信号与系统Matlab实验作业
信号与系统matlab实验报告
信号与系统MATLAB实验报告实验目的本实验旨在通过MATLAB软件进行信号与系统的相关实验,探究信号与系统的特性与应用。
实验步骤1. 准备工作在正式进行实验之前,我们需要做一些准备工作。
首先,确保已经安装好MATLAB软件,并且熟悉基本的操作方法。
其次,准备好实验所需的信号与系统数据,可以是已知的标准信号,也可以是自己采集的实际信号。
2. 信号的生成与显示使用MATLAB编写代码,生成不同类型的信号。
例如,可以生成正弦信号、方波信号、三角波信号等。
通过绘制信号波形图,观察不同信号的特点和变化。
t = 0:0.1:10; % 时间范围f = 1; % 信号频率s = sin(2*pi*f*t); % 正弦信号plot(t, s); % 绘制信号波形图3. 系统的建模与分析根据实验需求,建立相应的系统模型。
可以是线性时不变系统,也可以是非线性时变系统。
通过MATLAB进行模型的建立和分析,包括系统的时域特性、频域特性、稳定性等。
sys = tf([1, 2], [1, 3, 2]); % 系统传递函数模型step(sys); % 绘制系统的阶跃响应图4. 信号与系统的运算对于给定的信号和系统,进行信号与系统的运算。
例如,进行信号的卷积运算、系统的响应计算等。
通过MATLAB实现运算,并分析结果的意义与应用。
x = [1, 2, 3]; % 输入信号h = [4, 5, 6]; % 系统响应y = conv(x, h); % 信号的卷积运算plot(y); % 绘制卷积结果的波形图5. 实验结果分析根据实验数据和分析结果,对实验进行结果总结与分析。
可以从信号的特性、系统的特性、运算结果等方面进行综合性的讨论和分析。
实验总结通过本次实验,我们学习了如何在MATLAB中进行信号与系统的实验。
通过生成信号、建立系统模型、进行运算分析等步骤,我们深入理解了信号与系统的基本原理和应用方法。
通过实验数据和结果分析,我们对信号与系统有了更深刻的认识,并掌握了MATLAB在信号与系统实验中的应用技巧。
信号与系统matlab实验及答案
产生离散衰减正弦序列()π0.8sin 4n x n n ⎛⎫= ⎪⎝⎭, 010n ≤≤,并画出其波形图。
n=0:10;x=sin(pi/4*n).*0.8.^n;stem(n,x);xlabel( 'n' );ylabel( 'x(n)' );用MATLAB 生成信号()0sinc at t -, a 和0t 都是实数,410t -<<,画波形图。
观察并分析a 和0t 的变化对波形的影响。
t=linspace(-4,7); a=1;t0=2;y=sinc(a*t-t0); plot(t,y);t=linspace(-4,7); a=2;t0=2;y=sinc(a*t-t0); plot(t,y);t=linspace(-4,7); a=1;t0=2;y=sinc(a*t-t0); plot(t,y);三组对比可得a 越大最大值越小,t0越大图像对称轴越往右移某频率为f 的正弦波可表示为()()cos 2πa x t ft =,对其进行等间隔抽样,得到的离散样值序列可表示为()()a t nT x n x t ==,其中T 称为抽样间隔,代表相邻样值间的时间间隔,1s f T=表示抽样频率,即单位时间内抽取样值的个数。
抽样频率取40 Hz s f =,信号频率f 分别取5Hz, 10Hz, 20Hz 和30Hz 。
请在同一张图中同时画出连续信号()a x t t 和序列()x n nT 的波形图,并观察和对比分析样值序列的变化。
可能用到的函数为plot, stem, hold on 。
fs = 40;t = 0 : 1/fs : 1 ;% ƵÂÊ·Ö±ðΪ5Hz,10Hz,20Hz,30Hz f1=5;xa = cos(2*pi*f1*t) ; subplot(1, 2, 1) ;plot(t, xa) ;axis([0, max(t), min(xa), max(xa)]) ;xlabel('t(s)') ;ylabel('Xa(t)') ;line([0, max(t)],[0,0]) ; subplot(1, 2, 2) ;stem(t, xa, '.') ;line([0, max(t)], [0, 0]) ;axis([0, max(t), min(xa), max(xa)]) ;xlabel('n') ;ylabel('X(n)') ;频率越高,图像更加密集。
基于matlab的信号与系统实验1
f2=stepfun(k2,0)-stepfun(k2,4);
f=dt*conv(f1,f2);
k0=k1(1)+k2(1);
k3=length(f1)+length(f2)-2;
k=k0:dt:k0+k3*dt;
subplot(2,2,1);
plot(k1,f1);title('f1(t)');xlabel('t');
y9=cos(7*pi*k1/4+pi/3);
subplot(3,3,1);stem(k1,y1);title('y_1(k)');
subplot(3,3,2);stem(k1,y2);title('y_2(k)');
>> subplot(3,3,3);stem(k1,y3);title('y_3(k)');
y6= y7= y8= y9=
指令:
>> k1=0:30;
y1=cos(pi*k1/2);
y2=cos(pi*k1/8);
y3=cos(pi*k1/4);
y4=cos(pi*k1);
y5=cos(3*pi*k1/2);
y6=cos(7*pi*k1/4);
y7=cos(15*pi*k1/8);
y8=cos(2*pi*k1);
以数值计算为主,学会区分数值计算和符号计算。
2.卷积与卷积和
掌握数值法计算离散卷积和,理解离散卷积与连续卷积的关系,掌握计算连续卷积的数值方法(近似方法)。
实验内容
一、信号的描述、运算、绘图
1、 用MATLAB生成下列函数,连续信号用plot,离散信号用stem绘图
信号与系统-MATLAB实验报告
《信号与系统》MATLAB实验报告院系:专业:年级:班号:姓名:学号:实验时间:实验地点:实验一 连续时间信号的表示及可视化实验题目:)()(t t f δ=;)()(t t f ε=;at e t f =)((分别取00<>a a 及); )()(t R t f =;)()(t Sa t f ω=;)2()(ft Sin t f π=(分别画出不同周期个数的波形)。
解题分析:以上各类连续函数,先运用t = t1: p:t2的命令定义时间范围向量,然后调用对应的函数,建立f 与t 的关系,最后调用plot ()函数绘制图像,并用axis ()函数限制其坐标范围。
实验程序:(1))()(t t f δ=t=-1:0.01:3 %设定时间变量t 的范围及步长 f=dirac(t) %调用冲激函数dirac () plot(t,f) %用plot 函数绘制连续函数 axis([-1,3,-0.5,1.5]) %用axis 函数规定横纵坐标的范围 (2))()(t t f ε=t=-1:0.01:3 %设定时间变量t 的范围及步长 f=heaviside(t) %调用阶跃函数heaviside () plot(t,f) %用plot 函数绘制连续函数 title('f(t)=heaviside(t)') %用title 函数设置图形的名称 axis([-1,3,-0.5,1.5]) %用axis 函数规定横纵坐标的范围 (3)at e t f =)(a=1时:t=-5:0.01:5 %设定时间变量t 的范围及步长 f=exp(t) %调用指数函数exp ()plot(t,f) %用plot 函数绘制连续函数 title('f=exp(t)') %用title 函数设置图形的名称 axis([-5,5,-1,100]) %用axis 函数规定横纵坐标的范围 a=2时: t=-5:0.01:5f=exp(2*t) %调用指数函数exp () plot(t,f)title('f=exp(2*t)') axis([-5,5,-1,100]) a=-2时: t=-5:0.01:5 f=exp(-2*t) plot(t,f)title('f=exp(-2*t)') axis([-5,5,-1,100]) (4))()(t R t f =t=-5:0.01:5f=rectpuls(t,2) %用rectpuls(t,a)表示门函数,默认以零点为中心,宽度为a plot(t,f) title('f=R(t)') axis([-5 5 -0.5 1.5]) (5))()(t Sa t f ω=ω=1时: t=-20:0.01:20f=sin(t)./t %调用正弦函数sin (),并用sin (t )./t 实现抽样函数 plot(t,f)title('f(t)=Sa(t)') axis([-20,-20,-0.5,1.1])ω=5时: t=-20:0.01:20 f=sin(5*t)./(5*t) plot(t,f)title('f(t)=Sa(5*t)') axis([-20,-20,-0.5,1.1]) (6))2()(ft Sin t f π=ω=1时: t=-10:0.01:10f=sin(t) %调用正弦函数sin () plot(t,f); title('f=sin(t)') axis([-10,10,-2,2]) ω=5时: t=-10:0.01:10 f=sin(5*t) plot(t,f);title('f=sin(5*t)') axis([-10,10,-2,2])实验结果;(1)-1-0.500.51 1.52 2.53-0.500.511.5(2)-1-0.500.51 1.52 2.53-0.500.511.5f(t)=heaviside(t)(3) a=1时:-5-4-3-2-1012345 a=2时:f=exp(2*t)-5-4-3-2-1012345 a=-2时:-5-4-3-2-1012345(4)-5-4-3-2-1012345-0.500.511.5f=R(t)(5) ω=1时:-20-15-10-505101520-0.4-0.20.20.40.60.81ω=5时:-20-15-10-505101520-0.4-0.20.20.40.60.81f(t)=Sa(5*t)(6) ω=1时:-10-8-6-4-20246810-2-1.5-1-0.500.511.52ω=5时:-10-8-6-4-20246810-2-1.5-1-0.500.511.52f=sin(5*t)实验心得体会:(1) 在 MATLAB 中,是用连续信号在等时间间隔点的样值来近似地表示连续信号的,当取样时间间隔足够小时,这些离散的样值就能较好地近似出连续信号。
长江大学信号与系统matlab实验答案
实验1 信号变换与系统非时变性质的波形绘制●用MA TLAB画出习题1-8的波形。
●用MA TLAB画出习题1-10的波形。
Eg 1.8代码如下:function [y]=zdyt(t) %定义函数zdyty=-2/3*(t-3).*(heaviside(-t+3)-heaviside(-t));endt0=-10;t1=4;dt=0.02;t=t0:dt:t1;f=zdyt(t);y=zdyt(t+3);x=zdyt(2*t-2);g=zdyt(2-2*t);h=zdyt(-0.5*t-1);fe=0.5*(zdyt(t)+zdyt(-t));fo=0.5*(zdyt(t)-zdyt(-t));subplot(7,1,1),plot(t,f);title('信号波形的变化')ylabel('f(t)')grid;line([t0 t1],[0 0]);subplot(7,1,2),plot(t,y);ylabel('y(t)')grid;line([t0 t1],[0 0]);subplot(7,1,3),plot(t,x);ylabel('x(t)')grid;line([t0 t1],[0 0]);subplot(7,1,4),plot(t,g);ylabel('g(t)')grid;line([t0 t1],[0 0]);subplot(7,1,5),plot(t,h);ylabel('h(t)')grid;line([t0 t1],[0 0]);subplot(7,1,6),plot(t,fe);ylabel('fe(t)')grid;line([t0 t1],[0 0]);subplot(7,1,7),plot(t,fo);ylabel('fo(t)')grid;line([t0 t1],[0 0]);xlabel('Time(sec)')结果:Eg1.10代码如下:function [u]=f(t) %定义函数f(t) u= heaviside(t)-heaviside(t-2); endfunction [u] =y(t) %定义函数y(t)u=2*(t.*heaviside(t)-2*(t-1).*heaviside(t-1)+(t-2).*heaviside(t-2)); endt0=-2;t1=5;dt=0.01; t=t0:dt:t1; f1=f(t); y1=y(t); f2=f(t)-f(t-2); y2=y(t)-y(t-2); f3=f(t)-f(t+1); y3=y(t)-y(t+1);subplot(3,2,1),plot(t,f1); title('激励——响应波形图') ylabel('f1(t)')grid;line([t0 t1],[0 0]);-10-8-6-4-2024012信号波形的变化f (t)-10-8-6-4-2024012y (t)-10-8-6-4-2024012x (t)-10-8-6-4-2024012g (t)-10-8-6-4-2024012h (t)-10-8-6-4-202400.51f e (t)-10-8-6-4-2024-101f o (t)Time(sec)subplot(3,2,2),plot(t,y1); ylabel('y1(t)')grid;line([t0 t1],[0 0]); subplot(3,2,3),plot(t,f2); ylabel('f2(t)')grid;line([t0 t1],[0 0]); subplot(3,2,4),plot(t,y2); ylabel('y2(t)')grid;line([t0 t1],[0 0]); subplot(3,2,5),plot(t,f3); ylabel('f3(t)')grid;line([t0 t1],[0 0]); subplot(3,2,6),plot(t,y3); ylabel('y3(t)')grid;line([t0 t1],[0 0]); xlabel('Time(sec)')结果:实验2 微分方程的符号计算和波形绘制上机内容用MA TLAB 计算习题2-1,并画出系统响应的波形。
(完整word版)信号与系统matlab实验及答案
产生离散衰减正弦序列()π0.8sin 4n x n n ⎛⎫= ⎪⎝⎭, 010n ≤≤,并画出其波形图。
n=0:10;x=sin (pi/4*n )。
*0。
8。
^n ;stem(n,x);xlabel( 'n’ );ylabel( 'x (n)’ );用MATLAB 生成信号()0sinc at t -, a 和0t 都是实数,410t -<<,画波形图。
观察并分析a 和0t 的变化对波形的影响。
t=linspace (—4,7); a=1; t0=2;y=sinc(a*t-t0);plot(t,y);t=linspace(—4,7);a=2;t0=2;y=sinc(a*t-t0); plot(t,y);t=linspace(-4,7);t0=2;y=sinc (a *t —t0); plot(t,y );三组对比可得a 越大最大值越小,t0越大图像对称轴越往右移某频率为f 的正弦波可表示为()()cos 2πa x t ft =,对其进行等间隔抽样,得到的离散样值序列可表示为()()a t nT x n x t ==,其中T 称为抽样间隔,代表相邻样值间的时间间隔,1s f T=表示抽样频率,即单位时间内抽取样值的个数。
抽样频率取40 Hz s f =,信号频率f 分别取5Hz , 10Hz, 20Hz 和30Hz 。
请在同一张图中同时画出连续信号()a x t t 和序列()x n nT 的波形图,并观察和对比分析样值序列的变化。
可能用到的函数为plot , stem , hold on 。
fs = 40;t = 0 : 1/fs : 1 ;% ƵÂÊ·Ö±ðΪ5Hz,10Hz ,20Hz ,30Hzxa = cos(2*pi*f1*t) ;subplot(1, 2, 1) ;plot(t, xa) ;axis([0, max(t), min(xa), max(xa)]) ;xlabel('t(s)’) ;ylabel('Xa(t)’) ;line([0, max(t)],[0,0]) ; subplot(1, 2, 2) ;stem(t, xa, '。
信号与系统matlab实验四
实验四 连续时间信号的傅立叶变换一、实验目的(1)掌握连续信号傅立叶变换与逆变换的计算方法(2)掌握利用MATLAB 实现连续时间信号傅立叶变换的方法二、实验内容1利用fourier()命令求解如下信号的傅立叶变换,给出)(t f 的波形图以及)(ωj F 的表达式和幅度频谱图:(1) 钟形脉冲:∞<<∞-=-t e t f t ,)(2)2(;(2)符号函数:⎩⎨⎧<->=0101)(t t t f)(ωF 的表达式:(1)22)(ωπω-=e F(2)ωωi F 2)(-=函数一程序如下:syms t v w x;x=exp(-(t/2)*(t/2));F=fourier(x);subplot(211);ezplot(x);subplot(212);ezplot(F);函数二:syms t v w x;x=Heaviside(t)-Heaviside(-t);F=fourier(x);subplot(211);ezplot(x,[-1,1]);subplot(212);ezplot(abs(F));运行结果如图:(1)(2)2求解如下信号的傅立叶变换,绘出信号的时域波形及幅度频谱图:(1) 升余弦脉冲:10)],cos(1[21)(≤≤+=t t t f π;(2)⎪⎩⎪⎨⎧><-=20221)(t t t t f)(ωF 的表达式:(1)()()[]πωπωωω++-+=Sa Sa Sa F 21)()( (2)()()222sin 22)(ωωωω==Sa F函数一:R=0.02;t=-1:R:1;f=1/2*(1+cos(pi*t));N=200;k=0:N;W=2*pi*k/(10*N*R);F=R*f*exp(-j*t'*W);F=real(F);W=[-fliplr(W),W(2:N+1)];F=[fliplr(F),F(2:N+1)];subplot(2,1,1);plot(t,f);xlabel('t');ylabel('f(t)');title('f(t)=u(t+1)-u(t-1)');axis([-1,1,-0.1,1.1]);subplot(2,1,2);plot(W,F);xlabel('w');ylabel('F(w)');title(' f(t)的傅氏变换F(w)');axis([-30,30,-0.1,1.1]);函数二:R=0.01;t=-2:R:2;f=(1-abs(t)/2);N=400;k=0:N;W=2*pi*k/(10*N*R);F=R*f*exp(-j*t'*W);F=real(F);W=[-fliplr(W),W(2:N+1)];F=[fliplr(F),F(2:N+1)];subplot(2,1,1);plot(t,f);xlabel('t');ylabel('f(t)');title('f(t)=(1-abs(t)/2)*[u(t+2)-u(t-2)]');axis([-2,2,-0.1,1.1]);subplot(2,1,2);plot(W,F);xlabel('w');ylabel('F(w)'); title('f(t)的傅氏变换F(w)'); axis([-25,25,-0.1,2.1]);运行结果如图:(1)(2)3已知)(1t f 的波形如下图所示且)()(11ωj F t f ↔;设)()(*)()(11ωj F t f t f t f ↔=,试用MATLAB 给出)(1t f 、)(t f 、)(1ωj F 及)(ωj F ,并验证时域卷积定理。
信号与系统实验__matlab
信号与系统部分01.分别用MATLAB 表示并绘出下列连续时间信号的波形:2()(2)()t f t e u t -=-02.分别用MATLAB 表示并绘出下列连续时间信号的波形:[]()cos()()(4)2tf t u t u t π=--03.分别用MATLAB 表示并绘出下列离散时间信号的波形:()12()()kf k u k =-04.分别用MATLAB 表示并绘出下列离散时间信号的波形:[]()()(8)f t k u k u k =--05.已知信号f (t)的波形如下图所示,试用MATLAB 绘出满足下列要求的信号波形。
()f t -06.已知信号f (t)的波形如下图所示,试用MATLAB 绘出满足下列要求的信号波形。
()f ata =0.507.已知信号f (t)的波形如下图所示,试用MATLAB 绘出满足下列要求的信号波形。
()f at ,a =208.已知信号f (t)的波形如下图所示,试用MATLAB 绘出满足下列要求的信号波形。
(0.51)f t +09.已知两信号1()(1)()f t u t u t =+-,2()()(1)f t u t u t =--,求卷积积分12()()()g t f t f t =*。
10.已知两信号1()()f t tu t =,20()()0t tt te u t f t t e-≥⎧=⎨<⎩,求卷积积分12()()()g t f t f t =*。
11.已知{}{}12()1,1,1,2,()1,2,3,4,5f k f k ==,求两序列的卷积和。
12.已知描述系统的微分方程如下,试用理论分析并计算系统的单位冲激响应h(t),并用MATLAB 绘出系统单位冲激响应的波形,验证结果是否相同。
''()4'()4()'()3()y t y t y t f t f t ++=+13.已知描述系统的微分方程如下,试用解析方法求系统的单位冲激响应h(t),并用MATLAB 绘出系统单位冲激响应的波形,验证结果是否相同。
(完整版)信号与系统Matlab实验作业
(完整版)信号与系统Matlab实验作业实验一典型连续时间信号和离散时间信号一、实验目的掌握利用Matlab 画图函数和符号函数显示典型连续时间信号波形、典型时间离散信号、连续时间信号在时域中的自变量变换。
二、实验内容1、典型连续信号的波形表示(单边指数信号、复指数信号、抽样信号、单位阶跃信号、单位冲击信号)1)画出教材P28习题1-1(3) ()[(63)(63)]t f t e u t u t =----的波形图。
function y=u(t) y=t>=0; t=-3:0.01:3;f='exp(t)*(u(6-3*t)-u(-6-3*t))'; ezplot(f,t); grid on;2)画出复指数信号()()j t f t e σω+=当0.4, 8σω==(0<t<10)时的实部和虚部的< p="">波形图。
t=0:0.01:10;f1='exp(0.4*t)*cos(8*t)'; f2='exp(0.4*t)*sin(8*t)'; figure(1) ezplot(f1,t); grid on; figure(2) ezplot(f2,t); grid on;t=-10:0.01:10; f='sin(t)/t'; ezplot(f,t); grid on;t=0:0.01:10;f='(sign(t-3)+1)/2'; ezplot(f,t);grid on;5)单位冲击信号可看作是宽度为?,幅度为1/?的矩形脉冲,即t=t 1处的冲击信号为11111()()0 t t t x t t t otherδ??<<+?=-=画出0.2?=, t 1=1的单位冲击信号。
t=0:0.01:2;f='5*(u(t-1)-u(t-1.2))'; ezplot(f,t); grid on;axis([0 2 -1 6]);2、典型离散信号的表示(单位样值序列、单位阶跃序列、实指数序列、正弦序列、复指数序列)编写函数产生下列序列:1)单位脉冲序列,起点n0,终点n f,在n s处有一单位脉冲。
信号与系统Matlab实验报告
实验一MATLAB 程序入门和基础应用一、实验名称MATLAB 程序入门和基础应用二、实验目的1.学习Matlab软件的基本使用方法;2.了解Matlab的数值计算,符号运算,可视化功能;3. Matlab程序设计入门四、实验设备计算机MATLAB软件六、实验内容及具体步骤1、打开MATLAB的系统界面,对其功能做一个大致了解;2、学习变量的描述方法,掌握几个固定变量:I,j,pi,inf的使用。
注意,变量描述以字母开头,可以由字母、数字和下划线混合组成,区分字母大,小写字符长度不超过31个。
3、学习数值,矩阵,运算符,向量的矩阵运算,数组运算的描述方法。
(1)用一个简单命令求解线性系统3x1+ x2 - x3 =3.6x1+2x2+4x3 = 2.1-x1+4x2+5x3 = -1.4A=[3 1 -1;1 2 4;-1 4 5];b=[3.6;2.1;-1.4];x=A\b结果:x = 1.4818 -0.4606 0.3848(2)用简短命令计算并绘制在0≤x≤6范围内的sin(2x)、sinx2、sin2x。
x=linspace(0,6)y1=sin(2*x),y2=sin(x.^2),y3=(sin(x)).^2;plot(x,y1,x, y2,x, y3)4、Matlab符号运算功能(1)符号运算的过程在符号运算的整个过程中,所有的运算均是以符号进行的,即使以数字形式出现的量也是字符量。
做一个对sin(x/2)求导的过程。
在命令窗口中输入如下符号表达式按回车:f='sin(x/2)';dfdx=diff(f)显示结果如下:dfdx = 1/2*cos(1/2*x)整个求导的过程都是由符号变量和符号表达式完成,没有涉及到具体的数值运算,其中1/2也被当作是字符量。
注意:符号变量前先要进行定义,定义语句是:sym 或syms 变量名列表。
前者定义一个单一的符号变量,后者可以一次定义多个符号变量。
利用matlab进行信号与系统分析实验
【实验1】利用matlab 进行信号的时域分析 (1)指数信号 >>A=1; >> a=-0.4;>> t=0:0.01:10;>> ft=A*exp(a*t); >> plot(t,ft); >> grid;>> axis([0 10 -0.1 1.1]; >> xlabel('t') >> ylabel('ft')(2)正弦信号 >> A=1; >> w0=2*pi; >> phi=pi/6; >> t=0:0.01:3; >> ft=A*sin(w0*t+phi); >> plot(t,ft); >> grid;>> axis([0 3 -1.1 1.1]); >> xlabel('t') >> ylabel('ft')()t f t Ae α=()sin()f t A t ωϕ=+>>x=linspace(-20,20); >> y=sinc(x/pi); >> plot(x,y);>> grid; >> axis([-21 21 -0.5 1.1]); >> xlabel('x') >> ylabel('y')(4)矩形脉冲信号 >> t=0:0.001:4; >> T=1;>> ft=rectpuls(t-2*T,2*T); >> plot(t,ft); >> grid;>> axis([-1 5 -0.1 1.1]); >> xlabel('t') >>ylabel('ft')t t t Sa t f )sin()()(==)]()([)()(10τετετ+-+==t t A t G t ffunction ft=heaviside(t) ft=(t>0); >> t=-1:0.001:3; >> ft=heaviside(t); >> plot(t,ft); >> grid;>> axis([-1 3 -0.1 1.1]); >> xlabel('t') >>ylabel('ft')(6)复指数信号的时域波形 >> t=0:0.1:60;>> f=exp(-0.1*t).*sin(2/3*t); >> plot(t,f); >> grid;>> axis([0 60 -1 1]); >> xlabel('Time(sec)') >>ylabel('f(t)')⎩⎨⎧<>=)0(0)0(1)(t t t ε)32sin()(1.0t e t f t -=(7)加入随机噪声的正弦波>> t=0:0.001:50;>> y=sin(2*pi*50*t);>> s=y+randn(size(t)); >> subplot(2,1,1);>> plot(t(1:100),y(1:100)); >> grid;>> subplot(2,1,2);>> plot(t(1:100),s(1:100)); >>grid;(8)周期矩形波>> A=1;>> t=0:0.0001:5;>> y=A*square(2*pi*t,20); >> plot(t,y);>> grid;>> axis([0 5 -1.5 1.5]);(9)信号的基本运算>> syms t;>>f=sym('(t/2+1)*(heaviside(t+2)-heaviside(t-2))');>>subplot(3,2,1),ezplot(f,[-3,3]);>>grid;>> y1=subs(f,t,t+2);>> subplot(3,2,2),ezplot(y1,[-5,1]);>> title('f(t+2)');>> grid;>> y2=subs(f,t,t-2);>> subplot(3,2,3),ezplot(y2,[-1,5]);>> title('f(t-2)');>> grid;>> y3=subs(f,t,-t);>> subplot(3,2,4),ezplot(y3,[-3,3]);>> title('f(-t)');>> grid;>> y4=subs(f,t,2*t);>> subplot(3,2,5),ezplot(y4,[-2,2]);>> title('f(2t)');>> grid;例1求系统y ”(t )+2y ’(t )+100y (t )=10f (t )的零状态响应,已知f (t )=(sin2πt ) ε(t )。
信号与系统 matlab实验报告
信号与系统 matlab实验报告信号与系统 Matlab 实验报告引言:信号与系统是电子信息类专业中的一门重要课程,它研究了信号的产生、传输和处理过程,以及系统对信号的响应和影响。
通过实验,我们可以更直观地理解信号与系统的基本概念和原理,并掌握使用 Matlab 进行信号与系统分析和处理的方法。
实验一:信号的产生与显示在信号与系统课程中,我们首先需要了解不同类型的信号,以及如何产生和显示这些信号。
在 Matlab 中,我们可以使用一些函数来生成常见的信号波形,如正弦波、方波、三角波等。
通过编写简单的 Matlab 程序,我们可以实现信号的产生和显示。
实验二:信号的采样与重构在实际应用中,信号通常以连续时间的形式存在,但在数字系统中需要将其转换为离散时间的信号进行处理。
这就需要进行信号的采样和重构。
在 Matlab 中,我们可以使用采样函数和重构函数来模拟这一过程,并观察采样率对信号重构质量的影响。
实验三:信号的滤波与频谱分析信号滤波是信号处理中的重要环节,它可以去除信号中的噪声和干扰,提高信号质量。
在 Matlab 中,我们可以使用滤波函数来实现不同类型的滤波器,并观察滤波对信号频谱的影响。
此外,我们还可以使用频谱分析函数来研究信号的频谱特性,如频谱密度、功率谱等。
实验四:系统的时域与频域分析系统是信号处理中的重要概念,它描述了信号在系统中的传输和变换过程。
在Matlab 中,我们可以使用系统函数来模拟不同类型的系统,并观察系统对信号的时域和频域响应。
通过实验,我们可以深入理解系统的时域特性和频域特性,如冲击响应、频率响应等。
实验五:信号的调制与解调信号调制是将信息信号转换为调制信号的过程,而解调则是将调制信号恢复为原始信号的过程。
在 Matlab 中,我们可以使用调制函数和解调函数来模拟不同类型的调制和解调方式,如调幅、调频、调相等。
通过实验,我们可以了解不同调制方式的原理和特点,并观察调制和解调对信号的影响。
信号与系统信号基本运算的MATLAB实现实验报告
信号与系统实验报告实验一、信号基本运算的MATLAB 实现一、实验目的学习如何利用Matlab 实现信号的基本运算,掌握信号的基本运算的原理,加深对书本知识的理解。
二、实验材料PC 机一台三、实验内容1、(1)编写如图Exercise1.1所示波形的MATLAB 函数。
(2)试画出f(t),f(0.5t),f(1-2t)的波形。
解:程序如下: 实验结果: function yt = f2(t)yt=tripuls(t,4,0.5); t=-3:0.01:5; subplot(311) plot(t,tx(t)) title('f£¨t£©') subplot(312) plot(t,tx(0.5*t)) title('f(0.5t)') subplot(313) plot(t,tx(-2*t)) title('f(-2t)') 2、画出如图exercise1.2所示序列f[2k]、f[-k]和f[k+2],f[k-2]的波形。
并求f[k]的和。
解:程序如下:function f=ls(k)f=3.*(k==-2)+1.*(k==-1)+(-2).*(k==0)+(-1).*(k==1)+2.*(k==2)+(-3).*(k==3);Exercise 1.1-3f[k] kExercise1.2k=-5:0.01:10;subplot(321)stem(k,ls(k)) 实验结果:title('f[k]')subplot(322)stem(k,ls(2*k))title('f[2k]')subplot(323)stem(k,ls(-1*k))title('f[-k]')subplot(324)stem(k,ls(k+2))title('f[k+2]')subplot(325)stem(k,ls(k-2))title('f[k-2]')subplot(326)plot(k,sum(ls(-2:3)))title('Sum f[k]')3、解:程序如下:function y=tx(t)y=0.*(t>=2|t<-1)+(2-t).*(t>=1&t<2)+1.*(t>=-1&t<1); t=-5:0.01:5; 实验结果:ft1=tripuls(t-3,2,0.5);subplot(311)plot(t,ft1)title('f(t)')ft1=tripuls(-t-3,2,0.5);subplot(312)plot(t,ft1)title('f(-t)')ft1=tripuls(-2*t-2,2,0.5);subplot(313)plot(t,ft1)title('f(1-2t)')。
信号与系统matlab作业
题目一:现在考虑下面3个信号:[]⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=N n N n n x ππ3cos 22cos 1 []⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛=N n N n n x 3cos 2cos 22 []⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=N n N n n x 25sin 32cos 3ππ 假设对每个信号N=6。
试确定是否每个信号都是周期的。
如果某一信号是周期的,从n=0开始,画出该信号的两个周期;如果该信号不是周期的,对于N n 40≤≤画出该信号,并说明为什么它不是周期的。
记住:用stem,而且要将坐标轴给出适当标注。
解:1、假设N=6,[]1003,2,1•••=n ;分别带入题目中的三个式子,用MATLAB 软件初步描绘出三个信号图形(如图【1-1】),观察三个信号的图形和数据是否具有重复循环性,从而得出三个信号是否周期的。
图【1-1】从图【1-1】及在MATLAB 中各个信号的坐标数据可以得出,信号[]n x 1、[]n x 3是周期的,其周期分别为24,1231==T T ;而信号[]n x 2虽然图形看似具有周期性,但其中的坐标数据却不是循环重复的,即该信号[]n x 2不是周期的。
图【1-1】的MATLAB 程序:Clc ,clearN=6;for n=0:100x1(n+1)=cos(2*pi*n./N)+2*cos(3*pi*n./N);x2(n+1)=2*cos(2*n./N)+cos(3*n./N);x3(n+1)=cos(2*pi*n./N)+3*cos(5*pi*n./(2*N));endn=0:100;subplot(3,1,1)stem(n,x1,'fill')grid;xlabel('n')ylabel('x1')subplot(3,1,2)stem(n,x2,'fill')grid;xlabel('n')ylabel('x2')subplot(3,1,3)stem(n,x3,'fill')grid;xlabel('n')ylabel('x3')2、上面得出了各个信号是否具有周期性,即按照要求用MATLAB 对各个信号进行图像处理:(1)对信号[][]n x n x 21, 得出各自两个周期的波形图像,如图【1-2】:图【1-2】图【1-2】的MATLAB 程序:clc,clearN=6;for n1=0:24x1(n1+1)=cos(2*pi*n1./N)+2*cos(3*pi*n1./N);endn1=0:24;for n3=0:48x3(n3+1)=cos(2*pi*n3./N)+3*cos(5*pi*n3./(2*N));endn3=0:48;subplot(2,1,1)stem(n1,x1,'fill')grid;xlabel('n')ylabel('x1')subplot(2,1,2)stem(n3,x3,'fill')grid;xlabel('n')ylabel('x3')(2)对信号[]n x 2,当N n 40≤≤时用MATLAB 画出该信号的波形图像,如图【1-3】:图【1-3】图【1-3】的MATLAB 程序:clc,clearN=6;for n2=0:1:4*Nx2(n2+1)=2*cos(2*n2./N)+cos(3*n2./N);endn2=0:1:4*N;stem(n2,x2,'fill')grid;xlabel('n')ylabel('X2')因为一个周期信号在形状上的每一个特点都必须周期性地重现;而在图【1-3】上来说,离散信号[]n x 2在对N n 40≤≤中,并没有满足周期信号的条件:[]N n x n x +=][(其中N 指周期)所以,离散信号[]n x 2不是周期信号。
信号与系统matlab实验1
实验一 典型连续时间信号描述及运算二、典型连续信号波形的绘制 2、典型连续时间信号波形绘制 2)正弦信号 )0.2s i n ()(θ+⋅⋅⋅=Ttpi E t f 程序如下:t=-250:1:250;f1=150.0*sin(2.0.*t.*pi./100.00); f2=150.0*sin(2.0.*t.*pi./200.00);f3=150.0*sin((2.0.*t.*pi./200.00)+(pi./5.0)); plot(t,f1,'-',t,f2,'--',t,f3,'-.') 图形如下:3)衰减正弦信号 )()e x p ()0.2s i n ()(t u tT t pi E t f ⋅-⋅⋅⋅⋅=τ程序如下:t=0:1:500;f=200.0*sin(2.0.*t.*pi./100.00).*exp(-1.*t./250.0); plot(t,f); 图形如下:4)钟型信号 )e x p ()(22τt E t f -⋅=程序如下:t=-250:1:250;f1=400.0*exp(-1.*t.^2./100.0^2); f2=400.0*exp(-1.*t.^2./150.0^2); f3=400.0*exp(-1.*t.^2./250.0^2); plot(t,f1,'-',t,f2,'--',t,f3,'-.'); 图形如下:3、奇异信号波形绘制 1)符号函数 ⎩⎨⎧<->=011)s g n (t t t 程序如下:t=-5:0.01:5;f=sign(t); plot(t,f); 图形如下:2)阶跃信号 ⎩⎨⎧<>=01)(t t t u 程序如下:t=-5:0.01:5;f=0.5+0.5.*sign(t); plot(t,f); 图形如下:三、连续时间信号的运算已知)]4()()[4()(1--+-=t u t u t t f 及信号)2sin()(2t t f π=,用MATLAB 绘出满足下列要求的信号波形。
信号与系统matlab实验报告
信号与系统matlab实验报告信号与系统MATLAB实验报告引言信号与系统是电子工程、通信工程和控制工程等领域中的重要基础课程。
通过实验,我们可以更好地理解信号与系统的概念和基本原理,并掌握使用MATLAB进行信号与系统分析的方法。
本报告将介绍我们在信号与系统实验中的实验过程、结果和分析。
实验一:连续时间信号的采样与重构在这个实验中,我们研究了连续时间信号的采样与重构。
首先,我们通过MATLAB生成了一个连续时间信号,并使用采样定理确定了采样频率。
然后,我们对连续时间信号进行采样,并通过重构方法将采样信号还原为连续时间信号。
最后,我们通过观察重构信号与原始信号的相似性来评估重构的效果。
实验二:线性时不变系统的频率响应在这个实验中,我们研究了线性时不变系统的频率响应。
首先,我们通过MATLAB生成了一个输入信号,并设计了一个线性时不变系统。
然后,我们通过将输入信号输入到系统中,并记录输出信号的幅度和相位,从而得到系统的频率响应。
最后,我们绘制了系统的幅频特性和相频特性曲线,并对其进行了分析和讨论。
实验三:离散时间信号的采样与重构在这个实验中,我们研究了离散时间信号的采样与重构。
首先,我们通过MATLAB生成了一个离散时间信号,并使用采样定理确定了采样周期。
然后,我们对离散时间信号进行采样,并通过重构方法将采样信号还原为离散时间信号。
最后,我们通过观察重构信号与原始信号的相似性来评估重构的效果,并讨论了离散时间信号的采样与重构的特点。
实验四:离散时间系统的差分方程在这个实验中,我们研究了离散时间系统的差分方程。
首先,我们通过MATLAB生成了一个输入信号,并设计了一个离散时间系统。
然后,我们通过将输入信号输入到系统中,并根据系统的差分方程计算输出信号。
最后,我们对输入信号和输出信号进行了分析和比较,并讨论了离散时间系统的差分方程的特点和应用。
实验五:连续时间信号的傅里叶变换在这个实验中,我们研究了连续时间信号的傅里叶变换。
信号与系统(matlab上机实验报告)
通信与信息工程学院信号与系统分析MATLAB上机实验报告班级学号姓名电信1603班通信与信息工程学院二〇一八年实验题目一:信号的表示及可视化一、实验目的1.掌握连续信号的 MATLAB 表示方法(表达式及图形描述);2. 掌握离散序列的 MATLAB 表示方法(表达式及图形描述);二、实验原理向量法表示信号和符号法表示信号后直观的绘出图形1.连续信号的表示及可视化在 MATLAB 中,是用连续信号在等时间间隔点的样值来近似地表示连续信号的,当取样时间间隔足够小时,这些离散的样值就能较好的近似出连续信号。
(1):向量法表示以用两个行向量 f 和 t 来表示,其中 t 向量是形如t=t1:p:t2 的 MATLAB 命令定义的时间范围向量,t1为信号起始时间,t2为终止时间,p 为时间间隔。
向量 f 为连续信号 f(t)在向量 t 所定义的时间点上的样值。
然后用plot画出图。
(2):符号运算法表示:用 ezplot 命令绘制出信号的波形。
(3):常用信号的表示:单位阶跃信号方法一:一种得到单位阶跃信号的方法是在 MATLAB 的 Symbolic MathToolbox 中调用单位阶跃函数 Heaviside,这样可方便地表示出单位阶跃信号。
但是,在用函数 ezplot 实现其可视化时,就出现一个问题:函数 ezplot 只能画出既存在于 Symbolic Math 工具箱中,又存在于总 MATLAB 工具箱中的函数,而 Heaviside 函数仅存在 Symbolic MathToolbox 中,因此,就需要在自己的工作目录 work 下创建 Heaviside 的M 文件。
方法二:用符号函数 sgn(t)的表示可调用 MATLAB 中的符号函数 sign 来实现。
单位冲激信号: MATLAB 是不能表示单位冲激信号的,但我们可用时间宽度为 dt ,高度为 1/dt的矩形脉冲来近似地表示冲激信号。
(完整版)信号与系统matlab实验3
一、实现下述周期信号的傅立叶级数分解与合成(a )首先,推导出求解0a ,n a ,nb 的公式,计算出前10次系数; (b )利用MATLAB 求解0a ,n a ,n b 的值,其中n a ,nb 求解前10次系数,并给出利用这些系数合成的信号波形。
解:(a)110220[sign(t) - sign(t - 1)]0.25Ta dt ==⎰ 112202[sign(t) - sign(t - 1)][cos()]Tn n t a dt Tπ=⋅⎰ 112202[sign(t) - sign(t - 1)][sin()]T n n t b dt T π=⋅⎰ 程序:function [A_sym,B_sym]=CTFShchsymsyms t n k xT=4;if nargin<4;Nf=10;endif nargin<5;Nn=32;endx=time_fun_x(t);A0=int(x,t,0,1)/T;As=int(2*x*cos(2*pi*n*t/T)/T,t,0,1);Bs=int(2*x*sin(2*pi*n*t/T)/T,t,0,1);A_sym(1)=double(vpa(A0,Nn));for k=1:NfA_sym(k+1)=double(vpa(subs(As,n,k),Nn));B_sym(k+1)=double(vpa(subs(Bs,n,k),Nn));endif nargout==0c=A_sym;disp(c);d=B_sym;disp(d);t=-8:0.01:9;f1=c(1)+c(2).*cos(2*pi*1*t/T)+d(2).*sin(2*pi*1*t/T); f2=c(3).*cos(2*pi*2*t/T)+d(3).*sin(2*pi*2*t/T); f3=c(4).*cos(2*pi*3*t/T)+d(4).*sin(2*pi*3*t/T); f4=c(5).*cos(2*pi*4*t/T)+d(5).*sin(2*pi*4*t/T); f5=c(6).*cos(2*pi*5*t/T)+d(6).*sin(2*pi*5*t/T);f6=c(7).*cos(2*pi*6*t/T)+d(7).*sin(2*pi*6*t/T);f7=c(8).*cos(2*pi*7*t/T)+d(8).*sin(2*pi*7*t/T);f8=c(9).*cos(2*pi*8*t/T)+d(9).*sin(2*pi*8*t/T);f9=c(10).*cos(2*pi*9*t/T)+d(10).*sin(2*pi*9*t/T);f10=c(11).*cos(2*pi*10*t/T)+d(11).*sin(2*pi*10*t/T);ff1=f1+f2+f3+f4+f5+f6+f7+f8+f9+f10;ff2=f1+f2+f3+f4+f5+f6+f7;ff3=ff2+f8;ff4=ff3+f9;subplot(2,2,1)plot(t,ff1),hold ony=time_fun_e(t) %µ÷ÓÃÁ¬Ðøʱ¼äº¯Êý-ÖÜÆÚ¾ØÐÎÂö³å plot(t,y,'r:')title('ÖÜÆÚ¾ØÐ⨵ÄÐγɡª1+2+3+4+5+6+7+8+9+10´Îг²¨')axis([-4,4.5,-0.5,1.5])grid onsubplot(2,2,2)grid onplot(t,ff2),hold ony=time_fun_e(t)plot(t,y,'r:')title('ÖÜÆÚ¾ØÐ⨵ÄÐγɡª1+2+3+4+5+6+7´Îг²¨')axis([-4,4.5,-0.5,1.5])grid onsubplot(2,2,3)plot(t,ff3),hold ony=time_fun_e(t)plot(t,y,'r:')title('1+2+3+4+5+6+7+8´Îг²¨')axis([-4,4.5,-0.5,1.5])grid onsubplot(2,2,4)plot(t,ff4),hold ony=time_fun_e(t)plot(t,y,'r:')title('1+2+3+4+5+6+7+8+9´Îг²¨')axis([-4,4.5,-0.5,1.5])grid onendfunction x=time_fun_x(t)h=1;x1=sym('0.5+0.5*sign(t)')*h;x=x1-sym('(0.5+0.5*sign(t-1))')*h;%-------------------------------------------function y=time_fun_e(t)a=0.5;T=5;h=1;t=-8:0.01:9;e1=(1/2+1/2.*sign(t))-(1/2+1/2.*sign(t-1));e2=(1/2+1/2.*sign(t-4))-(1/2+1/2.*sign(t-5));e3=(1/2+1/2.*sign(t+4))-(1/2+1/2.*sign(t+3));y=e1+e2+e3;结果如下:A_sym =0.2500 0.3183 0.0000 -0.1061 -0.0000 0.0637 0.0000 -0.0455 -0.0000 0.0354 0.0000B_sym =0 0.3183 0.3183 0.1061 0.0000 0.0637 0.1061 0.0455 0.0000 0.0354 0.0637二、知周期为T=4的三角波,在第一周期(-2<t<2)内表示成:)(,试用MATLAB求该信号的傅立叶级数,并绘制它的频谱图。
matlab信号与系统实验报告
实验一 基本信号的产生与运算一、 实验目的学习使用MATLAB 产生基本信号、绘制信号波形、实现信号的基本运算。
二、 实验原理MATLAB 提供了许多函数用于产生常用的基本信号:如阶跃信号、脉冲信号、指数信号、正弦信号和周期方波等等。
这些信号是信号处理的基础。
1、 利用MATLAB 产生下列连续信号并作图。
(1)51),1(2)(<<---=t t u t x(2)300),32sin()(3.0<<=-t t e t x t(3)1.01.0,3000cos 100cos )(<<-+=t t t t x(4)2000),8.0cos()1.0cos()(<<=t t t t x ππ答:(1)、>> t=-1:0.02:5;>> x=(t>1);>> plot(t,-2*x);>> axis([-1,5,-3,1]);>> title('杨婕婕 朱艺星');>> xlabel('x(t)=-2u(t-1)');(2)、>> t=0:0.02:30;>> x=exp(-0.3*t).*sin(2/3*t); >> plot(t,x);>> title('杨婕婕朱艺星');>> xlabel('x(t)=exp(-0.3*t).*sin(2/3*t)');因为原函数在t=15后x(t)取值接近于零,所以将横坐标改成0到15,看得更清晰axis([0,15,-0.2,0.6]);(3)>> t=-0.1:0.01:0.1;x=cos(100*t)+cos(3000*t);plot(t,x);>> title('杨婕婕朱艺星');>>xlabel('x=cos(100*t)+cos(3000*t)');因为t的间隔取太大,以至于函数不够准确,缩小t的间隔:t=-0.1:0.002:0.2;x=cos(100*t)+cos(3000*t);plot(t,x);title('杨婕婕')>> t=-0.1:0.0001:0.1;x=cos(100*t)+cos(3000*t);>> plot(t,x);title('杨婕婕朱艺星');>> xlabel('x=cos(100*t)+cos(3000*t)');(4)、t=0:0.01:200;>> x=cos(0.1*pi*t).*cos(0.8*pi*t);>> plot(t,x);>> title('杨婕婕朱艺星');>> xlabel('x=cos(0.1*pi*t).*cos(0.8*pi*t)');因为为周期函数,可以将横坐标t间隔扩大以便于观察图像>> axis([0,30,-1,1]);2、 利用MATLAB 产生下列离散序列并作图。
信号与系统——MATLAB基本实验
信号与系统——MATLAB基本实验《信号与系统MATLAB实践》第一次上机作业实验一、熟悉MATLAB基本操作三、基本序列运算1.数组的加减乘除和乘方运算A=[1 2 3];B=[4 5 6];C=A+B;D=A-B;E=A.*B;F=A./B;G=A.^B;subplot(2,4,1);stem(A)subplot(2,4,2);stem(B)subplot(2,4,3);stem(C)subplot(2,4,4);stem(D)subplot(2,4,5);stem(E)subplot(2,4,6);stem(F)subplot(2,4,7);stem(G)(2)t=0:0.001:10x=5*exp(-t)+3*exp(-2*t);plot(t,x)ylabel('f(t)');xlabel('t');title('(2)');(3)t=0:0.001:3x=exp(-t).*sin(2*pi*t); plot(t,x)ylabel('f(t)');xlabel('t');title('(3)');(4)t=0:0.001:3 x=sin(3*t)./(3*t); plot(t,x)ylabel('f(t)'); xlabel('t');title('(4)');(5)k=1:1:6 x=(-2).^(-k); stem(k) xlabel('k'); ylabel('f(k)'); title('(5)');(6)k=0:1:4 x=exp(k); stem(k) xlabel('k'); ylabel('f(k)'); title('(6)');(7)k=1:1:99 x=k;stem(k) xlabel('k'); ylabel('f(k)'); title('(7)');四、利用MATLAB求解线性方程组。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一 典型连续时间信号与离散时间信号一、实验目的掌握利用Matlab 画图函数与符号函数显示典型连续时间信号波形、典型时间离散信号、连续时间信号在时域中的自变量变换。
二、实验内容1、典型连续信号的波形表示(单边指数信号、复指数信号、抽样信号、单位阶跃信号、单位冲击信号)1)画出教材P28习题1-1(3) ()[(63)(63)]t f t e u t u t =----的波形图。
function y=u(t) y=t>=0;t=-3:0、01:3;f='exp(t)*(u(6-3*t)-u(-6-3*t))';ezplot(f,t);grid on;2)画出复指数信号()()j t f t e σω+=当0.4, 8σω==(0<t<10)时的实部与虚部的t=0:0、01:10;f1='exp(0、4*t)*cos(8*t)'; f2='exp(0、4*t)*sin(8*t)'; figure(1)ezplot(f1,t);grid on;figure(2)ezplot(f2,t);grid on;3)画出教材P16图1-18,即抽样信号Sa(t)的波形(-20<t<20)。
t=-10:0、01:10;f='sin(t)/t';ezplot(f,t);grid on;4)用符号函数sign画出单位阶跃信号u(t-3)的波形(0<t<10)。
t=0:0、01:10;f='(sign(t-3)+1)/2';ezplot(f,t);grid on;5)单位冲击信号可瞧作就是宽度为∆,幅度为1/∆的矩形脉冲,即t=t 1处的冲击信号为11111 ()()0 t t t x t t t otherδ∆⎧<<+∆⎪=-=∆⎨⎪⎩ t=0:0、01:2;f='5*(u(t-1)-u(t-1、2))';ezplot(f,t);grid on;axis([0 2 -1 6]);2、典型离散信号的表示(单位样值序列、单位阶跃序列、实指数序列、正弦序列、复指数序列)编写函数产生下列序列:1)单位脉冲序列,起点n0,终点n f,在n s处有一单位脉冲。
2)单位阶跃序列,起点n0,终点n f,在n s前序列值为0,在n s后序列值为1。
对于1)、2)小题,最后以参数n0= -10,n f=10,n s= -3为例,画出各自波形。
n0=-10;nf=10;ns=-3;n=n0:nf;x1=[zeros(1,ns-n0),1,zeros(1,nf-ns)];figure(1);stem(n,x1);title('单位脉冲序列');x2=[zeros(1,ns-n0),1,ones(1,nf-ns)];figure(2);stem(n,x2);title('单位阶跃序列');3)画出教材P21图1-26,即[][]n x n a u n =当a =1、2, 0、6, -1、5, -0、8的单边指数序列(-2≤n ≤5)。
n=-2:5;subplot(2,2,1)x1=1、2、^n 、*u(n);stem(n,x1);title('1、2^n*u(n)');subplot(2,2,2)x2=0、6、^n 、*u(n);stem(n,x2);title('0、6^n*u(n)');subplot(2,2,3)x3=(-1、5)、^n 、*u(n);stem(n,x3);title('(-1、5)^n*u(n)');subplot(2,2,4)x4=(-0、8)、^n 、*u(n);stem(n,x4);title('(-0、8)^n*u(n)');4)画出教材P21图1-27,即00[]sin(), x n n π=ΩΩ=的正弦序列(-7≤n ≤14)。
n=-7:14;x=sin(pi/7*n);stem(n,x); title('x[n]=sin(\Omega_0n) 正弦序列');5)画出复指数序列/6[]j n x n e π=与3[]j n x n e =的实部与虚部(-50≤n ≤50)。
n=-50:50;figure(1)x1=cos(pi/6*n);stem(n,x1);title('cos(n\pi/6) 实部');figure(2)x2=sin(pi/6*n);stem(n,x2);title('sin(n\pi/6) 虚部');figure(3)x3=cos(3*n);stem(n,x3);title('cos(3*n) 实部');figure(4)x4=sin(3*n);stem(n,x4);title('sin(3*n) 虚部');3、信号的自变量变换1)编写程序(函数),画出教材P10图1-13(a)即f(t)的波形(-6<t<6);2)利用1)中建立的函数,通过自变量替换方式依次画出图1-13(b)、(c)、(d)即syms t;f='u(t)-u(t-2)'+(1+t)*'u(t+1)-u(t)';subplot(2,2,1);ezplot(f,[-2,3]);axis([-2 3 -0、2 1、2]);title('f(t)');grid on;f1=subs(f,t,t+5);subplot(2,2,2);ezplot(f1,[-7,-2]);axis([-7 -2 -0、2 1、2]);title('f(t+5)');grid on;f2=subs(f,t,-t+5);subplot(2,2,3);ezplot(f2,[2,7]);axis([2 7 -0、2 1、2]);title('f(-t+5)');grid on;f3=subs(f,t,-2*t+5);subplot(2,2,4);ezplot(f3,[-1,4]);axis([-1 4 -0、2 1、2]);title('f(-2t+5)');grid on;实验二连续与离散时间LTI系统的响应及卷积一、实验目的掌握利用Matlab工具箱求解连续时间系统的冲激响应、阶跃响应,离散时间系统的单位样值响应,理解卷积概念。
二、实验内容1、连续时间系统的冲击响应、阶跃响应a、利用impulse函数画出教材P44例2-15: LTI系统()3()2()dy ty t x tdt+=的冲击响应的波形。
a=[0 1 3];b=[0 2];impulse(b,a);b、利用step函数画出教材P45例2-17: LTI系统1''()3'()2()'()2()2y t y t y t x t x t ++=+的阶跃响应的波形。
a=[1 3 2];b=[0、5 2];step(b,a);2、离散时间系统的单位样值响应利用impz 函数画出教材P48例2-21:[]3[1]3[2][3][]y n y n y n y n x n --+---=的单位样值响应的图形。
a=[1 -3 3 -1];b=[0 1];impz(b,a);3、连续时间信号卷积画出函数f1(t)=(1+t)[u(t)-u(t-1)]与f2(t)=u(t-1)-u(t-2)的图形,并利用附在后面的sconv、m函数画出卷积积分ffunction sconv(f1,f2,k1,k2)f3=conv(f1,f2);ks=k1(1)+k2(1);ke=k1(end)+k2(end);k=length(k1)+length(k2)-1;k3=linspace(ks,ke,k);subplot(2,2,1)plot(k1,f1)title('f1(t)')xlabel('t')ylabel('f1(t)')subplot(2,2,2)plot(k2,f2)title('f2(t)')xlabel('t')ylabel('f2(t)')subplot(2,2,3)plot(k3,f3);h=get(gca,'position');h(3)=2、5*h(3);set(gca,'position',h)title('f(t)=f1(t)*f2(t)')xlabel('t')ylabel('f(t)')t=-1:0、01:3;f1=(1+t)、*(0、5*sign(t)-0、5*sign(t-1));f2=(0、5*sign(t-1)-0、5*sign(t-2));sconv(f1,f2,t,t);4、画出教材P60例2-28中h[n]、x[n]的图形(图2-14(a)(b)),并利用conv函数求出卷积x[n]*h[n]并画出图形(图2-14(f))。
function dconv(x1,x2,k1,k2)x3=conv(x1,x2);ks=k1(1)+k2(1);ke=k1(end)+k2(end);k=length(k1)+length(k2)-1;实验三连续时间周期信号的傅里叶级数一、实验目的掌握连续时间周期信号的傅里叶级数的展开与合成,理解吉布斯现象,掌握周期矩形脉冲信号的频谱及脉冲宽度、周期对周期信号频谱的影响。
二、实验内容1、周期信号的傅里叶级数的展开与合成画出如下图对称方波(取E=1、T=1),并采用有限项傅里叶级数对原函数进行逼近,画出对称方波的1、3、5、7、9、11次谐波的傅里叶级数合成波形,观察吉布斯现象。
function F_series(m)sum=0;t=-3:0、01:3;E=1;T=1;ta=T/2;w=2*pi/T;for n=1:2*m-1fn=(2*E*ta/T)*sin(w*ta*n/2)/(w*ta*n/2);f=(E*ta/T)+cos(n*w*t)*fn-E/2;sum=sum+f;endfigure(m)plot(t,sum);grid on;title([num2str(2*m-1) '次谐波的傅里叶级数合成波形']);for i=1:6F_series(i);end2、周期矩形脉冲信号的频谱a、取E=1,τ=1, 画出周期矩形脉冲(教材P83图3-6)的傅里叶级数的频谱(教材P83图3-7);b、取E=1,τ=1, 画出教材P85图3-8(a);c、取E=1,τ=1, 画出教材P85图3-8(c)。