海淀区2018届高三期末数学(理)试题及答案(word版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

海淀区高三年级第一学期期末练习

数学(理科)

2018. 1

本试卷共4页,150分。考试时长120分钟。考生务必将答案答在答题纸上,在试卷上作答无效。考试结束后,将答题纸交回。

第一部分(选择题,共40分)

一、选择题共8小题,每小题5分,共40分。在每小题列出的四个选项中,选出符合题目要求的一项。

(1)复数12+=i

i

(A )2-i

(B )2+i

(C )2--i

(D )2-+i (2)在极坐标系Ox 中,方程2sin ρθ=表示的圆为

(A )

(B )

(C )

(D )

(3)执行如图所示的程序框图,输出的k 值为

(A ) 4 (B ) 5 (C ) 6 (D ) 7

(4)设m 是不为零的实数,则“0m >”是“方程

22

1x y m m

-=表示双曲线”的

(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件

(D )既不充分也不必要条件

(5)已知直线0x y m -+=与圆O :221x y +=相交于A ,B 两点,且OAB ∆为正三角形,则实数m 的值为

(A

(B

(C

或 (D

或 (6)从编号分别为1,2,3,4,5,6的六个大小完全相同的小球中,随机取出三个小球,则恰有两个小球编号相邻的概率为

(A )

1

5

(B )

25

(C )

35

(D )

45

(7)某三棱锥的三视图如图所示,则下列说法中:

① 三棱锥的体积为

16

② 三棱锥的四个面全是直角三角形

所有正确的说法是

(A )① (B )①② (C )②③ (D )①③

(8)已知点F 为抛物线C :()2

20y

px p =>的焦点,点K 为点F 关于原点的对称点,

点M 在抛物线C 上,则下列说法错误..

的是 (A )使得MFK ∆为等腰三角形的点M 有且仅有4个 (B )使得MFK ∆为直角三角形的点M 有且仅有4个

(C )使得4MKF π

∠=

的点M 有且仅有4个 (D )使得6

MKF π

∠=的点M 有且仅有4个

第二部分(非选择题,共110分)

二、填空题共6小题,每小题5分,共30分。

(9)点(2,0)到双曲线2

214

x y -=的渐近线的距离是______________ .

(10)已知公差为1的等差数列{}n a 中,1a ,2a ,4a 成等比数列,则{}n a 的前100项的和

为 .

(11)设抛物线C :2

4y x =的顶点为O ,经过抛物线C 的焦点且垂直于x 轴的直线和抛

物线C 交于A ,B 两点,则OA OB += .

主视图左视图

俯视图

(12)已知()51n

x -展开式中,各项系数的和与各项二项式系数的和之比为64:1,

则=n .

(13)已知正方体1111ABCD A B C D -

的棱长为,M 是棱BC 的中点,

点P 在底面ABCD 内,点Q 在线段11A C 上.若1PM =,则PQ 长度的最小值为 .

(14)对任意实数k ,定义集合20

(,)

20,,0k x y D x y x y x y kx y ⎧

⎫-+≥⎧⎪

⎪⎪

=+-≤∈⎨⎨⎬⎪⎪⎪-≤⎩⎩⎭

R . ① 若集合k D 表示的平面区域是一个三角形,则实数k 的取值范围是 ; ② 当0k =时,若对任意的0(,)x y D ∈,有()31y a x ≥+-恒成立,且存在0(,)x y D ∈,使得x y a -≤成立,则实数a 的取值范围为 .

三、解答题共6小题,共80分。解答应写出文字说明,演算步骤或证明过程。

(15)(本小题13分)

如图,在∆ABC 中,点D 在AC 边上,且3AD DC =

,AB =

3

ADB π∠=

,=6C π

∠.

(Ⅰ)求DC 的值; (Ⅱ)求tan ABC ∠的值.

(16)(本小题13分)

据中国日报网报道:2017年11月13日,TOP500发布的最新一期全球超级计算机500强榜单显示,中国超算在前五名中占据两席.其中超算全球第一“神威·太湖之光”完全使用了国产处理器.为了了解国产品牌处理器打开文件的速度,某调查公司对两种国产品牌处理器进行了12次测试,结果如下:(数值越小,速度越快,单位是MIPS ) (Ⅰ)从品牌的12次测试结果中,随机抽取一次,求测试结果小于7的概率;

(Ⅱ)在12次测试中,随机抽取三次,记X 为品牌A 的测试结果大于品牌B 的测试结果

的次数,求X 的分布列和数学期望()E X ;

(Ⅲ)经过了解,前6次测试是打开含有文字与表格的文件,后6次测试是打开含有文字

与图片的文件.请你依据表中数据,运用所学的统计知识,对这两种国产品牌处理器 打开文件的速度进行评价.

A

(17)(本小题14分)

如图1,梯形ABCD 中,//AD BC ,CD BC ⊥,1BC CD ==,2AD =,E 为AD 中点.将ABE ∆沿BE 翻折到1A BE ∆的位置, 使11A E A D =如图2. (Ⅰ)求证:平面1A ED ⊥平面BCDE ; (Ⅱ)求1A B 与平面1

ACD 所成角的正弦值; (Ⅲ)设M 、N 分别为1A E 和BC 的中点,试比较三棱锥1M A CD -和三棱锥1N A CD -(图中未画出)的体积大小,并说明理由.

A E D

B

C

D

图1 图2 (18)(本小题13分)

已知椭圆C :22

29x y +=,点(2,0)P . (Ⅰ)求椭圆C 的短轴长与离心率;

(Ⅱ)过(1,0)的直线l 与椭圆C 相交于M 、N 两点,设MN 的中点为T ,

判断||TP 与||TM 的大小,并证明你的结论. (19)(本小题14分)

已知函数2

()222x

f x ax x =---e

(Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)当0a ≤时,求证:函数()f x 有且只有一个零点;

(Ⅲ)当0a >时,写出函数()f x 的零点的个数.(只需写出结论)

(20)(本小题13分)无穷数列{}n a 满足:1a 为正整数,且对任意正整数n ,1n a +为前n 项

12,,,n a a a 中等于n a 的项的个数.

(Ⅰ)若12a =,请写出数列{}n a 的前7项;

(Ⅱ)求证:对于任意正整数M ,必存在k *

∈N ,使得k a M >;

(Ⅲ)求证:“11a =”是“存在m *

∈N ,当n m ≥时,恒有2n n a a +≥成立”的充要条件.

相关文档
最新文档