流体力学第五章 孔口出流教学内容

合集下载

水力学课件——第五章:孔口、管嘴出流

水力学课件——第五章:孔口、管嘴出流

10 ×10−3 Q= = 3.049m3 /s 32.8
A dC 8 ε = C = = = 0.64 A d 10
2
2
由薄壁孔口出流的计算公式,可得流量系数
Q 3.049 ×10−5 µ= = =0.62 2 A 2 gH 0.25 × 3.14 × 0.01 × 2 × 9.8 × 2
(3)保证管嘴正常工作的条件 ) 从前面的分析可知,收缩断面的真空度和作用水头成正比。作用水头越大, 真空度越大,流量越大。 但是,流量并不能无限制地增大。当真空度大于7m水柱时,由于收缩断面 处真空度过大,气体会从出口处吸入管嘴,真空环境被破坏,出口流动不 再为满管流动,此时管嘴出流近似为孔口出流,流量反而减小。 因此,要保证管嘴正常工作,要求收缩断面真空度小于7m,则
流速系数 又因为
0.62 ϕ = µ /ε = = 0.97 0.64 1 1 1 可得 ζ = ϕ= −1 = − 1 = 0.063 2 2 1+ ζ 0.97 ϕ
5.2 液体经管嘴的恒定出流
(1)定义、分类及流动特点: )定义、分类及流动特点:
管嘴实际上是以某种方式连接于孔口上的具有一定长度的短管 实际上是以某种方式连接于孔口上的具有一定长度的短管。 管嘴实际上是以某种方式连接于孔口上的具有一定长度的短管。 液体经由容器外壁上安装的长度约( 液体经由容器外壁上安装的长度约(3~4)倍管径的短管出流,或容器壁 )倍管径的短管出流, 的厚度为( 管嘴出流。 的厚度为(3~4)孔径的孔口出流,称为管嘴出流。 )孔径的孔口出流,称为管嘴出流 管嘴出流也可以分为恒定和非恒定出流,自由和淹没出流。 管嘴出流也可以分为恒定和非恒定出流,自由和淹没出流。 管嘴出流的流动特点是:水流进入管嘴之前的流动情况和孔口出流相同, 管嘴出流的流动特点是:水流进入管嘴之前的流动情况和孔口出流相同, 进入管嘴后, 先形成收缩断面,在收缩断面附近水流与管壁分离, 进入管嘴后, 先形成收缩断面,在收缩断面附近水流与管壁分离,形成 漩涡区,之后水流逐渐扩大,直至完全充满整个管面。 漩涡区,之后水流逐渐扩大,直至完全充满整个管面。管嘴出口断面上为 满管流。 满管流。 因为管长很小,沿程损失可以忽略,因此管嘴出流的水头损失主要来源于 因为管长很小,沿程损失可以忽略,因此管嘴出流的水头损失主要来源于 孔口的局部水头损失和水流断面扩大所引起的局部水头损失, 孔口的局部水头损失和水流断面扩大所引起的局部水头损失,即

流体力学 水力学 第五章

流体力学 水力学 第五章

7 H [H0 ] 9m 0.75
§5.3 有压管道恒定流 5.3.1 短管水力计算(Q、d、H) 有压流:水沿管道满管流动的水力现象。 特点:水流充满管道过水断面,管道内不存在自 由水面,管壁上各点承受的压强一般不等于大 气压强。
短管:局部水头损失和 速度水头在总水头损失 中占有相当的比重,计 算时不能忽略的管道. (一般局部损失和速度 水头大于沿程损失 的5% ~ 10%)。一般L/d 1000
1 vc c 0
v
2 0 0
2 gH 0 2 gH 0
v hw h j 2g p c pa
2 c
1 1 流速系数: c 0 1 0
1 1 流速系数: c 0 1 0
实验得: 0.97 ~ 0.98 1 推求: 0 2 1 1 0.06 2 0.97 1
2
d2
5.126m 2g
例5 3:如图所示圆形有压涵管,管长50m, 上下游水位差3m 沿程阻力系数为0.03,局部阻力系数:进口 1=0.5。 第一个转弯 2=0.71,第二个转弯 3=0.65,出口
4=1.0,要求涵管通过流量大约3m 3 / s, 试设计管径d。
2 1 1
2g

v


v
2 2 2
2 2 2
2g
hw
2g
hw
H0 H
v
2 1 1
2g

v
2 2 2
2g
hw
hw h f h j (
l v
v d 2g 2g
2
2
l
v ) d 2g

流体力学 第5章孔口管嘴出流与管路水力计算

流体力学 第5章孔口管嘴出流与管路水力计算

5.2.3 其他类型管嘴出流
对于其他类型的管嘴出流,其流速、流量的计算公式与圆柱形管嘴公式形式相似。但 流速系数及流量系数各不相同,下面是几种常用的管嘴。
1. 流线形管嘴 如图 5.4(a)所示,流速系数ϕ = μ = 0.97 ,适用于水头损失小,流量大,出口断面上速 度分布均匀的情况。
2. 扩大圆锥形管嘴 如图 5.4(b)所示,当θ = 5°~7°时,μ=ϕ=0.42~0.50 。适合于将部分动能恢复为压能的 情况,如引射器的扩压管。
流体力学
收缩产生的局部损失和断面 C―C 与 B―B 间水流扩大所产生的局部损失,相当于一般锐缘
管道进口的局部损失,可表示为 hw

VB 2 2g
。将
hw 代入上式可得到:
H0
=


) VB2 2g
其中, H 0
=
H
+
α
AV
2 A
2g
,则可解得:
V=
1 α + ζ 2gH 0

2gH 0
(5-8)
1. 自由出流 流体经孔口流入大气的出流称为自由出流。薄壁孔口的自由出流如图 5.1 所示。孔口 出流经过容器壁的锐缘后,变成具有自由面周界的流股。当孔口内的容器边缘不是锐缘状 时,出流状态会与边缘形状有关。
图 5.1 薄壁孔口自由出流
由于质点惯性的作用,当水流绕过孔口边缘时,流线不能成直角地突然改变方向,只 能以圆滑曲线逐渐弯曲,流出孔口后会继续弯曲并向中心收敛,直至离孔口约 0.5d 处。流
5.3.1 短管计算
1. 自由出流
流 体 经 管 路 流 入 大 气 , 称 为 自 由 出 流 ( 图 5.5) 。 设 断 面 A ― A 的 总 水 头 为

工程流体力学课件5孔口、管嘴出流及有压管流

工程流体力学课件5孔口、管嘴出流及有压管流

H
0v02 2g
v2 2g
hw
忽略管嘴沿程损失,且令
H0
H
0v02
2g
则管嘴出口速度
v 1
2gH0 n 2gH0
Q vA n A 2gH0 n A 2gH0
其中ζ为管嘴的局部阻力系数,取0.5;则
流速系数 流量系数
n
1
1 0.82 <孔口 0.97 ~ 0.98 1 0.5
说明管嘴过流能力更强
l1, l2 ,1, 2 , n, 1, 2 , 3
求 泄流量Q, 画出水头线
3
Rd 4
R, n
C
1 n
1
R6
8g C2
1, 3 H
1
2 l1
2
l2
v
1
2gH
1
l d
1
2
1
出口断面由A缩小为A2
出口流速
v2
管内流速
v2
A2 A
3
新增出口局部损失 3
v2
2gH
13
(
l d
1
2
)
A2 A
2
= =
H+h 0
h
v2
l v2
v2
( )
2g
d 2g
2g
1
用3-3断面作 下游断面
O1
H
v
23
h O 出口水头损失
按突扩计算 23
( z1
p1
1v12
2g
) (z3
p3 )
3v32
2g
h f 12
h j12 h j23
= = = = =
H+h

[流体力学课件]第五章孔口管嘴管路流动08

[流体力学课件]第五章孔口管嘴管路流动08
2 C 2 vC H 0 1 1 2g
C
图5-3 淹没出流
H0——淹没出流的作用水头
江汉大学化环学院
流体力学与流体机械
物理意义:促使流体克服阻力流入到下游的全部能量 1 1 H0与孔口位置无关 2 H0 2
H1
特例:P1= P2=Pa,v1= v2 =0
H2
H0 z1 z2 H
H
孔口处的作用水头恒定,为恒定孔口出 流,反之,为非恒定孔口出流。
3、薄壁孔口出流和厚壁孔口出流:
如果孔壁厚度不影响孔口出流,流体与 孔壁的接触只是一条周线,此孔口为薄壁 孔口,反之,为厚壁孔口。
江汉大学化环学院
流体力学与流体机械
二、孔口自由出流
如图5-1所示,水箱侧壁上开一孔口,水从四面八方向孔口汇 集涌出。由于质点的惯性,当绕过孔口边缘时,流线不能成折弯 改变方向,只能逐渐弯曲,于是流出水股在孔口断面上继续弯曲 且向中心收缩,所以孔口断面上各流线是不平行的,呈急变流断 面。直到水股流出距孔口约1/2d处(d为孔径),断面收缩达到最小, 流线趋于平直,这一断面称为收缩断面,如图5-1的C-C断面所示。
c
2
c 2
连续性方程
vC AC v2 A
江汉大学化环学院
流体力学与流体机械
AC 取 A
1 1
2
v2 2 gH0
p2 pa
0.82
0.02
l d 3
解得C-C断面真空值
允许真空值
pa pC 0.75H 0 g
hv 7m
的流量Q=80L/s,求两管嘴出流的流量q1、q2
江汉大学化环学院
流体力学与流体机械

流体力学课件5章孔口、管嘴出流

流体力学课件5章孔口、管嘴出流
20
5.2 管嘴出流
由于zA=H,zB=0,取动能修正系数αA=αB=1.0,代入 2 2 2 pA vA pB vB vB 上式得
H


2g



2g

2g
2 vA 设作用水头 H 0 H 2 g
,pA=pB ) 2g
所以
vB
4
5.1 孔口出流
5.1.1 孔口自由出流
如图5.1所示,水箱中水流从各个方向趋进孔口,由 于水流运动的惯性,流线只能以光滑的曲线逐渐弯曲, 因此在孔口断面上流线互不平行,而使水流在出口后 继续形成收缩,直到距孔口约为d/2处收缩完毕,流线 在此趋于平行,这一断面称为收缩断面,如图5.1中的 c-c断面。 设收缩断面c-c处的过流断面面积为Ac,孔口的面积 Ac 为A,则两者的比值 反映了水流经过孔口后的收缩 A Ac 程度,称为收缩系数,以符号 表示,即 。
2 v0 令 H0 H 2g
vc2 he c 2g
,代入上式整理得
6
5.1 孔口出流
收缩断面流速
vc 1 1 c 2 gH0 2 gH0 (式5.1)
孔口出流量
Q vc Ac A 2 gH0 A 2 gH0 (式5.2)
式中 H0——孔口的作用水头,如v0≈0,则H0≈H; ζc——孔口的局部阻力系数,根据实测,对圆形 薄壁小孔口ζc=0.06; 1 φ——孔口的流速系数,从公式可得 1 , c 对圆形薄壁小孔口ζc=0.06, 所以 1 1 0.97 1 c 1 0.06
图5.2 孔口淹没出流
9
5.1 孔口出流
现以通过孔口形心的水平面作为基准面,列出水箱两 侧水面1-1与2-2断面的能量方程式 2 p1 1v12 p 2 2 v2 H1 H2 hw 2g 2g

《流体力学》第五章孔口管嘴管路流动

《流体力学》第五章孔口管嘴管路流动

2g
A
C O
C
(C
1)
vc2 2g

(ZA
ZC )
pA


pC


Av
2 A
2g

H0

(Z A
ZC )
pA


pC
AvA2
2g
§5.1孔口自由出流
1
则有
vc

c 1
2gH0
H0

(Z A
ZC )
pA


pC
AvA2
2g
H0称为作用水头,是促使
力系数是不变的。
§5.4 简单管路
SH、Sp对已给定的管路是一个定数,它综合 反映了管路上的沿程和局部阻力情况,称为 管路阻抗。
H SHQ2
p SpQ2
简单管路中,总阻力损失与体积流量平方成 正比。
§5.4 简单管路
例5-5:某矿渣混凝土板风道,断面积为1m*1.2m, 长为50m,局部阻力系数Σζ=2.5,流量为14m3/s, 空气温度为20℃,求压强损失。

2v22
2g
1
vc2 2g
2
vc2 2g
令 H0 (H1 ζH12:局)液部体p阻1 经力p孔2系口数处1v的122g1 2v22
1
H1 H
H2
2
2
H0 (1 2 ) 2vcg2突ζ然2:液扩体大在的收局缩部断阻面力之系后数 C
C
§5.2 孔口淹没出流
1
c 1
2gH0
Q A 2gH0 A 2gH0
出流
H0

《流体力学》孔口管嘴管路流动-文档资料

《流体力学》孔口管嘴管路流动-文档资料
1 1 12 11
与自由出流速度系数相比,其值相等,但含义不同。
§5.2 孔口淹没出流
9
Q A 2g H 0A2g H 0
➢ 上式即淹没出流流量公式。与自由出流的公式相 同,但自由出流时上游的速度头全部转化为作用 水头,而淹没出流时,仅上下游速度头之差转换 为作用水头。
➢ 具有自由液面的淹没出流,作用水头为:
Ac A
Q v c A A2 g H 0 A2 g H 0
称μ为流量系数。上式即孔口自由出流的 基本公式。
§5.1孔口自由出流
6
收缩系数ε因孔口开设的位置不同而造成收缩 情况不同,因而有较大的变化。
非全部收缩时的收
缩系数比全部收缩 时的大,其流量系 数也相应增加。
b
a l> 3 a
I
III IV
1
H1 H
H2
2
2
H0 (1 2 ) 2vcg2ζ2然:液扩体大在的收局缩部断阻面力之系后数突C
C
§5.2 孔口淹没出流
8
vc
1
1 2
2gH0
1
则出流流量为:
Q vcA cvcA11 2A 2gH 0
H1 H
H2
1
2
2
C
C
ζ1:液体经孔口处的局部阻力系数 ζ2:液体在收缩断面之后突然扩大的局部阻力系数 因为: ζ2 约等于1,所以淹没出流速度系数 :
H0(H1H2)p1 p21v122g2v2 2
ζ1:液体经孔口处的局部阻力系数 ζ2:液体在收缩断面之后突然扩大的局部阻力系数 12
气体出流一般为淹没出流,但用压强差代替 水头差:
Q A 2p0
p0(pApB)(AvA 22BvB 2)

流体力学_05孔口管嘴管路流动

流体力学_05孔口管嘴管路流动
2020/4/1
令 则:
2020/4/1
对于风机带动的气体管路,有:

则有: 对已给定的管路是一个定数,它综合反映了管路
上的沿程阻力和局部阻力情况,故称为管路阻抗。引入这 一概念对分析管路流动较为方便。
两式所表示的规律为:简单管路中,总阻力损失与体 积流量平方成正比。
2020/4/1
4.2水泵水头 水泵水头(又称扬程)不仅用来克服流动阻
第五章 孔口管嘴管路流动
§5.1 §5.2 §5.3 §5.4 §5.5 §5.6 §5.7
孔口自由出流 孔口淹没出流 管嘴出流 简单管路 管路的串联与并联 管网计算基础 有压管中的水击
2020/4/1
§5.1 孔口自由出流
在容器侧壁或底壁上开一孔口, 容器中的液体自孔口出流到大气中, 称为孔口自由出流
2020/4/1
5.2并联管路
流体从总管路节点a上分出两根以上的管段,而这些管 段同时又汇集到另一节点b上,在节点a和b之间的各管段称 为并联管路,如图5-15所示。
同串联管路一样,遵循质 量平衡原理,ρ=常数时,应 满足ΣQ=0,则。点上流量 为
2020/4/1
设S为并联管路的总阻抗,Q为总流量,则有:
Vc
1
1 2
2gH
Q A 2gH0
Q A 2gH
流量系 数µ相等, 0.6~0.62
管嘴出流
Vc
2020/4/1
1
B
2gH0
流量系 数
Q A 2gH0 µ=0.82
柱状管嘴内的真空度
zC
pC
g
CVC 2
2g
zB
pB
g
BVB2
2g
hl

流体力学 水力学 孔口和管嘴出流与有压管流课件

流体力学 水力学 孔口和管嘴出流与有压管流课件

PPT学习交流
39
(一) 水泵安装高度的确定 水泵安装高度是指水泵转轮轴线高出水源水面的高度 hs(如图5-13),为此,以水源面为基准面,列断面 1-1和泵进口断面2-2的能量方程:
PPT学习交流
11
HV2 h 2g f
hj
上式表明,短管的总水头H一部分转化成水流动能, 另一部分克服水流阻力转化成水头损失hw1-2。
因 h lV2 f d 2g
hj
V2 2g
则 H V2 l V2 V2 V21l
2g d2g
2g 2g d
PPT学习交流
12

V
1
1dl
2gH
令 c 1/ 1dl —短管自由出流的流量系数
示为 Ne=γQH
3. 轴功率:电动机传动给水泵的功率,即输入功率(kw).
4. 效率η:有效功率与轴功率之比。
5. 气蚀:当水泵进口处的真空值过大时,水会汽化成气泡
并在水泵内受压破裂,周围水流向该点冲击会形成极大局 部压强,使水泵损坏。为防止气蚀现象需根据最大真空值 确定水泵安装高度。
PPT学习交流
水柱高。虹吸管安装高度Zs越大,顶部真空值越大。
虹吸管的优点在于能跨越高地,减少挖方。 虹吸管长度一般不长,故按短管计算。
PPT学习交流
18
PPT学习交流
19
虹吸输水:世界上最大 直径的虹吸管(右侧直径 1520毫米、左侧600毫米), 虹吸高度均为八米,犹如 一条巨龙伴游一条小龙匐 卧在浙江杭州萧山区黄石 垅水库大坝上,尤为壮观, 已获吉尼斯世界纪录。
10
1
v O 1
H
2 O
2
=
= =
= =

流体力学第5章孔口、管嘴出流和有压管路

流体力学第5章孔口、管嘴出流和有压管路
简单管道的水力计算可分为自由出流和淹没出 流两种情况。
1.自由出流
管道出口水流流入大气,水股四周都受大气压 强的作用,称为自由出流管道。
短管自由出流流量计算公式:
图5-8中,列断面1-1、2-2的能量方程
z1
p1

112
2g

z2

p2



2
22
2g
hw12
hw12
③孔口的流量系数μ , 。对薄壁小孔口
μ= 0.60~0.62。
淹没出流和自由出流比较
(1)计算公式一样,各项系数值相同,但要注 意 ,流速系数含义不同;
自由出流
淹没出流
(2)公式中作用水头不一样:
•自由出流
液面相对压强为p0
若 •淹没出流
H0=H
若容器也是封闭的

v 1
1
2gH0 2gH0
§5.2 管嘴出流
▪ 在孔口接一段长l=(3~4)d的短管,液流经过短
管并充满出口断面流出的水力现象。 ▪ 根据实际需要管嘴可设计成: ▪ 1)圆柱形:内管嘴和外管嘴 ▪ 2)非圆柱形:扩张管嘴和收缩管嘴。
5.2.1 圆柱形外管嘴恒定出流
1、圆柱形外管嘴恒定出流的基本公式
z0

p0
g
0v02
(2)小孔口自由出流的各项系数
①流速系数

1
1
c 0 10
实验测得孔口流速系数 = 0.97~0.98。
②孔口的收缩系数 Ac / A 0.62 0.64
③孔口的流量系数μ , 。对薄壁小孔口μ=
0.60~0.62。
2)孔口淹没出流

流体力学第五章-孔口出流PPT课件

流体力学第五章-孔口出流PPT课件

同时
p p
v2 v2
几何相似
雷诺模型法在管道流动、液压技术、水力机械等
方面应用广泛。
.
39
3)欧拉模型法
粘性流动中有一种特殊现象,当雷诺数增大到一定界 限以后,惯性力与粘性力之比也大到一定程度,粘性力的 影响相对减弱,此时继续提高雷诺数,也不再对流动现象 和流动性能发生质和量的影响,此时尽管雷诺数不同,但 粘性效果却是一样的。这种现象叫做自动模型化,产生这 种现象的雷诺数范围叫做自动模型区,雷诺数处在自动模 型区时,雷诺准则失去判别相似的作用。
所有力学相似的比例尺中,基本比例尺l、v 、ρ是 各自独立的,基本比例尺确定后,其它一切物理量的 比例尺都可确定,模型流动与实物流动之间一切的物 理量的换算关系也就都可以确定了。
实物和模型大多是处于同样的地心引力范围,因此
单位质量重力的比例尺一般等于1,即: g 1
.
31
5.5.2 相似准则
1)、弗劳德(Froude)数
F r F r
Eu
E
u
Re
R
e
称为不可压缩流体定常流动的力学相似准则。可
据此判断两个流动是否相似。
.
34
相似准则不但是判别相似的标准,而且也是设计
模型的准则,因为满足相似准则实质上意味着相似比
例尺之间要保持下列三个互相制约的关系:
2 v
g l
p
2 v
l v
设计模型时,所选择的三个基本比例尺 l、v、 如果 能满
Ma U a
U2 Fr
gL
St L UT
Pr c p k
Nu
qL
k (T T w )
Gr g 2 L 3 ( T w T 0 ) 2

§孔口出流与管嘴出流

§孔口出流与管嘴出流

一、薄壁小孔口的自由恒定出流
3、自由出流
以出流的下游条件为衡量标准,如果流体经过孔口后出流于大气中时, 称为自由出流;
4、薄壁小孔口的自由恒定出流的计算
计算特点: hf 0
出流特点:收缩现象
取图中的1-1和c-c断面列伯努利方程:
Hpg 1 21vg12pg c 2cg vc2hm
其中:h m
力系数,查得ζ=0.5; μ=0.82
三、管嘴出流
分析:
当液体从薄壁圆孔口出流时,其流量系数μ1= 0.61,而厚壁 孔口的流量系数μ2 = 0.82 ,为薄壁孔口的1.34倍。于是当孔口面
积相同时,通过厚壁孔口的流量大于薄壁孔口。
圆柱形外管嘴收缩断面C-C处真空度为:
Pa PC
g
0.75H0
圆柱形外管嘴收缩断面处真空度可达作用水头的0.75倍,相
小结:
几个基本概念: 薄壁孔口、厚壁孔口、流速系数、流量系数、收缩系数、
阻力系数、完全收缩、部分收缩。 重点:
c
v
2 c
2g
;v1
Ac A1
vc
;HZ1ZC
得: (cc)2 vcg 2 Hp1gpc21v g12

一、薄壁小孔口的自由恒定出流
4、薄壁小孔口的自由恒定出流的计算
定义作用水头:
H0
H
p1pc
g
1v12
2g
则得:
1
vc c c 2gH0
定义流速系数: 1 c c
(0.97~0.98)
通过孔口的流量为:Q v v c A cA v cA 2 g H 0A 2 g H 0
ZAP A g2 A g vA 2ZBP B g2 B g vB 22 vB g 2

流体力学第五章孔口管嘴出流与管路水力计算

流体力学第五章孔口管嘴出流与管路水力计算

Q VB AB A 2gH0 A 2gH0
H0 作用总水头
流速系数 流量系数
相对压强: pC
g
0.75 H 0
真空值:
pV
g
0.75 H 0
§5-3 简单管路
简单管路:管径不变、没有分叉的管路。
复杂管路:由两根或两根以上简单管路组合 而成的管道系统。
短管:局部损失和流速水头之和大于总水头 的5%。
Q1
H hf CD
AB
Q2
C
D
Q3
三、管网
(a)分枝状管网
(b)环状管网
(1)任一结点处,流出结点的流量与流 入结点的流量应相等:
Qi 0
(2)任一环路中,由某一结点沿不同方向 到另一个结点的能量损失应相等:
hf 0


感 谢 阅
谢 阅


l
d
一、小孔口自由出流
对截面A-A和收缩断面C-C列 总流能量方程
zA
pA
g
AVA2
2g
zC
pC
g
CVC2
2g
hm
O
H0
( C
) VC2 2g
A
Av
2 A
2g
H
H0
d vA
A
C
O
vC C
1
VC C
2gH0 2gH0
Q VC AC A 2gH0 A 2gH0
H0 作用总水头
长管:作用水头的95%以上用于沿程水头损失,可 以略去局部损失及出口速度水头
取断面A-A和B-B,列总流能量方程
zA
pA
g
AVA2
2g
zB

流体力学第五章孔口及管嘴PPT课件

流体力学第五章孔口及管嘴PPT课件
流体输送
在流体输送过程中,孔口和管嘴的流动现象对输送效率和稳定性有着重要影响。通过对这 些流动现象的理解和应用,可以提高流体输送的效率和安全性。
流体机械
流体机械如泵、阀和压缩机等都涉及到孔口和管嘴的流动现象。通过对这些流动现象的研 究和应用,可以提高流体机械的性能和效率,延长其使用寿命。
05 实验与模拟
公式推导
基于伯努利方程和连续性方程,推导出管嘴流量公式。
公式应用
解释如何使用该公式计算管嘴流量,并讨论影响流量变化的因素。
管嘴流动的能量损失
能量损失原因
由于流体在管嘴内的摩擦和动能转换为压力能。
能量损失计算
介绍如何使用相关公式计算管嘴流动的能量损失,并讨论减小能量损失的方法。
04 孔口与管嘴的流动现象
流动特性比较
孔口流动
流动特性差异
液体通过孔口的流动特性与管内流动 有所不同,孔口流动的流速和压力分 布较为复杂。
孔口流动和管嘴流动的流速和压力分 布不同,主要表现在流速分布、压力 分布、流速梯度和压力损失等方面。
管嘴流动
管嘴流动是液体在管道末端自由表面 处的流动,其流动特性与孔口流动相 似,但受到管道形状和尺寸的影响。
实验设备与技术
实验设备
包括孔口和管嘴模型、压力计、流量 计、水箱等。
实验技术
采用恒定流速法,通过调节阀门控制 流量,记录压力和流量数据。
数值模拟方法
01
02
03
数值模型
采用流体动力学软件建立 孔口和管嘴的数值模型, 包括流体域、边界条件等。
求解方法
采用有限体积法进行离散 化,采用压力修正算法进 行迭代求解。
孔口流量公式
01
孔口流量公式是计算孔口流量的 基本公式,根据不同的孔口类型 和流动条件,需要采用不同的流 量公式进行计算。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、管嘴出流:在孔口周边连接一长为3~4倍孔径的短管,水 经过短管并在出口断面满管流出的水力现象,称为管嘴出流。
圆柱形外管嘴:先收缩后扩大到整满管。
圆锥形扩张管嘴:较大过流能力,较低出口流速。 引射器,水轮机尾水管,人工降雨设备。
流线形外管嘴:无收缩扩大,阻力系数最小。水坝泄流
圆锥形收缩管嘴:较大出口流速。水力挖土机喷嘴, 消防用喷嘴。
5.1 薄壁孔口出流
l 2 d
一般孔口边缘呈刃口形 状,各种结构形式的阀 口大多都属于薄壁小孔 类型。
5.1.1 孔口出流的速度和流量计算
收缩系数
Cc
Ac A
在1-1,C-C断面列伯努利方程:
pg 12 v1 g 2 pg c 2 vc g 22 vc g 2
根 据 连 续 v1A方 1vc程 Ac C : cvcA
速度比例尺 时间比例尺 加速度比例尺
V
v v
t
t t
l lv
v
l v
a
aavvtt
v t
v2 l
流量比例尺
q
qv qv
l3 t
l3 t
l3 t
l2v
运动粘度比例尺
v
v
l2 t
v l2
所以v1 , CcD d2vc,pc p2,代入伯努利 理方 得程,
vc
1
1 Cc2D d 4
2p
( 1) 对 于 小 d孔 D,口 有 d: 40 D
出流速度
vc
简化为:
vc
1
1
2 pCv
2p
其中: Cv
1
1
称为流速系数。
流量为:q v A c v c C cA v c C c C vA2 p C q A2 p
气,而是流入下游水体中,致使孔口淹没在下游水面之下,这 种情况称为淹没出流。
3.根据孔口水头变化情况,出流可分为:恒定出流、非恒定出流
恒定出流(steady discharge):当孔口出流时,水箱中水量如能得到 源源不断的补充,从而使孔口的水头不变,此时的出流称为恒定出流。
非恒定出流(unsteady discharge):当孔口出流时,水箱中水量得不 到补充,则孔口的水头不断变化,此时的出流称为非恒定出流。
上的沿程当量系数。(e
l 2d

5.2.1 厚壁孔口出流的速度和流量
v1 1 2 p1 1 2 g H C v 2 g H
q v A v C vA 2 g H C q A 2 g H
5.2.2 厚壁孔口出流系数
收缩系数 C c : Cc 1
1
阻力系数 : 1 2 3 0.5
流速系数 C v
其中: Cq CcCv
Cc
1
称为流量系数。
2)若d与D差距不大,则为大孔口出流
收缩系数为其经验公式
Cc 0.630.37D d4
出流速度为
2p
2gH
vc 1Cc2D d4 1Cc2D d4Cv 2gH
流速系数
Cv
1
1
Cc2
d 4 D
流量为 流量系数
2gH
qvA cvcC cA1C c 2 D d 4C qA2gH
Cq CcCv Biblioteka Cc1Cc2D d4
5.1.2 孔口出流系数
一、流速系数
C
:
v
实际流速与理想流速之比,
孔口阻力系数越大,实际流速越小,流速系数也就越小。
出流速度 :vc11 2 pC v 2 pC v 2gH (1)
而理想流速为 :vT
2p
2gH
(2)
比较(1)、(2)两式:
Cv
vc vT
流速系数的测定 应注意到:孔口出流进入大气后即成平抛运动。
Cq
qV qT
0.62
流速系数 C v
0.97
5.2 厚壁孔口出流
厚壁孔口:
2 l 4 d
与小孔口出流对比,其特点特点:
1. 厚壁孔口只有内收缩而无外 收缩,此时收缩系数CC=1
2. 总局部阻力系数包括三部分:a) 入口系数(相当于薄壁孔口
出流;b) c-c断面后扩张阻力系数(可按突扩计算),c) 后半段

Cv
1
1
流量系数 C v : Cq Cv
0.82 0.82
5.3 几种孔口出流性能比较
出口面积和积 器不 壁等 上 Cq的 时 的大 , 面小并不小 代。
为什么厚壁孔口流量大于薄壁孔口流量?
5.4 机械中的气穴现象
5.4.1 气穴概念
气穴产生的条件:局部地区的高速和低压。
5.4.2 节流气穴 5.4.3 泵进口处的气穴
防止泵前气穴的方法: 1. 降低吸水高度; 2. 降低吸水管、吸油管的局部沿程阻力; 3. 加大管径以降低流速;4.减少进水管输送长度。
5.5 相似原理
5.5.1 相似概念
力学相似是指实物流动与模型流动在对应点上物理量都 应该有一定的比例关系,具体包括几何相似、运动相似 及动力相似: 1)几何相似: 即模型流动与实物流动有相似的边界形 状,一切对应的线性尺寸成比例。
流量系数 C q : 实际流量与理想流量之比。
流量为:qVCqA2 pCqA2gH(1)
而理想流量: qTA 2 pA 2gH(2)
比较(1)、(2)两式:
Cq
qV qT
可见,只qV, 要测 H和 得 A就可以Cq得 。到
收缩系数
Cc

Cc
Cq Cv
0.64
阻力系数

1 Cv2
1
0.06
流量系数 C q :
流体力学第五章 孔口出流
一、分类
1.根据d/H的比值:大孔口、小孔口
大孔口(big orifice) :当孔口直径d(或高度e)与孔 口形心以上的水头高H的比值大于0.1,即d/H>0.1时,需
考虑在孔口射流断面上各点的水头、压强、速度沿孔口高度 的变化,这时的孔口称为大孔口。
小孔口(small orifice ):当孔口直径d(或高度e)与 孔口形心以上的水头高度H的比值小于0.1,即d/H<0.1时,
如果用无上标的物理量符号来表示实物流动,用有 上标“′”的物理量符号表示模型流动。则有下述比例尺:
长 度 比 例尺 l : ll
面 积 比例 AA A尺 ll22: l2 体 积 比例 VV V尺 ll33: l3
2)运动相似:即实物流动与模型流动的流线应该几何相似, 而且对应点上的速度成比例。
可认为孔口射流断面上的各点流速相等, 且各点水头亦相等, 这时的孔口称为小孔口。
2.根据出流条件的不同,可分为自由出流和淹没出流
自由出流(free discharge):若经孔口流出的水流直接进入空气中,
此时收缩断面的压强可认为是大气压强,即pc=pa,则该孔口出
流称为孔口自由出流。 淹没出流(submerged discharge):若经孔口流出的水流不是进入 空
相关文档
最新文档