共和国个人所得税法修正案(草案)》,向社会公开征集意见.草级数全月应纳税所得额税率1 不超过1500元的部分5%2 超过1500元至4500元的部分10%3 超过4500元至9000元的部分20%………依据草案规定,解答下列问题:(1)李工程师的月工薪为8000元,则他每月应当纳税多少元?(2)若某纳税人的月工薪不超过10000元,他每月的纳税金额能超过月工薪的8%吗?若能,请给出该纳税人的月工薪范围;若不能,请说明理由.7.某电器城经销A型号彩电,今年四月份毎台彩电售价为2000元.与去年同期相比,结果卖出彩电的数量相同的,但去年销售额为5万元,今年销售额为4万元.(1)问去年四月份每台A型号彩电售价是多少元?(2)为了改善经营,电器城决定再经销B型号彩电,已知A型号彩电每台进货价为1800元,B型号彩电每台进货价为1500元,电器城预计用不多于3.3万元且不少于3.2万元的资金购进这两种彩电共20台,问有哪几种进货方案?(3)电器城准备把A型号彩电继续以原价每台2000元的价格出售,B型号彩电以每台1800元的价格出售,在这批彩电全部卖出的前提下,如何进货才能使电器城获利最大?最大利润是多少?8.某企业为了改善污水处理条件,决定购买A、B两种型号的污水处理设备共8台,其中每台的价格、月处理污水量如下表:经预算,企业最多支出57万元购买污水处理设备,且要求设备月处理污水量不低于1490吨.(1)企业有哪几种购买方案?(2)哪种购买方案更省钱?A型B型8 6价格(万元/台)200 180月处理污水量(吨/月)9.在“五•一”期间,某公司组织318名员工到雷山西江千户苗寨旅游,旅行社承诺每辆车安排有一名随团导游,并为此次旅行安排8名导游,现打算同时租甲、乙两种客车,其中甲种客车每辆载客45人,乙种客车每辆载客30人.(1)请帮助旅行社设计租车方案.(2)若甲种客车租金为800元/辆,乙种客车租金为600元/辆,旅行社按哪种方案租车最省钱?此时租金是多少?(3)旅行前,旅行社的一名导游由于有特殊情况,旅行社只能安排7名导游随团导游,为保证所租的每辆车安排有一名导游,租车方案调整为:同时租65座、45座和30座的大小三种客车,出发时,所租的三种客车的座位恰好坐满,请问旅行社的租车方案如何安排?10.为了鼓励城区居民节约用水,某市规定用水收费标准如下:每户每月的用水量不超过20度时(1度=1米3),水费为a元/度;超过20度时,不超过部分仍为a元/度,超过部分为b元/度.已知某用户四份用水15度,交水费22.5元,五月份用水30度,交水费50元.(1)求a,b的值;(2)若估计该用户六月份的水费支出不少于60元,但不超过90元,求该用户六月份的用水量x的取值范围.11.在眉山市开展城乡综合治理的活动中,需要将A、B、C三地的垃圾50立方米、40立方米、50立方米全部运往垃圾处理场D、E两地进行处理.已知运往D地的数量比运往E地的数量的2倍少10立方米.(1)求运往两地的数量各是多少立方米?(2)若A地运往D地a立方米(a为整数),B地运往D地30立方米,C地运往D地的数量小于A地运往D地的2倍.其余全部运往E地,且C地运往E地不超过12立方米,则A、C两地运往D、E两地哪几种方案?(3)已知从A、B、C三地把垃圾运往D、E两地处理所需费用如下表:A地B地C地22 20 20运往D地(元/立方米)20 22 21运往E地(元/立方米)在(2)的条件下,请说明哪种方案的总费用最少?12.小明家需要用钢管做防盗窗,按设计要求需要用同种规格、每根长6米的钢管切割成长0.8m的钢管及长2.5m 的钢管.﹙余料作废﹚(1)现切割一根长6m的钢管,且使余料最少.问能切出长0.8米及2.5米的钢管各多少根?(2)现需要切割出长0.8米的钢管89根,2.5米的钢管24根.你能用23根长6m的钢管完成切割吗?若能,请直接写出切割方案;若不能,请说明理由.13.为了对学生进行爱国主义教育,某校组织学生去看演出,有甲乙两种票,已知甲乙两种票的单价比为4:3,单价和为42元.(1)甲乙两种票的单价分别是多少元?(2)学校计划拿出不超过750元的资金,让七年级一班的36名学生首先观看,且规定购买甲种票必须多于15张,有哪几种购买方案?(1)求甲、乙两种原料每盒价钱各为多少元;(2)该工厂第三次购买时,要求甲种原料比乙种原料的2倍少200盒,且购买两种原料的总量不少于1 010盒,总金额不超过89 200元,请你通过计算写出本次购买甲、乙两种原料的所有方案.15.小明利用课余时间回收废品,将卖得的钱去购买5本大小不同的两种笔记本,要求共花钱不超过28元,且购买的笔记本的总页数不低于340页,两种笔记本的价格和页数如下表.为了节约资金,小明应选择哪一种购买方案?请说明理由.大笔记本小笔记本价格(元/本) 6 5页数(页/本)100 6016.整顿药品市场、降低药品价格是国家的惠民政策之一.根据国家《药品政府定价办法》,某省有关部门规定:市场流通药品的零售价格不得超过进价的15%.根据相关信息解决下列问题:(1)降价前,甲乙两种药品每盒的出厂价格之和为6.6元.经过若干中间环节,甲种药品每盒的零售价格比出厂价格的5倍少2.2元,乙种药品每盒的零售价格是出厂价格的6倍,两种药品每盒的零售价格之和为33.8元.那么降价前甲、乙两种药品每盒的零售价格分别是多少元?(2)降价后,某药品经销商将上述的甲、乙两种药品分别以每盒8元和5元的价格销售给医院,医院根据实际情况决定:对甲种药品每盒加价15%、对乙种药品每盒加价10%后零售给患者.实际进药时,这两种药品均以每10盒为1箱进行包装.近期该医院准备从经销商处购进甲乙两种药品共100箱,其中乙种药品不少于40箱,销售这批药品的总利润不低于900元.请问购进时有哪几种搭配方案?17.2010年的世界杯足球赛在南非举行.为了满足球迷的需要,某体育服装店老板计划到服装批发市场选购A、B 两种品牌的服装.据市场调查得知,销售一件A品牌服装可获利润25元,销售一件B品牌服装可获利润32元.根据市场需要,该店老板购进A种品牌服装的数量比购进B种品牌服装的数量的2倍还多4件,且A种品牌服装最多可购进48件.若服装全部售出后,老板可获得的利润不少于1740元.请你分析这位老板可能有哪些方案?18.某服装店欲购甲、乙两种新款运动服,甲款每套进价350元,乙款每套进价200元,该店计划用不低于7600元且不高于8000元的资金订购30套甲、乙两款运动服.(1)该店订购这两款运动服,共有哪几种方案?(2)若该店以甲款每套400元,乙款每套300元的价格全部出售,哪种方案获利最大?19.某学校组织八年级学生参加社会实践活动,若单独租用35座客车若干辆,则刚好坐满;若单独租用55座客车,则可以少租一辆,且余45个空座位.(2)已知35座客车的租金为每辆320元,55座客车的租金为每辆400元,根据租车资金不超过1500元的预算,学校决定同时租用这两种客车共4辆(可以坐不满).请你计算本次社会实践活动所需车辆的租金?20.为实现区域教育均衡发展,我市计划对某县A、B两类薄弱学校全部进行改造.根据预算,共需资金1575万元.改造一所A类学校和两所B类学校共需资金230万元;改造两所A类学校和一所B类学校共需资金205万元.(1)改造一所A类学校和一所B类学校所需的资金分别是多少万元?(2)若该县的A类学校不超过5所,则B类学校至少有多少所?(3)我市计划今年对该县A、B两类学校共6所进行改造,改造资金由国家财政和地方财政共同承担.若今年国家财政拨付的改造资金不超过400万元;地方财政投入的改造资金不少于70万元,其中地方财政投入到A、B两类学校的改造资金分别为每所10万元和15万元.请你通过计算求出有几种改造方案?21.2010年1月1日,全球第三大自贸区﹣中国﹣东盟自由贸易区正式成立,标志着该贸易区开始步入“零关税”时代,广西某民营边贸公司要把240顿白砂糖运往东盟某国的A,B两地,现用大,小两种货车共20辆,恰好能一次性装完这批白砂糖.已知这两种火车的载重量分别为15吨/辆和10吨/辆,运往A地的运费为:大车630元/辆,小车420元/辆;运往B地的运费为:大车750元/辆,小车550元/辆.(1)求这两种货车各用多少辆;(2)如果安排10辆货车前往A地,其余货车前往B地,且运往A地的白砂糖不少于115吨,请你设计出使用总运费最少的货车调配方案,并求出最少总运费?22.一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:销售方式粗加工后销售精加工后销售每吨获利(元)1000 2000已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?(2)如果先进行精加工,然后进行粗加工.①试求出销售利润W元与精加工的蔬菜吨数m之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?23.某校为迎接县中学生篮球比赛,计划购买A、B两种篮球共20个供学生训练使用.若购买A种篮球6个,则购买两种篮球共需费用720元;若购买A种篮球12个,则购买两种篮球共需费用840元.(1)A、B两种篮球单价各多少元?(2)若购买A种篮球不少于8个,所需费用总额不超过800元.请你按要求设计出所有的购买方案供学校参考,24.为打造“书香校园”,某学校计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.(1)问符合题意的组建方案有几种?请你帮学校设计出来;(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明在(1)中哪种方案费用最低?最低费用是多少元?25.师徒二人分别组装28辆摩托车,徒弟单独工作一周(7天)不能完成,而师傅单独工作不到一周就已完成,已知师傅平均每天比徒弟多组装2辆,求:(1)徒弟平均每天组装多少辆摩托车(答案取整数)?(2)若徒弟先工作2天,师傅才开始工作,师傅工作几天,师徒两人做组装的摩托车辆数相同?26.东艺中学初三(1)班学生到雁鸣湖春游,有一项活动是划船.游船有两种,甲种船每条船最多只能坐4个人,乙种船每条船最多只能坐6个人.已知初三(1)班学生的人数是5的倍数,若仅租甲种船,则不少于12条;若仅租乙种船,则不多于9条.(1)求初三(1)班学生的人数;(2)初三(1)班学生的人数是50人,如果甲种船的租金是每条船10元,乙种船的租金是每条船12元.应怎样租船,才能使每条船都坐满,且租金最少?说明理由.27.某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人;他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂招聘n(0<n<10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?(3)在(2)的条件下,工厂给安装电动汽车的每名熟练工每月发2000元的工资,给每名新工人每月发1200元的工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额W(元)尽可能地少?28.君实机械厂为青扬公司生产A、B两种产品,该机械厂由甲车间生产A种产品,乙车间生产B种产品,两车间同时生产.甲车间每天生产的A种产品比乙车间每天生产的B种产品多2件,甲车间3天生产的A种产品与乙车(2)君实机械厂生产的A种产品的出厂价为每件200元,B种产品的出厂价为每件180元.现青扬公司需一次性购买A、B两种产品共80件,君实机械厂甲、乙两车间在没有库存的情况下只生产8天,若青扬公司按出厂价购买A、B两种产品的费用超过15000元而不超过15080元.请你通过计算为青扬公司设计购买方案?29.为鼓励学生参加体育锻炼,学校计划拿出不超过1600元的资金再购买一批篮球和排球,已知篮球和排球的单价比为3:2.单价和为80元.(1)篮球和排球的单价分别是多少元?(2)若要求购买的篮球和排球的总数量是36个,且购买的篮球数量多于25个,有哪几种购买方案?30.某校团委为了教育学生,开展了以感恩为主题的有奖征文活动,并为获奖的同学颁发奖品.小红与小明去文化商店购买甲、乙两种笔记本作为奖品,若买甲种笔记本20个,乙种笔记本10个,共用110元;且买甲种笔记本30个比买乙种笔记本20个少花10元.(1)求甲、乙两种笔记本的单价各是多少元?(2)若本次购进甲种笔记本的数量比乙种笔记本的数量的2倍还少10个,且购进两种笔记本的总数量不少于80本,总金额不超过320元.请你设计出本次购进甲、乙两种笔记本的所有方案.31.某地区果农收获草莓30吨,枇杷13吨,现计划租用甲、乙两种货车共10辆将这批水果全部运往省城,已知甲种货车可装草莓4吨和枇杷1吨,乙种货车可装草莓、枇杷各2吨.(1)该果农安排甲、乙两种货车时有几种方案请您帮助设计出来;(2)若甲种货车每辆要付运输费2 000元,乙种货车每辆要付运输费1 300元,则该果农应选择哪种运输方案才能使运费最少,最少运费是多少元?32.今年春季我国西南地区发生严重旱情,为了保障人畜饮水安全,某县急需饮水设备12台,现有甲、乙两种设备可供选择,其中甲种设备的购买费用为4000元/台,安装及运输费用为600元/台;乙种设备的购买费用为3000元/台,安装及运输费用为800元/台,若要求购买的费用不超过40000元,安装及运输费用不超过9200元,则可购买甲、乙两种设备各多少台?33.初中毕业了,孔明同学准备利用暑假卖报纸赚取140~200元钱,买一份礼物送给父母.已知:在暑假期间,如果卖出的报纸不超过1000份,则每卖出一份报纸可得0.1元;如果卖出的报纸超过1000份,则超过部分每份可得0.2元.(1)请说明:孔明同学要达到目的,卖出报纸的份数必须超过1000份.34.开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小亮用31元买了同样的钢笔2支和笔记本5本.(1)求每支钢笔和每本笔记本的价格;(2)校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件作为奖品,奖给校运会中表现突出的同学,要求笔记本数不少于钢笔数,共有多少种购买方案?请你一一写出.35.某公司计划生产甲、乙两种产品共20件,其总产值w(万元)满足:1150<w<1200,相关数据如下表.为此,公司应怎样设计这两种产品的生产方案?产品名称每件产品的产值(万元)甲45乙7536.某饮料厂为了开发新产品,用A种果汁原料和B种果汁原料试制新型甲、乙两种饮料共50千克,设甲种饮料需配制x千克,两种饮料的成本总额为y元.(1)已知甲种饮料成本每千克4元,乙种饮料成本每千克3元,请你写出y与x之间的函数关系式.(2)若用19千克A种果汁原料和17.2千克B种果汁原料试制甲、乙两种新型饮料,下表是试验的相关数据;请你列出关于x且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,可使y值最小,最小值是多少?甲乙每千克饮料果汁含量果汁A 0.5千克0.2千克B 0.3千克0.4千克37.某校校园超市老板到批发中心选购甲、乙两种品牌的书包,若购进甲品牌的书包9个,乙品牌的书包10个,需要905元;若购进甲品牌的书包12个,乙品牌的书包8个,需要940元.(1)求甲、乙两种品牌的书包每个多少元?(2)若销售1个甲品牌的书包可以获利3元,销售1个乙品牌的书包可以获利10元.根据学生需求,超市老板决定,购进甲种品牌书包的数量要比购进乙品牌的书包的数量的4倍还多8个,且甲种品牌书包最多可以购进56个,这样书包全部出售后,可以使总的获利不少于233元.问有几种进货方案?如何进货?38.某运动鞋专卖店,欲购进甲、乙两型号的运动鞋共100双,若购进5双甲型号运动鞋和3双乙型号运动鞋共需(2)甲型号运动鞋每双售价为260元,乙型号运动鞋每双售价为220元,要满足进鞋资金不超过17500元,当100双运动鞋全部售出后,利润不低于7800元,鞋店经理有几种进货方案?39.2008年北京奥运会的比赛门票开始接受公众预定.下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,某球迷准备用12000元预定15张下表中球类比赛的门票:比赛项目票价(元/场)男篮1000足球800乒乓球500(1)若全部资金用来预定男篮门票和乒乓球门票,问这个球迷可以预订男篮门票和乒乓球门票各多少张?(2)若在准备资金允许的范围内和总票数不变的前提下,这个球迷想预定上表中三种球类门票,其中足球门票与乒乓球门票数相同,且足球门票的费用不超过男篮门票的费用,问可以预订这三种球类门票各多少张?40.某学校科技活动小组制作了部分科技产品后,把剩余的甲乙两种原料制作100个A、B两种类型号的工艺品.已知每制作一个工艺品所需甲乙两种原料如右表,已知剩余的甲种原料29千克,乙种原料37.2千克,假设制作x个A型工艺品.型号A型B型千克/个原料甲0.5 0.2乙0.3 0.4(1)求出x应满足的不等式组的关系式;(2)请你设计A、B两种型号的工艺品的所有制作方案;(3)经市场了解,A型工艺品售价25元/个,B型工艺品售价15元/个,若这两种型号的销售总额为y元,请写出y与x之间的函数关系式,并指出哪种制作方案,使销售总额最大,求出最大销售总额.41.商场正在销售“福娃”玩具和徽章两种奥运商品,已知购买1盒“福娃”玩具和2盒徽章共需145元;购买2盒“福娃”玩具和3盒徽章共需280元.(1)一盒“福娃”玩具和一盒徽章的价格各是多少元?(2)某公司准备购买这两种奥运商品共20盒送给幼儿园(要求每种商品都要购买),且购买总金额不能超过450元,请你帮公司设计购买方案.42.“六•一”儿童节前夕,某消防队官兵了解到汶川地震灾区一帐篷小学的小朋友喜欢奥运福娃,就特意购买了一些送给这个小学的小朋友作为节日礼物.如果每班分10套,那么余5套;如果前面的班级每个班分13套,那么最后一个班级虽然分有福娃,但不足4套.问:该小学有多少个班级?奥运福娃共有多少套?43. 红旺商店同时购进A、B两种商品共用人民币36 000元,全部售完后共获利6 000元,两种商品的进价、售价如下表:A 商品B 商品进价120元/件100元/件售价138元/件120元/件(1)求本次红旺商店购进A、B两种商品的件数;(2)第二次进货:A、B件数皆为第一次的2倍,销售时,A商品按原售价销售,B商品打折出售,全部售完后为使利润不少于11 040元,则B商品每件的最低售价应为多少?44. 我市某镇组织20辆汽车装运完A、B、C三种脐橙共100吨到外地销售.按计划,20辆汽车都要装运,每辆汽车只能装运同一种脐橙,且必须装满.根据下表提供的信息,解答以下问题:脐橙品种 A B C每辆汽车运载量(吨) 6 5 4每吨脐橙获得(百元)12 16 10(1)设装运A种脐橙的车辆数为x,装运B种脐橙的车辆数为y,求y与x之间的函数关系式;(2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种?并写出每种安排方案;(3)若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.45.为迎接市运动会,某单位准备用800元订购10套下表中的运动服.运动服价格(元/套)男装甲100男装乙80女装50(1)若全部资金用来订购男装甲和女装,问他们可以各订多少套?(2)若在现有资金800元允许的范围内和运动服总套数不变的前提下,他们想订购表中的三种运动服,其中男装甲和男装乙的套数相同,且女装费用不超过男装甲的费用,求他们能订购三种运动服各多少套?46.为了美化校园环境,建设绿色校园,某学校准备对校园中30亩空地进行绿化.绿化采用种植草皮与种植树木两种方式,要求种植草皮与种植树木的面积都不少于10亩,并且种植草皮面积不少于种植树木面积的.已知种植草皮与种植树木每亩的费用分别为8000元与12000元.(1)种植草皮的最小面积是多少?(2)种植草皮的面积为多少时绿化总费用最低,最低费用为多少?47.罗甸县某果农今年收获梨30吨,香蕉13吨,先计划租用大小两种货车共10辆将这批水果全部运往外省销售,已知大货车可装梨4吨和香蕉1吨;小货车可装梨和香蕉各2吨.(1)该果农安排两种货车运货时,有哪几种运送方案?(2)若大货车每辆要付运费2000元,小货车每辆要付运费1300元,则该果农应选择哪一种方案才能使运费最少?最少运费是多少元?48.“爱心”帐篷集团的总厂和分厂分别位于甲、乙两市,两厂原来每周生产帐篷共9千顶,现某地震灾区急需帐篷14千顶,该集团决定在一周内赶制出这批帐篷.为此,全体职工加班加点,总厂和分厂一周内制作的帐篷数分别达到了原来的1.6倍、1.5倍,恰好按时完成了这项任务.(1)在赶制帐篷的一周内,总厂和分厂各生产帐篷多少千顶?(2)现要将这些帐篷用卡车一次性运送到该地震灾区的A,B两地,由于两市通住A,B两地道路的路况不同,卡车的运载量也不同.已知运送帐篷每千顶所需的车辆数、两地所急需的帐篷数如下表:A地B地每千顶帐篷所需车辆数甲市 4 7 乙市 3 5所急需帐篷数(单位:千顶)9 5请设计一种运送方案,使所需的车辆总数最少.说明理由,并求出最少车辆总数.49.冷饮店每天需配制甲、乙两种饮料共50瓶,已知甲饮料每瓶需糖14克,柠檬酸5克,乙饮料每瓶需糖6克,柠檬酸10克,现有糖500克,柠檬酸400克.(1)请计算有几种配制方案能满足冷饮店的要求;(2)冷饮店对两种饮料上月的销售情况作了统计,结果如下表,请你根据这些统计数据确定一种比较合理的配制方案,并说明理由.两种饮料的日销量甲10 12 14 16 21 25 30 38 40 50 乙40 38 36 34 29 25 20 12 10 0天数 3 4 4 4 8 1 1 1 2 250.为了更好治理洋澜湖水质,保护环境,市治污公司决定购买10台污水处理设备.现有A,B两种型号的设备,其中每台的价格,月处理污水量如下表:经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A 型设备比购买3台B型设备少6万元.A型B型价格(万元/台) a b处理污水量(吨/月)240 180(1)求a,b的值;。

一元一次不等式应用题及答案

一元一次不等式应用题及答案

一元一次不等式应用题及答案
题目:某工厂生产一种产品,每件产品的成本为50元,售价为70元。

为了促销,工厂决定对产品进行打折销售,但打折后的利润不能低于
10元。

问工厂最多可以打几折?
解答:
1. 设工厂打x折,则每件产品的销售价格为70x元。

2. 打折后的利润为售价减去成本,即70x - 50元。

3. 根据题意,打折后的利润不能低于10元,所以有不等式:70x -
50 ≥ 10。

4. 解不等式,得:70x ≥ 60,即x ≥ 60/70。

5. 计算x的值,得:x ≥ 0.857。

6. 由于x表示折扣,所以x的值应在0到1之间,即0 < x ≤ 1。

7. 因此,工厂最多可以打8.57折,但折扣通常取整数,所以工厂最
多可以打8折。

答案:工厂最多可以打8折。

初二数学列一元一次不等式解应用题试题答案及解析

初二数学列一元一次不等式解应用题试题答案及解析

初二数学列一元一次不等式解应用题试题答案及解析1. m与3的和的一半是正数,用不等式表示为()A.B.C.D.【答案】B【解析】正数就是大于0的数,根据题意可列不等式.解:根据题意得:.故选B.2. x的3倍与2的差不大于0,用不等式表示为()A.3x﹣2≤0B.3x﹣2≥0C.3x﹣2<0D.3x﹣2>0【答案】A【解析】不大于就是小于等于的意思,根据x的3倍与2的差不大于0,可列出不等式.解:根据题意得:3x﹣2≤0.故选A.3.下列说法错误的是()A.a是负数,则写作a<0B.a与b的积小于0,则写作ab<0C.b不小于0,则写作b≥0D.x不小于y,则写作x≤y【答案】D【解析】是负数就是小于0的意思,不小于的意思,就是大于等于.解:A、a是负数,则写作a<0,故本选项不符合题意;B、a与b的积小于0,则写作ab<0,故本选项不符合题意;C、b不小于0,则写作b≥0,故本选项不符合题意;D、x不小于y,就应该是大于等于y,应记作x≥y.所以本选项符合题意.故选D.4.“x的2倍与3的差不大于8”列出的不等式是()A.2x﹣3≤8B.2x﹣3≥8C.2x﹣3<8D.2x﹣3>8【答案】A【解析】理解:不大于8,即是小于或等于8.解:根据题意,得2x﹣3≤8.故选A.5.某商品原价500元,出售时标价为900元,要保持利润不低于26%,则至少可打()A.六折B.七折C.八折D.九折【答案】B【解析】由题意知保持利润不低于26%,就是利润大于等于26%,列出不等式.解:设打折为x,由题意知,解得x≥0.7,故至少打七折,故选B.6.小明身高1.5米,小明爸爸身高1.8米,小明走上一处每级高a米,共10级的平台说:“爸爸,现在两个你的身高都比不上我了!”由此可得关于a的不等式是()A.10a>1.8×2B.1.5+a+10>1.8×2C.10a+1.5>1.8×2D.1.8×2>10a+15【答案】C【解析】根据小明的身高+10级高台的高度>爸爸身高的2倍列式即可.解:根据题意,得10a+1.5>1.8×2.故选:C.7. x与3的和的一半是负数,用不等式表示为()A.x+3>0B.x+3<0C.(x+3)>0D.(x+3)<0【答案】D【解析】理解:和的一半,应先和,再一半;负数,即小于0.解:根据题意,得(x+3)<0.故选D.8.某种植物适宜生长温度为18~20的山区,已知山区海拔每升高100米,气温下降0.55,现测得山脚下的气温为22,问该植物种在山上的哪一部分为宜如果设该植物种植在海拔高度为x米的山区较适宜,则由题意可列出的不等式为()A.18≤22﹣B.18≤22﹣≤20C.18≤22﹣0.55x≤20D.18≤22﹣≤20×0.55≤20【答案】A【解析】每升高100米,气温下降0.55,那么每升高1米,气温下降米;海拔为x米,则升高了x米,气温就在22的基础上下降了x×,而温度适宜的范围是18~20.解:根据题意,得18≤22﹣×0.55≤20.故选A.9.某公司打算至多用1200元印制广告单.已知制版费50元,每印一张广告单还需支付0.3元的印刷费,则该公司可印制的广告单数量x(张)满足的不等式为.【答案】50+0.3x≤1200【解析】至多意思是小于或等于.本题满足的不等关系为:制版费+单张印刷费×数量≤1200.解:根据题意,得50+0.3x≤1200.10.有如图所示的两种广告牌,其中图1是由两个等腰直角三角形构成的,图2是一个矩形,从图形上确定这两个广告牌面积的大小关系,并将这种大小关系用含字母a、b的不等式表示为.【解析】由图上可看出:图1也可看做是长为a,宽为b的长方形加上一个小直角三角形;图2是长为a,宽为b的长方形.所以隐含的不等关系:图1的面积一定>图2的面积.解:根据图形的面积公式,得图1的面积是a2+b2;图2的面积是ab.再根据图形的面积大小关系,得a2+b2>ab.11.一家企业向银行申请了一年期贷款500万元,到期后归还银行的钱超过532.8万元,若设该项贷款的年利率为x,则x应满足的不等式为.【答案】500(1+x)>532.8【解析】根据本金×(1+利率)=本息和,结合题意可得本金×(1+利率)>532.8万元,代入数据可得答案.解:设该项贷款的年利率为x,由题意得:500(1+x)>532.8,故答案为:500(1+x)>532.8.12.用不等式表示“a的3倍与8的差是一个非负数”应是.【答案】3a﹣8≥0【解析】差是一个非负数,即是最后算的差应大于或等于0.解:根据题意,得3a﹣8≥0.故答案为:3a﹣8≥0.13.“2x与1的和小于零”用不等式表示:.【答案】2x+1<0【解析】题目中明确给出小于0,根据“2x与1的和小于零”可列出不等式.解:根据题意得:2x+1<0.故答案为:2x+1<0.14.某学校为学生安排宿舍,现有住房若干间,若每间5人,则还有14人安排不下,若每间7人,则有一间不足7人.问学校至少有几间房可以安排学生住宿?可以安排住宿的学生有多少人?【答案】解:设学校有x间房可以安排y名学生住宿,∵若每间5人,则还有14人安排不下,∴y=5x+14.∵若每间7人,则有一间不足7人,∴0<y﹣7(x﹣1)<7.将y=5x+14代入上式得:0<5x+14﹣7x+7<7,解得:7<x<10.5,故学校至少有8间房可以安排学生住宿,可以安排住宿的学生有5×8+14=54(人).【解析】设学校有x间房可以安排y名学生住宿,根据题意得:,求解即可.15.若一件商品的进价为500元,标价为750元,商店要求以利润率不低于5%的售价打折出售,问售货员最低打几折出售此商品设打x折,用不等式表示题目中的不等关系.【答案】解:设应打x折,根据题意,得750×﹣500≥500×5%.【解析】利润率不低于5%,即是利润应大于或等于利润率的5%.利润有两种表示方法:利润=售价﹣成本=成本×利润率.本题满足的关系为:售价﹣进价≥500×5%.16.燃放某种礼花弹时,为了确保安全,人在点燃导火线后要在燃放前转移到10m以外的安全区域.已知导火线的燃烧速度为0.02m/s,人离开的速度为4m/s,导火线的长x(m)应满足怎样的关系式?请你列出.【答案】解:设导火线的长x(m),根据题意得出:.【解析】利用行走10m所用时间,应小于导火索燃烧所用时间,进而得出不等式.17.亮亮准备用自己节省的零花钱买一台英语复读机,他现在已存有45元,计划从现在起以后每个月节省30元,直到他至少有300元.设x个月后他至少有300元,则可以用于计算所需要的月数x的不等式是()A.30x﹣45≥300B.30x+45≥300C.30x﹣45≤300D.30x+45≤300【答案】B【解析】此题中的不等关系:现在已存有45元,计划从现在起以后每个月节省30元,直到他至少有300元.至少即大于或等于.解:x个月可以节省30x元,根据题意,得30x+45≥300.故选B.18.一辆轿车在某高速公路上正常行驶时的速度为akm/h,已知该公路对轿车的限速为100km/h,那么a满足的不等关系应表示为()A.a<100B.a>100C.a≤100D.a≥100【答案】C【解析】因为该公路对轿车的限速为100km/h,所以轿车的速度应不超过100.解:根据题意,得a≤100.故选C.19.“x的2倍与3的差不大于8”列出的不等式是()A.2x﹣3≤8B.2x﹣3≥8C.2x﹣3<8D.2x﹣3>8【答案】A【解析】理解:不大于8,即是小于或等于8.解:根据题意,得2x﹣3≤8.故选A.20. y的与z的5倍的差的平方是一个非负数,列出不等式为()A.5(﹣y)2>0B.y﹣(5z)2≥0C.(y﹣5z)2≥0D.y﹣5z2≥0【答案】C【解析】“非负数”即为“大于或等于0”的数.差的平方应先差,再平方.解:根据题意,得(y﹣5z)2≥0.故选C.。

列不等式解应用题

列不等式解应用题

列不等式(组)解应用题列方程解应用题是同学们非常熟悉的,但有许多应用题,并不存在相等关系,而在表述数量关系时常出现“至少”、“至多”、“小于”、“大于”等词语.解答这类应用题,可根据题意列出不等式或不等式组求解.例1 把一篮苹果分给几个学生,如果每人分4个,则剩下3个;如果每人分6个,则最后一个学生最多得2个.求学生人数和苹果数.解设学生有x人,则苹果数为(4x+3)个,因为每人分6个,则最后一个学生最多得2个,这意味着给(x-1)个学生每人分6个苹果数要小于或等于总苹果数,给(x-1)个学生每人分6个苹果数再加上2个又不小于总的苹果数,因而可得6(x-1)≤4x+3≤6(x-1)+2.∵x为正整数,∴ x=4,4x+3=4·4+3=19.故有学生4人,苹果19个.例2 某宾馆一楼客房比二楼少5间,某旅游团48人,若安排住一楼,每间住4人,房间不够;每间住5人,有房间没有住满5人;又若全安排住二楼,每间住3人,房间不够;每间住4人,有房间没有住满4人.问该宾馆一楼有客房多少间?解设一楼客房为x间,则二楼为(x+5)间.若安排住一楼,则4x<48<5x,∴x=10,即一楼有客房10间.例3 将若干只鸡放入若干个笼,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,那么至少有几只鸡几个笼?解设有x个笼,则有(4x+1)只鸡,因为每个笼里放5只鸡,有一笼无鸡可放,这说明除去一个空笼外,其余的(x-1)个笼中必有一个笼里至少放一只鸡而至多放5只鸡,于是得5(x-2)<4x+1≤5(x-1),解得6≤x<11.∵x为正整数,所以至少有6个笼,相应至少有25只鸡(4·6+1=25).例4 甲、乙两车间各有若干个工人生产同一种零件,甲车间有1个人每天生产6件,其余每人每天生产11件;乙车间有1人每天生产7件,其余每人每天生产10件.已知两车间每天生产零件的总数相等,且每个车间每天生产零件总数不少于100件也不超过200件,则甲车间有多少人,乙车间有多少人?解设甲车间有x人,依题意有100≤6+11(x-1)≤200,∵x是正整数,∴x可能为10,11,12,13,14,15,16,17,18.设乙车间有y人,依题意有100≤7+10(y-1)≤200,解得10.3≤y≤20.3.又两车间每天生产的零件总数相等,则6+11(x-1)=7+10(y-1)由于y是正整数,故11x-2应是10的倍数,所以x只能取12,这时y=13.答甲车间有12人,乙车间有13人.例5 货轮上卸下若干只箱子,其总重量为10吨,每只箱子的重量不能超过1吨,为了保证能把这些箱子一次运走,问至少需要多少辆载重3吨的汽车?解首先注意到每只箱子的重量,故每辆汽车一次可运走的箱子的重量不会少于2吨,否则可以再放一只箱子.设需要n辆车,它们运走的箱子的重量依次为a1,a2,…a n,则2≤a i≤3(i=1,2,3,…,n).设所有被运走的货物量之和为S,则即2n≤10≤3n.从而故n=4或5。

列不等式组解应用题一

列不等式组解应用题一

练习九:列不等式组解应用题知识整理:一、下列情况列一元一次不等式解应用题1.应用题中只含有一个不等量关系,文中明显存在着不等关系的字眼,如“至少”、“至多”、“不超过”等.(例1)2.应用题仍含有一个不等量关系,但这个不等量关系不是用明显的不等字眼来表达的,而是用比较隐蔽的不等字眼来表达的,需要根据题意作出判断.(例2)二、下列情况列一元一次不等式组解应用题1.应用题中含有两个(或两个以上,下同)不等量的关系.它们是由两个明显的不等关系体现出来,一般是讲两件事或两种物品的制作、运输等.(例3)2.两个不等关系直接可从题中的字眼找到,这些字眼明显存在着上下限。

(例4.)三、列一元一次不等式(组)解决实际问题,掌握解不等式应用题的步骤:(1)审题,分析题目中已知什么,求什么,明确各数量之间的关系(2)设适当的未知数(3)找出题目中的所有不等关系(4)列不等式组(5)求出不等式组的解集(6)写出符合题意的答案例题讲解:例1、为了能有效地使用电力资源,宁波市电业局从1月起进行居民峰谷用电试点,每天8:00至22:00用电千瓦时0.56元(“峰电”价),22:00至次日8:00每千瓦时0.28元(“谷电”价),而目前不使用“峰谷”电的居民用电每千瓦时0.53元.当“峰电”用量不超过...每月总电量的百分之几时,使用“峰谷”电合算?分析:本题的一个不等量关系是由句子“当‘峰电’用量不超过...每月总电量的百分之几时,使用‘峰谷’电合算”得来的,文中带加点的字“不超过...”明显告诉我们该题是一道需用不等式来解的应用题.例2、周未某班组织登山活动,同学们分甲、乙两组从山脚下沿着一条道路同时向山顶进发.设甲、乙两组行进同一段路程所用的时间之比为2:3.⑴直接写出甲、乙两组行进速度之比;⑵当甲组到达山顶时,乙组行进到山腰A处,且A处离山顶的路程尚有1.2千米.试问山脚离山顶的路程有多远?⑶在题⑵所述内容(除最后的问句外)的基础上,设乙组从A处继续登山,甲组到达山顶后休息片刻,再从原路下山,并且在山腰B处与乙组相遇.请你先根据以上情景提出一个相应的问题,再给予解答(要求:①问题的提出不得再增添其他条件;②问题的解决必须利用上述情景提供的所有已知条件).例3、已知服装厂现有A种布料70米,B种布料52米,现计划用这两种面料生产M,N两种型号的时装共80套.已知做一套M型号的时装需用A种布料0.6米,B种布料0.9米,可获利45元;做一套N型号的时装需用A种布料1.1米,B种布料0.4米,可获利润50元.若设生产N型号码的时装套数为x,用这批布料生产这两种型号的时装所获的总利润为y元.(1)用含x的代数式表示出y,并求出x的取值范围;(2)服装厂在生产这批时装中,当N型号的时装为多少套时,所获利润最大?最大利润是多少?分析:本题存在的两个不等量关系是:①合计生产M、N型号的服装所需A 种布料不大于70米;②合计生产M、N型号的服装所需B种布料不大于52米.例4、某校为了奖励在数学竞赛中获胜的学生,买了若干本课外读物准备送给他们.如果每人送3本,则还余8本;如果前面每人送5本,则最后一人得到的课外读物不足..3.本..设该校买了m本课外读物,有x名学生获奖.请回答下列问题:(1)用含x的代数式表示m;(2)求出该校的获奖人数及所买课外读物的本数.分析:不等字眼“不足..3.本.”即是说全部课外读物减去5(x-1)本后所余课外读物应在大于等于0而小于3这个范围内.例5、某城市的出租汽车起步价为10元(即行驶距离在5千米以内都需付10元车费),达到或超过5千米后,每行驶1千米加1.2元(不足1千米也按1千米计).现某人乘车从甲地到乙地,支付车费17.2元,问从甲地到乙地的路程大约是多少?分析:本题采用的是“进一法”,对于不等关系的字眼“不足1千米也按1千米计”,许多同学在解题时都视而不见,最终都列成了方程类的应用题,事实上,顾客所支付的17.2元车费是以上限11公里来计算的,即顾客乘车的范围在10公里至11公里之间.理论上收费是按式子10+1.2(x-5)来进行的,而实际收费是取上限值来进行的.练习1:1、某次数学测验,共16个选择题,评分标准为:对一题给6分,错一题扣2分,不答不给分。

不等式的应用题

不等式的应用题

例1 某工厂生产的产品单价是80元,直接生产成本是60元,该工厂每月其他开支是50 000元,如果该工厂计划每月至少获得200 000的利润,假定生产的全部产品都能卖出,问每月的产量是多少?例2将若干(小于40)只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只鸡,则有一个笼无鸡可放,且最后一个笼不足3只鸡,问笼有多少个?鸡有多少只?例3 某公司计划下一年度生产一种新型计算机,各部门提供的数据信息:人事部:明年生产工人不多于80人,每人每年按2400工时计算;市场部:预测明年销售量至少10 000台;技术部:生产一台计算机,平均要用12个工时,每台机器需要安装某种主要部件5个;供应部:今年年终将库存这种主要部件2 000件,明年能采购到的这种主要部件为80 000件。

根据上述信息,明年公司的生产量可能是多少?例4 已知一根长尾100m的绳子,用它围成一个矩形,问长和宽分别为多少时,围成的矩形面积最大?例1 一种灭虫药粉30Kg,含药率是15%,现在要用含药率较高的同种灭虫药粉50Kg和它混合,使混合后的含药率大于20%而小于35%,则所用药粉的含药率的范围是多少?例2 某商场今年第一季度的销售额为1000万元,第二季度的销售额下降了10%,商场采取各项措施,使得销售额有了大幅度上升,保证了第四季度的销售额不少于1296万元,问第三第四季度销售额的平均增长率是多少?例3 给若干名学生分发课外书,若每人分发3本,余8本;若每人分发5本,则有一名学生少于3本。

问学生有多少人?书有多少本?例4 运50吨煤和32吨木材,要租用甲,乙两种车辆共12辆,若甲种车每辆能运5吨煤和4吨木材,乙种车每辆能运2吨煤和3吨木材。

(1)请问有多少种租车方案?(2)若甲种车辆每辆需花费150元,乙种车辆每辆需花费60元,哪种方案更省钱?请说明理由。

列一元一次不等式或不等式组解应用题

列一元一次不等式或不等式组解应用题

列一元一次不等式组解应用题题型一:列关于x的不等式组a<x<b的形式(例如分物品,分房间等问题)关键是找出a和b的值例1 一堆玩具分给若干个小朋友,若每人分3件,则剩余3件,若每人分5件,则每人都分到玩具,但有一个小朋友的玩具不足3件,则共有多少个小朋友?练习:1为了加强学生的交通安全意识,某中学和交警大队联合举行了“我当一日小交警”活动,星期天选派部分学生到交通路口值勤,协助交通警察维护交通秩序.若每一个路口安排4人,那么还剩下78人;若每个路口安排8人,那么最后一个路口不足8人,但不少于4人.求这个中学共选派值勤学生多少人?共有多少个交通路口安排值勤?2、实验学校为初一寄宿学生安排宿舍,若每间4人,则有20人无法安排,若每间8人,则有一间不空也不满,求宿舍间数和寄宿学生人数。

3、小记者团有48人要在某招待所住宿,招待所一楼没住客的客房比二楼少5间,如果全部住一楼,每间住5人,则住不满;每间住4人,则不够住,如果全部住在二楼,每间住4人,则住不满;每间住3人,则不够住。

招待所一楼和二楼各有几间尚未住客的客房?题型二:与二元一次方程组知识结合的题目(一般需要加入x≥0的条件)例2 某公司为了扩大经营,决定购进6台机器用于生产某种活塞。

现有甲、乙两种机器供选择,其中每种机34万元。

(1(2)若该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择哪种方案?练习:1、某公司为了扩大经营,决定购进5台机器用于生产某种活塞。

现有甲、乙两种机器供选择,其中每经过预算,本次购买机器所耗资金不能超过22万元。

(1)按该公司要求可以有几种购买方案?(2)若该公司购进的5台机器的日生产能力不能低于280个,那么为了节约资金应选择哪种方案?2、某超市销售有甲、乙两种商品.甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元.(1)若该超市同时一次购进甲、乙两种商品共80件,恰好用去1600元,求能购进甲、乙两种商品各多少件?(2)该超市为使甲、乙两种商品共80件的总利润(利润=售价-进价)不少于600元,但又不超过610元.请你帮助该超市设计相应的进货方案.题型三:有A、B两种物品,列不等式组的依据:以A、B为依据列不等式组。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4、某市自来水公司按如下标准收费:用户每月用水在5立方米之内,按每立方米1. 5元收费;超出5 立方米部分,每立方米收费2元.小希家某月的水费超过了15元,那么他家这个月的用水量至少是多少?
小结
师生共同归纳解一元一次不等式的一般步骤,并与解一元一次方程再次进行比较。
这节课上,我感受最深的是……
这节课上,我感到最困难的是……
凤台四中专业性有效教学设计方案
学科
数学
课题
9.2实际问题与一元一次不等式
时间
2012、5
主讲教师
芮金
教学课时
1课时
课型
常态课
教学目标
目标:
会根据实际问题中的数量关系建立数学模型,学会用去分母的方法解一元一次不等式;通过去分母的方法解一元一次不等式,让学生了解数学中的化归思想,感知不等式与方程的内在联系;从而结合实际,创设活泼有趣的情境,提高学生的学习兴趣.让他们在活动中获得成功的体验,激发起求知的欲望,增强学习的自信心
精练方式:针对性训练
1、精练内容:解下列不等式,并在数轴上表示解集:
(1) (2)
2、.当x或y满足什么条件时,下列关系成立?
(1)2 (x+ 1)大于或等于1;
(2)4x与7的和不小于6;
(3)y与1的差不大于2y与3的差;
(4)3y与7的和的 小于-2.
3小颖准备用21元钱买笔和笔记本.已知每支铅笔3元,每本笔记本2元2角.她买了两本笔记本后,还可买几支铅笔?
这节课上,我发现生活中……
这节课上,我学会了……
学生自己总结,并在班上或同桌之间交流
教学后记
巡堂时发现出现以下问题:
一、由于没有结合不等式的性质,认真分析解方程与解不等式的区别:在两边同时乘以或者除以负数时,不等号忘记改变方向。
二、过去遗留的问题:
1、去括号的问题2、去分母的问题3、系数化1的问题
三、未知数系数含字母,没有分类讨论
解决方案:1、在课堂巡堂时,检查每个学生的练习,发现问题及时纠正
2、发挥学生的力量,开展“生帮生”的活动
3、安排“解一元一次不等式”的小测,及时查缺补漏。
1、2002年北京空气质量良好的天数是多少?
2、用x表示2008年增加的空气质量良好的天数,则2008年北京空气质量良好的天数是多少?
3、2008年共有多少天?与x有关的哪个式子的值应超过70%?这个式子表示什么?
4、怎样解不等式
在学生讨论后,教师做解题过程示范.
5、比较解这个不等式与解方程
的步骤,两者有什么不同吗?
重点:列不等式解决问题中如何建立不等式关系,并根据不等关系列出不等式
难点:在实际问题中如何建立不等关系,并根据不等关系列出不等式。
有效导入
导入目标:激发学生学习兴趣
导入方式:启发式
导入内容:解下列不等式:
①5x+54<x-1 ②2(1一3x)> 3x+20
③2(一3+x)< 3(x+2) ④ (x+5)<3(x-5)-6
先让学生板演、练习,然后师生共同点评、订正,指出解题中应注意的地方,复习一元一次不等式的解法。
有效精讲
精讲目标:对不等式解集、不等式解题步骤的探究,引导学生在独立思考
精讲方式:启发式、设问式、解析式
精讲内容
例题:2002年北京空气质量良好(二级以上)的天数与全年天过70%,那么,2008年北京空气质量良好(二级以上)的天数至少要增加多少天?
在学生充分讨论的基础上,师生共同归纳得出结论。
例题: 某次知识竞赛共有20道题.每道题答对加10分,答错或不答均扣5分:小跃要想得分超过90分,他至少要答对多少道题?
1、与题目数量有什么关系?
2、小跃答对了x道题,则如何用含有x的式子表示得分?
3、不等式应用题的解法.
教师在学生充分讨论的基础上板书解题过程,并指出:用不等式解应用问题时,必须注意对未知数的限制条件
(此例题学生解决)
归纳:
0
解一元一次不等式与解一元一次方程类似,只是不等式两边同乘以(或除以)一个数时,要注意不等号的方向.解一元一次方程,要根据等式的性质,将方程逐步化为x=a的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为x>a或x<a)的形式 。
有效精练
精练目标:巩固对精讲内容
相关文档
最新文档