沪教版七年级数学下册第十四章-三角形练习题

合集下载

2022年精品解析沪教版七年级数学第二学期第十四章三角形专项测评试题(含答案解析)

2022年精品解析沪教版七年级数学第二学期第十四章三角形专项测评试题(含答案解析)

沪教版七年级数学第二学期第十四章三角形专项测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,已知ACD ∠为ABC 的外角,60ACD ∠=︒,20B ∠=︒,那么A ∠的度数是( )A .30°B .40°C .50°D .60°2、已知三角形的两边长分别是3cm 和7cm ,则下列长度的线段中能作为第三边的是( )A .3cmB .4cmC .7cmD .10cm3、如图,在△ABC 中,BD 平分∠ABC ,∠C =2∠CDB ,AB =12,CD =3,则△ABC 的周长为( )A .21B .24C .27D .304、如图,等腰ABC 中,AB AC =,120BAC ∠=︒,AD DC ⊥于D ,点O 是线段AD 上一点,点P 是BA 延长线上一点,若OP OC =,则下列结论:①30APO DCO ∠+∠=︒;②APO DCO ∠=∠;③POC △是等边三角形;④AB OA AP =+.其中正确的是( )A .①③④B .①②③C .②③④D .①②③④5、如图,∠BAD =90°,AC 平分∠BAD ,CB =CD ,则∠B 与∠ADC 满足的数量关系为( )A .∠B =∠ADCB .2∠B =∠ADC C .∠B +∠ADC =180°D .∠B +∠ADC =90°6、将三根木条钉成一个三角形木架,这个三角形木架具有稳定性.解释这个现象的数学原理是( )A .SSSB .SASC .ASAD .AAS7、定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠ACD 是△ABC 的外角.求证:∠ACD =∠A +∠B .下列说法正确的是( )A .证法1用特殊到一般法证明了该定理B .证法1只要测量够100个三角形进行验证,就能证明该定理C .证法2还需证明其他形状的三角形,该定理的证明才完整D .证法2用严谨的推理证明了该定理8、已知:如图,D 、E 分别在AB 、AC 上,若AB =AC ,AD =AE ,∠A =60°,∠B =25°,则∠BDC 的度数是( )A .95°B .90°C .85°D .80°9、如图,BD 是ABC 的角平分线,∥DE BC ,交AB 于点E .若30A ∠=︒,50BDC ∠=︒,则BDE ∠的度数是( )A .10°B .20°C .30°D .50°10、如图,若ABC 绕点A 按逆时针方向旋转40°后与11AB C △重合,则1AB B ∠=() .A .40°B .50°C .70°D .100第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知AB =3,AC =CD =1,∠D =∠BAC =90°,则△ACE 的面积是 _____.2、如图,已知△ABC 是等边三角形,边长为3,G 是三角形的重心,那么GA =______.3、△ABC 的高AD 所在直线与高BE 所在直线相交于点F 且DF =CD ,则∠ABC =______.4、如图,ABC 中,90A ∠=︒,点D 在AC 边上,∥DE BC ,若1145∠=︒,则B 的度数为_______.5、如图,直线ED 把ABC 分成一个AED 和四边形BDEC ,ABC 的周长一定大于四边形BDEC 的周长,依据的原理是____________________________________.三、解答题(10小题,每小题5分,共计50分)1、如图,在△ABC 中,AB =AC ,CD ⊥AB 于点D ,∠A =50°,求∠BCD 的度数.2、已知,在△ABC中,∠BAC=30°,点D在射线BC上,连接AD,∠CAD=α,点D关于直线AC的对称点为E,点E关于直线AB的对称点为F,直线EF分别交直线AC,AB于点M,N,连接AF,AE,CE.(1)如图1,点D在线段BC上.①根据题意补全图1;②∠AEF=(用含有α的代数式表示),∠AMF=°;③用等式表示线段MA,ME,MF之间的数量关系,并证明.(2)点D在线段BC的延长线上,且∠CAD<60°,直接用等式表示线段MA,ME,MF之间的数量关系,不证明.3、如图,在△ABC中,CE平分∠ACB交AB于点E,AD是△ABC边BC上的高,AD与CE相交于点F,且∠ACB=80°,求∠AFE的度数.=,4、如图,在四边形ABCD中,E是CB上一点,分别延长AE,DC相交于点F,AB CF∠=∠+∠.CEA B F(1)求证:EAB F∠=∠;BC=,求BE的长.(2)若105、已知:如图,点B、C在线段AD的异侧,点E、F分别是线段AB、CD上的点,∠AEG=∠AGE,∠C =∠DGC.(1)求证:AB//CD;(2)若∠AGE+∠AHF=180°,求证:∠B=∠C;(3)在(2)的条件下,若∠BFC=4∠C,求∠D的度数.6、如图,点D,E在△ABC的边BC上,AB=AC,AD=AE,求证:BD=CE.7、直线l 经过点A ,ABC 在直线l 上方,AB AC =.(1)如图1,90BAC ∠=︒,过点B ,C 作直线l 的垂线,垂足分别为D 、E .求证:ABD CAE ≌(2)如图2,D ,A ,E 三点在直线l 上,若BAC BDA AEC α∠=∠=∠=(α为任意锐角或钝角),猜想线段DE 、BD 、CE 有何数量关系?并给出证明.(3)如图3,90BAC ∠=︒过点B 作直线l 上的垂线,垂足为F ,点D 是BF 延长线上的一个动点,连结AD ,作90DAE ∠=︒,使得AE AD =,连结DE ,CE .直线l 与CE 交于点G .求证:G 是CE 的中点.8、如图,在△ABC 中,AB =AC ,M ,N 分别是AB ,AC 边上的点,并且MN ∥BC .(1)△AMN 是否是等腰三角形?说明理由;(2)点P 是MN 上的一点,并且BP 平分∠ABC ,CP 平分∠ACB .①求证:△BPM 是等腰三角形;②若△ABC 的周长为a ,BC =b (a >2b ),求△AMN 的周长(用含a ,b 的式子表示).9、如图,AD为△ABC的角平分线.(1)如图1,若BE⊥AD于点E,交AC于点F,AB=4,AC=7.则CF=;(2)如图2,CG⊥AD于点G,连接BG,若△ABG的面积是6,求△ABC的面积;(3)如图3,若∠B=2∠C,AB=m,AC=n,则CD的长为.(用含m,n的式子表示)10、(1)我们把两个面积相等但不全等的三角形叫做“偏等积三角形”,如图1,ABC中,AC BC AB,P为AC上一点,当AP=_______时,ABP===7,9,10△与CBP是偏等积三角形;(2)如图2,四边形ABED是一片绿色花园,ACB△、DCE是等腰直角三角形,()ACB DCB BCE.90090∠=∠=︒<∠<︒①ACD △与BCE 是偏等积三角形吗?请说明理由;②已知60m, BE ACD 的面积为22100m .如图3,计划修建一条经过点C 的笔直的小路CF ,F 在BE 边上,FC 的延长线经过AD 中点G .若小路每米造价600元,请计算修建小路的总造价.-参考答案-一、单选题1、B【分析】根据三角形的外角性质解答即可.【详解】解:∵∠ACD =60°,∠B =20°,∴∠A =∠ACD −∠B =60°−20°=40°,故选:B .【点睛】此题考查三角形的外角性质,关键是根据三角形外角性质解答.2、C【分析】设三角形第三边的长为x cm ,再根据三角形的三边关系求出x 的取值范围,找出符合条件的x 的值即可.【详解】解:设三角形的第三边是xcm .则7-3<x <7+3.即4<x <10,四个选项中,只有选项C 符合题意,故选:C .【点睛】本题主要考查了三角形三边关系的应用.此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.3、C【分析】根据题意在AB 上截取BE =BC ,由“SAS ”可证△CBD ≌△EBD ,可得∠CDB =∠BDE ,∠C =∠DEB ,可证∠ADE =∠AED ,可得AD =AE ,进而即可求解.【详解】解:如图,在AB 上截取BE =BC ,连接DE ,∵BD 平分∠ABC ,∴∠ABD =∠CBD ,在△CBD 和△EBD 中,CB BE CBD DBE BD BD =⎧⎪∠=∠⎨⎪=⎩, ∴△CBD ≌△EBD (SAS ),∴∠CDB =∠BDE ,∠C =∠DEB ,∵∠C =2∠CDB ,∴∠CDE =∠DEB ,∴∠ADE=∠AED,∴AD=AE,∴△ABC的周长=AD+AE+BE+BC+CD=AB+AB+CD=27,故选:C.【点睛】本题考查全等三角形的判定和性质以及等腰三角形的性质,注意掌握添加恰当辅助线构造全等三角形是解题的关键.4、A【分析】①利用等边对等角得:∠APO=∠ABO,∠DCO=∠DBO,则∠APO+∠DCO=∠ABO+∠DBO=∠ABD,据此即可求解;②因为点O是线段AD上一点,所以BO不一定是∠ABD的角平分线,可作判断;③证明∠POC=60°且OP=OC,即可证得△OPC是等边三角形;④证明△OPA≌△CPE,则AO=CE,得AC=AE+CE=AO+AP.【详解】解:①如图1,连接OB,∵AB=AC,AD⊥BC,∴BD=CD,∠BAD=12∠BAC=12×120°=60°,∴OB=OC,∠ABC=90°﹣∠BAD=30°∵OP=OC,∴OB=OC=OP,∴∠APO=∠ABO,∠DCO=∠DBO,∴∠APO+∠DCO=∠ABO+∠DBO=∠ABD=30°,故①正确;②由①知:∠APO=∠ABO,∠DCO=∠DBO,∵点O是线段AD上一点,∴∠ABO与∠DBO不一定相等,则∠APO与∠DCO不一定相等,故②不正确;③∵∠APC+∠DCP+∠PBC=180°,∴∠APC+∠DCP=150°,∵∠APO+∠DCO=30°,∴∠OPC+∠OCP=120°,∴∠POC=180°﹣(∠OPC+∠OCP)=60°,∵OP=OC,∴△OPC是等边三角形,故③正确;④如图2,在AC上截取AE=PA,∵∠PAE=180°﹣∠BAC=60°,∴△APE是等边三角形,∴∠PEA=∠APE=60°,PE=PA,∴∠APO +∠OPE =60°,∵∠OPE +∠CPE =∠CPO =60°,∴∠APO =∠CPE ,∵OP =CP ,在△OPA 和△CPE 中,PA PE APO CPE OP CP =⎧⎪∠=∠⎨⎪=⎩, ∴△OPA ≌△CPE (SAS ),∴AO =CE ,∴AC =AE +CE =AO +AP ,∴AB =AO +AP ,故④正确;正确的结论有:①③④,故选:A .【点睛】本题主要考查了全等三角形的判定与性质、等腰三角形的判定与性质、等边三角形的判定与性质等知识,正确作出辅助线是解决问题的关键.5、C【分析】由题意在射线AD 上截取AE =AB ,连接CE ,根据SAS 不难证得△ABC ≌△AEC ,从而得BC =EC ,∠B =∠AEC ,可求得CD =CE ,得∠CDE =∠CED ,证得∠B =∠CDE ,即可得出结果.【详解】解:在射线AD 上截取AE =AB ,连接CE ,如图所示:∵∠BAD =90°,AC 平分∠BAD ,∴∠BAC =∠EAC ,在△ABC 与△AEC 中,AC AC BAC EAC AB AE =⎧⎪∠=∠⎨⎪=⎩, ∴△ABC ≌△AEC (SAS ),∴BC =EC ,∠B =∠AEC ,∵CB =CD ,∴CD =CE ,∴∠CDE =∠CED ,∴∠B =∠CDE ,∵∠ADC +∠CDE =180°,∴∠ADC +∠B =180°.故选:C .【点睛】本题主要考查全等三角形的判定与性质,解答的关键是作出适当的辅助线AE ,CE .6、A【分析】根据三根木条即为三角形的三边长,利用全等三角形判定定理确定唯一三角形即可得.【详解】解:三根木条即为三角形的三边长,即为利用SSS确定三角形,故选:A.【点睛】题目主要考查利用全等三角形判定确定唯一三角形,熟练掌握全等三角形的判定是解题关键.7、D【分析】利用测量的方法只能是验证,用定理,定义,性质结合严密的逻辑推理推导新的结论才是证明,再逐一分析各选项即可得到答案.【详解】解:证法一只是利用特殊值验证三角形的一个外角等于与它不相邻的两个内角的和,证法2才是用严谨的推理证明了该定理,故A不符合题意,C不符合题意,D符合题意,证法1测量够100个三角形进行验证,也只是验证,不能证明该定理,故B不符合题意;故选D【点睛】本题考查的是三角形的外角的性质的验证与证明,理解验证与证明的含义及证明的方法是解本题的关键.8、C【分析】根据SAS证△ABE≌△ACD,推出∠C=∠B,求出∠C的度数,根据三角形的外角性质得出∠BDC=∠A +∠C ,代入求出即可.【详解】解:在△ABE 和△ACD 中,AE AD A A AB AC =⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△ACD (SAS ),∴∠C =∠B ,∵∠B =25°,∴∠C =25°,∵∠A =60°,∴∠BDC =∠A +∠C =85°,故选C .【点睛】本题主要考查了全等三角形的性质与判定,三角形外角的性质,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.9、B【分析】由外角的性质可得∠ABD =20°,由角平分线的性质可得∠DBC =20°,由平行线的性质即可求解.【详解】解:(1)∵∠A =30°,∠BDC =50°,∠BDC =∠A +∠ABD ,∴∠ABD =∠BDC −∠A =50°−30°=20°,∵BD 是△ABC 的角平分线,∴∠DBC =∠ABD =20°,∵DE ∥BC ,∴∠EDB =∠DBC =20°,故选:B .【点睛】本题考查了平行线的性质,三角形外角的性质,角平分线的定义,灵活应用这些性质解决问题是解决本题的关键.10、C【分析】根据旋转的性质,可得140BAB ∠=︒ ,1AB AB = ,从而得到11ABB AB B ∠=∠,即可求解.【详解】解:∵ABC 绕点A 按逆时针方向旋转40°后与11AB C △重合,∴140BAB ∠=︒ ,1AB AB = , ∴()1111180702ABB AB B BAB ∠=∠=︒-∠=︒. 故选:C【点睛】本题主要考查了图形的旋转,等腰三角形的性质,熟练掌握图形旋转前后对应线段相等,对应角相等是解题的关键.二、填空题1、32## 【分析】先根据三角形全等的判定定理证出ABC DEC ≅,再根据全等三角形的性质可得3AB DE ==,然后利用三角形的面积公式即可得.【详解】解:在ABC 和DEC 中,90ACB DCE AC DC BAC D ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ()ABC DEC ASA ∴≅,3AB DE ∴==,则ACE 的面积是11313222AC DE ⋅=⨯⨯=, 故答案为:32. 【点睛】本题考查了三角形全等的判定定理与性质,熟练掌握三角形全等的判定方法是解题关键. 2【分析】延长AG 交BC 于D ,根据重心的概念得到AD ⊥BC ,BD =DC =12BC =32,根据勾股定理求出AD ,根据重心的概念计算即可.【详解】解:延长AG 交BC 于D ,∵G 是三角形的重心,∴AD ⊥BC ,BD =DC =12BC =32, 由勾股定理得,AD=,∴GA =23AD【点睛】本题考查的是等边三角形的性质、三角形的重心的概念,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.3、45°或135°【分析】根据题意,分两种情况讨论:①当ABC ∆为锐角三角形时;②当ABC ∆为钝角三角形时;作出相应图形,然后利用全等三角形的判定证明三角形全等,根据其性质及各角直角的等量关系即可得.【详解】解:①如图所示:当ABC ∆为锐角三角形时,∵AD BC ⊥,BE AC ⊥,∴90BDF ADC BEC ∠=∠=∠=︒,∴90C CBE ∠+∠=︒,90C CAD ∠+∠=︒,∴CBE CAD ∠=∠,在ΔΔΔΔ与ADC ∆中,CBE CAD BDF ADC DF CD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴ΔΔΔΔ≅ΔΔΔΔ,∴BD AD =,∵90ADB ∠=︒,∴45ABC DAB ∠=∠=︒;②如图所示:当ABC ∆为钝角三角形时,∵AD BC ⊥,BE AC ⊥,∴90BDF ADC BEC ∠=∠=∠=︒,∴90C CAD ∠+∠=︒,90C CBE ∠+∠=︒,∴CBE CAD ∠=∠,∵DBF CBE ∠=∠,∴DBF CAD ∠=∠,在ΔΔΔΔ与ADC ∆中,DBF CAD BDF ADC DF CD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴ΔΔΔΔ≅ΔΔΔΔ,∴BD AD =,∵90ADB ∠=︒,∴45ABD DAB ∠=∠=︒,18045135ABC ∠=︒-︒=︒,综合①②可得:ABC ∠为45︒或135︒,故答案为:45︒或135︒.【点睛】题目主要考查全等三角形的判定和性质,等腰三角形的性质,根据题意进行分类讨论,作出相应图形是解题关键.4、55︒【分析】先求出∠EDC =35°,然后根据平行线的性质得到∠C =∠EDC =35°,再由直角三角形两锐角互余即可求解.【详解】解:∵∠1=145°,∴∠EDC =35°,∵DE ∥BC ,∴∠C =∠EDC =35°,又∵∠A =90°,∴∠B =90°-∠C =55°,故答案为:55°.【点睛】本题主要考查了平行线的性质,直角三角形两锐角互余,求出∠C 的度数是解题的关键.5、三角形两边之和大于第三边【分析】表示出ABC 和四边形BDEC 的周长,再结合ADE 中的三边关系比较即可.【详解】解:ABC 的周长=AC AB BC AE AD CE CB BD ++=++++四边形BDEC 的周长=DE CE CB BD +++∵在ADE 中AE AD DE +>∴AE AD CE CB BD ++++>DE CE CB BD +++即ABC 的周长一定大于四边形BDEC 的周长,∴依据是:三角形两边之和大于第三边;故答案为三角形两边之和大于第三边【点睛】本题考查了三角形三边关系定理,关键是熟悉三角形两边之和大于第三边的知识点.三、解答题1、25°【分析】直接利用等腰三角形的性质得出∠ABC =∠ACB =65°,进而利用三角形内角和定理得出答案.【详解】∵AB =AC ,∠A =50°,∴∠ABC=∠ACB=65°,∵CD⊥BC于点D,∴∠BCD的度数为:180°−90°−65°=25°.【点睛】此题主要考查了等腰三角形的性质,正确得出∠B的度数是解题关键.2、(1)①见解析;②60α︒-,60;③MF=MA+ME,证明见解析;(2)MF MA ME=-【分析】(1)①按照要求旋转作图即可;②由旋转和等腰三角形性质解出∠AEF;再由三角形外角定理求出∠AMF;③在FE上截取GF=ME,连接AG,证明△AFG≌△AEM且△AGM为等边三角形后即可证得MF =MA+ME;(2)根据题意画出图形,根据含30°的直角三角形的性质,即可得到结论.【详解】解:(1)①补全图形如下图:②∵∠CAE=∠DAC=α,∴∠BAE=30°+α∴∠FAE=2×(30°+α)∴∠AEF =()180-2+302α︒⨯︒=60°-α; ∵∠AMF =∠CAE +∠AEF =α+60°-α=60°,故答案是:60°-α,60°;③MF =MA +ME .证明:在FE 上截取GF =ME ,连接AG .∵点D 关于直线AC 的对称点为E ,∴△ADC ≌△AEC .∴∠CAE =∠CAD =α.∵∠BAC =30°,∴∠EAN =30°+α.又∵点E 关于直线AB 的对称点为F ,∴AB 垂直平分EF .∴AF =AE ,∠FAN =∠EAN =30°+α,∴∠F =∠AEF =()180230602αα︒-︒+=︒-.∴∠AMG =6060αα︒-+=︒.∵AF =AE ,∠F =∠AEF , GF =ME ,∴△AFG≌△AEM.∴AG=AM.又∵∠AMG=60︒,∴△AGM为等边三角形.∴MA=MG.∴MF=MG+GF=MA+ME.(2)MF MA ME=-,理由如下:如图1所示,∵点E与点F关于直线AB对称,∴∠ANM=90°,NE=NF,又∵∠NAM=30°,∴AM=2MN,∴AM=2NE+2EM =MF+ME,∴MF=AM-ME;如图2所示,∵点E与点F关于直线AB对称,∴∠ANM=90°,NE=NF,∵∠NAM=30°,∴AM=2NM,∴AM=2MF+2NF=2MF+NE+NF=ME+MF,∴MF=MA-ME;综上所述:MF=MA-ME.【点睛】本题考查轴对称、三角形全等判定与性质、等边三角形判定与性质,掌握这些是本题关键.3、∠AFE=50°.【分析】根据CE平分∠ACB,∠ACB=80°,得出∠ECB=11804022ACB∠=⨯︒=︒,根据高线性质得出∠ADC=90°,根据三角形内角和得出∠DFC=180°-∠ADC-∠ECB=180°-90°-40°=50°,利用对顶角性质得出∠AFE=∠DFC=50°即可.【详解】解:∵CE平分∠ACB,∠ACB=80°,∴∠ECB =11804022ACB ∠=⨯︒=︒, ∵AD 是△ABC 边BC 上的高,AD ⊥BC ,∴∠ADC =90°,∴∠DFC =180°-∠ADC -∠ECB =180°-90°-40°=50°,∴∠AFE =∠DFC =50°.【点睛】本题考查角平分线定义,垂线性质,三角形内角和,对顶角性质,掌握角平分线定义,垂线性质,三角形内角和,对顶角性质是解题关键.4、(1)见解析(2)5BE =【分析】(1)利用CEA ∠是ABE △的外角,以及CEA B F ∠=∠+∠证明即可.(2)证明ABE △≌FCE △,可知BE CE =,从而得出答案.(1)证明:∵CEA ∠是ABE △的外角,∴CEA B EAB ∠=∠+∠.又∵CEA B F ∠=∠+∠,∴EAB F ∠=∠.(2)解:在ABE △和FCE △中,AB FC EAB F AEB FEC =⎧⎪∠=∠⎨⎪∠=∠⎩, ∴ABE △≌FCE △.∴BE CE =.∵10BC =,∴5BE =.【点睛】本题考查了三角形的外角以及三角形全等的性质和判定,掌握三角形全等的性质和判定是解题的关键.5、(1)见解析;(2)见解析;(3)108°【分析】(1)根据对顶角相等结合已知条件得出∠AEG =∠C ,根据内错角相等两直线平行即可证得结论;(2)由∠AGE +∠AHF =180°等量代换得∠DGC +∠AHF =180°可判断EC //BF ,两直线平行同位角相等得出∠B =∠AEG ,结合(1)得出结论;(3)由(2)证得EC //BF ,得∠BFC +∠C =180°,求得∠C 的度数,由三角形内角和定理求得∠D 的度数.【详解】证明:(1)∵∠AEG =∠AGE ,∠C =∠DGC ,∠AGE =∠DGC∴∠AEG =∠C∴AB //CD(2)∵∠AGE =∠DGC ,∠AGE +∠AHF =180°∴∠DGC +∠AHF =180°∴EC //BF∴∠B=∠AEG由(1)得∠AEG=∠C∴∠B=∠C(3)由(2)得EC//BF∴∠BFC+∠C=180°∵∠BFC=4∠C∴∠C=36°∴∠DGC=36°∵∠C+∠DGC+∠D=180°∴∠D=108°【点睛】此题考查了平行线的判定与性质,三角形内角和定理,熟记“内错角相等,两直线平行”、“同旁内角互补,两直线平行”及“两直线平行,同旁内角互补”是解题的关键.6、见解析【分析】过A作AF⊥BC于F,根据等腰三角形的性质得出BF=CF,DF=EF,即可求出答案.【详解】证明:如图,过A作AF⊥BC于F,∵AB =AC ,AD =AE ,∴BF =CF ,DF =EF ,∴BF -DF =CF -EF ,∴BD =CE .【点睛】本题考查了等腰三角形的性质的应用,注意:等腰三角形的底边上的高,底边上的中线,顶角的平分线互相重合.7、(1)见解析;(2)猜想:DE BD CE =+,见解析;(3)见解析【分析】(1)先证明BDA AEC ∠=∠和ABD CAE ∠=∠,再根据AAS 证明ABD CAE ≌即可;(2)根据AAS 证明ABD CAE ≌得BD AE =,DA EC =,进一步可得出结论;(3)分别过点C 、E 作CM l ⊥,EN l ⊥,同(1)可证ABF CAM ≌,ADF EAN ≌,得出CM =EN ,证明CMG ENG ≌得CG EG =,从而可得结论.【详解】解:(1)证明:∵BD l ⊥,CE l ⊥,∴90BDA AEC ∠=∠=︒,∴90ABD DAB ∠+∠=︒∴90CAE DAB ∠+∠=︒∴ABD CAE ∠=∠,在ABD 与CAE 中BDA AEC ABD CAE AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴()ABD CAE AAS ≌(2)猜想:DE BD CE =+,∵BDA BAC α∠=∠=∴180180ABD DAB BDA α∠+∠=︒-∠=︒-,180180CAE DAB BAC α∠+∠=︒-∠=︒-∴ABD CAE ∠=∠,在ABD 与CAE 中BDA AEC ABD CAE AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()ABD CAE AAS ≌,∴BD AE =,DA EC =,∴DE AE DA BD CE =+=+(3)分别过点C 、E 作CM l ⊥,EN l ⊥,同(1)可证ABF CAM ≌,ADF EAN ≌,∴AF CM =,AF EN =∵CM l ⊥,EN l ⊥,∴90CMG ENG ∠=∠=︒在CMG 与ENG 中CMG ENG CGM EGN CM EN ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()CMG ENG AAS ≌,∴CG EG =,∴G 为CE 的中点.【点睛】本题考查了全等三角形的判定与性质、垂线的定义、角的互余关系,证得△ABD ≌△CAE 是解决问题的关键.8、(1)△AMN 是是等腰三角形;理由见解析;(2)①证明见解析;②a ﹣b .【分析】(1)由等腰三角形的性质得到∠ABC=∠ACB,由平行线的性质得到∠AMN=∠ABC,∠ANM=∠ACB,于是得到∠AMN=∠ANM,根据等角对等边即可证得结论;(2)①由角平分线的定义得到∠PBM=∠PBC,由平行线的性质得到∠MPB=∠PBC,于是得到∠PBM=∠MPB,根据等角对等边即可证得结论;②由①知MB=MP,同理可得:NC=NP,故△AMN的周长=AB+AC,再根据已知条件即可求出结果.(1)解:△AMN是是等腰三角形,理由如下:∵AB=AC,∴∠ABC=∠ACB,∵MN∥BC,∴∠AMN=∠ABC,∠ANM=∠ACB,∴∠AMN=∠ANM,∴AM=AN,∴△AMN是等腰三角形;(2)①证明:∵BP平分∠ABC,∴∠PBM=∠PBC,∵MN∥BC,∴∠MPB=∠PBC∴∠PBM=∠MPB,∴MB=MP,∴△BPM是等腰三角形;②由①知MB=MP,同理可得:NC=NP,∴△AMN的周长=AM+MP+NP+AN=AM+MB+NC+AN=AB+AC,∵△ABC的周长为a,BC=b,∴AB+AC+b=a,∴AB+AC=a﹣b∴△AMN的周长=a﹣b.【点睛】本题考查了等腰三角形的性质和判定,平行线的性质,列代数式,能够灵活应用这些性质是解决问题的关键.9、(1)3(2)12(3)2nn m【分析】(1)利用ASA证明△AEF≌△ABE,得AE=AB=4,得出答案;(2)延长CG、AB交于点H,设S△BGC=S△HGB=a,用两种方法表示△ACH的面积即可;(3)在AC上取AN=AB,可得CD=DN=n-m,根据△ABD和△ACD的高相等,面积比等于底之比可求出CD的长.(1)∵AD是△ABC的平分线,∴∠BAD=∠CAD,∵BE ⊥AD ,∴∠BEA =∠FEA ,在△AEF 和△AEB 中,BAE FAE AE AEAEB AEF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AEF ≌△AEB (ASA ),∴AF =AB =4,∵AC =7∴CF =AC -AF =7-4=3,故答案为:3;(2)延长CG 、AB 交于点H ,如图,由(1)知AC =AH ,点G 为CH 的中点,设S △BGC =S △HGB =a ,根据△ACH 的面积可得:S △ABC +2a =2(6+a ),∴S △ABC =12;(3)在AC 上取AN =AB ,如图,∵AD 是△ABC 的平分线,∴∠NAD =∠BAD ,在△ADN 与△ADB 中,AN AB NAD BAD AD AD ⎧⎪∠∠⎨⎪⎩===, ∴△ADN ≌△ADB (SAS ),∴∠AND =∠B ,DN =BD ,∵∠B =2∠C ,∴∠AND =2∠C ,∴∠C =∠CDN ,∴CN =DN =AC -AB =n -m ,∴BD =DN =n -m ,根据△ABD 和△ACD 的高相等,面积比等于底之比可得:CD AC BD AB=,∴CD n n m m=-, ∴2()n n m n CD n m m-==-, 故答案为:2n n m-. 【点睛】本题主要考查了全等三角形的判定与性质,角平分线的定义,三角形的面积等知识,利用角的轴对称性构造全等三角形是解题的关键.10、(1)72;(2)①ACD △与BCE 是偏等积三角形,理由见详解;②修建小路的总造价为42000元【分析】(1)当AP CP =时,则72AP =,证ABP CBP S S ∆∆=,再证ABP ∆与CBP ∆不全等,即可得出结论;(2)①过A 作AM DC ⊥于M ,过B 作BN CE ⊥于N ,证()ACM BCN AAS ∆∆≌,得AM BN =,则ACD BCE S S ∆∆=,再证ACD ∆与BCE ∆不全等,即可得出结论;②过点A 作//AN CD ,交CG 的延长线于N ,证得()AGN DGC AAS ∆∆≌,得到AN CD =,再证()ACN CBE SAS ∆∆≌,得ACN CBE ∠=∠,由余角的性质可证CF BE ⊥,然后由三角形面积和偏等积三角形的定义得12BCE S BE CF ∆=⋅,2100BCEACD S S ∆∆==,求出70()CF m =,即可求解. 【详解】解:(1)当72AP CP ==时,ABP ∆与CBP ∆是偏等积三角形,理由如下:设点B 到AC 的距离为h ,则12ABP S AP h ∆=⋅,12CBP S CP h ∆=⋅,ABP CBP S S ∆∆∴=,10AB =,7BC =,AB BC ∴≠,AP CP =、PB PB =,ABP ∴∆与CBP ∆不全等,ABP ∴∆与CBP ∆是偏等积三角形, 故答案为:72;(3)①ACD ∆与BCE ∆是偏等积三角形,理由如下: 过A 作AM DC ⊥于M ,过B 作BN CE ⊥于N ,如图3所示:则90AMC BNC ∠=∠=︒,ACB ∆、DCE ∆是等腰直角三角形,90ACB DCE ∴∠=∠=︒,AC BC =,CD CE =,3603609090180BCN ACD ACB DCE ∴∠+∠=︒-∠-∠=︒-︒-︒=︒, 180ACM ACD ∠+∠=︒,ACM BCN ∴∠=∠,在∆ACM 和BCN ∆中,AMC BNC ACM BCN AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ACM BCN AAS ∴∆∆≌,AM BN ∴=,12ACD S CD AM ∆=⋅,12BCE S CE BN ∆=⋅, ACD BCE S S ∆∆∴=,180BCE ACD ∠+∠=︒,090BCE ︒<∠<︒, ACD BCE ∴∠≠∠,CD CE =,AC BC =,ACD ∴∆与BCE ∆不全等, ACD ∴∆与BCE ∆是偏等积三角形; ②如图4,过点A 作//AN CD ,交CG 的延长线于N ,则N GCD ∠=∠, G 点为AD 的中点,AG GD ∴=,在AGN ∆和DGC ∆中,N GCD AGN DGC AG DG ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()AGN DGC AAS ∴∆∆≌,AN CD ∴=,CD CE =,AN CE ∴=,//AN CD ,180CAN ACD ∴∠+∠=︒,90ACB DCE ∠=∠=︒,3609090180ACD BCE ∴∠+∠=︒-︒-︒=︒,BCE CAN ∴∠=∠,在ACN ∆和CBE ∆中,AN CE CAN BCE AC CB =⎧⎪∠=∠⎨⎪=⎩, ()ACN CBE SAS ∴∆∆≌,ACN CBE ∴∠=∠,1809090ACN BCF ∠+∠=︒-︒=︒,90CBE BCF ∴∠+∠=︒,90BFC ∴∠=︒,CF BE ∴⊥.由①得:ACD ∆与BCE ∆是偏等积三角形,12BCE S BE CF ∆∴=⋅,2100BCE ACD S S ∆∆==, 22210070()60BCE S CF m BE ∆⨯∴===, ∴修建小路CF 的总造价为:6007042000⨯=(元).【点睛】本题是四边形综合题目,考查了新定义“偏等积三角形”的定义、全等三角形的判定与性质、等腰直角三角形的性质、三角形面积等知识;本题综合性强,熟练掌握“偏等积三角形”的定义,证明∆∆≌是解题的关键,属于中考常考题型.∆∆ACM BCN≌和ACN CBE。

沪教版七年级下册数学第十四章 三角形含答案【可修改】

沪教版七年级下册数学第十四章 三角形含答案【可修改】

沪教版七年级下册数学第十四章三角形含答案一、单选题(共15题,共计45分)1、若等腰三角形的两边长分别是4和9,则它的周长是()A.17B.22C.17或22D.132、如图2,已知AB∥CD,∠C=70°,∠F=30°,则∠A的度数为()A.30°B.35°C.40°D.45°3、如图,已知在△ABC中,∠C = 90°,AD = AC,DE⊥AB交BC于点E,若∠B = 28°,则∠AEC =()A.28°B.59°C.60°D.62°4、已知等腰三角形的两边长分别是5和6,则这个等腰三角形的周长为().A.11B.16C.17D.16或175、在等腰三角形ABC中,它的两边长分别为8cm和4cm,则它的周长为()A.10cmB.12 cmC.20 cm或16 cmD.20 cm6、如图,直线l1 ∥ l2,CD⊥AB于点D ,∠1=50°,则∠BCD的度数为()A.40°B.45°C.50°D.30°7、如图,l∥m,等边△ABC的顶点B在直线m上,∠1=20°,则∠2的度数为()A.60°B.45°C.40°D.30°8、△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题中的假命题是()A.如果∠C﹣∠B=∠A,则△ABC是直角三角形B.如果c 2=b 2﹣a 2,则△ABC是直角三角形,且∠C=90°C.如果(c+a)(c﹣a)=b 2,则△ABC是直角三角形 D.如果∠A:∠B:∠C=5:2:3,则△ABC是直角三角形9、如图绕点B顺时针旋转60°得到,A、B、E三点共线,AC交DE于F,BC交DE于G,下列结论错误的是()A. B. C. D.10、如图,已知⊙O是△ABC的外接圆,若弦BC等于⊙O的半径,则∠BAC等于()A.30°B.45°C.60°D.20°11、如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=6,AB=10,则DE的长为()A. B.3 C. D.12、锐角三角形.任意两个内角之和必大于()A.120°B.100°C.90°D.60°13、已知直线y=﹣x+3与坐标轴分别交于点A,B,点P在抛物线y=﹣(x ﹣)2+4上,能使△ABP为等腰三角形的点P的个数有()A.8个B.4个C.5个D.6个14、已知线段a=4cm,b=6cm,下列长度的线段中,不能与a,b组成三角形的是()A.4cmB.6cmC.11cmD.9cm15、如图,矩形的两条对角线相交于点,则的长是()A. B. C. D.二、填空题(共10题,共计30分)16、已知在△ABC中,AB=3,AC=5,第三边BC的长为一元二次方程x2-6x+8=0的一个根,则该三角形为________三角形.17、如图,△ABC是等边三角形,AD是BC边上的中线,点E在AC上,且∠CDE=20°,现将△CDE沿直线DE折叠得到△FDE,连结BF.∠BFE的度数是________.18、等腰三角形的一个角是80°,则它的底角是________.19、如图,若AB=AC,BD=CD,∠B=20°,∠BDC=120°,则∠A=________°.20、如图,在四边形ABCD中,AB=AD=4,,BC= ,CD=8,则四边形ABCD的面积为________.21、如图,点A是反比例函数y= 图象上的任意一点,过点A作AB∥x轴,AC∥y轴,分别交反比例函数y= 的图象于点B,C,连接BC,E是BC上一点,连接并延长AE交y轴于点D,连接CD,则S△DEC ﹣S△BEA=________.22、如图,,以点为圆心,小于长为半径画弧,分别交,于,两点,再分别以,为圆心,大于长为半径画弧,两弧交于点,作射线,交于点.若,则的大小等于________(度).23、如图,P是等边△ACB中的一个点,PA=2,,PC=4,则△ACB 的边长是________.24、已知等腰ABC的三条边长都是方程x2-9x+18=0的根,则ABC的周长为________;25、若三角形的两边长是5 和2 ,且第三边的长度是偶数,则第三边长可能是________.三、解答题(共5题,共计25分)26、如图所示,△ABC平移后得到了△DEF,D在AB上,若∠A=26°,∠E=74°,求∠1,∠2,∠F,∠C的度数.27、如图所示,B处在A处的南偏西45°方向上,C处在A处的南偏东30°方向,C处在B处的北偏东60°,求∠ACB是多少度?28、如图,在中,,以为直径作,过点作交于,.求证:是的切线.29、把同一个正三角形的三条边5等分、7等分(如图①②)然后适当地连结这些等分点,使其得到若干个面积相等的小正三角形,已知图①中阴影部分的面积是294cm2,求图②中阴影部分的面积.30、如图,AB∥CD,BD=CD,∠D=36°,求∠ABC的度数.参考答案一、单选题(共15题,共计45分)1、B2、C3、B4、D5、D6、A7、C8、B9、D10、A11、A12、C13、A14、C15、C二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)26、28、30、。

(黄金题型)沪教版七年级下册数学第十四章 三角形含答案

(黄金题型)沪教版七年级下册数学第十四章 三角形含答案

沪教版七年级下册数学第十四章三角形含答案一、单选题(共15题,共计45分)1、如图,在△ABC中,AB=AD=DC,∠BAD=26°,则∠C的度数是()A.36°B.77°C.64°D.38.5°2、如图,己知直线y= x-3与x轴、y轴分别交于A,B两点,P是以C(0,1)为圆心,1为半径的圆上一动点,连接PA,PB,则△PAB面积的最大值是( )A.8B.12C.D.3、如图,在中,为的中点且交于,平分交于点.若,则的长为().A.3B.6C.10D.124、在△ABC中和△DEF中,已知BC=EF,∠C=∠F,增加下列条件后还不能判定△ABC≌△DEF的是()A.AC=DFB.AB=DEC.∠A=∠DD.∠B=∠E5、如图,,,并且,则的度数为()A.55°B.45°C.30°D.60°6、等边三角形的一个角是().A. B. C. D.7、如图所示是二次函数的图象在x轴上方的一部分,对于这段图象与x轴所围成的阴影部分的面积,你认为与其最接近的值是()A.4B.C.D.88、已知如图所示,另有,满足,,.下列结论一定正确的是()A. B. C. 中边上的高中边上的高 D. 中边上的中线中边上的中线9、如图,点O是平行四边形ABCD的对角线的交点,则图中全等三角形共有()A.4对B.3对C.2对D.1对10、在中,若,则是().A.锐角三角形B.形状不确定C.钝角三角形D.直角三角形11、如图,,点在边上,线段,交于点,若,则的度数为()A. B. C. D.12、如图,点O是△ABC中∠ABC与∠ACB的平分线的交点,OD∥AB交BC于D 点,OE∥AC交BC于E点,若BC=20cm,则△ODE的周长为()A.16cmB.18cmC.20cmD.22cm13、如图,一艘轮船在B处观测灯塔A位于南偏东50°方向上,相距40海里,轮船从B处沿南偏东20°方向匀速航行至C处,在C处观测灯塔A位于北偏东10°方向上,则C处与灯塔A的距离是()A.20海里B.40海里C.20 海里D.40 海里14、如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.135°B.150°C.270°D.90°15、如图,等边三角形ABC中,D,E分别为AB,BC边上的点,且 AD=BE,AE与CD交于点F,AG⊥CD于点G,则的值为( )A. B. C. D.二、填空题(共10题,共计30分)16、如图,直线y=2x+2 与x、y轴分别交于A、B两点,以OB为边在y轴左侧作等边△OBC,将△OBC沿y轴上下平移,使点C的对应点C′恰好落在直线AB上,则点C'的坐标为________.17、请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.如图,在△ABC中,BD和CE是△ABC的两条角平分线.若∠A=52°,则∠1+∠2的度数为________.B. tan38°15′≈________.(结果精确到0.01)18、如图,正方形网格中,每个正方形边长都相等,A、O、B在如图的格点上,则________.19、已知△ABC中,∠A∶∠B∶∠C=2∶3∶5,则△ABC是________三角形.20、如图,要测量池塘两岸相对的两点A,B的距离,可以在池塘外取AB的垂线BF上的两点C,D,使BC=CD,再画出BF的垂线DE,使E与A,C在一条直线上.若想知道两点A,B的距离,只需要测量出线段________即可.21、如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠A=50°,则∠ACB=________.22、等腰三角形一腰上的高与另一腰的夹角为40°,则这个等腰三角形的一个底角的度数为________.23、如图,在△ABC中,AD平分∠BAC,交BC于点D,BE⊥AD于E,AB=6,AC=14,∠ABC=3∠C,则BE=________.24、在⊙O中,若弧AB等于2倍的弧AC,则AB________ 2AC.25、如图,正方形ABCD的对角线相交于点O,点O又是正方形A1B1C1O的一个顶点,而且这两个正方形的边长都为2,无论正方形A1B1C1O绕点O怎样转动,两个正方形重叠部分的面积均为定值________.三、解答题(共5题,共计25分)26、已知如图所示,∠B=60°,∠C=20°,∠BDC=3∠A,求∠A的度数.27、下面是数学课堂的一个学习片断.阅读后,请回答下面的问题:学习等腰三角形有关内容后,张老师请同学们交流讨论这样一个问题:“已知等腰三角形ABC的角A等于300,请你求出其余两角”.同学们经片刻的思考与交流后,李明同学举手讲:“其余两角是300和1200”;王华同说:“其余两角是750和750”.还有一些同学也提出了不同的看法.(1)假如你也在课堂中,你的意见如何?为什么?(2)通过上面数学问题的讨论,你有什么感受?(用一句话表示)28、已知:如图,AB=BC,∠A=∠C.求证:AD=CD.29、如图,P为△ABC中任意一点.证明:AB+BC+CA>PA+PB+PC.30、已知:如图,与都是等边三角形,且点D在边AC上,并与端点A、C不重合求证:≌ .参考答案一、单选题(共15题,共计45分)1、D2、C3、D4、B5、A6、B7、B8、C9、A10、D11、D12、C13、B14、C15、B二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。

七年级数学下册-14.3-全等三角形的概念与性质练习-沪教版五四制

七年级数学下册-14.3-全等三角形的概念与性质练习-沪教版五四制

全等三角形的概念及性质一、课本巩固练习1、如图,ABCD Y 中,对角线AC 、BD 交于点O . (1)写出图中所有的全等三角形;写出其中一对全等三角形的对应角和对应边. 2、下列说法,正确的是( ).A.全等图形的面积相等B.面积相等的两个图形是全等形C.形状相同的两个图形是全等形D.周长相等的两个图形是全等形3、如图1,折叠长方形ABCD ,使顶点D 与BC 边上的N 点重合,如果AD=7cm ,DM=5cm ,∠DAM=39°,则AN =_____cm ,NM =____cm ,NAB ∠=___ .4、如图2,△ABC ≌△AED ,∠BAC=25°,∠B=35°,AB=3cm ,BC=1cm ,则∠E= , ∠ ADE= ;线段DE= cm ,AE= cm .图1 图2 图3 已知ABC DEF ∆≅∆,若ABC ∆的周长为32,8AB =,12BC =,则DE = ,DF = .如图3,已知ABC ADE ∆≅∆,AB AD =,BC DE =,那么与BAE ∠相等的角是 。

如图4,ABC ADE ∆≅∆,则AB= ,∠E= __.若∠BAE=120°,∠BAD=40°,则∠BAC= . 8、如图,在ABC ∆中,::2:5:11A B ACB ∠∠∠=,若将ACB ∆绕点C 逆时针旋转,使旋转前后的//A B C ∆中的顶点/B 在原三角形的边AC 的延长线上,求/BCA ∠的度数.9、如图,已知ABC AED ∆≅∆,AE AB =,AD AC =,20D E ︒∠-∠=,60BAC ︒∠=。

求C ∠的度数。

MDNB C 图4EDC BA图4 O DAED C B A DCA10、已知△ABC 中,AD 是BC 边上的中线.求证AB+AC>2AD.二、基础过关1、如右图,已知AB=DE ,∠B =∠E ,若要使△AB C ≌△DEF ,那么还要需要一个条件,这个条件可以是:_____________, 理由是:________;这个条件也可以是:_____________, 理由是:_________;2、如图⑴,已知CD AB =,若运用“..S A S ”公理判定ADC CBA ∆≅∆,从图中可得到的条件是 ,需要补充的条件是 .⑵ ⑶3、如图⑵,已知AB 与CD 相交于点O ,//AC BD ,如果需要AOC BOD ∆≅∆,则还应增加的条件 或 或 .如图⑶,已知AB AC =,BD CD =,F 在AD 上,那么图中共有 对全等三角形。

沪教版七年级数学下册第十四章-三角形练习题

沪教版七年级数学下册第十四章-三角形练习题

第十四章 三角形一、单选题1.以下各组线段为边,能组成三角形的是( )A .1,2,4B .8,6,4C .12,5,6D .2,3,62.下列说法中错误的是( )A .三角形三条高至少有一条在三角形的内部B .三角形三条中线都在三角形的内部C .三角形三条角平分线都在三角形的内部D .三角形三条高都在三角形的内部3.如图,//,,160,AB CD DB BC ⊥∠=︒则2∠的度数是 ( )A .30B .40C .50D .604.如图,△ABC ≌△A E D ,∠C =40°,∠E AC =30°,∠B =30°,则∠E AD =();A .30°B .70°C .40°D .110°5.如图,AC ∥DF ,AC =DF ,下列条件不能使△ABC ≌△DEF 的是( )A .∠A =∠DB .∠B =∠EC .AB =DED .BF =EC 6.如图,∠ACB =90°,AC =BC .AD ⊥CE ,BE ⊥CE ,垂足分别是点D 、E ,AD =3,BE =1,则DE 的长是( )A .32B .2C . D7.已知等腰三角形的两边长分别是3和5,则该三角形的周长是( )A .8B .9C .10或12D .11或13 8.如图,直角坐标系中,点 A ( ? 2,2)、B (0,1)点 P 在 x 轴上,且△PAB 的等腰三角形,则满足条件的点 P 共有()个A .1B .2C .3D .49.在Rt△ABC 中,∠C=90°,∠CAB=60°,AD 平分∠CAB,点D 到AB 的距离DE=3.8cm ,则BC等于()A.3.8cm B.7.6cm C.11.4cm D.11.2cm10.在如图所示的三角形中,∠A=30°,点P和点Q分别是边AC和BC上的两个动点,分别连接BP和PQ,把△ABC分割成三个三角形△ABP,△BPQ,△PQC,若分割成的这三个三角形都是等腰三角形,则∠C有可能的值有多少个?()A.10B.8C.6D.4二、填空题11.如图,△ABC的中线AD,BE相交于点F.若△ABF的面积是7,则四边形CEFD的面积是____.12.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内时,∠A与∠1+∠2之间有始终不变的关系是__________.13.如图,点P在∠MON的平分线上,点A、B在∠MON的两边上,若要使△AOP≌△BOP,那么需要添加一个条件是_____.14.在数学课上,老师提出如下问题:己知:直线l和直线外的一点P.⊥于点Q.求作:过点P作直线PQ l小华的作法如下:如图,第一步:以点P为圆心,适当长度为半径作弧,交直线于A,B两点;∠的平分线,交直线l于点Q.直线PQ即为所求作.第二步:连接PA、PB,作APB老师说:“小华的作法正确”.请回答:小华第二步作图的依据是__________.三、解答题15.已知:在△ABC中,∠B=30°,∠C=70°,AD⊥BC,AE是∠BAC的角平分线.(1)求∠EAC的度数;(2)求∠EAD的度数.16.在Rt△ABC中,∠ACB=90°,点D、E分别在AB、AC上,且CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得到CF,连接EF.(1)求证:△BDC≌△EFC;(2)若EF∥CD,求证:∠BDC=90°.17.如图所示,∠BAC=30°,D为角平分线上一点,DE⊥AC于E,DF∥AC,且交AB 于点F.(1)求证:△AFD为等腰三角形;(2)若DF=10cm,求DE的长.∆的边长为10cm,点D从点C出发沿CA向点A运动,点E从点B出18.如图,等边ABC发沿AB的延长线BF向右运动,已知点D,E都以1cm/s的速度同时开始运动,运动过程中DE与BC相交于点P,点D运动到点A后两点同时停止运动.∆是直角三角形时,求D,E两点运动的时间;(1)当ADE(2)求证:在运动过程中,点P始终是线段DE的中点答案1.B2.D3.A4.D5.C6.B7.D8.D9.C10.D11.712.2∠A =∠1+∠213.AO =BO 或∠OAP =∠OBP 或∠APO =∠BPO (写出一个即可). 14.等腰三角形三线合一15.解:(1)∵∠B =30°,∠C =70°,∴18080BAC B C ∠=︒-∠-∠=︒,∵AE 是∠BAC 的角平分线 ∴1402EAC BAC ;(2)∵AD ⊥BC∴9020DAC C ∠=︒-∠=︒,∴∠EAD=∠EAC -∠DAC=20°.16.(1)由旋转的性质得,CD =CF ,∠DCF =90°, ∴∠DCE+∠ECF =90°,∵∠ACB =90°,∴∠BCD+∠DCE =90°,∴∠BCD =∠ECF ,在△BDC 和△EFC 中,{CE BCBCD ECF CD CF=∠=∠=,∴△BDC ≌△EFC (SAS );(2)∵EF ∥CD ,∴∠F+∠DCF =180°,∵∠DCF =90°,∴∠F =90°,∵△BDC ≌△EFC ,∴∠BDC =∠F =90°.17.(1)证明:如图所示,∵DF ∥AC ,∴∠3=∠2,∵AD 是角平分线,∴∠1=∠2,∴∠1=∠3,∴FD =FA ,∴△AFD 为等腰三角形.(2)如图,过D 作DG ⊥AB ,垂足为G ,∵∠1=∠2=12∠BAC ,∠BAC =30°, ∴∠1=15°,又∵∠1=∠3,∴∠1=∠3=15°,∴∠GFD =∠1+∠3=15°+15°=30°,在Rt △FDG 中,DF =10cm ,∠GFD =30°,∴DG =5cm ,∵AD 为∠BAC 的平分线,DE ⊥AC ,DG ⊥AB , ∴DE =DG =5cm .18.解:(1)ADE ∆中,60A ∠=︒,60AED ABC ∠≤∠=︒ 所以若ADE ∆是直角三角形,只能90ADE ∠=︒Rt ADE ∆中,60A ∠=︒得,∠AED=30°∴2AE AD =设D 点运动时间为t ,则E 点运动时间也为t . ∴10AD t =-,10AE t =+∴102(10)t t +=-,解得103t = 所以当ADE ∆是直角三角形时,D ,E 两点运动时间为103秒. (2)过点D 作//DK AB 交BC 于点K∵等边三角形ABC ∆中.60A ∠=︒,60C ∠=° 且//DK AB∴60C CDK CKD ∠=∠=∠=︒∴CDK ∆为等边三角形∴CD DK CK ==,120DKB ADK CBE ∠=︒=∠=∠ 设D ,E 运动时间为t 秒,则CD BE t ==在DKP ∆与EBP ∆中DPK EPB DKP EBP DK BE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()DKP EBP AAS ∆∆≌ ∴PD PE =∴P 始终为DE 的中点。

2022年沪教版七年级数学第二学期第十四章三角形专项测试试卷(含答案详解)

2022年沪教版七年级数学第二学期第十四章三角形专项测试试卷(含答案详解)

沪教版七年级数学第二学期第十四章三角形专项测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若一个三角形的三个外角之比为3:4:5,则该三角形为( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形2、如图,ABC 中,∠ABC =45°,CD ⊥AB 于D ,BE 平分∠ABC ,且BE ⊥AC 于E ,与CD 相交于点F ,DH ⊥BC 于H ,交BE 于G ,下列结论中正确的是( ) ①BCD 为等腰三角形;②BF =AC ;③CE =12BF ;④BH =CE .A .①②B .①③C .①②③D .①②③④3、如图,AD 是ABC 的角平分线,CE AD ⊥,垂足为F .若40CAB ∠=︒,50B ∠=︒,则BDE ∠的度数为( )A .35°B .40°C .45°D .50°4、如图,在ABD △和ACE 中,AB AD =,AC AE =,AB AC >,50DAB CAE ∠=∠=︒,连接BE ,CD 交于点F ,连接AF .下列结论:①BE CD =;②50EFC ∠=︒;③AF 平分DAE △;④FA 平分DFE ∠.其中正确的个数为( )A .1个B .2个C .3个D .4个5、如图,点A 、B 、C 、D 在一条直线上,点E 、F 在AD 两侧,BF CE ∥,BF CE =,添加下列条件不能判定ACE DBF ≌的是( )A .AE DF =B .AB CD =C .E F ∠=∠D .AE DF ∥6、如图,E 为线段BC 上一点,∠ABE =∠AED =∠ECD =90°,AE =ED ,BC =20,AB =8,则BE 的长度为( )A.12 B.10 C.8 D.67、如图,点F,C在BE上,AC=DF,BF=EC,AB=DE,AC与DF相交于点G,则与2∠DFE相等的是()A.∠A+∠D B.3∠B C.180°﹣∠FGC D.∠ACE+∠B8、下列长度的三条线段能组成三角形的是()A.2,3,6 B.2,4,7 C.3,3,5 D.3,3,79、如图,△ABC中,∠ABC与∠ACB的平分线交于点F,过点F作DE∥BC交AB于点D,交AC于点E,那么下列结论:①△BDF是等腰三角形;②DE=BD+CE;③若∠A=50°,则∠BFC=115°;④DF =EF.其中正确的有()A.1个B.2个C.3个D.4个△的相关数据如图所示,则下列选项正确的是()10、已知,ABC,DEF,MNPA .ABC PNM ≌B .DEF PNM ≌C .PN EF =D .F A ∠=∠第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在Rt ABC 中,90,12cm,6cm C AC BC ∠=︒==,一条线段PQ AB =,P ,Q 两点分别在线段AC 和AC 的垂线AX 上移动,若以A 、B 、C 为顶点的三角形与以A 、P 、Q 为顶点的三角形全等,则AP 的长为_________.2、如图,在等边△ABC 中,E 为AC 边的中点,AD 垂直平分BC ,P 是AD 上的动点.若AD =6,则EP +CP 的最小值为_______________.3、如图,AD ⊥BC ,∠1=∠B ,∠C=65°,∠BAC =__________4、如图,在ABC 中,AB AC =,点D ,E 在边BC 上,BAD CAE ∠=∠,若16BC =,6DE =,则CE 的长为______.5、如图,在边长为4,面积为ABC ∆中,点D 、E 分别是BC 、AB 边的中点,点F 是AD 边上的动点,求BF EF +的最小值___.三、解答题(10小题,每小题5分,共计50分)1、如图,ABC 是等边三角形,∥DE BC ,分别交AB ,AC 于点D ,E .(1)求证:ADE 是等边三角形;(2)点F 在线段DE 上,点G 在ABC 外,BF CG =,ABF ACG ∠=∠,求证:AF FG =.2、下面是“作一个角的平分线”的尺规作图过程.已知:如图,钝角AOB ∠.求作:射线OC ,使AOC BOC ∠=∠.作法:如图,①在射线OA 上任取一点D ;②以点О为圆心,OD 长为半径作弧,交OB 于点E ;③分别以点D ,E 为圆心,大于12DE 长为半径作弧,在AOB ∠内,两弧相交于点C ;④作射线OC .则OC 为所求作的射线.完成下面的证明.证明:连接CD ,CE由作图步骤②可知OD =______.由作图步骤③可知CD =______.∵OC OC =,∴OCD OCE ≌△△. ∴AOC BOC ∠=∠(________)(填推理的依据).3、周老师带领同学们在数学课上探究下面命题的正确性:顶角为36°的等腰三角形具有一种特性,即经过它某一顶点的一条直线可把它分成两个小等腰三角形.为此,请你完成下列问题:(1)已知:如图①,在ABC 中,AB AC =,36A ∠=︒,直线BD 平分ABC ∠交AC 于点D .求证:ABD △与DBC △都是等腰三角形;(2)在证明了该命题后,小尹同学发现:图②、③两个等腰三角形也具有这种特性,请你在图②、图③中分别画出一条直线,把它们分成两个小等腰三角形,并在图中标出所有等腰三角形两个底角的度数;(3)接着,小尹又发现:还有一些非等腰三角形也具有这样的特性:即过它其中一个顶点画一条直线可以将原三角形分成两个小等腰三角形,请你画出一个具有这种特性的三角形的示意图,并在图中标出可能的各内角的度数.(4)请你写出两个符合(3)中一般规律的非等腰三角形的特征.4、如图,点D 在AC 上,BC ,DE 交于点F ,BA BD =,BC BE =,ABD CBE ∠=∠.(1)求证:ABC DBE ≌;(2)若20ABD ∠=︒,求∠CDE 的度数.5、已知,如图,AB =AD ,∠B =∠D ,∠1=∠2=60°.(1)求证:△ADE ≌△ABC ;(2)求证:AE =CE .6、如图,已知△ABC ≌△DEB ,点E 在AB 上,AC 与BD 交于点F ,AB =6,BC =3,∠C =55°,∠D =25°.(1)求AE 的长度;(2)求∠AED 的度数.7、如图,90B ∠=︒,90C ∠=︒,E 为BC 中点,DE 平分ADC ∠.(1)求证:AE 平分DAB ∠;(2)求证:AE DE ⊥;(3)求证:DC AB AD +=.8、已知:如图,AD ,BE 相交于点O ,AB ⊥BE ,DE ⊥AD ,垂足分别为B ,D ,OA =OE .求证:△ABO ≌△EDO .9、如图,在等边三角形ABC 中,点D ,E 分别在边BC ,AC 上,且DE ∥AB ,过点E 作EF ⊥DE ,交BC 的延长线于点F .(1)求证:CE =CF ;(2)若CD =2,求DF 的长.10、ACB △中,90C ∠=︒,以点A 为中心,分别将线段AB ,AC 逆时针旋转60︒得到线段AD ,AE ,连接DE ,延长DE 交CB 于点F .(1)如图1,若60A ∠=︒,CFE ∠的度数为________;(2)如图2,当3060A ︒<∠<︒吋,①依题意补全图2;②猜想CF 与AC 的数量关系,并加以证明.-参考答案-一、单选题1、A【分析】根据三角形外角和为360°计算,求出内角的度数,判断即可.【详解】解:设三角形的三个外角的度数分别为3x、4x、5x,则3x+4x+5x=360°,解得,x=30°,∴三角形的三个外角的度数分别为90°、120°、150°,对应的三个内角的度数分别为90°、60°、30°,∴此三角形为直角三角形,故选:A.【点睛】本题考查的是三角形的外角和,掌握三角形外角和为360°是解题的关键.2、C【分析】根据∠ABC=45°,CD⊥AB可得出BD=CD;利用AAS判定Rt△DFB≌Rt△DAC,从而得出BF=AC;再利用AAS判定Rt△BEA≌Rt△BEC,即可得到CE=12BF;由CE=12BF,BH=12BC,在三角形BCF中,比较BF、BC的长度即可得到CE<BH.【详解】解:∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD,故①正确;在Rt△DFB和Rt△DAC中,∵∠DBF=90°﹣∠BFD,∠DCA=90°﹣∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.又∵∠BDF=∠CDA=90°,BD=CD,∴△DFB≌△DAC.∴BF=AC,故②正确;在Rt△BEA和Rt△BEC中∵BE平分∠ABC,∴∠ABE=∠CBE.又∵BE=BE,∠BEA=∠BEC=90°,∴Rt△BEA≌Rt△BEC.∴CE=12AC=12BF,故③正确;∵CE=12AC=12BF,BH=12BC,在△BCF中,∠CBE=12∠ABC=22.5°,∠DCB=∠ABC=45°,∴∠BFC=112.5°,∴BF<BC,∴CE<BH,故④错误;故选:C.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.在复杂的图形中有45°的角,有垂直,往往要用到等腰直角三角形,要注意掌握并应用此点.3、B【分析】根据三角形的内角和求出∠ACB=90°,利用三角形全等,求出DC=DE,再利用外角求出答案.【详解】解:∵∠CAB=40°,∠B=50°,∴∠ACB=180°−40°−50°=90°,∵CE⊥AD,∴∠AFC=∠AFE=90°,∵AD是△ABC的角平分线,×40°=20°,∴∠CAD=∠EAD=12又∵AF=AF,∴△ACF≌△AEF(ASA)∴AC=AE,∵AD=AD,∠CAD=∠EAD,∴△ACD≌△AED(SAS),∴DC =DE ,∴∠DCE =∠DEC ,∵∠ACE =90°−20°=70°,∴∠DCE =∠DEC =∠ACB −∠ACE =90°−70°=20°,∴∠BDE =∠DCE +∠DEC =20°+20°=40°,故选:B .【点睛】考查角平分线、全等三角形的判定和性质、三角形的内角和等知识,根据三角形的内角和求出相应各个角的度数是解决问题的关键.4、C【分析】由全等三角形的判定及性质对每个结论推理论证即可.【详解】∵50DAB CAE ∠=∠=︒∴DAB BAC CAE BAC ∠+∠=∠+∠∴DAC BAE ∠=∠又∵AB AD =,AC AE =∴()DAC BAE SAS ≅△△∴BE CD =故①正确∵DAC BAE ≅∴AEB ACD ∠=∠由三角形外角的性质有ACD CFE AEB CAE ∠+∠=∠+∠则50EFC CAE ∠=∠=︒故②正确作AH DC ⊥于H ,AG BE ⊥于G ,如图所示:则90AGE AHC =∠∠=°,在AHC 和AGE 中,AHC AGE DAC BEA AC AE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴()AG AHC E AAS ≅∆,∴AH AG =,在AHF △和AGF 中,AH AG AHF AGF AF AF =⎧⎪∠=∠⎨⎪=⎩∴()AGF L A H HF ≅∆,∴AFH AFG ∠=∠∴FA 平分DFE ∠故④正确假设AF 平分DAE △则DAF EAF ∠=∠∵DAB CAE ∠=∠∴DAF DAB FAE CAE ∠-∠=∠-∠即BAF CAF ∠=∠由④知AFD AFE ∠=∠又∵BFD CFE ∠∠、为对顶角∴BFD CFE ∠=∠∴BFD AFD CFE AFE ∠+∠=∠+∠∴AFB AFE ∠=∠∴在ABF 和ACF 中,BAF CAF AF AF BFA CAF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()CF BFA A ASA ≅∆即AB =AC又∵AB AC >故假设不符,故AF 不平分DAE △故③错误.综上所述①②④正确,共有3个正确.故选:C .【点睛】本题考查了全等三角形的判定及性质,灵活的选择全等三角形的判定的方法是解题的关键,从判定两个三角形全等的方法可知,要判定两个三角形全等,需要知道这两个三角形分别有三个元素(其中至少一个元素是边)对应相等,这样就可以利用题目中的已知边角迅速、准确地确定要补充的边角,有目的地完善三角形全等的条件,从而得到判定两个三角形全等的思路.5、A【分析】根据题意,可得,BE CE FBD ECA =∠=∠,结合选项根据三角形全等的性质与判定逐项分析即可.【详解】 解:BF CE ∥∴FBD ECA ∠=∠ A. ,BE CE FBD ECA =∠=∠,AE DF =,不能根据SSA 证明三角形全等,故该选项符合题意; B. AB CD =AB BC BC CD ∴+=+AC BD ∴=,BE CE FBD ECA =∠=∠,∴ACE DBF ≌()SAS故能判定ACE DBF ≌,不符合题意; C. ,BE CE FBD ECA =∠=∠,E F ∠=∠,∴ACE DBF ≌()ASA ,故能判定ACE DBF ≌,不符合题意;D.AE DF ∥A D ∴∠=∠,BE CE FBD ECA =∠=∠∴ACE DBF ≌()AAS ,故能判定ACE DBF ≌,不符合题意;故选A【点睛】本题考查了平行线的性质,三角形全等的性质与判定,掌握三角形全等的性质与判定是解题的关键.6、A【分析】利用角相等和边相等证明ABE ECD ∆∆≌,利用全等三角形的性质以及边的关系,即可求出BE 的长度.【详解】解:由题意可知:∠ABE =∠AED =∠ECD =90°,1809090AEB DEC ∴∠+∠=︒-︒=︒,90A AEB ∠+∠=︒,A DEC ∴∠=∠,在ABE ∆和ECD ∆中,ABE ECD A DEC AE ED ∠=∠⎧⎪∠=∠⎨⎪=⎩()ABE ECD AAS ∴∆∆≌,8CE AB ∴==,12BE BC CE ∴=-=,故选:A .【点睛】本题主要是考查了全等三角形的判定和性质,熟练通过已知条件证明三角形全等,利用全等性质及边的关系,来求解未知边的长度,这是解决本题的主要思路.7、C【详解】由题意根据等式的性质得出BC =EF ,进而利用SSS 证明△ABC 与△DEF 全等,利用全等三角形的性质得出∠ACB =∠DFE ,最后利用三角形内角和进行分析解答.【分析】解:∵BF =EC ,∴BF +FC =EC +FC ,∴BC =EF ,在△ABC 与△DEF 中,AC DF AB DE BC EF =⎧⎪=⎨⎪=⎩, ∴△ABC ≌△DEF (SSS ),∴∠ACB =∠DFE ,∴2∠DFE =180°﹣∠FGC ,故选:C .【点睛】本题考查全等三角形的判定与性质,其中全等三角形的判定方法有:SSS ;SAS ;ASA ;AAS ;以及HL (直角三角形的判定方法).8、C【分析】根据三角形的三边关系,逐项判断即可求解.【详解】解:A 、因为2356+=< ,所以不能组成三角形,故本选项不符合题意;B 、因为2467+=< ,所以不能组成三角形,故本选项不符合题意;C 、因为3365+=> ,所以能组成三角形,故本选项符合题意;D 、因为3367+=< ,所以不能组成三角形,故本选项不符合题意;故选:C【点睛】本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键.9、C【分析】根据平行线的性质和角平分线的定义以及等腰三角形的判定和性质逐个判定即可解答.【详解】解:∵BF是∠AB的角平分线,∴∠DBF=∠CBF,∵DE∥BC,∴∠DFB=∠CBF,∴∠DBF=∠DFB,∴BD=DF,∴△BDF是等腰三角形;故①正确;同理,EF=CE,∴DE=DF+EF=BD+CE,故②正确;∵∠A=50°,∴∠ABC+∠ACB=130°,∵BF平分∠ABC,CF平分∠ACB,∴11,22FBC ABC FCB ACB ∠=∠∠=∠,∴∠FBC+∠FCB=12(∠ABC+∠ACB)=65°,∴∠BFC=180°﹣65°=115°,故③正确;当△ABC 为等腰三角形时,DF =EF ,但△ABC 不一定是等腰三角形,∴DF 不一定等于EF ,故④错误.故选:C .【点睛】本题主要考查等腰三角形的性质、角平分线的定义及平行线的性质等知识点,根据两直线平行、内错角相等以及等角对等边来判定等腰三角形是解答本题的关键.10、D【分析】根据三角形内角和定理分别求出三个三角形中未知角的度数,然后依据全等三角形的判定定理,从三个三角形中寻找条件证明全等,即可得出选项.【详解】解:180307080C ∠=︒-︒-︒=︒,180308070F ∠=︒-︒-︒=︒,在ABC ∆与ΔΔΔΔ中,C D B E AB EF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴ABC ∆≅ΔΔΔΔ,∴A F ∠=∠,A 、B 、C 三个选项均不能证明,故选:D .【点睛】题目主要考查三角形内角和定理、全等三角形的判定和性质,理解题意,熟练运用全等三角形的判定定理是解题关键.二、填空题1、6cm或12cm【分析】先根据题意得到∠BCA=∠PAQ=90°,则以A、B、C为顶点的三角形与以A、P、Q为顶点的三角形全等,只有△ACB≌△QAP和△ACB≌△PAQ两种情况,由此利用全等三角形的性质求解即可.【详解】解:∵AX是AC的垂线,∴∠BCA=∠PAQ=90°,∴以A、B、C为顶点的三角形与以A、P、Q为顶点的三角形全等,只有△ACB≌△QAP和△ACB≌△PAQ两种情况,当△ACB≌△QAP,∴6cmAP BC==;当△ACB≌△PAQ,∴12cm==,AP AC故答案为:6cm或12cm.【点睛】本题主要考查了全等三角形的性质,熟知全等三角形的性质是解题的关键.2、6【分析】要求EP+CP的最小值,需考虑通过作辅助线转化EP,CP的值,从而找出其最小值求解.【详解】解:作点E关于AD的对称点F,连接CF,∵△ABC是等边三角形,AD是BC边上的中垂线,∴点E关于AD的对应点为点F,∴CF就是EP+CP的最小值.∵△ABC是等边三角形,E是AC边的中点,∴F是AB的中点,∴CF=AD=6,即EP+CP的最小值为6,故答案为6.【点睛】本题考查了等边三角形的性质和轴对称等知识,熟练掌握等边三角形和轴对称的性质是本题的关键.3、70°【分析】先根据AD⊥BC可知∠ADB=∠ADC=90°,再根据直角三角形的性质求出∠1与∠DAC的度数,由∠BAC=∠1+∠DAC即可得出结论.【详解】∵AD⊥BC,∴∠ADB =∠ADC =90°,∴∠DAC =90°﹣65°=25°,∠1=∠B =45°,∴∠BAC =∠1+∠DAC =45°+25°=70°.【点睛】本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.4、5【分析】由题意易得B C ∠=∠,然后可证ABD ACE △≌△,则有BD CE =,进而问题可求解.【详解】解:∵AB AC =,∴B C ∠=∠,∵BAD CAE ∠=∠,∴ABD ACE △≌△(ASA ),∴BD CE =,∵16BC =,6DE =,∴10BD CE BC DE +=-=,∴5BD CE ==;故答案为5.【点睛】本题主要考查全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.5、【分析】连接CE,交AD于点F,连接BF,则BF EF+的最小值为CE,再由已知求出CE的长即可.【详解】解:连接CE,交AD于点F,连接BF,ABC∆是等边三角形,D是BC边中点,∴点与C点关于AD对称,B∴=,BF CF∴+=+,BF EF CF EF CE∴+的最小值为CE,BF EFE是AB的中点,∴⊥,CE ABAB=,ABC4∆的面积为∴=CEBF EF∴+的最小值为故答案为:【点睛】本题考查了等边三角形的性质,将军饮马河原理,熟练掌握等边三角形的性质,灵活运用将军饮马河原理是解题的关键.三、解答题1、(1)见详解;(2)见详解【分析】(1)由题意易得60ABC ACB BAC ∠=∠=∠=︒,然后根据平行线的性质可得60ADE AED ∠=∠=︒,进而问题可求证;(2)连接AG ,由题意易得AB =AC ,然后可知△ABF ≌△ACG ,则有AF =AG ,进而可得∠FAG =60°,最后问题可求证.【详解】证明:(1)∵ABC 是等边三角形,∴60ABC ACB BAC ∠=∠=∠=︒,∵DE ∥BC ,∴60,60ADE ABC AED ACB ∠=∠=︒∠=∠=︒,∴60ADE AED ∠=∠=︒,∴ADE 是等边三角形;(2)连接AG ,如图所示:∵ABC 是等边三角形,∴60BAC ∠=︒,AB =AC ,∵BF CG =,ABF ACG ∠=∠,∴△ABF ≌△ACG (SAS ),∴,AF AG BAF CAG =∠=∠,∵60BAF FAC BAC ∠+∠=∠=︒,∴60CAG FAC FAG ∠+∠=∠=︒,∴AFG 是等边三角形,∴AF FG =.【点睛】本题主要考查全等三角形及等边三角形的性质与判定,熟练掌握全等三角形及等边三角形的性质与判定是解题的关键.2、OE ; CE ;全等三角形的对应角相等【分析】根据圆的半径相等可得OD =OE ,CD =CE ,再利用SSS 可证明OCD OCE ≌△△,从而根据全等三角形的性质可得结论.【详解】证明:连接CD ,CE由作图步骤②可知OD =___OE ___.由作图步骤③可知CD =__CE ___.∵OC OC =,∴OCD OCE ≌△△. ∴AOC BOC ∠=∠(__全等三角形对应角相等__)故答案为:OE ; CE ;全等三角形的对应角相等【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了全等三角形的判定和性质.3、(1)见详解;(2)见详解;(3)见详解;(4)见详解;【分析】(1)根据等边对等角,及角平分线定义易得∠1=∠2=36°,∠C=72°,那么∠BDC=72°,则可得AD=BD=CB,所以△ABD与△DBC都是等腰三角形;(2)把等腰直角三角形分为两个小的等腰直角三角形即可,把108°的角分为36°和72°即可;(3)利用直角三角形的中线等于直角三角形斜边的一半可得任意直角三角形的中线把直角三角形分为两个等腰三角形;由(1),(2)易得所知的两个角要么是2倍关系,要么是3倍关系,可猜测只要所给的三个角中有2个角是2倍或3倍关系都可得到上述图形;(4)按照发现的(3)的特点来写,注意去掉特殊三角形的形式.(1)证明:在△ABC中,∵AB=AC,∴∠ABC=∠C,∵∠A=36°,∴∠ABC=∠C=1(180°-∠A)=72°,2∵BD平分∠ABC,∴∠1=∠2=36°∴∠3=∠1+∠A=72°,∴∠1=∠A,∠3=∠C,∴AD=BD,BD=BC,∴△ABD与△BDC都是等腰三角形(2)解:如下图所示:(3)解:如图所示:(4)解:特征一:直角三角形(直角边不等);特征二:2倍内角关系,在△ABC中,∠A=2∠B,0°<∠B<45°,其中,∠B≠30°;【点睛】本题考查了等腰三角形的判定;注意应根据题中所给的范例用类比的方法推测出把一般三角形分为两个等腰三角形的一般结论.4、(1)证明见解析;(2)∠CDE=20°.(1)由“SAS ”可证△ABC ≌△DBE ;(2)由全等三角形的性质可得∠C =∠E ,由三角形的外角性质可求解.(1)证明:∵∠ABD =∠CBE ,∴∠ABD +∠DBC =∠CBE +∠DBC ,即:∠ABC =∠DBE ,在△ABC 和△DBE 中,BA BD ABC DBE BC BE =⎧⎪∠=∠⎨⎪=⎩, ∴△ABC ≌△DBE (SAS );(2)解:由(1)可知:△ABC ≌△DBE ,∴∠C =∠E ,∵∠DFB =∠C +∠CDE ,∠DFB =∠E +∠CBE ,∴∠CDE =∠CBE ,∵∠ABD =∠CBE =20°,∴∠CDE =20°.【点睛】本题考查了全等三角形的判定和性质,三角形的外角性质,证明三角形全等是解题的关键.5、(1)见解析;(2)见解析(1)根据∠1=∠2可推出∠DAE =∠BAC ,然后结合全等三角形的判定定理进行证明;(2)由全等三角形的性质可得AE =AC ,结合∠2=60°可推出△AEC 为等边三角形,据此证明.【详解】(1)证明:∵∠1=∠2∴∠1+BAE ∠=∠2+BAE ∠即∠DAE =∠BAC在△ADE 和△ABC 中DAE BAC AD ABD B ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADE ≌△ABC (ASA )(2)证明:∵△ADE ≌△ABC∴AE =AC又∵∠2=60°∴△AEC 为等边三角形∴AE =CE【点睛】此题考查了全等三角形的性质和判定,等边三角形的性质和判定,解题的关键是熟练掌握全等三角形的性质和判定方法,等边三角形的性质和判定方法.6、(1)3AE =;(2)80AED ∠=︒.【分析】(1)先根据全等三角形的性质可得3BE BC ==,再根据线段的和差即可得;(2)先根据全等三角形的性质可得55DBE C ∠=∠=︒,再根据三角形的外角性质即可得.【详解】解:(1)∵,3ABC DEB BC ≅=,∴3BE BC ==,∵6AB =,∴633AE AB BE =-=-=;(2)∵ABC DEB ≅△△,∴55DBE C ∠=∠=︒,∵25D ∠=︒,∴552580AED DBE D ∠=∠+∠=︒+︒=︒.【点睛】本题考查全等三角形的性质等知识点,熟练掌握全等三角形的对应角和对应边相等是解题关键.7、(1)见解析;(2)见解析;(3)见解析【分析】(1)延长DE 交AB 延长线于F ,由∠B =∠C =90°,推出AB ∥CD ,则∠CDE =∠F ,再由DE 平分∠ADC ,即可推出∠ADF =∠F ,得到AD =AF ,即△ADF 是等腰三角形,然后证明△CDE ≌△BFE 得到DE =FE ,即E 是DF 的中点,即可证明AE 平分∠BAD ;(2)由(1)即可用三线合一定理证明;(3)由△CDE ≌△BFE ,得到CD =BF ,则AD =AF =AB +BF =AB +CD .【详解】解:(1)如图所示,延长DE 交AB 延长线于F ,∵∠B =∠C =90°,∴AB ∥CD ,∴∠CDE=∠F,∵DE平分∠ADC,∴∠CDE=∠ADE,∴∠ADF=∠F,∴AD=AF,∴△ADF是等腰三角形,∵E是BC的中点,∴CE=BE,∴△CDE≌△BFE(AAS),∴DE=FE,∴E是DF的中点,∴AE平分∠BAD;(2)由(1)得△ADF是等腰三角形,AD=AF,E是DF的中点,∴AE⊥DE;(3)∵△CDE≌△BFE,∴CD=BF,∴AD =AF =AB +BF =AB +CD .【点睛】本题主要考查了平行线的性质与判定,全等三角形的性质与判定,等腰三角形的性质与判定,熟知相关知识是解题的关键.8、见解析【分析】利用AAS 即可证明△ABO ≌△EDO .【详解】证明:∵AB ⊥BE ,DE ⊥AD ,∴∠B =∠D =90°.在△ABO 和△EDO 中,,B D AOB EOD OA OE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABO ≌△EDO .【点睛】本题考查了全等三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.9、(1)证明见解析;(2)4【分析】(1)根据等边三角形的性质和平行线的性质可证得∠EDC =∠ECD =∠DEC =60°,再根据直角定义和三角形的外角性质证得∠F =∠FEC =30°,利用等角对等边即可证得结论;(2)由等角对等边可知CE=DC=2,结合(1)中结论即可求解.(1)证明:∵△ABC是等边三角形,∴∠A=∠B=∠ACB=60°.∵DE∥AB,∴∠B=∠EDC=60°,∠A=∠CED=60°,∴∠EDC=∠ECD=∠DEC=60°,∵EF⊥ED,∴∠DEF=90°,∴∠F=30°∵∠F+∠FEC=∠ECD=60°,∴∠F=∠FEC=30°,∴CE=CF.(2)解:由(1)可知∠EDC=∠ECD=∠DEC=60°,∴CE=DC=2.又∵CE=CF,∴CF=2.∴DF=DC+CF=2+2=4.【点睛】本题考查等边三角形的性质、等腰三角形的判定、平行线的性质、三角形的外角性质、线段的和与差,熟练掌握相关知识的联系与运用是解答的关键.10、(1)120°(2)①图形见解析;②AC=【分析】(1)根据60∠=︒进而判断出点E在边AB上,得出△ADE≌△ABC(SAS),进而得出A∠AED=∠ACB=90°最后用三角形的外角的性质即可得出结论;(2)①依题意补全图形即可;②先判断出△ADE≌△ABC(SAS),进而得出∠AEF=90°,即可判断出Rt△AEF≌Rt△ACF,进而求出∠CAF=1∠CAE=30°,即可得出结论.2(1)(1)如图1,在Rt△ABC中,∠B=30°,∴∠BAC=60°,由旋转知,∠CAE=60°=∠CAB,∴点E在边AB上,∵AD=AB,AE=AC,∴△ADE≌△ABC(SAS),∴∠AED=∠ACB=90°,∴∠CFE=∠B+∠BEF=30°+90°=120°,故答案为120°;(2)(2)①依题意补全图形如图2所示,②如图2,连接AF,∵∠BAD=∠CAE,∴∠EAD=∠CAB,∵AD=AB,AE=AC,∴△ADE≌△ABC(SAS),∴∠AED=∠C=90°,∴∠AEF=90°,∴Rt△AEF≌Rt△ACF(HL),∴∠EAF=∠CAF,∴∠CAF=1∠CAE=30°,2AF,且AC2+CF2=AF2,在Rt△ACF中,CF=12∴AC【点睛】此题是三角形综合题,主要考查了旋转的性质,全等三角形的判定和性质,三角形的外角的性质,含30度角的直角三角形的性质,勾股定理,判断出△ADE≌△ABC是解本题的关键.。

沪教新版 七年级数学第二学期 第14章 三角形 单元测试试卷 (解析版)

沪教新版 七年级数学第二学期 第14章 三角形 单元测试试卷 (解析版)

第14章三角形单元测试卷一.选择题(共6小题)1.有下列长度的三条线段,其中能组成三角形的是()A.3、5、10B.10、4、6C.3、1、1D.4、6、92.下列说法正确的是()A.两个等边三角形一定全等B.全等三角形的面积一定相等C.形状相同的两个三角形全等D.腰对应相等的两个等腰三角形全等3.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD4.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA5.若三角形三个内角度数比为2:3:4,则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定6.如图,点A,D,C,F在一条直线上,AB=DE,∠A=∠EDF,下列条件不能判定△ABC ≌△DEF的是()A.AD=CF B.∠BCA=∠F C.∠B=∠E D.BC=EF二.填空题(共12小题)7.空调安装在墙上时,一般都会采用如图所示的方法固定,这种方法应用的几何原理是.8.如图,BD平分∠ABC,∠ADB=60°,∠BDC=80°,∠C=70°,所以△ABD是三角形.9.如图,点F是△ABC的边BC延长线上一点,DF⊥AB于点D,∠A=30°,∠F=40°,∠ACF的度数是.10.已知:如图,OD=OB,OC∥BD,∠B=50°,则∠AOC=度.11.如图,AD是△ABC的中线,ED是△ABD的中线,如S△AED=5cm2,则S△ABC=cm2.12.在△ABC中,已知∠CAB=60°,D、E分别是边AB、AC上的点,且∠AED=60°,ED+DB=CE,∠CDB=2∠CDE,则∠DCB等于.13.如图,在△ABC中,BI、CI分别平分∠ABC、∠ACB,若∠BIC=125°,则∠A=°.14.如图,△BEF是由△ABC平移所得,点A、B、E在同一直线上,若∠C=20°,∠A=92°,则∠E=度.15.如图,在△ABC中,AD、CE是△ABC的两条高,BC=5cm,AD=3cm,CE=4cm,则AB的长等于cm.16.如图,为了测量池塘两端点A,B间的距离,小亮先在平地上取一个可以直接到达点A 和点B的点C,连接AC并延长到点D,使CD=CA,连接BC并延长到点E,使CE=CB,连接DE.现测得DE=30米,则AB两点间的距离为米.17.如图,△ABC中,∠A=55°,将△ABC沿DE翻折后,点A落在BC边上的点A′处.如果∠A′EC=70°,那么∠A′DB的度数为.18.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的底角度数是.三.解答题(共6小题)19.已知等腰三角形的一腰上的中线把这个三角形的周长分为12和15两部分,求这个三角形的三边长.20.如图,在△ABC中,点D,E在边BC上,BD=CE,且AD=AE.求证:AB=AC.21.如图,已知AD是△ABC的一条中线,延长AD至E,使得DE=AD,连接BE.如果AB=5,AC=7,试求AD的取值范围.22.如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE,BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠C=70°,求∠AEB的度数.23.如图,点A在MN上,点B在PQ上,连接AB,过点A作AC⊥AB交PQ于点C,过点B作BD平分∠ABC交AC于点D,且∠NAC+∠ABC=90°.(1)求证:MN∥PQ;(2)若∠ABC=∠NAC+10°,求∠ADB的度数.24.感知:如图(1),在△ABC中,分别以AB、AC为边在△ABC外部作等边三角形△ABD、△ACE,连接CD、BE.求证:BE=DC;应用:如图(2),在△ABC中,AB>AC,分别以AB、AC为边在△ABC内部作等腰三角形△ABD、△ACE,点E恰好在BC边上,使AB=AD,AC=AE,且∠BAD=∠CAE,连接CD,CE=3cm,CD=2cm,△ABC的面积为25cm2,求△ABE的面积.。

2021-2022学年度强化训练沪教版七年级数学第二学期第十四章三角形同步训练试题(含解析)

2021-2022学年度强化训练沪教版七年级数学第二学期第十四章三角形同步训练试题(含解析)

沪教版七年级数学第二学期第十四章三角形同步训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,DH⊥BC于H,交BE于G,下列结论中正确的是()BF;④BH=CE.①BCD为等腰三角形;②BF=AC;③CE=12A.①②B.①③C.①②③D.①②③④2、已知三角形的两边长分别是3cm和7cm,则下列长度的线段中能作为第三边的是()A.3cm B.4cm C.7cm D.10cm3、如图,△ ABC≌△CDA,∠BAC=80°,∠ABC=65°,则∠CAD的度数为()A .35°B .65°C .55°D .40°4、在平面直角坐标系xOy 中,点A (0,2),B (a ,0),C (m ,n )(0m >).若ABC 是等腰直角三角形,且AB BC =,当01a <<时,点C 的横坐标m 的取值范围是( )A .02m <<B .23m <<C .3m <D .3m >5、下列命题是真命题的是( )A .等腰三角形的角平分线、中线、高线互相重合B .一个三角形被截成两个三角形,每个三角形的内角和是90度C .有两个角是60°的三角形是等边三角形D .在ABC 中,2A B C ∠=∠=∠,则ABC 为直角三角形6、如图,等腰△ABC 中,AB =AC ,点D 是BC 边中点,则下列结论不正确...的是( )A .∠B =∠C B .AD ⊥BC C .∠BAD =∠CAD D .AB =2BC7、如图,将△OAB 绕点O 逆时针旋转80°得到△OCD ,若∠A 的度数为110°,∠D 的度数为40°,则∠AOD 的度数是( )A .50°B .60°C .40°D .30°8、BP 是∠ABC 的平分线,CP 是∠ACB 的邻补角的平分线,∠ABP =20°,∠ACP =50°,则∠P =( )A .30°B .40°C .50°D .60°9、小明把一副含有45°,30°角的直角三角板如图摆放其中∠C =∠F =90°,∠A =45°,∠D =30°,则∠a +∠β等于( )A .180°B .210°C .360°D .270°10、根据下列已知条件,不能画出唯一ABC 的是( )A .60A ∠=︒,45B ∠=︒,4AB = B .30A ∠=︒,5AB =,3BC =C .60B ∠=︒,6AB =,10BC =D .90C ∠=︒,5AB =,3BC =第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、两角和它们的夹边分别相等的两个三角形全等(可以简写成 _____).2、如图,△ABC 中,AB =AC =DC ,D 在BC 上,且AD =DB ,则∠BAC =_____.3、如图,△ABC 的面积等于35,AE =ED ,BD =3DC ,则图中阴影部分的面积等于 _______4、如图,在正方形网格中,∠BAC ______∠DAE .(填“>”、“=”或“<”)5、若2(3)|7|0a b -+-=,则以a 、b 为边长的等腰三角形的周长为________.三、解答题(10小题,每小题5分,共计50分)1、如图,点A ,B ,C ,D 在一条直线上,AE DF ∥,AE DF =,AB CD =.(1)求证:AEC DFB ≅.(2)若40A ∠=︒,145ECD ∠=︒,求∠F 的度数.2、△ABC 中,AB =AC ,BD 平分∠ABC 交AC 于点D ,从点A 作AE ∥BC 交BD 的延长线于点E .(1)若∠BAC =40°,求∠E 的度数;(2)点F 是BE 上一点,且FE =BD .取DF 的中点H ,请问AH ⊥BE 吗?试说明理由.3、如图,在△ABC 中,AD ⊥BE ,∠DAC =10°,AE 是∠BAC 的外角∠MAC 的平分线,BF 平分∠ABC 交AE 于点F ,求∠AFB 的度数.4、 “三等分角”是被称为几何三大难题的三个古希腊作图难题之一.如图1所示的“三等分角仪”是利用阿基米德原理做出的.这个仪器由两根有槽的棒PA ,PB 组成,两根棒在P 点相连并可绕点P 旋转,C 点是棒PA 上的一个固定点,点A ,O 可在棒PA ,PB 内的槽中滑动,且始终保持OA =OC =PC.∠AOB为要三等分的任意角.则利用“三等分角仪”可以得到∠APB=13∠AOB.我们把“三等分角仪”抽象成如图2所示的图形,完成下面的证明.已知:如图2,点O,C分别在∠APB的边PB,PA上,且OA=OC=PC.求证:∠APB=13∠AOB.5、已知:如图,在ABC中,AB=AC,点D、E分别在边BC,AC上,AD=AE.(1)若∠BAD=30°,则∠EDC=°;若∠EDC=20°,则∠BAD=°.(2)设∠BAD=x,∠EDC=y,写出y与x之间的关系式,并给出证明.6、如图,点C是线段AB上一点,ACF与BCE都是等边三角形,连接AE,BF.(1)求证:AE BF;(2)若点M ,N 分别是AE ,BF 的中点,连接CM ,MN ,NC .①依题意补全图形;②判断CMN △的形状,并证明你的结论.7、已知:在△ABC 中,AD 平分∠BAC ,AE=AC .求证:AD ∥CE .8、如图,在四边形ABCD 中,E 是CB 上一点,分别延长AE ,DC 相交于点F ,AB CF =,CEA B F ∠=∠+∠.(1)求证:EAB F ∠=∠;(2)若10BC =,求BE 的长.9、如图,ABC 为等边三角形,D 是BC 中点,60ADE ∠=︒,CE 是ABC 的外角ACF ∠的平分线. 求证:AD DE =.10、如图,在Rt ACB △中,90ACB ∠=︒,CA CB =,点D 是ACB △内一点,连接CD ,过点C 作CE CD ⊥且CE CD =,连接AD ,BE .求证:AD BE =.-参考答案-一、单选题1、C【分析】根据∠ABC=45°,CD⊥AB可得出BD=CD;利用AAS判定Rt△DFB≌Rt△DAC,从而得出BF=AC;再利用AAS判定Rt△BEA≌Rt△BEC,即可得到CE=12BF;由CE=12BF,BH=12BC,在三角形BCF中,比较BF、BC的长度即可得到CE<BH.【详解】解:∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD,故①正确;在Rt△DFB和Rt△DAC中,∵∠DBF=90°﹣∠BFD,∠DCA=90°﹣∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.又∵∠BDF=∠CDA=90°,BD=CD,∴△DFB≌△DAC.∴BF=AC,故②正确;在Rt△BEA和Rt△BEC中∵BE平分∠ABC,∴∠ABE=∠CBE.又∵BE=BE,∠BEA=∠BEC=90°,∴Rt△BEA≌Rt△BEC.∴CE=12AC=12BF,故③正确;∵CE=12AC=12BF,BH=12BC,在△BCF中,∠CBE=12∠ABC=22.5°,∠DCB=∠ABC=45°,∴∠BFC=112.5°,∴BF<BC,∴CE<BH,故④错误;故选:C.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.在复杂的图形中有45°的角,有垂直,往往要用到等腰直角三角形,要注意掌握并应用此点.2、C【分析】设三角形第三边的长为x cm,再根据三角形的三边关系求出x的取值范围,找出符合条件的x的值即可.【详解】解:设三角形的第三边是xcm.则7-3<x<7+3.即4<x<10,四个选项中,只有选项C符合题意,故选:C .【点睛】本题主要考查了三角形三边关系的应用.此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.3、A【分析】先根据三角形内角和定理求出∠ACB =35°,再根据全等三角形性质即可求出∠CAD =35°.【详解】解:∵∠BAC =80°,∠ABC =65°,∴∠ACB =180°-∠BAC -∠ABC=35°,∵△ABC ≌△CDA ,∴∠CAD =∠ACB =35°.故选:A【点睛】本题考查了三角形的内角和定理,全等三角形的性质,熟知两个定理是解题关键.4、B【分析】过点C 作CD x ⊥轴于D ,由“AAS ”可证AOB BDC ∆≅∆,可得2AO BD ==,BO CD n a ===,即可求解.【详解】解:如图,过点C 作CD x ⊥轴于D ,点(0,2)A ,2AO ∴=,ABC ∆是等腰直角三角形,且AB BC =,90ABC AOB BDC ∴∠=︒=∠=∠,90ABO CBD ABO BAO ∴∠+∠=︒=∠+∠,BAO CBD ∴∠=∠,在AOB ∆和BDC ∆中,AOB BDC BAO CBD AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()AOB BDC AAS ∴∆≅∆,2AO BD ∴==,BO CD n a ===,01a ∴<<,2OD OB BD a m =+=+=,23m ∴<<,故选:B .【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,解题的关键是画图及添加恰当辅助线构造全等三角形.5、C【分析】分别根据等腰三角形的性质、三角形的内角和定理、等边三角形的判定,直角三角形的判定即可判断.【详解】A.等腰三角形中顶角角平分线、底边上的中线和底边上的高线互相重合,即三线合一,故此选项错误;B.三角形的内角和为180°,故此选项错误;C.有两个角是60°,则第三个角为180606060︒-︒-︒=︒,所以三角形是等边三角形,故此选项正确;D.设C x ∠=,则2A B x ∠=∠=,故22180x x x ++=︒,解得36x =︒,所以72A B ∠=∠=︒,36C ∠=︒,此三角形不是直角三角形,故此选项错误.故选:C .【点睛】本题考查等腰三角形的性质,直角三角形的定义以及三角形内角和,掌握相关概念是解题的关键.6、D【分析】根据等腰三角形的等边对等角的性质及三线合一的性质判断.【详解】解:∵AB =AC ,点D 是BC 边中点,∴∠B =∠C ,AD ⊥BC ,∠BAD =∠CAD ,故选:D .【点睛】此题考查了等腰三角形的性质:等边对等角,三线合一,熟记等腰三角形的性质是解题的关键.7、A【分析】根据旋转的性质求解80,BOD AOC 110,C A 再利用三角形的内角和定理求解1801104030,COD 再利用角的和差关系可得答案.【详解】 解: 将△OAB 绕点O 逆时针旋转80°得到△OCD ,80,BOD AOC∠A 的度数为110°,∠D 的度数为40°,110,1801104030,C A COD 803050,AOD 故选A【点睛】本题考查的是三角形的内角和定理的应用,旋转的性质,掌握“旋转前后的对应角相等”是解本题的关键.8、A【分析】根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠P 的度数.【详解】∵BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线,∴∠ABP =∠CBP =20°,∠ACP =∠MCP =50°,∵∠PCM 是△BCP 的外角,∴∠P =∠PCM −∠CBP =50°−20°=30°,【点睛】本题考查三角形外角性质以及角平分线的定义,解题时注意:一个三角形的外角等于与它不相邻的两个内角的和.9、B【分析】已知90C ∠=︒,得到2390∠+∠=︒,根据外角性质,得到1D α∠=∠+∠,4F β∠=∠+∠,再将两式相加,等量代换,即可得解;【详解】解:如图所示,∵90C ∠=︒,∴2390∠+∠=︒,∵1D α∠=∠+∠,4F β∠=∠+∠,∴14D F αβ∠+∠=∠+∠+∠+∠,∵12∠=∠,34∠=∠,∴1423D F D F ∠+∠+∠+∠=∠+∠+∠+∠,∵30D ∠=︒,90F ∠=︒,∴23233090210D F ∠+∠+∠+∠=∠+∠+︒+︒=︒;故选D .本题主要考查了三角形外角定理的应用,准确分析计算是解题的关键.10、B【分析】根据三角形存在的条件去判断.【详解】∵60A ∠=︒,45B ∠=︒,4AB =,满足ASA 的要求,∴可以画出唯一的三角形,A 不符合题意;∵30A ∠=︒,5AB =,3BC =,∠A 不是AB ,BC 的夹角,∴可以画出多个三角形,B 符合题意;∵60B ∠=︒,6AB =,10BC =,满足SAS 的要求,∴可以画出唯一的三角形,C 不符合题意;∵90C ∠=︒,5AB =,3BC =,AB 最大,∴可以画出唯一的三角形,D 不符合题意;故选B .【点睛】本题考查了三角形的存在性,熟练掌握三角形全等的判定方法是解题的关键.二、填空题1、角边角或【分析】根据全等三角形的判定定理得出即可.【详解】解答:解:两角和它们的夹边分别相等的两个三角形全等,简写成角边角或ASA,故答案为:角边角或ASA.【点睛】本题考查了全等三角形的判定定理,掌握全等三角形的判定定理是解题的关键.2、108°108度【分析】先设∠B=x,由AB=AC可知,∠C=x,由AD=DB可知∠B=∠DAB=x,由三角形外角的性质可知∠ADC=∠B+∠DAB=2x,根据DC=CA可知∠ADC=∠CAD=2x,再在△ABC中,由三角形内角和定理即可得出关于x的一元一次方程,求出x的值,从而求解.【详解】设∠B=x,∵AB=AC,∴∠C=∠B=x,∵AD=DB,∴∠B=∠DAB=x,∴∠ADC=∠B+∠DAB=2x,∵DC=CA,∴∠ADC=∠CAD=2x,在△ABC中,x+x+2x+x=180°,解得:x=36°.∴∠BAC=108°.故答案为:108°.【点睛】此题主要考查等腰三角形的判定和性质、三角形的内角和定理,解题的关键是熟练进行逻辑推理 3、15【分析】连接DF ,根据AE =ED ,BD =3DC ,可得12ABE BDE ABD SS S == ,AEF DEF S S =,3ABD ADC S S = ,3BDF CDF S S =,然后设△AEF 的面积为x ,△BDE 的面积为y ,则DEF S x =△,BDF S x y =+,ABE S y =,()13CDF S x y =+,再由△ABC 的面积等于35,即可求解. 【详解】解:如图,连接DF ,∵AE =ED ,∴12ABE BDE ABD S S S == ,AEF DEF S S =,∵BD =3DC ,∴3ABD ADC S S = ,3BDF CDF S S =设△AEF 的面积为x ,△BDE 的面积为y ,则DEF S x =△,BDF S x y =+,ABE S y =,()13CDF S x y =+, ∵△ABC 的面积等于35,∴()1353x x y y x y +++++= , 解得:15x y += .故答案为:15【点睛】 本题主要考查了与三角形中线有关的面积问题,根据题意得到12ABE BDE ABD SS S == ,AEF DEF S S =,3ABD ADC S S = ,3BDF CDF S S =是解题的关键.4、>【分析】找到点F ,连接,AF DF (见解析),根据等腰直角三角形的性质、网格特点即可得45B C A E A D F DA ∠∠>∠=︒=.【详解】解;如图,找到点F ,连接,AF DF ,则ADF 是等腰直角三角形,45DAF DAE ∴∠=︒>∠,又Rt ABC 是等腰直角三角形,45DAF D BAC AE ∠=︒=∴∠>∠, 故答案为:>.【点睛】本题考查了等腰直角三角形、角的大小比较,正确找出点F 是解题关键.5、17【分析】先根据非负数的性质列式求出a 、b 的值,再分情况讨论求解即可.【详解】解:∵2(3)|7|0a b -+-=,∴30a -=,70b -=,解得:3a =,7b =,①若3a =是腰长,则底边为7,三角形的三边分别为3、3、7,∵337+<,∴3、3、7不能组成三角形;②若7b =是腰长,则底边为3,三角形的三边分别为7、7、3,能组成三角形,周长为:77317++=,∴以a 、b 为边长的等腰三角形的周长为17,故答案为:17.【点睛】本题考查了等腰三角形的性质,绝对值和平方的非负性,以及三角形的三边关系,难点在于要分类讨论求解.三、解答题1、(1)见解析;(2)105︒【分析】(1)根据平行线的性质可得A D ∠=∠,根据线段的和差关系可得AC DB =,进而根据SAS 即证明AEC DFB ≅;(2)根据三角形内角和定理以及补角的意义求得∠E ,进而根据(1)的结论即可求得∠F .【详解】(1)证明:AE DF ∥∴A D ∠=∠, AB CD =∴AB BC BC CD +=+即AC BD = 又AE DF =,∴AEC DFB ≅(2)解:40A ∠=︒,145ECD ∠=︒,18035ECA ECD ∴∠=︒-∠=︒180105E A ECA ∴∠=︒-∠-∠=︒AEC DFB ≅F E ∴∠=∠105=︒【点睛】本题考查了平行线的性质,三角形内角和定理,三角形全等的性质与判定,掌握全等三角形的性质与判定是解题的关键.2、(1)∠E =35°;(2)AH ⊥BE .理由见解析.【分析】(1)根据等腰三角形两底角相等,已知顶角,可以求出底角,再根据角平分线的定义求出∠CBD 的度数,最后根据两直线平行,内错角相等求出;(2)由“SAS ”可证△ABD ≌△AEF ,可得AD =AF ,由等腰三角形的性质可求解.【详解】解:(1)∵AB =AC ,∴∠ABC =∠ACB ,∵∠BAC =40°,∴∠ABC =12(180°-∠BAC )=70°,∵BD 平分∠ABC ,∴∠CBD =12∠ABC =35°,∵AE ∥BC ,∴∠E =∠CBD =35°;(2)∵BD 平分∠ABC ,∠E =∠CBD ,∴∠CBD =∠ABD =∠E ,∴AB =AE ,在△ABD 和△AEF 中,AB AE E ABD BD EF =⎧⎪∠=∠⎨⎪=⎩, ∴△ABD ≌△AEF (SAS ),∴AD =AF ,∵点H 是DF 的中点,∴AH ⊥BE .【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,证明三角形全等是解题的关键.3、∠AFB =40°.【分析】由题意易得∠ADC =90°,∠ACB =80°,然后可得11,22MAE MAC ABF ABC ∠=∠∠=∠,进而根据三角形外角的性质可求解.【详解】解:∵AD ⊥BE ,∴∠ADC =90°,∵∠DAC =10°,∴∠ACB =90°﹣∠DAC =90°﹣10°=80°,∵AE 是∠MAC 的平分线,BF 平分∠ABC , ∴11,22MAE MAC ABF ABC ∠=∠∠=∠, 又∵∠MAE =∠ABF +∠AFB ,∠MAC =∠ABC +∠ACB ,∴∠AFB =∠MAE ﹣∠ABF =()11111804022222MAC ABC MAC ABC ACB ∠-∠=∠-∠=∠=⨯︒=︒. 【点睛】本题主要考查三角形外角的性质及角平分线的定义,熟练掌握三角形外角的性质及角平分线的定义是解题的关键.4、见解析【分析】由OA OC PC ==,得出,POC AOC 为等腰三角形,由外角的性质及等量代换得2CAO APB ∠=∠,再次利用外角的性质及等量代换得3AOB APB ∠=∠,即可证明.【详解】解:OA OC PC ==,,POC AOC ∴为等腰三角形,,APB COP ACO CAO ∴∠=∠∠=∠,由外角的性质得:2ACO APB COP APB ∠=∠+∠=∠,2CAO APB ∠=∠,再由外角的性质得:AOB APB CAO ∠=∠+∠,3AOB APB ∴∠=∠,13APB AOB ∴∠=∠. 【点睛】本题考查了等腰三角形、外角的性质、解题的关键是掌握外角的性质及等量代换的思想进行求解.5、(1)15,40;(2)y =12x ,见解析【分析】(1)设∠EDC =m ,则∠B =∠C =n ,根据∠ADE =∠AED =m +n ,∠ADC =∠B +∠BAD 即可列出方程,从而求解.(2)设∠BAD =x ,∠EDC =y ,根据等腰三角形的性质可得∠B =∠C ,∠ADE =∠AED =∠C +∠EDC =∠B +y ,由∠ADC =∠B +∠BAD =∠ADE +∠EDC 即可得∠B +x =∠B +y +y ,从而求解.【详解】解:(1)设∠EDC =m ,∠B =∠C =n ,∵∠AED =∠EDC +∠C =m +n ,又∵AD =AE ,∴∠ADE =∠AED =m +n ,则∠ADC =∠ADE +∠EDC =2m +n ,又∵∠ADC =∠B +∠BAD ,∴∠BAD =2m ,∴2m +n =n +30,解得m =15°,∴∠EDC的度数是15°;若∠EDC=20°,则∠BAD=2m=2×20°=40°.故答案是:15;40;x,(2)y与x之间的关系式为y=12证明:设∠BAD=x,∠EDC=y,∵AB=AC,AD=AE,∴∠B=∠C,∠ADE=∠AED,∵∠AED=∠C+∠EDC=∠B+y,∴∠ADC=∠B+∠BAD=∠ADE+∠EDC,∴∠B+x=∠B+y+y,∴2y=x,x.∴y=12【点睛】本题主要考查了等腰三角形的性质、三角形外角的性质以及一元一次方程的应用,灵活运用等腰三角形的性质成为解答本题的关键.6、(1)证明见解析;△是等边三角形,证明见解析.(2)①补全图形见解析;②CMN【分析】=.结合题意易得出(1)由等边三角形的性质可知60=,CB CEACF BCE∠=∠=︒,AC FC≅,即得出AE BF∠=∠.即可利用“SAS”证明ACE FCBACE FCB=;(2)①根据题意补全图形即可;②由全等三角形的性质可知CAM CFN ∠=∠,AE BF =.再由题意点M ,N 分别是AE ,BF 的中点,即得出AM FN =.即可利用“SAS ”证明ACM FCN ≅,得出结论CM CN =,ACM FCN ∠=∠.最后根据ACM FCM FCN FCM ∠-∠=∠-∠,即得出60ACF MCN ∠=∠=︒,即可判定CMN △是等边三角形.(1)∵ACF 与BCE 都是等边三角形,∴60ACF BCE ∠=∠=︒,AC FC =,CB CE =,∴ACF ECF BCE ECF ∠+∠=∠+∠,即ACE FCB ∠=∠,在ACE 和FCB 中,∴AC FC ACE FCB CE CB =⎧⎪∠=∠⎨⎪=⎩, ∴()ACE FCB SAS ≅,∴AE BF =.(2)①画图如下:②CMN △是等边三角形.理由如下:∵ACE FCB ≅,∴CAM CFN ∠=∠,AE BF =.∵点M ,N 分别是AE ,BF 的中点,∴AM FN =,在ACM △和FCN △中,∵AC FC CAM CFN AM FN =⎧⎪∠=∠⎨⎪=⎩, ∴()ACM FCN SAS ≅,∴CM CN =,ACM FCN ∠=∠,∴ACM FCM FCN FCM ∠-∠=∠-∠,即60ACF MCN ∠=∠=︒,∴CMN △是等边三角形.【点睛】本题考查等边三角形的判定和性质,全等三角形的判定和性质,线段的中点.利用数形结合的思想是解答本题的关键.7、见解析.【分析】先根据角平分线的定义得到∠BAD =12∠BAC ,再根据等腰三角形的性质和三角形外角定理得到∠E =12∠BAC ,从而得到∠BAD =∠E ,即可证明AD ∥CE .【详解】解:∵AD 平分∠BAC ,∴∠BAD =12∠BAC ,∵AE =AC ,∴∠E =∠ACE ,∵∠E +∠ACE =∠BAC ,∴∠E =12∠BAC ,∴∠BAD =∠E ,∴AD ∥CE .【点睛】本题考查了角平分线的定义,等腰三角形的性质,平行线的判定,三角形外角定理,熟知相关定理并灵活应用是解题关键.8、(1)见解析(2)5BE =【分析】(1)利用CEA ∠是ABE △的外角,以及CEA B F ∠=∠+∠证明即可.(2)证明ABE △≌FCE △,可知BE CE =,从而得出答案.(1)证明:∵CEA ∠是ABE △的外角,∴CEA B EAB ∠=∠+∠.又∵CEA B F ∠=∠+∠,∴EAB F ∠=∠. (2)解:在ABE △和FCE △中,AB FC EAB F AEB FEC =⎧⎪∠=∠⎨⎪∠=∠⎩,△.∴ABE△≌FCE=.∴BE CEBC=,∵10BE=.∴5【点睛】本题考查了三角形的外角以及三角形全等的性质和判定,掌握三角形全等的性质和判定是解题的关键.9、证明见解析.【分析】过D作DG∥AC交AB于G,由等边三角形的性质和平行线的性质得到∠BDG=∠BGD=60°,于是得到△BDG是等边三角形,再证明△AGD≌△DCE即可得到结论.【详解】证明:过D作DG∥AC交AB于G,∵△ABC是等边三角形,∴AB=AC,∠B=∠ACB=∠BAC=60°,又∵DG∥AC,∴∠BDG=∠BGD=60°,∴△BDG是等边三角形,∠AGD=180°−∠BGD=120°,∴DG=BD,∵点D 为BC 的中点,∴BD =CD ,∴DG =CD ,∵EC 是△ABC 外角的平分线,∴∠ACE =12(180°−∠ACB )=60°,∴∠BCE =∠ACB +∠ACE =120°=∠AGD ,∵AB =AC ,点D 为BC 的中点,∴∠ADB =∠ADC =90°,又∵∠BDG =60°,∠ADE =60°,∴∠ADG =∠EDC =30°,在△AGD 和△ECD 中,AGD ECD GD CDADG EDC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AGD ≌△ECD (ASA ).∴AD =DE .【点睛】本题是三角形综合题,主要考查了平行线的性质,全等三角形的性质与判定,等边三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.10、证明见解析.【分析】先根据角的和差可得ACD BCE ∠=∠,再根据三角形全等的判定定理证出ACD BCE ≅△△,然后根据全等三角形的性质即可得证.【详解】证明:90ACB ∠=︒,90ACD BCD ∴∠+∠=︒,CE CD ⊥,90BCE BCD ∠∴∠+=︒,ACD BCE ∠∠∴=,在ACD △和BCE 中,CA CB ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩, ()ACD BCE SAS ∴≅,AD BE ∴=.【点睛】本题考查了三角形全等的判定定理与性质等知识点,熟练掌握三角形全等的判定方法是解题关键.。

2021-2022学年沪教版七年级数学第二学期第十四章三角形同步测试试卷(含答案详解)

2021-2022学年沪教版七年级数学第二学期第十四章三角形同步测试试卷(含答案详解)

沪教版七年级数学第二学期第十四章三角形同步测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列四个命题是真命题的有( )①同位角相等;②相等的角是对顶角;③直角三角形两个锐角互余;④三个内角相等的三角形是等边三角形.A .1个B .2个C .3个D .4个2、如图点,,A B C 在同一条直线上,,CBE ADC 都是等边三角形,,AE BD 相交于点O ,且分别与,CD CE 交于点,M N ,连接,M N ,有如下结论:①DCB ACE ≅;②AM DN =;③CMN △为等边三角形;④60EOB ∠=︒.其中正确的结论个数是( )A .1个B .2个C .3个D .4个3、一副三角板如图放置,点A 在DF 的延长线上,∠D =∠BAC =90°,∠E =30°,∠C =45°,若BC //DA ,则∠ABF 的度数为( )A .15°B .20°C .25°D .30°4、如图,AD 是ABC 的角平分线,CE AD ⊥,垂足为F .若40CAB ∠=︒,50B ∠=︒,则BDE ∠的度数为( )A .35°B .40°C .45°D .50°5、在△ABC 中,∠A =∠B =14∠C ,则∠C =( ) A .70° B .80° C .100° D .120°6、三个等边三角形的摆放位置如图所示,若12100∠+∠=°,则3∠的度数为( )A .80︒B .70︒C .45︒D .307、如图,ABC 和DEF 全等,且A D ∠=∠,AC 对应DE .若6AC =,5BC =,4AB =,则DF 的长为( )A .4B .5C .6D .无法确定8、如图,等腰△ABC 中,AB =AC ,点D 是BC 边中点,则下列结论不正确...的是( )A .∠B =∠C B .AD ⊥BC C .∠BAD =∠CAD D .AB =2BC9、如图,在Rt△ABC 中,∠ACB =90°,∠BAC =40°,直线a ∥b ,若BC 在直线b 上,则∠1的度数为( )A .40°B .45°C .50°D .60°10、如图,E为线段BC上一点,∠ABE=∠AED=∠ECD=90°,AE=ED,BC=20,AB=8,则BE的长度为()A.12 B.10 C.8 D.6第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、小华的作业中有一道数学题:“如图,AC,BD在AB的同侧,BD=4,AB=4,AC=1,∠CED=120°,点E是AB的中点,求CD的最大值.”哥哥看见了,提示他将△ACE和△BDE分别沿CE,连接A′B′.最后小华求解正确,得到CD的最大值是 _____.2、一个等腰三角形的一边长为2,另一边长为9,则它的周长是________________.3、在等腰△ABC中,∠A=40°,则∠B=_____°.4、已知:如图,AB = DB.只需添加一个条件即可证明ABC DBC△△.这个条件可以是≌______.(写出一个即可).5、ABC 中,A ∠比B 大10°,50C ∠=︒,则A ∠=______.三、解答题(10小题,每小题5分,共计50分)1、一个零件形状如图所示,按规定A ∠应等于75°,B 和C ∠应分别是18°和22°,某质检员测得114BDC ∠=︒,就断定这个零件不合格,请你运用三角形的有关知识说明零件不合格的理由.2、如图,点B ,F ,C ,E 在一条直线上,AB =DE ,∠B =∠E ,BF =CE .求证:AC =DF .3、已知:如图,点D 为BC 的中点,BAD CAD ∠=∠,求证:ABC 是等腰三角形.4、已知,如图,AB =AD ,∠B =∠D ,∠1=∠2=60°.(1)求证:△ADE ≌△ABC ;(2)求证:AE =CE .5、如图,在ABC 中,AD 平分BAC ∠,CE AD ⊥于点E .求证:ACE B ECD ∠=∠+∠.6、如图,Rt△ACB 中,∠ACB =90°,AC =BC ,E 点为射线CB 上一动点,连结AE ,作AF ⊥AE 且AF =AE .(1)如图1,过F 点作FD ⊥AC 交AC 于D 点,求证:FD =BC ;(2)如图2,连结BF 交AC 于G 点,若AG =3,CG =1,求证:E 点为BC 中点.(3)当E 点在射线CB 上,连结BF 与直线AC 交子G 点,若BC =4,BE =3,则AG CG= .(直接写出结果)7、如图,灯塔B在灯塔A的正东方向,且75kmAB=.灯塔C在灯塔A的北偏东20°方向,灯塔C 在灯塔B的北偏西50°方向.(1)求ACB∠的度数;(2)一轮船从B地出发向北偏西50°方向匀速行驶,5h后到达C地,求轮船的速度.8、已知,∠A=∠D,BC平分∠ABD,求证:AC=DC.9、如图,CE⊥AB于点E,BF⊥AC于点F,BD=CD.(1)求证:△BDE≌△CDF;(2)求证:AE=AF.10、如图,AD为△ABC的角平分线.(1)如图1,若BE⊥AD于点E,交AC于点F,AB=4,AC=7.则CF=;(2)如图2,CG⊥AD于点G,连接BG,若△ABG的面积是6,求△ABC的面积;(3)如图3,若∠B=2∠C,AB=m,AC=n,则CD的长为.(用含m,n的式子表示)-参考答案-一、单选题1、B【分析】利用平行线的性质、对顶角的定义、直角三角形的性质及等边三角形的性质分别判断后即可确定正确的选项.【详解】①两直线平行,同位角相等,故错误,是假命题;②相等的角是对顶角,错误,是假命题;③直角三角形两个锐角互余,正确,是真命题;④三个内角相等的三角形是等边三角形,正确,是真命题,综上所述真命题有2个,故选:B .【点睛】本题考查了命题真假的判断,要说明一个命题是正确的,需要根据命题的题设和已学的有关公理、定理进行说明、推理、证明,正确的命题叫做真命题,错误的命题叫做假命题.2、D【分析】由SAS 即可证明DCB ACE ∆≅∆,则①正确;有∠CAE =∠CDB ,然后证明△ACM ≌△DCN ,则②正确;由CM =CN ,∠MCN =60°,即可得到∆CMN 为等边三角形,则③正确;由AD∥CE ,则∠DAO =∠NEO =∠CBN ,由外角的性质60EOB OAC CBN ∠=∠+∠=︒,即可得到答案.【详解】解:∵△DAC 和△EBC 均是等边三角形,∴AC =CD ,BC =CE ,∠ACD =∠BCE =60°,∴∠ACD +∠DCE =∠BCE +∠DCE ,即∠ACE =∠BCD ,∠MCN =180°-∠ACD -∠BCE =60°,在△ACE 和△DCB 中,AC CD ACE BCD BC CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△DCB (SAS ),则①正确;∴AE =BD ,∠CAE =∠CDB ,在ACM 和△DCN 中,ACM DCN AC CD CAM CDN ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ACM ≌△DCN (ASA ),∴CM =CN ,AM DN =;则②正确;∵∠MCN =60°,∴∆CMN 为等边三角形;则③正确;∵∠DAC =∠ECB =60°,∴AD∥CE ,∴∠DAO =∠NEO =∠CBN ,∴60EOB OAC CBN OAC DAO ∠=∠+∠=∠+∠=︒;则④正确;∴正确的结论由4个;故选D .【点睛】本题考查了等边三角形的性质与判定,全等三角形的判定与性质,平行线的性质与判定,综合性较强,但难度不是很大,准确识图找出全等三角形是解题的关键.3、A【分析】先求出∠EFD=60°,∠ABC=45°,由BC∥AD,得到∠EFD=∠FBC=60°,则∠ABF=∠FBC-∠ABC=15°.【详解】解:∵∠D=∠BAC=90°,∠E=30°,∠C=45°,∴∠EFD=60°,∠ABC=45°,∵BC∥AD,∴∠EFD=∠FBC=60°,∴∠ABF=∠FBC-∠ABC=15°,故选A.【点睛】本题主要考查了直角三角形两锐角互余,平行线的性质,熟知直角三角形两锐角互余是解题的关键.4、B【分析】根据三角形的内角和求出∠ACB=90°,利用三角形全等,求出DC=DE,再利用外角求出答案.【详解】解:∵∠CAB=40°,∠B=50°,∴∠ACB =180°−40°−50°=90°,∵CE ⊥AD ,∴∠AFC =∠AFE =90°,∵AD 是△ABC 的角平分线,∴∠CAD =∠EAD =12×40°=20°,又∵AF =AF ,∴△ACF ≌△AEF (ASA )∴AC =AE ,∵AD =AD ,∠CAD =∠EAD ,∴△ACD ≌△AED (SAS ),∴DC =DE ,∴∠DCE =∠DEC ,∵∠ACE =90°−20°=70°,∴∠DCE =∠DEC =∠ACB −∠ACE =90°−70°=20°,∴∠BDE =∠DCE +∠DEC =20°+20°=40°,故选:B .【点睛】考查角平分线、全等三角形的判定和性质、三角形的内角和等知识,根据三角形的内角和求出相应各个角的度数是解决问题的关键.5、D【分析】根据三角形的内角和,180A B C ∠+∠+∠=︒①,进而根据已知条件,将,A B ∠∠代入①即可求得C ∠【详解】解:∵在△ABC 中,180A B C ∠+∠+∠=︒,∠A =∠B =14∠C , ∴1118044C C C ∠+∠+∠=︒解得120C ∠=︒故选D【点睛】本题考查了三角形内角和定理,掌握三角形内角和定理是解题的关键.6、A【分析】利用三个平角的和减去中间三角形的内角和,再减去三个60︒的角即可.【详解】解:3180540⨯︒=︒,360180⨯︒=︒,540180180180∴︒-︒-︒=︒, 123180∴∠+∠+∠=︒,12100∠+∠=︒,380∴∠=︒,故选:A .【点睛】本题主要考查了三角形的内角和定理,灵活运用三角形内角和定理成为解答本题的关键.7、A【分析】全等三角形对应边相等,对应角相等,根据题中信息得出对应关系即可.【详解】∵ABC 和DEF 全等,A D ∠=∠,AC 对应DE∴ABC DFE ≅∴AB =DF =4故选:A .【点睛】本题考查了全等三角形的概念及性质,应注意①对应边、对应角是对两个三角形而言的,指两条边、两个角的关系,而对边、对角是指同一个三角形的边和角的位置关系②可以进一步推广到全等三角形对应边上的高相等,对应角的平分线相等,对应边上的中线相等,周长及面积相等③全等三角形有传递性.8、D【分析】根据等腰三角形的等边对等角的性质及三线合一的性质判断.【详解】解:∵AB =AC ,点D 是BC 边中点,∴∠B =∠C ,AD ⊥BC ,∠BAD =∠CAD ,故选:D .【点睛】此题考查了等腰三角形的性质:等边对等角,三线合一,熟记等腰三角形的性质是解题的关键.9、C【分析】根据三角形内角和定理确定50ABC ∠=︒,然后利用平行线的性质求解即可.解:∵40BAC ∠=︒,90ACB ∠=︒,∴50ABC ∠=︒,∵a b ∥,∴150ABC ∠=∠=︒,故选:C .【点睛】题目主要考查平行线的性质,三角形内角和定理等,熟练掌握运用平行线的性质是解题关键.10、A【分析】利用角相等和边相等证明ABE ECD ∆∆≌,利用全等三角形的性质以及边的关系,即可求出BE 的长度.【详解】解:由题意可知:∠ABE =∠AED =∠ECD =90°,1809090AEB DEC ∴∠+∠=︒-︒=︒,90A AEB ∠+∠=︒,A DEC ∴∠=∠,在ABE ∆和ECD ∆中,ABE ECD A DEC AE ED ∠=∠⎧⎪∠=∠⎨⎪=⎩()ABE ECD AAS ∴∆∆≌,8CE AB ∴==,12BE BC CE ∴=-=,【点睛】本题主要是考查了全等三角形的判定和性质,熟练通过已知条件证明三角形全等,利用全等性质及边的关系,来求解未知边的长度,这是解决本题的主要思路.二、填空题1、7【分析】由翻折的性质可证△EB'A'是等边三角形,则A'B'=A'E=2,再根据CD≤A'C+A'B'+B'D,即可求出CD的最大值.【详解】解:∵AB=4,点E为AB的中点,∴AE=BE=2,∵∠CED=120°,∴∠AEC+∠DEB=60°,∵将△ACE和△BDE分别沿CE,DE翻折得到△A′CE和△B′DE,∴A'C=AC=1,AE=A'E=2,∠AEC=∠CEA',DB=DB'=4,BE=B'E=2,∠DEB=∠DEB',∴∠A'EB'=60°,A'E=B'E=2,∴△EB'A'是等边三角形,∴A'B'=A'E=2,∴当点C,点A',点B',点D四点共线时,CD有最大值=A'C+A'B'+B'D=7,故答案为:7.【点睛】本题主要考查了翻折的性质,等边三角形的判定与性质,两点之间,线段最短等性质,证明△EB'A'是等边三角形是解题的关键.2、20【分析】题目给出等腰三角形有两条边长为2和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:分两种情况:当腰为2时,2+2<9,所以不能构成三角形;当腰为9时,2+9>9,所以能构成三角形,周长是:2+9+9=20.故答案为:20.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.3、40°或70°或100°【分析】本题要分两种情况讨论:当∠A=40°为顶角;当∠A=40°为底角时,则∠B为底角时或顶角.然后求出∠B.【详解】分两种情况讨论:当∠A=40°为顶角时,18040702B︒-︒∠==︒;当∠A=40°为底角时,∠B为底角时∠B=∠A=40°;∠B为顶角时∠B=180°−∠A−∠C=180°−40°−40°=100°.故答案为:40°或70°或100°.【点睛】本题考查等腰三角形的性质,解题的关键是掌握等腰三角形的性质,分情况讨论问题.4、AC =DC【分析】由题意可得,BC 为公共边,AB =DB ,即添加一组边对应相等,可证△ABC 与△DBC 全等.【详解】解:∵AB =DB ,BC =BC ,添加AC =DC ,∴在△ABC 与△DBC 中,AB DB BC BC AC DC =⎧⎪=⎨⎪=⎩, ∴△ABC ≌△DBC (SSS ),故答案为:AC =DC .【点睛】本题考查了全等三角形的判定,灵活运用全等三角形的判定是本题的关键.5、70°【分析】根据三角形内角和定理可得130A B ∠+∠=︒,由题意A ∠比B ∠大10︒,可得10A B ∠-∠=︒,组成方程组求解即可.【详解】解:∵50C ∠=︒,∴130A B ∠+∠=︒,∵A ∠比B ∠大10︒,∴10A B ∠-∠=︒,∴13010A B A B ∠+∠=︒⎧⎨∠-∠=︒⎩, 解得:7060A B ∠=︒⎧⎨∠=︒⎩, 故答案为:70︒.【点睛】题目主要考查三角形内角和定理及二元一次方程组的应用,理解题意,列出代数式组成方程组是解题关键.三、解答题1、不合格,理由见解析【分析】延长BD 与AC 相交于点E .利用三角形的外角性质,可得1A B ∠=∠+∠,BDC BEC C ∠=∠+∠,即可求解.【详解】解:如图,延长BD 与AC 相交于点E .∵1∠是ABE △的一个外角,75A ∠=︒,18B ∠=︒,∴1751893A B ∠=∠+∠=︒+︒=︒,同理可得9322115BDC BEC C ∠=∠+∠=︒+︒=︒∵李师傅量得114BDC ∠=︒,不是115°,∴这个零件不合格.【点睛】本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.2、见解析【分析】先由BF =CE 说明BC= EF .然后运用SAS 证明△ABC ≌△DEF ,最后运用全等三角形的性质即可证明.【详解】证明:∵BF= CE ,∴BC= EF .在△ABC 和△DEF 中,,,,AB DE B E BC EF =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DEF (SAS ).∴AC =DF .【点睛】本题主要考查了全等三角形的判定与性质,正确证明△ABC ≌△DEF 是解答本题的关键.3、证明见解析【分析】过点D 作DM AB ⊥,交AB 于点M ,过点D 做DN AC ⊥,交AC 于点N ,根据角平分线性质,得DM DN =;根据全等三角形的性质,通过证明ADM ADN △≌△,通过证明ADM ADN △≌△,得BM CN =,结合等腰三角形的性质,即可完成证明.【详解】如下图,过点D 作DM AB ⊥,交AB 于点M ,过点D 做DN AC ⊥,交AC 于点N∵BAD CAD ∠=∠∴DM DN =直角ADM △和直角ADN △中DM DN AD AD=⎧⎨=⎩ ∴ADM ADN △≌△∴AM AN =∵点D 为BC 的中点,∴BD CD =直角BDM 和直角CDN △中DM DN BD CD =⎧⎨=⎩∴BDM CDN ≌∴BM CN =∵AB AM BM =+,AC AN CN =+∴AB AC =,即ABC 是等腰三角形.【点睛】本题考查了角平分线、三角形中线、全等三角形、等腰三角形的知识;解题的关键是熟练掌握角平分线、三角形中线,全等三角形的性质,从而完成求解.4、(1)见解析;(2)见解析【分析】(1)根据∠1=∠2可推出∠DAE =∠BAC ,然后结合全等三角形的判定定理进行证明;(2)由全等三角形的性质可得AE =AC ,结合∠2=60°可推出△AEC 为等边三角形,据此证明.【详解】(1)证明:∵∠1=∠2∴∠1+BAE ∠=∠2+BAE ∠即∠DAE =∠BAC在△ADE 和△ABC 中DAE BAC AD ABD B ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADE ≌△ABC (ASA )(2)证明:∵△ADE ≌△ABC∴AE =AC又∵∠2=60°∴△AEC 为等边三角形∴AE =CE【点睛】此题考查了全等三角形的性质和判定,等边三角形的性质和判定,解题的关键是熟练掌握全等三角形的性质和判定方法,等边三角形的性质和判定方法.5、证明见解析.【分析】延长CE交AB于F,求出∠AEC=∠AEF,∠FAE=∠CAE,根据ASA证△FAE≌△CAE,推出∠ACE=∠AFC,根据三角形外角性质得出∠AFC=∠B+∠ECD,代入即可.【详解】证明:延长CE交AB于F,∵CE⊥AD,∴∠AEC=∠AEF,∵AD平分∠BAC,∴∠FAE=∠CAE,在△FAE和△CAE中,∵FAE CAEAE AEAEF AEC∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△FAE≌△CAE(ASA),∴∠ACE=∠AFC,∵∠AFC=∠B+∠ECD,∴∠ACE =∠B +∠ECD .【点睛】本题考查了全等三角形的性质和判定,三角形的外角性质等知识点,关键是作辅助线后求出∠AFC =∠ACE .6、(1)证明见解析;(2)证明见解析;(3)113或53 【分析】(1)证明△AFD ≌△EAC ,根据全等三角形的性质得到DF =AC ,等量代换证明结论;(2)作FD ⊥AC 于D ,证明△FDG ≌△BCG ,得到DG =CG ,求出CE ,CB 的长,得到答案;(3)过F 作FD ⊥AG 的延长线交于点D ,根据全等三角形的性质得到CG =GD ,AD =CE =7,代入计算即可.【详解】(1)证明:∵FD ⊥AC ,∴∠FDA =90°,∴∠DFA +∠DAF =90°,同理,∠CAE +∠DAF =90°,∴∠DFA =∠CAE ,在△AFD 和△EAC 中,AFD EAC ADF ECA AF AE ∠∠⎧⎪∠∠⎨⎪⎩===, ∴△AFD ≌△EAC (AAS ),∴DF =AC ,∵AC =BC ,∴FD =BC ;(2)作FD ⊥AC 于D ,由(1)得,FD =AC =BC ,AD =CE ,在△FDG 和△BCG 中,90FDG BCG FGD BGCFD BC ∠∠︒⎧⎪∠∠⎨⎪⎩====, ∴△FDG ≌△BCG (AAS ),∴DG =CG =1,∴AD =2,∴CE =2,∵BC =AC =AG +CG =4,∴E 点为BC 中点;(3)当点E 在CB 的延长线上时,过F 作FD ⊥AG 的延长线交于点D ,BC =AC =4,CE =CB +BE =7,由(1)(2)知:△ADF≌△ECA,△GDF≌△GCB,∴CG=GD,AD=CE=7,∴CG=DG=1.5,∴AG=CG+AC=5.5,∴5.5111.53 AGCG==,同理,当点E在线段BC上时,AG= AC -CG+=2.5,∴2.551.53 AGCG==,故答案为:113或53.【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.7、(1)70°;(2)15km/h【分析】(1)根据题意得∠BAC=70°,∠ABC=40°,根据三角形的内角和定理即可求得∠ACB;(2)根据等腰三角形的判定可得BC=AB=75km,进而由速度=路程÷时间求解即可.【详解】解:(1)根据题意得∠BAC=70°,∠ABC=40°,∴∠ACB=180°-∠BAC-∠ABC=180°-70°-40°=70°;(2)∵∠BAC=∠ACB=70°,∴BC=AB=75km,∴轮船的速度为75÷5=15(km/h).【点睛】本题考查方位角、等腰三角形的判定、三角形的内角和定理,理解方位角,熟练掌握等腰三角形的等角对等边是解答的关键.8、见解析【分析】证明△BAC≌△BDC即可得出结论.【详解】解:∵BC平分∠ABD,∴∠ABC=∠DBC,在△BAC和△BDC中A DABC DBCBC BC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BAC≌△BDC,∴AC=DC.【点睛】本题考查角平分线的意义及全等三角形的判定与性质,解题关键是掌握角平分线的性质及全等三角形的判定与性质.9、(1)见解析;(2)见解析【分析】(1)根据CE⊥AB,BF⊥AC就可以得出∠BED=∠CFD=90°,就可以由AAS得出结论;(2)由(1)得DE=DF,就可以得出BF=CE,由AAS就可以得出△AFB≌△AEC就可以得出结论.【详解】证明:(1)∵CE⊥AB,BF⊥AC,∴∠BED=∠CFD=90°,在△BED和△CFD中,BED CFD BDE CDF BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△BED ≌△CFD (AAS );(2)∵△BED ≌△CFD ,∴DE =DF ,∴BD +DF =CD +DE ,∴BF =CE ,在△ABF 和△ACE 中,B C A A BF CE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABF ≌△ACE (AAS ),∴AE =AF .【点睛】本题考查了垂直的性质的运用,全等三角形的判定与性质的运用,等式的性质的运用,解答时证明三角形全等是关键.10、(1)3(2)12(3)2n n m- 【分析】(1)利用ASA 证明△AEF ≌△ABE ,得AE =AB =4,得出答案;(2)延长CG 、AB 交于点H ,设S △BGC =S △HGB =a ,用两种方法表示△ACH 的面积即可;(3)在AC 上取AN =AB ,可得CD =DN =n -m ,根据△ABD 和△ACD 的高相等,面积比等于底之比可求出CD 的长.(1)∵AD 是△ABC 的平分线,∴∠BAD =∠CAD ,∵BE ⊥AD ,∴∠BEA =∠FEA ,在△AEF 和△AEB 中,BAE FAE AE AEAEB AEF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AEF ≌△AEB (ASA ),∴AF =AB =4,∵AC =7∴CF =AC -AF =7-4=3,故答案为:3;(2)延长CG 、AB 交于点H ,如图,由(1)知AC =AH ,点G 为CH 的中点, 设S △BGC =S △HGB =a ,根据△ACH 的面积可得:S △ABC +2a =2(6+a ),∴S △ABC =12;(3)在AC 上取AN =AB ,如图,∵AD 是△ABC 的平分线,∴∠NAD =∠BAD ,在△ADN 与△ADB 中,AN AB NAD BAD AD AD ⎧⎪∠∠⎨⎪⎩===, ∴△ADN ≌△ADB (SAS ),∴∠AND=∠B,DN=BD,∵∠B=2∠C,∴∠AND=2∠C,∴∠C=∠CDN,∴CN=DN=AC-AB=n-m,∴BD=DN=n-m,根据△ABD和△ACD的高相等,面积比等于底之比可得:CD ACBD AB=,∴CD nn m m=-,∴2()n n m nCD nm m-==-,故答案为:2nnm-.【点睛】本题主要考查了全等三角形的判定与性质,角平分线的定义,三角形的面积等知识,利用角的轴对称性构造全等三角形是解题的关键.。

沪教新版(上海)七年级数学第二学期 第14章 三角形 单元测试卷 (解析版)

沪教新版(上海)七年级数学第二学期 第14章 三角形 单元测试卷 (解析版)

七年级第二学期数学第14章三角形单元测试卷一.选择题(共6小题)1.若长度分别为a,3,5的三条线段能组成一个三角形,则a的值可以是()A.1B.2C.3D.82.等腰三角形的一个内角是50°,则另外两个角的度数分别是()A.65°65°B.50°80°C.65°65°或50°80°D.50°50°3.下列四组三角形中,一定是全等三角形的是()A.周长相等的两个等边三角形B.三个内角分别相等的两个三角形C.两条边和其中一个角相等的两个三角形D.面积相等的两个等腰三角形4.已知△ABC中,∠A=70°,∠B=60°,则∠C=()A.50°B.60°C.70°D.80°5.如图,已知MB=ND,∠MBA=∠NDC,下列哪个条件不能判定△ABM≌△CDN()A.∠M=∠N B.AB=CD C.AM∥CN D.AM=CN6.不能使△ABC≌△DEF必定成立是()A.AB=DE,∠A=∠D,∠C=∠F B.AB=DE,BC=EF,∠B=∠E C.AC=DF,BC=EF,∠A=∠D D.AB=DE,BC=EF,CA=FD二.填空题(共12小题)7.在△ABC中,∠A=∠B=∠C,则∠A=.8.我们用如图的方法(斜钉上一块木条)来修理一条摇晃的凳子的数学原理是利用三角形的.9.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=.10.在△ABC中,如果∠A:∠B:∠C=4:5:9,那么△ABC按角分类是三角形.11.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带第块.12.若等腰三角形一腰上的高与另一腰的夹角等于30°,则此三角形的顶角为度.13.如图,在△ABC中,已知点D、E、F分别为BC、AD、CE的中点,且S△ABC=,则阴影部分的面积是.14.已知任意一个三角形三个内角的和为180°,如果有一个三角形三个内角的度数比是1:3:5,这个三角形中最大的内角是度.15.如图,在△ABC中,AB=AC,∠A=30°,直线a∥b,点C在直线b上,直线a交AB 于点D,交AC于点E,如果∠1=145°,那么∠2的度数是.16.如果一个三角形中有一个内角的度数是另外两个内角度数差的2倍,我们就称这个三角形为“奇巧三角形”.已知一个直角三角形是“奇巧三角形”,那么该三角形的最小内角等于度.17.如图,将三角形ABC沿射线AC向右平移后得到三角形CDE,如果∠BAC=36°,∠BCA=72°,那么∠BCD的度数是.18.如图,对面积为1的△ABC逐次进行以下操作:第一次操作,分别延长AB、BC、CA 至点A1、B1、C1,使得A1B=2AB、B1C=2BC、C1A=2CA,顺次连接A1、B1、C1,得到△A1B1C1,记其面积为S1;第二次操作,分别延长A1B1、B1C1、C1A1至点A2、B2、C2,使得A2B1=2A1B1、B2C1=2B1C1、C2A1=2C1A1,顺次连接A2、B2、C2,得到△A2B2C2,记其面积为S2;…;按此规律继续下去,可得到△A6B6C6,则其面积S2=.三.解答题(共7小题)19.已知一个等腰三角形两内角的度数之比为1:4,求这个等腰三角形顶角的度数.20.如图,点A、E、F、C在一直线上,DE∥BF,DE=BF,AE=CF.求证:AB∥CD.21.已知:如图所示,AB=BC,AD为△ABC中BC边的中线,延长BC至E点,使CE=BC,连接AE.求证:∠DAC=∠CAE.22.如图,已知△ABC,分别以AB、AC为边在△ABC的外部作等边三角形ABD和等边三角形ACE,联结DC、BE.试说明BE=DC的理由.23.如图,在△ABC中点D在BC边上,∠C=∠3,∠1=2∠3.说明△ABD是等腰三角形的理由.下面七个语句是说明△ABD是等腰三角形的表述,但是次序乱了请将这七个语句重新整理,说明△ABD是等腰三角形,并说出依据.①△ABD是等腰三角形;②∠2=∠3+∠C;③∠3=∠C;④AB=BD.⑤∠1=2∠3;⑥∠2=2∠3;⑦∠1=∠2.整理如下:24.如图,△ACB、△ECD是等边三角形,且点E在BC上,AE的延长线交DB于点F,(1)试说明△ACE≌△BCD;(2)求∠EFB的度数25.如图,在△ABC中,如果BD,CE分别是∠ABC,∠ACB的平分线且他们相交于点P,设∠A=n°.(1)求∠BPC的度数(用含n的代数式表示),写出推理过程.(2)当∠BPC=125°时,∠A=.(3)当n=60°时,EB=7,BC=12,DC的长为.参考答案一.选择题(共6小题)1.若长度分别为a,3,5的三条线段能组成一个三角形,则a的值可以是()A.1B.2C.3D.8【解答】解:由三角形三边关系定理得:5﹣3<a<5+3,即2<a<8,即符合的只有3,故选:C.2.等腰三角形的一个内角是50°,则另外两个角的度数分别是()A.65°65°B.50°80°C.65°65°或50°80°D.50°50°【解答】解:∵AB=AC,∴∠B=∠C,①当底角∠B=50°时,则∠C=50°,∠A=180°﹣∠B﹣∠C=80°;②当顶角∠A=50°时,∵∠B+∠C+∠A=180°,∠B=∠C,∴∠B=∠C=×(180°﹣∠A)=65°;即其余两角的度数是50°,80°或65°,65°,故选:C.3.下列四组三角形中,一定是全等三角形的是()A.周长相等的两个等边三角形B.三个内角分别相等的两个三角形C.两条边和其中一个角相等的两个三角形D.面积相等的两个等腰三角形【解答】A、正确,等边三角形的三边一定相等,又周长相等,故两个三角形的边长分别对应相等;B、错误,三个内角分别相等的两个三角形不一定全等,可能相似;C、错误,两条边和其夹角相等的两个三角形全等;D、错误,面积相等但边长不一定相等.故选:A.4.已知△ABC中,∠A=70°,∠B=60°,则∠C=()A.50°B.60°C.70°D.80°【解答】解:∵∠A+∠B+∠C=180°,而∠A=70°,∠B=60°,∴∠C=180°﹣∠A﹣∠B=180°﹣70°﹣60°=50°.故选:A.5.如图,已知MB=ND,∠MBA=∠NDC,下列哪个条件不能判定△ABM≌△CDN()A.∠M=∠N B.AB=CD C.AM∥CN D.AM=CN【解答】解:A、加上∠M=∠N可利用ASA定理证明△ABM≌△CDN,故此选项不合题意;B、加上AB=CD可利用SAS定理证明△ABM≌△CDN,故此选项不合题意;C、加上AM∥CN可证明∠A=∠NCB,可利用ASA定理证明△ABM≌△CDN,故此选项不合题意;D、加上AM=CN不能证明△ABM≌△CDN,故此选项符合题意;故选:D.6.不能使△ABC≌△DEF必定成立是()A.AB=DE,∠A=∠D,∠C=∠F B.AB=DE,BC=EF,∠B=∠E C.AC=DF,BC=EF,∠A=∠D D.AB=DE,BC=EF,CA=FD【解答】解:A、根据AAS即可判断;本选项不符合题意;B、根据SAS即可判断;本选项不符合题意;C、错误,SSA无法判断三角形全等;本选项符合题意;D、根据SSS即可判断,本选项不符合题意;故选:C.二.填空题(共12小题)7.在△ABC中,∠A=∠B=∠C,则∠A=36°.【解答】解:∵∠A=∠B=∠C,∴可以假设∠A=∠B=x,∠C=3x,则有5x=180°,∴x=36°,∴∠A=36°,故答案为36°.8.我们用如图的方法(斜钉上一块木条)来修理一条摇晃的凳子的数学原理是利用三角形的稳定性.【解答】解:用如图的方法(斜钉上一块木条)来修理一条摇晃的凳子的数学原理是利用三角形的稳定性,故答案为:稳定性.9.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=55°.【解答】解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠1=∠EAC,在△BAD和△CAE中,∴△BAD≌△CAE(SAS),∴∠2=∠ABD=30°,∵∠1=25°,∴∠3=∠1+∠ABD=25°+30°=55°,故答案为:55°.10.在△ABC中,如果∠A:∠B:∠C=4:5:9,那么△ABC按角分类是直角三角形.【解答】解:∵∠C=180°×=90°,∴此三角形是直角三角形.故答案为:直角.11.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带第2块.【解答】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故答案为:2.12.若等腰三角形一腰上的高与另一腰的夹角等于30°,则此三角形的顶角为60或120度.【解答】解:当高在三角形内部时(如图1),顶角是60°;当高在三角形外部时(如图2),顶角是90°+30°=120°.故答案为:60或120.13.如图,在△ABC中,已知点D、E、F分别为BC、AD、CE的中点,且S△ABC=,则阴影部分的面积是.【解答】解:∵点D ,E ,F ,分别为BC 、AD 、CE 的中点,且S △ABC =,∴S △ABD =S △ADC =,S △BDE =S △DEC =,∴S △BEC =,∴S 阴=S △BEC ==,故答案为.14.已知任意一个三角形三个内角的和为180°,如果有一个三角形三个内角的度数比是1:3:5,这个三角形中最大的内角是100度.【解答】解:由题意三角形的最大的内角=×180°=100°,故答案为100.15.如图,在△ABC 中,AB =AC ,∠A =30°,直线a ∥b ,点C 在直线b 上,直线a 交AB 于点D ,交AC 于点E ,如果∠1=145°,那么∠2的度数是40°.【解答】解:∵AB =AC ,且∠A =30°,∴∠ACB =75°,在△ADE 中,∵∠1=∠A +∠AED =145°,∴∠AED =145°﹣30°=115°,∵a ∥b ,∴∠AED =∠2+∠ACB ,∴∠2=115°﹣75°=40°.故答案为:40°.16.如果一个三角形中有一个内角的度数是另外两个内角度数差的2倍,我们就称这个三角形为“奇巧三角形”.已知一个直角三角形是“奇巧三角形”,那么该三角形的最小内角等于22.5度.【解答】解:设直角三角形的最小内角为x,另一个内角为y,由题意得,,解得:,答:该三角形的最小内角等于22.5°,故答案为:22.5.17.如图,将三角形ABC沿射线AC向右平移后得到三角形CDE,如果∠BAC=36°,∠BCA=72°,那么∠BCD的度数是72°.【解答】解:∵将△ABC沿直线AB向右平移到达△CDE的位置,∴△ACB≌△CED,∵∠BAC=36°,∠BCA=72°,∴∠DCE=36°,则∠BCD=180°﹣36°﹣72°=72°.故答案为:72°.18.如图,对面积为1的△ABC逐次进行以下操作:第一次操作,分别延长AB、BC、CA 至点A1、B1、C1,使得A1B=2AB、B1C=2BC、C1A=2CA,顺次连接A1、B1、C1,得到△A1B1C1,记其面积为S1;第二次操作,分别延长A1B1、B1C1、C1A1至点A2、B2、C2,使得A2B1=2A1B1、B2C1=2B1C1、C2A1=2C1A1,顺次连接A2、B2、C2,得到△A2B2C2,记其面积为S2;…;按此规律继续下去,可得到△A6B6C6,则其面积S2=361.【解答】解:连接A1C,根据A1B=2AB,得到:AB:A1A=1:3,因而若过点B,A1作△ABC与△AA1C的AC边上的高,则高线的比是1:3,因而面积的比是1:3,则△A1BC的面积是△ABC的面积的2倍,设△ABC的面积是a,则△A1BC的面积是2a,同理可以得到△A1B1C的面积是△A1BC面积的2倍,是4a,则△A1B1B的面积是6a,同理△B1C1C和△A1C1A的面积都是6a,△A1B1C1的面积是19a,即△A1B1C1的面积是△ABC的面积的19倍,同理△A2B2C2的面积是△A1B1C1的面积的19倍,即S1的面积是19,S2的面积192,故答案为361.三.解答题(共7小题)19.已知一个等腰三角形两内角的度数之比为1:4,求这个等腰三角形顶角的度数.【解答】解:设两内角的度数为x、4x;当等腰三角形的顶角为x时,x+4x+4x=180°,x=20°;当等腰三角形的顶角为4x时,4x+x+x=180°,x=30,4x=120;因此等腰三角形的顶角度数为20°或120°.20.如图,点A、E、F、C在一直线上,DE∥BF,DE=BF,AE=CF.求证:AB∥CD.【解答】证明:∵DE∥BF∴∠DEF=∠BFE∵AE=CF∴AF=CE,且DE=BF,∠DEF=∠BFE∴△AFB≌△CED(SAS)∴∠A=∠C∴AB∥CD21.已知:如图所示,AB=BC,AD为△ABC中BC边的中线,延长BC至E点,使CE=BC,连接AE.求证:∠DAC=∠CAE.【解答】解:延长AD到F,使得DF=AD,连接CF.∵AD=DF,∠ADB=∠FDC,D=DC,∴△ADB≌△FDC(SAS),∴AB=CF,∠B=∠DCF,∵BA=BC,CE=CB∴∠BAC=∠BCA,CE=CF,∵∠ACE=∠B+∠BAC,∠ACF=∠DCF+∠ACB,∴∠ACF=∠ACE,∵AC=AC,∴△ACF≌△ACE(SAS),∴∠CAD=∠CAE.22.如图,已知△ABC,分别以AB、AC为边在△ABC的外部作等边三角形ABD和等边三角形ACE,联结DC、BE.试说明BE=DC的理由.【解答】证明:∵△ABD是等边三角形,∴AD=AB,∠BAD=60°,同理可得:AC=AE,∠CAE=60°,∴∠BAD=∠EAC,∴∠DAC=∠BAE,在△ACD和△AEB中,∵,∴△ACD≌△AEB(SAS),∴CD=BE.23.如图,在△ABC中点D在BC边上,∠C=∠3,∠1=2∠3.说明△ABD是等腰三角形的理由.下面七个语句是说明△ABD是等腰三角形的表述,但是次序乱了请将这七个语句重新整理,说明△ABD是等腰三角形,并说出依据.①△ABD是等腰三角形;②∠2=∠3+∠C;③∠3=∠C;④AB=BD.⑤∠1=2∠3;⑥∠2=2∠3;⑦∠1=∠2.整理如下:【解答】解:∵③∠3=∠C,(已知)②∠2=∠3+∠C,(三角形外角的性质)∴⑥∠2=2∠3(等量代换),∵⑤∠1=2∠3(已知),∴⑦∠1=∠2(等量代换),∴④AB=BD(等腰三角形的判定),∴①△ABD是等腰三角形(等腰三角形的定义).24.如图,△ACB、△ECD是等边三角形,且点E在BC上,AE的延长线交DB于点F,(1)试说明△ACE≌△BCD;(2)求∠EFB的度数【解答】解:(1)∵△ACB,△ECD是等边三角形,∴AC=BC,CE=CD,∠ACB=60°,∠ECD=60°,∴∠ACE=∠BCD,在△ACE和△BCD中,∴△ACE≌△BCD(SAS).(2)∵△ACE≌△BCD∴∠CAE=∠CBD,且∠AEC=∠BEF∴∠EFB=∠ACB=60°25.如图,在△ABC中,如果BD,CE分别是∠ABC,∠ACB的平分线且他们相交于点P,设∠A=n°.(1)求∠BPC的度数(用含n的代数式表示),写出推理过程.(2)当∠BPC=125°时,∠A=70°.(3)当n=60°时,EB=7,BC=12,DC的长为5.【解答】解:(1)∵DB、CE分别为∠ABC,∠ACB的平分线,∴∠ABC=2∠PBC,∠ACB=2∠PCB.∵∠A=180°﹣(∠ABC+∠ACB),∴∠A=180°﹣2(∠PBC+∠PCB),∴∠A=180°﹣2(180°﹣∠BPC),∴∠A=﹣180°+2∠BPC,∴2∠BPC=180°+∠A,∴∠BPC=90°+∠A,∴∠BPC=90°+n;(2)∵DB、CE分别为∠ABC,∠ACB的平分线,∴∠ABC=2∠PBC,∠ACB=2∠PCB.∵∠A=180°﹣(∠ABC+∠ACB),∴∠A=180°﹣2(∠PBC+∠PCB),∴∠A=180°﹣2(180°﹣∠BPC),∴∠A=﹣180°+2∠BPC,∴2∠BPC=180°+∠A,∴∠BPC=90°+∠A,∴∠BPC=90°+n=125°,∴n=70,∴∠A=70°;(3)在BC上取点G使得CG=CD,∵∠BPC=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣60°)=120°,∴∠BPE=∠CPD=60°,∵在△CPD和△CPG中,,∴△CPD≌△CPG(SAS),∴∠CPG=∠CPD=60°,∴∠BPG=120°﹣60°=60°=∠BPE,∵在△BPE和△BPG中,,∴△BPE≌△BPG(ASA),∴BE=BG,∴BE+CD=BG+CG=BC,∵EB=7,BC=12,∴CD=BC﹣BE=12﹣7=5.故答案为:70°,5.。

沪教版七年级数学下册试题 第十四章 《三角形》单元测试卷(含答案)

沪教版七年级数学下册试题 第十四章 《三角形》单元测试卷(含答案)

第十四章《三角形》单元测试卷一、单选题(共18分)1.已知三角形的三边长分别为3,5,x,则x不可能是()A.3B.5C.7D.82.在△ABC和△FMN中,已知AB=6,BC=7,∠B=48°,MN=6,FN=7,∠N=48°,能证明△ABC≌△MNF的判定方式为()A.SAS B.AAS C.ASA D.SSA3.△ABC的三边分别是a,b,c,不能判定是等腰三角形的是()A.∠A:∠B:∠C=2:2:3B.a:b:c=2:2:3C.∠B=50°,∠C=80°D.2∠A=∠B+∠C4.下列说法中正确的是()A.两腰对应相等的两个等腰三角形全等B.两锐角对应相等的两个直角三角形全等C.面积相等的两个三角形全等D.斜边对应相等的两个等腰直角三角形全等5.若a、b是等腰三角形的两边长,且满足关系式(a−2)2+|b−5|=0,则这个三角形的周长是( )A.9cm B.12cm C.9cm或12cm D.15cm或6cm 6.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正△ABC 和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.一定成立的结论有().A.①②③B.①②④C.①②③④D.①②③⑤二、填空题(共24分)7.若三角形三个内角满足∠A=12∠B=13∠C,则∠C=______.8.已知a、b、c为三角形的三边,且则a2+b2+c2=ab+bc+ac,则三角形的形状是 _____.9.如图,在等边△ABC中AB=2,BD是AC边上的高,延长BC至点E,使CE=CD,则BE的长为 ___________.10.如图,将△ABC绕点A顺时针旋转40°得到△ADE,点B的对应点D恰好落在边BC上,则∠ADE=___________°.11.已知△ABC的三边长分别是4、5、8,△DEF的三边分别是4、2x−1、3y−1,若这两个三角形全等,则x+y=______.12.如图,在Rt△ABC中,∠BAC=90°,AB=AC,分别过点B、C作经过点A的直线的垂线段BD、CE,若BD=5厘米,CE=8厘米,则DE的长为______.13.在等腰三角形ABC中,其中一内角为50°,腰AB的垂直平分线MN交AC所在的直线于点D,则∠DBC的度数为______.14.在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分为18和21两个部分,则这个等腰三角形的底边长为______.15.如图,点E是△ABC的内角∠ABC和外角∠ACF的两条角平分线的交点,过点E作MN∥BC,交AB于点M,交AC于点N,若BM−CN=6,则线段MN的长度为____.16.如图,∠MON是一个钢架,∠MON=5°,为使钢架更牢固,需在其内部焊接一些钢管,如CD、DE、EF……若焊接的钢管的长度都与OC的长度相等,则最多能焊接___________根.17.定义:一个三角形的一边长是另一边长的2倍,这样的三角形叫做“倍长三角形”,若等腰△ABC是“倍长三角形”,底边BC的长为5,则腰AB的长为___________.18.如图,过边长为2的等边△ABC的边AB上一点P,作PE⊥AC于点E,Q为BC 延长线上一点,当PA=CQ时,连接PQ交AC边于点D,则DE的长为______.三、解答题(共58分)19.(本题5分)如图,已知△ABC,∠ACB=85°,点E,F分别在AB,AC上,ED交AC于点G,交BC的延长线于点D,∠FEG=40°,∠CGD=45°.求证:EF ∥BC.20.(本题5分)如图,△ABC中,∠ABC=45°,两条高AD和BE交于H.求证:BH=AC.21.(本题7分)如图,在△ABC中,已知∠BAC=90°,AD⊥BC,AD与∠ABC的平分线交于点E,试说明△AEF是等腰三角形的理由.22.(本题7分)如图,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC,BF与CE相交于点M.(1)求证:EC=BF;(2)求证:EC⊥BF.23.(本题8分)如图,点E是等边△ABC外一点,点D是BC边上一点,AD=BE,∠CAD=∠CBE,连接ED,EC.(1)试说明△ADC与△BEC全等的理由;(2)试判断△DCE的形状,并说明理由.24.(本题8分)如图,已知等边△ABC和等边△CDE,P、Q分别为AD、BE的中点.(1)试判断△CPQ的形状并说明理由.(2)如果将等边△CDE绕点C旋转,在旋转过程中△CPQ的形状会改变吗?请你将图2中的图形补画完整并说明理由.25.(本题8分)已知:如图,△ABC、△CDE都是等边三角形,AD、BE相交于点O,点M、N分别是线段AD、BE的中点.(1)求∠DOE的度数;(2)试判断△MNC的形状,并说明理由.26.(本题10分)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到如下图所示的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到如下图所示的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,不必证明;(3)当直线MN绕点C旋转到如图的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,不必证明.答案一、单选题1.D【分析】已知两边时,第三边的范围是大于两边的差,小于两边的和.这样就可以确定x 的范围,也就可以求出x 的不可能取得的值.【详解】解:∵3+5=8,5−3=2,∴2<x <8.故选:D .2.A【分析】根据全等三角形的判定方法并结合所给条件可得答案.【详解】解:∵AB =6,BC =7,∠B =48°,MN=6,FN =7,∠N =48°,∴AB =MN ,∠B =∠N ,BC =NF ,在△ABC 和△MNF 中,{AB =MN∠B =∠N BC =NF,∴△ABC ≌△MNF (SAS ).故选:A .3.D【分析】根据等腰三角形的判定,三角形内角和定理,进行计算逐一判断即可解答.【详解】解:A 、因为∠A:∠B:∠C =2:2:3,∠A +∠B +∠C =180°,所以∠A =∠B =180°×(22+2+3)=(3607)°,所以△ABC 是等腰三角形;B 、因为 a:b:c =2:2:3,所以设a =b =2x ,则有两边相等的△ABC 是等腰三角形;C 、因为 ∠A +∠B +∠C =180°,所以∠A =180°−∠B −∠C =180°−50°−80°=50°,则∠A =∠B ,所以△ABC 是等腰三角形;D 、因为2∠A =∠B +∠C ,∠A +∠B +∠C =180°,则∠A+2∠A=180°,那么∠A=60°,∠B+∠C=120°,不能判定是等腰三角形.故选:D.4.D【分析】根据全等三角形的判定方法和等腰三角形的性质判定即可.【详解】解:A、两腰对应相等的两个等腰三角形,只有两边对应相等,所以不一定全等,不合题意;B、两锐角对应相等的两个直角三角形,缺少对应的一对边相等,所以不一定全等,不合题意;C、面积相等的两个三角形形状不一定相同,则不一定全等,不合题意;D、斜边对应相等的两个等腰直角三角形,满足三个角及一条边对应相等,故全等,符合题意;故选:D.5.B【分析】利用非负性,求出a,b的值,分a是腰长和b是腰长,两种情况,讨论求解即可.【详解】解:∵(a−2)2+|b−5|=0,∴a−2=0,b−5=0,∴a=2,b=5;当a是腰长时:2+2<5,三边不能构成三角形,∴b为腰长,∴三角形的周长是:5+5+2=12cm;故选B.6.D【分析】①根据△ABC和△CDE是等边三角形可知AC=BC,CD=CE,∠ACB=∠DCE=60°,从而证出△ACD≅△BCE,可推知AD=BE;②由△ACD≅△BCE得∠CBE=∠CAD和∠ACB=∠DCE=60°,AC=BC,得到△CQB ≅△CPA (ASA ),再根据∠PCQ =60°推出△PCQ 为等边三角形,又由∠PQC=∠DCE ,根据内错角相等,两直线平行,可知②正确;③同②得△ACP ≅△BCQ ,即可得出结论;④根据∠DQE =∠ECQ +∠CEQ =60°+∠CEQ ,∠CDE=60°,可知∠DQE≠∠CDE ,可知④错误;⑤先根据全等三角形的性质可得∠DAC =∠EBC ,再根据∠AOB =∠DAC +∠BEC =∠EBC +∠BEC =∠ACB =60°,可知⑤正确.【详解】解:①∵△ABC 和△CDE 为等边三角形,∴AC =BC ,CD =CE ,∠BCA =∠DCE =60°,∴∠ACD =∠BCE ,在△ACD 和△BCE 中,{AC =BC∠ACD =∠BCE CD =CE,∴△ACD ≅△BCE (SAS ),∴AD =BE ,∠ADC =∠BEC ,①正确;②∠DCP=180°−2×60°=60°=∠ECQ ,在△CDP 和△CEQ 中,{∠ADC =∠BECCD =CE ∠DCP =∠ECQ,∴△CDP ≅△CEQ (ASA ).∴CP =CQ ,∴∠CPQ =∠CQP =60°,∴∠QPC =∠BCA ,∴PQ ∥AE ,②正确;③同②得:△ACP ≅△BCQ ,∴AP =BQ ,③正确;④∵DE >QE ,且DP =QE ,∴DE >DP ,④错误;⑤∵△ACD ≅△BCE ,∴∠DAC =∠EBC ,∴∠AOB =∠DAC +∠BEC =∠EBC +∠BEC =∠ACB =60°,⑤正确;故答案为:①②③⑤.二、填空题7.90°【分析】根据三角形内角和定理进行计算即可求解.【详解】解:∵∠A=12∠B=13∠C,∠A+∠B+∠C=180°∴13∠C+23∠C+∠C=180°解得:∠C=90°,故答案为:90°.8.等边三角形【分析】先把所给等式左右两边同时乘以2,然后利用完全平方公式得到(a−b)2 +(b−c)2+(c−a)2=0,由此求解即可.【详解】解:∵a2+b2+c2=ab+bc+ac,∴a2+b2+c2−ab−bc−ac=0,∴2a2+2b2+2c2−2ab−2bc−2ac=0,∴a2−2ab+b2+b2−2bc+c2+a2−2ac+c2=0,即(a−b)2+(b−c)2+(c−a)2=0,∴a﹣b=0,b﹣c=0,c﹣a=0,∴a=b=c,∴△ABC为等边三角形.故答案为:等边三角形.9.3【分析】由等边三角形的性质可得AC=BC=AB=2,根据BD是AC边上的高线,可得AD=CD,再由题中条件CE=CD,即可求得BE.【详解】解:∵△ABC是等边三角形,∴AC=BC=AB=2,∵BD是AC边上的高线,∴D为AC的中点,∴AD=CD=12AC,∵CE=CD,∴CE=12AC=1,∴BE=BC+CE=2+1=3.故答案为:3.10.70【详解】根据旋转的性质得到AD=AB,∠ADE=∠B,根据等腰三角形的性质得到∠ADB=∠B,求得∠ADE=∠ADB=70°.【解答】解:由旋转的性质可知,AD=AB,∠ADE=∠B,∴∠ADB=∠B,∵∠BAD=40°,∴∠ADE=∠ADB=∠B=12×(180°−40°)=70°,故答案为:70.11.6或132【分析】根据全等三角形的性质得到5=2x−1,8=3y−1,或8=2x−1,5=3y−1,分别求出x,y的值,代入计算即可.【详解】解:∵两个三角形全等,∴5=2x−1,8=3y−1,或8=2x−1,5=3y−1,∴{x=3y=3或{x=92y=2,∴x+y=3+3=6或x+y=92+2=132,故答案为:6或132.12.13厘米【分析】利用垂直的定义得到∠BDA=∠AEC,由平角的定义及同角的余角相等得到∠ABD=∠CAE,利用AAS证得△ABD≌△CAE,再由全等三角形对应边相等得到DB=AE=5,AD=CE=8,由DE=AD+AE即可求出DE长.【详解】解:∵BD⊥DE,CE⊥DE,∴∠BDA=∠BAC=∠AEC=90°,∴∠BAD +∠CAE =90°,∵∠BAD +∠ABD =90°,∴∠ABD =∠CAE ,在△ABD 和△CAE 中,{∠ADB =∠CEA ∠ABD =∠CAE AB =CA,∴△ABD ≌△CAE(AAS),∴DB =AE =5,CE =AD =8,则DE =AD +AE =8+5=13(厘米),故答案为:13厘米.13.15或30【分析】根据等腰三角形的一个内角为50°,分类讨论等腰三角形,①当等腰三角形角为:50,65,65;②当等腰三角形角为:50,50,80;再根据垂直平分线的性质,即可.【详解】∵等腰三角形ABC 中,其中一个内角为50°,∴①当AB =AC ,∠A =50°,如下图:∴∠CBA=65°,∵MN 垂直平分AB ,∴AD=BD ,∴∠BAD =∠DBA =50°,∴∠CBD=∠CBA −∠ABD =15°;②当BA =BC ,∠A =∠C =50°,如下图:∴∠ABC=80°,∵MN 垂直平分AB,∴AD =BD ,∴∠A =∠ABD =50°,∴∠CBD=80°−50°=30°,∴∠DBC 的度数为:15或者30.故答案为:15或者30.14.11或15【分析】根据题意画出图形,设等腰三角形的腰长为a ,底边为b ,根据中点定义得到AD 与DC 相等都等于腰长a 的一半,AC 边上的中线BD 将这个三角形的周长分为AB +AD 和BC +CD 两部分,分别表示出两部分,然后分AB +AD =18,BC +CD =21或AB +AD =21,BC +CD =18两种情况分别列出方程组,分别求出方程组的解即可得到a 与b 的两对值,根据三角形的两边之和大于第三边判定能否构成三角形,即可得到满足题意的等腰三角形的底边长.【详解】解:依题意可得:这一边上的中线为腰上的中线,画出图形如下:设这个等腰三角形的腰长为a ,底边长为b ,∵D 为AC 的中点,∴AD =DC =12AC =12a ,根据题意得:{a +12a =1812a +b =21或{a +12a =2112a +b =18,解得:{a =12b =15 或{a =14b =11.又∵三边长12、12、15和14、14、11均可以构成三角形,∴底边长为11或15.故答案为:11或15.15.6【分析】根据角平分线的定义得到∠MBE=∠CBE,根据平行线的性质得到∠MEB=∠CBE,等量代换得到∠MBE=∠MEB,求得BM=EM,同理,CN=EN,于是得到结论.【详解】∵BE平分∠ABC,∴∠MBE=∠CBE,∵MN∥BC,∴∠MEB=∠CBE,∴∠MBE=∠MEB,∴BM=EM,同理,CN=EN,∵BM−CN=9,∴MN=ME−EN=BM−CN=6,故答案为:6.16.17【分析】根据已知利用等腰三角形的性质及三角形外角的性质,找出图中存在的规律,根据规律及三角形的内角和定理求解.【详解】解:∵焊接的钢管的长度都与OC的长度相等,即OC=CD=DE=EF,∴∠CDO=∠MON=5°,即第一个等腰△OCD的底角是5°;∴∠DCE=∠DEC=10°,即第二个等腰△CDE的底角是10°;∴∠EDF=∠EFD=15°,即第三个等腰△DEF的底角是15°;……∴等腰三角形的底角度数是5的倍数,且最大的角为85°,∴最多能焊接85°÷5°=17(根),故答案为:17.17.10【分析】分两种情况讨论:①AB=AC=2BC;②BC=2AB=2AC,再利用三角形三边关系进行检验即可得到答案.【详解】解:∵△ABC是等腰三角形,∴AB=AC,∵△ABC是“倍长三角形”,BC=5,①当AB=AC=2BC时,AB=AC=10;②当BC=2AB=2AC时,AB=AC= 2.5,根据三角形三边关系,此时,A、B、C 不能构成三角形,不符合题意,所以,若等腰△ABC是“倍长三角形”,底边BC的长为5,则腰AB的长为10,故答案为:10.18.1【分析】过点P作PF∥BC交AC于点F,根据题意可证△APF是等边三角形,根据等腰三角形三线合一证明AE=FE,根据全等三角形判定定理可证△PFD≌△QCD,DF=DC,进而证明DE=1AC,计算求值即可.2【详解】过点P作PF∥BC交AC于点F,如图,∴∠APF=∠B=60°,∠A=60°,△APF是等边三角形,∴PF=PA,∵PE⊥AC,∴AE=FE;∵PA=CQ,∴PF=QC,∵PF∥BC,∴∠PFD=∠QCD,在△PFD和△QCD中,{PF=QC∠PFD=∠QCD∠PDF=∠QDC ∴△PFD≌△QCD,∴DF=DC;∴DF=12FC,EF=12AF,∵DF+EF=DE,FC+AF=AC,∴DE=12FC+12AF=12(FC+AF)=12AC,∵AC=2,DE=12AC=12×2=1故答案为:1三、解答题19.解:∵∠CGD=45°,∴∠EGF=∠CGD=45°,∵∠FEG=40°,∴∠AFE=∠EGF+∠FEG=45°+40°=85°,∵∠ACB=85°,∴∠AFE=∠ACB,∴EF∥BC.20.证明:由题意可得:∠ADB=∠ADC=∠BEC=90°∴∠HBD+∠BHD=∠HBD+∠C=90°∴∠BHD=∠C又∵∠ABD=45°∴AD=BD在△ADC和△BDH中{∠ADB=∠ADC∠BHD=∠CAD=BD∴△ADC≌△BDH(AAS)∴BH=AC21.解:∵BF平分∠ABC,∴∠ABF=∠DBF,又∵∠BAC=90°,AD⊥BC,∴∠AFE=90°−∠ABF,∠DEB=90°−∠DBF,∴∠AFE=∠DEB,又∵∠DEB=∠AEF,∴∠AEF=∠AFE,∴△AEF是等腰三角形.22.(1)证明:∵AE⊥AB,AF⊥AC,∴∠BAE=∠CAF=90°,∴∠BAE+∠BAC=∠CAF+∠BAC,即∠EAC=∠BAF,在△ABF和△AEC中,{AB=AE∠EAC=∠BAFAC=AF∴△ABF≌△AEC(SAS),∴EC=BF;(2)证明:设AB与CE交于点D,∵△ABF≌△AEC,∴∠AEC=∠ABF,∵AE⊥AB,∴∠BAE=90°,∴∠AEC+∠ADE=90°,∵∠ADE=∠BDM(对顶角相等),∴∠ABF+∠BDM=90°,在△BDM中,∠BMD=180°−∠ABF−∠BDM=180°−90°=90°,∴EC⊥BF.23.(1)∵△ABC是等边三角形,∴AC=BC,∠ACB=60°,在△ADC和△BEC中,{AC=BC∠CAD=∠CBE,AD=BE∴△ADC≌△BEC(SAS);(2)△DCE是等边三角形;理由如下:∵△ADC≌△BEC,∴∠ACD=∠BCE=60°,DC=EC,即△DCE是等腰三角形,∴△DCE是等边三角形.24.(1)如图1,△CPQ 是等边三角形.理由如下:∵△ABC 和△CDE 都是等边三角形,∴∠C =60°,AC =BC ,DC =EC ,∴AC ﹣DC =BC ﹣EC ,即AD =BE .∵P 、Q 分别为AD 、BE 的中点,∴PD =EQ ,∴CD +DP =CE +EQ ,即CP =CQ ,∴△CPQ 是等边三角形;(2)如果将等边△CDE 绕点C 旋转,在旋转过程中△CPQ 的形状不会改变.理由如下:如图2,∵△ABC 和△CDE 都是等边三角形,∴∠ACB =∠DCE =60°,AC =BC ,DC =EC ,∵∠ACD =∠DCE ﹣∠ACE ,∠BCE =∠ACB ﹣∠ACE ,∴∠ACD =∠BCE ,∴在△ACD 与△BCE 中,{AC =BC∠ACD =∠BCE DC =EC,∴△ACD ≌△BCE (SAS ),∴AD =BE ,∠CAD =∠CBE ,即∠CAP =∠CBQ .∵P 是AD 的中点,Q 是BE 的中点,∴AP =12AD ,BQ =12BE ,∴AP =BQ ,∴在△ACP 与△BCQ中,{AC =BC∠CAP =∠CBQ AP =BQ,∴△ACP ≌△BCQ (SAS ),∴PC =QC ,∠BCQ =∠ACP ,∵∠BCQ +∠ACQ =∠ACB =60°,∴∠ACP +∠ACQ =60°,∴∠PCQ =60°,∴△CPQ 是等边三角形.25.(1)解:∵△ABC 、△CDE 都是等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACB +∠BCD =∠DCE +∠BCD ,∴∠ACD =∠BCE ,在△ACD 和△BCE 中,{AC =BC∠ACD =∠BCE CD =CE ,∴△ACD ≌BCE (SAS ),∴∠ADC =∠BEC ,∵△DCE 是等边三角形,∴∠CED =∠CDE =60°,∴∠ADE +∠BED=∠ADC +∠CDE +∠BED=∠ADC +60°+∠BED =∠BEC +∠CED +60°=∠DEC +60°=60°+60°=120°,∴∠DOE =180°-(∠ADE +∠BED )=60°;(2)解:△MNC 是等边三角形,理由如下:由(1)得:△ACD ≌△BCE ,∴∠CAD =∠CBE ,AD =BE ,又∵点M 、N 分别是线段AD 、BE 的中点,∴AM =12AD ,BN =12BE ,∴AM =BN ,在△ACM 和△BCN 中,{AC =BC∠CAM =∠CBN AM =BN,∴△ACM ≌△BCN (SAS ),∴CM =CN ,∠ACM =∠BCN ,又∵∠ACB =60°,∴∠ACM +∠MCB =60°,∴∠BCN +∠MCB =60°,∴∠MCN =60°,∴△MNC 是等边三角形.26.(1)证明:①∵AD⊥MN ,BE ⊥MN ,∴∠ADC=∠BEC =90°,∵∠BCA=90°,∴∠ACD+∠BCE =90°,∠BCE +CBE =90°,∴∠ACD =∠CBE ,在△ADC 和△CEB 中,∵{∠ADC =∠CEB =90°∠ACD =∠CBE AC =BC,∴△ADC ≌△CEB (AAS );②∵△ADC ≌△CEB ,∴AD =CE ,BE =CD ,∴DE =DC +CE =BE +AD .(2)解:AD=BE +DE .∵AD ⊥MN ,BE ⊥MN ,∴∠ADC =∠BEC =90°,∵∠ACB =90°,∴∠ACD +∠BCD =90°,∠BCD +∠CBE =90°,∴∠ACD =∠CBE ,在△ACD 和△CBE 中,∵{∠ADC =∠CEB∠ACD =∠CBEAC =BC ,∴△ACD ≌△CBE (AAS ),∴AD =CE ,BE =CD ,∴AD =CD +DE =BE +DE .(3)解:BE =AD +DE .∵AD ⊥MN ,BE ⊥MN ,∴∠ADC =∠BEC =90°,∵∠ACB =90°,∴∠ACD +∠BCD =90°,∠BCD +∠CBE =90°,∴∠ACD =∠CBE ,在△ACD 和△CBE 中,∵{∠ADC =∠CEB∠ACD =∠CBEAC =BC ,∴△ACD ≌△CBE (AAS ),∴AD =CE ,BE =CD ,∴BE =CD =CE +DE =AD +DE .。

2022年最新沪教版七年级数学第二学期第十四章三角形综合训练试题(含答案解析)

2022年最新沪教版七年级数学第二学期第十四章三角形综合训练试题(含答案解析)

沪教版七年级数学第二学期第十四章三角形综合训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分) 1、下列长度的三条线段能组成三角形的是( ) A .3 4 8B .4 4 10C .5 6 10D .5 6 112、如图,AB DF ∥,AC CE ⊥于点C ,BC 与DF 交于点E ,若20A ∠=︒,则CED ∠等于( )A .20°B .50°C .70°D .110°3、如图,等边ABC 中,D 为AC 中点,点P 、Q 分别为AB 、AD 上的点,4BP AQ ==,3QD =,在BD 上有一动点E ,则PE QE +的最小值为( )A .7B .8C .10D .124、已知ABC 的三边长分别为a ,b ,c ,则a ,b ,c 的值可能分别是( ) A .1,2,3 B .3,4,7 C .2,3,4D .4,5,105、已知三角形的两边长分别是3cm 和7cm ,则下列长度的线段中能作为第三边的是( ) A .3cmB .4cmC .7cmD .10cm6、如图,AB =AC ,点D 、E 分别在AB 、AC 上,补充一个条件后,仍不能判定△ABE ≌△ACD 的是( )A .∠B =∠C B .AD =AE C .BE =CD D .∠AEB =∠ADC7、如图,∠BAD =90°,AC 平分∠BAD ,CB =CD ,则∠B 与∠ADC 满足的数量关系为( )A .∠B =∠ADC B .2∠B =∠ADC C .∠B +∠ADC =180°D .∠B +∠ADC =90°8、如图,等腰ABC 中,AB AC =,120BAC ∠=︒,AD DC ⊥于D ,点O 是线段AD 上一点,点P 是BA 延长线上一点,若OP OC =,则下列结论:①30APO DCO ∠+∠=︒;②APO DCO ∠=∠;③POC △是等边三角形;④AB OA AP =+.其中正确的是( )A .①③④B .①②③C .②③④D .①②③④9、在平面直角坐标系xOy 中,点A (0,2),B (a ,0),C (m ,n )(0m >).若ABC 是等腰直角三角形,且AB BC =,当01a <<时,点C 的横坐标m 的取值范围是( ) A .02m <<B .23m <<C .3m <D .3m >10、△BDE 和△FGH 是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC 内.若BC =5,则五边形DECHF 的周长为( )A .8B .10C .11D .12第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系xOy 中,()2,0A ,()0,4C -,AB AC =,90BAC ∠=︒,则点B 的坐标为__________.2、如图,在ABC 中,BD 和CD 分别是ABC ∠和ACB ∠的平分线,EF 过点D ,且EF BC ∥,若3BE =,4CF =,则EF 的长为______.3、如图,ABC ADC ∠=∠,AB CD ∥,BE 平分ABC ∠交AD 于点E ,连接CE ,AF 交CD 的延长线于点F ,180BCD AEB DAF ∠+∠+∠=︒,若3ECD F ∠=∠,80BEC ∠=︒,则CED ∠的度数为______.4、如图,在△AB 1C 1中,AC 1=B 1C 1,∠C 1=20°,在B 1C 1上取一点C 2,延长AB 1到点B 2,使得B 1B 2=B 1C 2,在B 2C 2上取一点C 3,延长AB 2到点B 3,使得B 2B 3=B 2C 3,在B 3C 3上取一点C 4,延长AB 3到点B 4,使得B 3B 4=B 3C 4,……,按此操作进行下去,那么第2个三角形的内角∠AB 2C 2=________°;第n 个三角形的内角∠AB n C n =________°.5、如图,点C 是线段AB 的中点,DA EC ∥.请你只添加一个条件,使得DAC △≌ECB .(1)你添加的条件是______;(要求:不再添加辅助线,只需填一个答案即可)△与ECB全等的理由是______.(2)依据所添条件,判定DAC三、解答题(10小题,每小题5分,共计50分)1、如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC 的延长线于点F.(1)求证:CE=CF;(2)若CD=2,求DF的长.2、如图,在四边形ABCD中,点E在BC上,连接DE、AC相交于点F,∠BAE=∠CAD,AB=AE,AD=AC.(1)求证:∠DEC=∠BAE;(2)如图2,当∠BAE=∠CAD=30°,AD⊥AB时,延长DE、AB交于点G,请直接写出图中除△ABE、△ADC以外的等腰三角形.3、已知,在△ABC中,∠BAC=30°,点D在射线BC上,连接AD,∠CAD=α,点D关于直线AC的对称点为E,点E关于直线AB的对称点为F,直线EF分别交直线AC,AB于点M,N,连接AF,AE,CE.(1)如图1,点D在线段BC上.①根据题意补全图1;②∠AEF=(用含有α的代数式表示),∠AMF=°;③用等式表示线段MA ,ME ,MF 之间的数量关系,并证明.(2)点D 在线段BC 的延长线上,且∠CAD <60°,直接用等式表示线段MA ,ME ,MF 之间的数量关系,不证明.4、如图,ABC 是等边三角形,∥DE BC ,分别交AB ,AC 于点D ,E .(1)求证:ADE 是等边三角形;(2)点F 在线段DE 上,点G 在ABC 外,BF CG =,ABF ACG ∠=∠,求证:AF FG =.5、 “三等分角”是被称为几何三大难题的三个古希腊作图难题之一.如图1所示的“三等分角仪”是利用阿基米德原理做出的.这个仪器由两根有槽的棒PA ,PB 组成,两根棒在P 点相连并可绕点P 旋转,C 点是棒PA 上的一个固定点,点A ,O 可在棒PA ,PB 内的槽中滑动,且始终保持OA =OC =PC .∠AOB 为要三等分的任意角.则利用“三等分角仪”可以得到∠APB =13∠AOB .我们把“三等分角仪”抽象成如图2所示的图形,完成下面的证明. 已知:如图2,点O ,C 分别在∠APB 的边PB ,PA 上,且OA =OC =PC .求证:∠APB=13∠AOB.6、已知:如图,AD,BE相交于点O,AB⊥BE,DE⊥AD,垂足分别为B,D,OA=OE.求证:△ABO≌△EDO.7、已知,如图,AB=AD,∠B=∠D,∠1=∠2=60°.(1)求证:△ADE≌△ABC;(2)求证:AE=CE.8、如图,CE⊥AB于点E,BF⊥AC于点F,BD=CD.(1)求证:△BDE≌△CDF;(2)求证:AE=AF.9、如图,点D 在AB 上,点E 在AC 上,AB AC ,∠B =∠C .求证:=AD AE .10、已知:如图,在△ABC 中,AB =3,AC =5. (1)直接写出BC 的取值范围是 .(2)若点D 是BC 边上的一点,∠BAC =85°,∠ADC =140°,∠BAD =∠B ,求∠C .-参考答案-一、单选题 1、C 【分析】根据三角形的任意两边之和大于第三边对各选项分析判断求解即可. 【详解】解:A .∵3+4<8,∴不能组成三角形,故本选项不符合题意;B .∵4+4<10,∴不能组成三角形,故本选项不符合题意;C .∵5+6>10,∴能组成三角形,故本选项符合题意;D .∵5+6=11,∴不能组成三角形,故本选项不符合题意; 故选:C . 【点睛】本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边是解决问题的关键. 2、C 【分析】由AC CE ⊥与20A ∠=︒,即可求得ABC ∠的度数,又由AB DF ∥,根据两直线平行,同位角相等,即可求得CED ∠的度数. 【详解】 解:∵AC CE ⊥, ∴90C ∠=︒, ∵20A ∠=︒, ∴70ABC ∠=︒, ∵AB DF ∥,∴70CED ABC ∠=∠=︒. 故选:C .【点睛】题目主要考查了平行线的性质与垂直的性质、三角形内角和定理,熟练掌握平行线的性质是解题关键. 3、C 【分析】作点Q 关于BD 的对称点Q ',连接PQ '交BD 于E ,连接QE ,此时PE EQ +的值最小,最小值PE PQ PE EQ PQ +=+'=',据此求解即可.【详解】 解:如图,ABC ∆是等边三角形,BA BC ∴=,∵D 为AC 中点,∴BD AC ⊥,4AQ =,3QD =,7AD DC AQ QD ∴==+=,作点Q 关于BD 的对称点Q ',连接PQ '交BD 于E ,连接QE ,此时PE EQ +的值最小.最小值PE QE PE EQ PQ +=+'=',4AQ =,7AD DC ==,3QD DQ ∴='=, 4CQ BP ∴'==,10AP AQ ∴='=,60A ∠=︒,APQ ∴∆'是等边三角形,10PQ PA ∴'==,PE QE ∴+的最小值为10.故选:C .【点睛】本题考查等边三角形的性质和判定,轴对称最短问题等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.4、C【分析】三角形的三边应满足两边之和大于第三边,两边之差小于第三边,据此求解.【详解】解:A 、1+2=3,不能组成三角形,不符合题意;B 、3+4=7,不能组成三角形,不符合题意;C 、2+3>4,能组成三角形,符合题意;D 、4+5<10,不能组成三角形,不符合题意;故选:C .【点睛】本题考查了三角形的三边关系,满足两条较小边的和大于最大边即可.5、C【分析】设三角形第三边的长为x cm ,再根据三角形的三边关系求出x 的取值范围,找出符合条件的x 的值【详解】解:设三角形的第三边是xcm .则7-3<x <7+3.即4<x <10,四个选项中,只有选项C 符合题意,故选:C .【点睛】本题主要考查了三角形三边关系的应用.此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.6、C【分析】根据全等三角形的判定定理进行判断即可.【详解】解:根据题意可知:AB =AC ,A A ∠=∠,若B C ∠=∠,则根据()ASA 可以证明△ABE ≌△ACD ,故A 不符合题意;若AD =AE ,则根据(SAS)可以证明△ABE ≌△ACD ,故B 不符合题意;若BE =CD ,则根据()SSA 不可以证明△ABE ≌△ACD ,故C 符合题意;若∠AEB =∠ADC ,则根据()AAS 可以证明△ABE ≌△ACD ,故D 不符合题意;故选:C .【点睛】本题考查了全等三角形的判定,熟练掌握全等三角形的判定定理是解本题的关键.7、C由题意在射线AD 上截取AE =AB ,连接CE ,根据SAS 不难证得△ABC ≌△AEC ,从而得BC =EC ,∠B =∠AEC ,可求得CD =CE ,得∠CDE =∠CED ,证得∠B =∠CDE ,即可得出结果.【详解】解:在射线AD 上截取AE =AB ,连接CE ,如图所示:∵∠BAD =90°,AC 平分∠BAD ,∴∠BAC =∠EAC ,在△ABC 与△AEC 中,AC AC BAC EAC AB AE =⎧⎪∠=∠⎨⎪=⎩, ∴△ABC ≌△AEC (SAS ),∴BC =EC ,∠B =∠AEC ,∵CB =CD ,∴CD =CE ,∴∠CDE =∠CED ,∴∠B =∠CDE ,∵∠ADC +∠CDE =180°,∴∠ADC +∠B =180°.故选:C .本题主要考查全等三角形的判定与性质,解答的关键是作出适当的辅助线AE,CE.8、A【分析】①利用等边对等角得:∠APO=∠ABO,∠DCO=∠DBO,则∠APO+∠DCO=∠ABO+∠DBO=∠ABD,据此即可求解;②因为点O是线段AD上一点,所以BO不一定是∠ABD的角平分线,可作判断;③证明∠POC=60°且OP=OC,即可证得△OPC是等边三角形;④证明△OPA≌△CPE,则AO=CE,得AC=AE+CE=AO+AP.【详解】解:①如图1,连接OB,∵AB=AC,AD⊥BC,∴BD=CD,∠BAD=12∠BAC=12×120°=60°,∴OB=OC,∠ABC=90°﹣∠BAD=30°∵OP=OC,∴OB=OC=OP,∴∠APO=∠ABO,∠DCO=∠DBO,∴∠APO+∠DCO=∠ABO+∠DBO=∠ABD=30°,故①正确;②由①知:∠APO=∠ABO,∠DCO=∠DBO,∵点O是线段AD上一点,∴∠ABO与∠DBO不一定相等,则∠APO与∠DCO不一定相等,故②不正确;③∵∠APC+∠DCP+∠PBC=180°,∴∠APC+∠DCP=150°,∵∠APO+∠DCO=30°,∴∠OPC+∠OCP=120°,∴∠POC=180°﹣(∠OPC+∠OCP)=60°,∵OP=OC,∴△OPC是等边三角形,故③正确;④如图2,在AC上截取AE=PA,∵∠PAE=180°﹣∠BAC=60°,∴△APE是等边三角形,∴∠PEA=∠APE=60°,PE=PA,∴∠APO+∠OPE=60°,∵∠OPE+∠CPE=∠CPO=60°,∴∠APO=∠CPE,∵OP=CP,在△OPA和△CPE中,PA PE APO CPE OP CP =⎧⎪∠=∠⎨⎪=⎩, ∴△OPA ≌△CPE (SAS ),∴AO =CE ,∴AC =AE +CE =AO +AP ,∴AB =AO +AP ,故④正确;正确的结论有:①③④,故选:A .【点睛】本题主要考查了全等三角形的判定与性质、等腰三角形的判定与性质、等边三角形的判定与性质等知识,正确作出辅助线是解决问题的关键.9、B【分析】过点C 作CD x ⊥轴于D ,由“AAS ”可证AOB BDC ∆≅∆,可得2AO BD ==,BO CD n a ===,即可求解.【详解】解:如图,过点C 作CD x ⊥轴于D ,点(0,2)A ,2AO ∴=,ABC ∆是等腰直角三角形,且AB BC =,90ABC AOB BDC ∴∠=︒=∠=∠,90ABO CBD ABO BAO ∴∠+∠=︒=∠+∠,BAO CBD ∴∠=∠,在AOB ∆和BDC ∆中,AOB BDC BAO CBD AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()AOB BDC AAS ∴∆≅∆,2AO BD ∴==,BO CD n a ===,01a ∴<<,2OD OB BD a m =+=+=,23m ∴<<,故选:B .【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,解题的关键是画图及添加恰当辅助线构造全等三角形.10、B【分析】证明△AFH ≌△CHG (AAS ),得出AF =CH .由题意可知BE =FH ,则得出五边形DECHF 的周长=AB +BC ,则可得出答案.【详解】解:∵△GFH 为等边三角形,∴FH =GH ,∠FHG =60°,∴∠AHF +∠GHC =120°,∵△ABC 为等边三角形,∴AB =BC =AC =5,∠ACB =∠A =60°,∵∠AHF =180°-∠FHG -∠GHC =120°-∠GHC ,∠HGC =180°-∠C -∠GHC =120°-∠GHC ,∴∠AHF =∠HGC ,在△AFH 和△CHG 中A C AHF HGC FH GH ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AFH ≌△CHG (AAS ),∴AF =CH .∵△BDE 和△FGH 是两个全等的等边三角形,∴BE =FH ,∴五边形DECHF 的周长=DE +CE +CH +FH +DF =BD +CE +AF +BE +DF ,=(BD +DF +AF )+(CE +BE ),=AB +BC =10.故选:B .【点睛】本题考查了全等三角形的判定与性质,等边三角形的性质,熟练掌握全等三角形的判定方法是解题的关键.二、填空题1、(6),-2【分析】按照在x 轴的上下方,分成两类情况讨论,如解析中的图像所示,分别利用边和角证明1Rt OAC Rt EB A ∆∆≌和2Rt OAC DB A ∆∆≌成立,然后根据对应边相等,即可求出两种情况对应的点B 的坐标.【详解】解:如下图所示:由()2,0A ,()0,4C -可知:2OA =,4OC =.当B 点在x 轴下方时,过点B 1向x 轴作垂线,垂足为E .90BAC ∠=︒,190OAC EAB ∴∠+∠=︒90OAC OCA ∠+∠=︒1OCA EAB ∴∠=∠在Rt OAC ∆与1Rt EB A ∆中:111AOC B EA OCA EAB AC AB ∠=∠⎧⎪∠=∠⎨⎪=⎩1()Rt OAC Rt EB A AAS ∴∆∆≌ 12EB OA ∴==,4EA OC == 6OE OA EA ∴=+= 1B ∴点坐标为(6),-2当B 点在x 轴上方时,过点B 2向x 轴作垂线,垂足为D . 由题意可知:2290B AC B AD OAC ∠=∠+∠=︒ 90OAC OCA ∠+∠=︒ 2B AD OAC ∴∠=∠在Rt OAC ∆与2Rt DB A ∆中 222OAC B AD AOC B DA AC AB ∠=∠⎧⎪∠=∠⎨⎪=⎩2()Rt OAC DB A AAS ∴∆∆≌ 22DB OA ∴==,4AD OC == 2OD AD OA ∴=-= ∴点2B 坐标为(22)-,故答案为:(6),-2或(22)-,.【点睛】本题主要是考查了全等三角形的判定和性质以及坐标点的求解,熟练利用全等三角形证明边相等,进而利用边长求解点的坐标,这是解决该题的关键.2、7【分析】根据角平分线的定义和平行线的性质证明∠EBD =∠EDB ,∠FDC =∠FCD ,得到BE =DE ,CF =DF ,即可求解.【详解】解:∵EF∥BC ,∴∠EDB =∠DBC ,∠FDC =∠DCB ,又∵BD 和CD 分别是∠ABC 和∠ACB 的平分线,∴∠EBD =∠DBC ,∠FCD =∠DCB ,∴∠EBD =∠EDB ,∠FDC =∠FCD ,∴BE =DE ,CF =DF ,又∵BE =3,CF =4,∴EF =DE +DF =BE +CF =7.故答案为:7.【点睛】本题主要考查了平行线的性质,角平分的定义,等腰三角形的性质与判定,熟知相关知识是解题的关键.3、80°【分析】先根据AB CD ∥,ABC ADC ∠=∠,得出180ADC BCD ABC BCD ∠+∠=∠+∠=︒,可证AD∥BC ,再证∠BAD =∠BCD ,得出∠AEB =∠F ,然后证∠ABC =2∠CBE =2∠F ,得出∠ADC =2∠F ,利用三角形内角和得出∠CED =180°-∠EDC -∠ECD =180°-2∠F -3∠F =180°-5∠F ,根据平角得出∠AEB +∠CED =180°-∠BEC =180°-80°=100°,列方程∠F +180°-5∠F =100°求出∠F =20°即可.【详解】解:∵AB CD ∥,∴∠ABC +∠BCD =180°,∵ABC ADC ∠=∠∴180ADC BCD ABC BCD ∠+∠=∠+∠=︒,∴AD∥BC ,∵AB CD ∥,∴∠BAD +∠ADC =180°,∠BAF +∠F =180°,∵∠ADC +∠BCD =180°,∴∠BAD =∠BCD ,∵180BCD AEB DAF ∠+∠+∠=︒,∴180BAD AEB DAF ∠+∠+∠=︒,∵∠BAF =∠BAD +∠DAF ,∴∠BAF +∠AEB =180°,∴∠AEB =∠F ,∵AD∥BC ,∴∠CBE =∠AEB ,∵BE 平分ABC ∠,∴∠ABC =2∠CBE =2∠F ,∴∠ADC =2∠F ,∵3ECD F ∠=∠,在△CED 中,∠CED =180°-∠EDC -∠ECD =180°-2∠F -3∠F =180°-5∠F ,∵80BEC ∠=︒,∴∠AEB +∠CED =180°-∠BEC =180°-80°=100°,∴∠F +180°-5∠F =100°,解得∠F =20°,∴18052018010080CED ∠=︒-⨯︒=︒-︒=︒,故答案为80°.【点睛】本题考查平行线的判定与性质,三角形内角和,角平分线定义,平角,解一元一次方程,掌握平行线的判定与性质,三角形内角和,角平分线定义,平角,解一元一次方程,关键是证出∠ADC =2∠F . 4、401802n - 【分析】先根据等腰三角形的性质求出∠C 1B 1A 的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠B 1B 2C 2,∠C 3B 3B 2及∠C 4B 3B 2的度数,找出规律即可得出∠AB n C n 的度数.【详解】解:△AB 1C 1中,AC 1=B 1C 1,∠C 1=20°,∴∠C 1B 1A =180180208022C ︒-∠︒-︒==︒ , ∵B 1B 2=B 1C 2,,∠C 1B 1A 是△B 1B 2C 2的外角,∴∠B 1B 2C 2=11804022C B A ∠︒==︒ ; 同理可得,∠C 3B 3B 2=20°,∠C 4B 3B 2=10°,∴∠AB n C n =1802n -︒. 故答案为:40,1802n -. 【点睛】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠B 1B 2C 2,∠C 3B 3B 2及∠C 4B 3B 2的度数,找出规律是解答此题的关键.5、AD =CE (或∠D =∠E 或∠ACD =∠B )(答案不唯一) SAS【分析】(1)由已知条件可得两个三角形有一组对应边相等,一组对应角相等,根据三角形全等的判定方法添加条件即可;(2)根据添加的条件,写出判断的理由即可.【详解】解:(1)添加的条件是:AD =CE (或∠D =∠E 或∠ACD =∠B )故答案为:AD =CE (或∠D =∠E 或∠ACD =∠B )(2)若添加:AD =CE∵点C 是线段AB 的中点,∴AC =BC∵DA EC ∥∴A BCE ∠=∠∴DAC △≌ECB (SAS )故答案为:SAS【点睛】本题主要考查了添加条件判断三角形全等,熟练掌握全等三角形的判断方法是解答本题的关键.三、解答题1、(1)证明见解析;(2)4【分析】(1)根据等边三角形的性质和平行线的性质可证得∠EDC=∠ECD=∠DEC=60°,再根据直角定义和三角形的外角性质证得∠F=∠FEC=30°,利用等角对等边即可证得结论;(2)由等角对等边可知CE=DC=2,结合(1)中结论即可求解.(1)证明:∵△ABC是等边三角形,∴∠A=∠B=∠ACB=60°.∵DE∥AB,∴∠B=∠EDC=60°,∠A=∠CED=60°,∴∠EDC=∠ECD=∠DEC=60°,∵EF⊥ED,∴∠DEF=90°,∴∠F=30°∵∠F+∠FEC=∠ECD=60°,∴∠F=∠FEC=30°,∴CE=CF.(2)解:由(1)可知∠EDC=∠ECD=∠DEC=60°,∴CE=DC=2.又∵CE =CF ,∴CF =2.∴DF =DC +CF =2+2=4.【点睛】本题考查等边三角形的性质、等腰三角形的判定、平行线的性质、三角形的外角性质、线段的和与差,熟练掌握相关知识的联系与运用是解答的关键.2、(1)见解析;(2)△AEF 、△ADG 、△DCF 、△ECD【分析】(1)根据已知条件得到∠BAE =∠CAD ,根据全等三角形的性质得到∠AED =∠ABC ,根据等腰三角形的性质得到∠ABC =∠AEB ,于是得到结论;(2)根据等腰三角形的判定定理即可得到结论.【详解】证明:(1)如图1,∵∠BAE =∠CAD ,∴∠BAE +∠CAE =∠CAD +∠CAE ,即∠BAC =∠EAD ,在△AED 与△ABC 中,AB AE BAC EAD AD AC ⎧⎪∠∠⎨⎪⎩=== ∴△AED ≌△ABC ,∴∠AED =∠ABC ,∵∠BAE +∠ABC +∠AEB =180°,∠CED +∠AED +∠AEB =180°,∵AB =AE ,∴∠ABC=∠AEB,∴∠BAE+2∠AEB=180°,∠CED+2∠AEB=180°,∴∠DEC=∠BAE;(2)解:如图2,①∵∠BAE=∠CAD=30°,∴∠ABC=∠AEB=∠ACD=∠ADC=75°,由(1)得:∠AED=∠ABC=75°,∠DEC=∠BAE=30°,∵AD⊥AB,∴∠BAD=90°,∴∠CAE=30°,∴∠AFE=180°−30°−75°=75°,∴∠AEF=∠AFE,∴△AEF是等腰三角形,②∵∠BEG=∠DEC=30°,∠ABC=75°,∴∠G=45°,在Rt△AGD中,∠ADG=45°,∴△ADG是等腰直角三角形,③∠CDF=75°−45°=30°,∴∠DCF=∠DFC=75°,∴△DCF是等腰直角三角形;④∵∠CED=∠EDC=30°,∴△ECD是等腰三角形.【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的判定,等腰三角形的判定和性质,熟练掌握全等三角形的判定与性质是解题的关键.3、(1)①见解析;②60α︒-,60;③MF=MA+ME,证明见解析;(2)MF MA ME=-【分析】(1)①按照要求旋转作图即可;②由旋转和等腰三角形性质解出∠AEF;再由三角形外角定理求出∠AMF;③在FE上截取GF=ME,连接AG,证明△AFG≌△AEM且△AGM为等边三角形后即可证得MF =MA+ME;(2)根据题意画出图形,根据含30°的直角三角形的性质,即可得到结论.【详解】解:(1)①补全图形如下图:②∵∠CAE=∠DAC=α,∴∠BAE=30°+α∴∠FAE=2×(30°+α)∴∠AEF =()180-2+302α︒⨯︒=60°-α; ∵∠AMF =∠CAE +∠AEF =α+60°-α=60°, 故答案是:60°-α,60°;③MF =MA +ME .证明:在FE 上截取GF =ME ,连接AG .∵点D 关于直线AC 的对称点为E , ∴△ADC ≌△AEC .∴∠CAE =∠CAD =α.∵∠BAC =30°,∴∠EAN =30°+α.又∵点E 关于直线AB 的对称点为F , ∴AB 垂直平分EF .∴AF =AE ,∠FAN =∠EAN =30°+α, ∴∠F =∠AEF =()180230602αα︒-︒+=︒-.∴∠AMG =6060αα︒-+=︒.∵AF =AE ,∠F =∠AEF , GF =ME ,∴△AFG≌△AEM.∴AG=AM.又∵∠AMG=60︒,∴△AGM为等边三角形.∴MA=MG.∴MF=MG+GF=MA+ME.(2)MF MA ME=-,理由如下:如图1所示,∵点E与点F关于直线AB对称,∴∠ANM=90°,NE=NF,又∵∠NAM=30°,∴AM=2MN,∴AM=2NE+2EM =MF+ME,∴MF=AM-ME;如图2所示,∵点E与点F关于直线AB对称,∴∠ANM =90°,NE =NF ,∵∠NAM =30°,∴AM =2NM ,∴AM =2MF +2NF =2MF +NE +NF =ME +MF ,∴MF =MA -ME ;综上所述:MF =MA -ME .【点睛】本题考查轴对称、三角形全等判定与性质、等边三角形判定与性质,掌握这些是本题关键.4、(1)见详解;(2)见详解【分析】(1)由题意易得60ABC ACB BAC ∠=∠=∠=︒,然后根据平行线的性质可得60ADE AED ∠=∠=︒,进而问题可求证;(2)连接AG ,由题意易得AB =AC ,然后可知△ABF ≌△ACG ,则有AF =AG ,进而可得∠FAG =60°,最后问题可求证.【详解】证明:(1)∵ABC 是等边三角形,∴60ABC ACB BAC ∠=∠=∠=︒,∵DE ∥BC ,∴60,60ADE ABC AED ACB ∠=∠=︒∠=∠=︒,∴60ADE AED ∠=∠=︒,∴ADE 是等边三角形;(2)连接AG ,如图所示:∵ABC 是等边三角形,∴60BAC ∠=︒,AB =AC ,∵BF CG =,ABF ACG ∠=∠,∴△ABF ≌△ACG (SAS ),∴,AF AG BAF CAG =∠=∠,∵60BAF FAC BAC ∠+∠=∠=︒,∴60CAG FAC FAG ∠+∠=∠=︒,∴AFG 是等边三角形,∴AF FG =.【点睛】本题主要考查全等三角形及等边三角形的性质与判定,熟练掌握全等三角形及等边三角形的性质与判定是解题的关键.5、见解析【分析】由OA OC PC ==,得出,POC AOC 为等腰三角形,由外角的性质及等量代换得2CAO APB ∠=∠,再次利用外角的性质及等量代换得3AOB APB ∠=∠,即可证明.【详解】解:OA OC PC ==,,POC AOC ∴为等腰三角形,,APB COP ACO CAO ∴∠=∠∠=∠,由外角的性质得:2ACO APB COP APB ∠=∠+∠=∠,2CAO APB ∠=∠,再由外角的性质得:AOB APB CAO ∠=∠+∠,3AOB APB ∴∠=∠,13APB AOB ∴∠=∠. 【点睛】本题考查了等腰三角形、外角的性质、解题的关键是掌握外角的性质及等量代换的思想进行求解.6、见解析【分析】利用AAS 即可证明△ABO ≌△EDO .【详解】证明:∵AB ⊥BE ,DE ⊥AD ,∴∠B =∠D =90°.在△ABO 和△EDO 中,,B D AOB EOD OA OE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABO ≌△EDO .【点睛】本题考查了全等三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.7、(1)见解析;(2)见解析【分析】(1)根据∠1=∠2可推出∠DAE =∠BAC ,然后结合全等三角形的判定定理进行证明;(2)由全等三角形的性质可得AE =AC ,结合∠2=60°可推出△AEC 为等边三角形,据此证明.【详解】(1)证明:∵∠1=∠2∴∠1+BAE ∠=∠2+BAE ∠即∠DAE =∠BAC在△ADE 和△ABC 中DAE BAC AD ABD B ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADE ≌△ABC (ASA )(2)证明:∵△ADE ≌△ABC∴AE =AC又∵∠2=60°∴△AEC 为等边三角形∴AE =CE【点睛】此题考查了全等三角形的性质和判定,等边三角形的性质和判定,解题的关键是熟练掌握全等三角形的性质和判定方法,等边三角形的性质和判定方法.8、(1)见解析;(2)见解析【分析】(1)根据CE ⊥AB ,BF ⊥AC 就可以得出∠BED =∠CFD =90°,就可以由AAS 得出结论;(2)由(1)得DE =DF ,就可以得出BF =CE ,由AAS 就可以得出△AFB ≌△AEC 就可以得出结论.【详解】证明:(1)∵CE ⊥AB ,BF ⊥AC ,∴∠BED =∠CFD =90°,在△BED 和△CFD 中,BED CFD BDE CDF BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△BED ≌△CFD (AAS );(2)∵△BED ≌△CFD ,∴DE =DF ,∴BD +DF =CD +DE ,∴BF =CE ,在△ABF 和△ACE 中,B C A A BF CE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABF ≌△ACE (AAS ),∴AE =AF .【点睛】本题考查了垂直的性质的运用,全等三角形的判定与性质的运用,等式的性质的运用,解答时证明三角形全等是关键.9、见解析【分析】根据已知条件和公共角A ∠A =∠,直接根据角边角证明ABE △≌ACD ,进而即可证明=AD AE【详解】在ABE △与ADC 中,==A A AB AC B C ∠∠⎧⎪=⎨⎪∠∠⎩∴ABE △≌ACD .∴=AD AE .【点睛】本题考查了全等三角形的性质与判定,掌握全等三角形的性质与判定是解题的关键.10、(1)2<BC <8;(2)25°【分析】(1)根据三角形三边关系解答即可;(2)根据三角形外角性质和三角形内角和解答即可.【详解】解:(1)∵AC-AB<BC<AC+AB,AB=3,AC=5.∴2<BC<8,故答案为:2<BC<8(2)∵∠ADC是△ABD的外角∴∠ADC=∠B+∠BAD=140︒∵∠B=∠BAD∴∠B=114070 2⨯︒=︒∵∠B+∠BAC+∠C=180︒∴∠C=180︒﹣∠B﹣∠BAC即∠C=180︒﹣70︒﹣85︒=25︒【点睛】本题考查了三角形第三边的取值范围,三角形内角和定理和三角形外角的性质,能根据三角形的外角的性质求出∠B的度数是解此题的关键.。

精品试卷沪教版七年级数学第二学期第十四章三角形同步测评试题(名师精选)

精品试卷沪教版七年级数学第二学期第十四章三角形同步测评试题(名师精选)

沪教版七年级数学第二学期第十四章三角形同步测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、三角形的外角和是()A.60°B.90°C.180°D.360°2、如图,ABC是等边三角形,点D在AC边上,40DBC,则ADB∠=︒∠的度数为().A.25°B.60°C.90°D.100°3、我们称网格线的交点为格点.如图,在4×4的长方形网格中有两个格点A、B,连接AB,在网格中再找一个格点C,使得△ABC是等腰直角三角形,则满足条件的格点C的个数是()A .3B .4C .5D .64、如图,ABC 中,∠ABC =45°,CD ⊥AB 于D ,BE 平分∠ABC ,且BE ⊥AC 于E ,与CD 相交于点F ,DH ⊥BC 于H ,交BE 于G ,下列结论中正确的是( ) ①BCD 为等腰三角形;②BF =AC ;③CE =12BF ;④BH =CE .A .①②B .①③C .①②③D .①②③④5、三根小木棒摆成一个三角形,其中两根木棒的长度分别是8cm 和5cm ,那么第三根小木棒的长度不可能是( )A .5cmB .8cmC .10cmD .13cm6、如图,ABC DEC ≌△△,点E 在线段AB 上,75B ∠=︒,则ACD ∠的度数为( )A .20°B .25°C .30°D .40°7、下列各条件中,不能作出唯一的ABC 的是( )A .4AB =,5BC =,10AC =B .5AB =,4BC =,30A ∠=︒ C .90A ∠=︒,30B ∠=︒,5BC =D .60A ∠=︒,50B ∠=︒,5AB =8、在△ABC 中,∠A =∠B =14∠C ,则∠C =( ) A .70° B .80° C .100° D .120°9、尺规作图:作A O B '''∠角等于已知角AOB ∠.示意图如图所示,则说明A O B AOB '''∠=∠的依据是( )A .SSSB .SASC .ASAD .AAS10、将三根木条钉成一个三角形木架,这个三角形木架具有稳定性.解释这个现象的数学原理是( )A .SSSB .SASC .ASAD .AAS第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,BD ,CE 是等边三角形ABC 的中线,BD ,CE 交于点F ,则BFC ∠=______°.2、在平面直角坐标系xOy 中,()2,0A ,()0,4C -,AB AC =,90BAC ∠=︒,则点B 的坐标为__________.3、如图,在△ABC 中,已知点D E F 、、分别为BC AD CE 、、的中点,若△ABC 的面积为24m ,则阴影部分的面积为 _________ 2cm4、在新年联欢会上,老师设计了“你说我画”的游戏.游戏规则如下:甲同学需要根据乙同学提供的三个条件画出形状和大小都确定的三角形.已知乙同学说出的前两个条件是“4AB =,2BC =”.现仅存下列三个条件:①45A ∠=︒;②45B ∠=︒;③45C ∠=︒.为了甲同学画出形状和大小都确定的ABC ,乙同学可以选择的条件有: ______.(填写序号,写出所有正确答案)5、如图,AE CF ∥,ACF ∠的平分线交AE 于点B ,G 是CF 上的一点,GBE ∠的平分线交CF 于点D ,且BD BC ⊥,下列结论:①BC 平分ABG ∠;②∥AC BG ;③与DBE ∠互余的角有2个;④若A α∠=,则1808BDF α∠=︒-.其中正确的是________.(请把正确结论的序号都填上)三、解答题(10小题,每小题5分,共计50分)1、如图,在四边形ABCD中,点E在BC上,连接DE、AC相交于点F,∠BAE=∠CAD,AB=AE,AD=AC.(1)求证:∠DEC=∠BAE;(2)如图2,当∠BAE=∠CAD=30°,AD⊥AB时,延长DE、AB交于点G,请直接写出图中除△ABE、△ADC以外的等腰三角形.2、如图,在△ABC中,AB=AC,M,N分别是AB,AC边上的点,并且MN∥BC.(1)△AMN是否是等腰三角形?说明理由;(2)点P是MN上的一点,并且BP平分∠ABC,CP平分∠ACB.①求证:△BPM是等腰三角形;②若△ABC的周长为a,BC=b(a>2b),求△AMN的周长(用含a,b的式子表示).=,点D是BC边上的一个动点(点D不与点B,C重合),连接AD,作等3、在等腰ABC中,AB AC∠=∠,点D,E在直线AC两旁,连接CE.腰ADE,使AD AE=,DAE BAC(1)如图1,当90BAC ∠=︒时,直接写出BC 与CE 的位置关系;(2)如图2,当090BAC ︒<∠<︒时,过点A 作AF CE ⊥于点F ,请你在图2中补全图形,用等式表示线段BD ,CD ,2EF 之间的数量关系,并证明.4、下面是“作一个角的平分线”的尺规作图过程.已知:如图,钝角AOB ∠.求作:射线OC ,使AOC BOC ∠=∠.作法:如图,①在射线OA 上任取一点D ;②以点О为圆心,OD 长为半径作弧,交OB 于点E ;③分别以点D ,E 为圆心,大于12DE 长为半径作弧,在AOB ∠内,两弧相交于点C ;④作射线OC .则OC 为所求作的射线.完成下面的证明.证明:连接CD ,CE由作图步骤②可知OD =______.由作图步骤③可知CD =______.∵OC OC =,∴OCD OCE ≌△△. ∴AOC BOC ∠=∠(________)(填推理的依据).5、已知AM ∥CN ,点B 在直线AM 、CN 之间,AB ⊥BC 于点B .(1)如图1,请直接写出∠A 和∠C 之间的数量关系: .(2)如图2,∠A 和∠C 满足怎样的数量关系?请说明理由.(3)如图3,AE 平分∠MAB ,CH 平分∠NCB ,AE 与CH 交于点G ,则∠AGH 的度数为 .6、直线l 经过点A ,ABC 在直线l 上方,AB AC =.(1)如图1,90BAC ∠=︒,过点B ,C 作直线l 的垂线,垂足分别为D 、E .求证:ABD CAE ≌(2)如图2,D ,A ,E 三点在直线l 上,若BAC BDA AEC α∠=∠=∠=(α为任意锐角或钝角),猜想线段DE 、BD 、CE 有何数量关系?并给出证明.(3)如图3,90BAC ∠=︒过点B 作直线l 上的垂线,垂足为F ,点D 是BF 延长线上的一个动点,连结AD ,作90DAE ∠=︒,使得AE AD =,连结DE ,CE .直线l 与CE 交于点G .求证:G 是CE 的中点.7、命题:如图,已知,AC EF AC FE =∥,A D B F ,,,共线,(1),那么ABC FDE ∆≅∆.(1)从①AB FD =和②BC DE =两个条件中,选择一个填入横线,使得上述命题为真命题,你选择的条件为_______(填序号);(2)根据你选择的条件,判定ABC FDE ∆≅∆的方法是________;(3)根据你选择的条件,完成ABC FDE ∆≅∆的证明.8、如图是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点为格点,线段AB 的端点都在格点上.要求以AB 为边画一个等腰ABC ,且使得点C 为格点.请在下面的网格图中画出3种不同的等腰ABC .9、阅读下面材料:活动1利用折纸作角平分线①画图:在透明纸片上画出PQR ∠(如图1-①);②折纸:让PQR ∠的两边QP 与QR 重合,得到折痕QH (如图1-②);③获得结论:展开纸片,QH 就是PQR ∠的平分线(如图1-③).活动2利用折纸求角如图2,纸片上的长方形ABCD ,直线EF 与边AB ,CD 分别相交于点E ,F .将AEF ∠对折,点A 落在直线EF 上的点A '处,折痕EN 与AD 的交点为N ;将BEF ∠对折,点B 落在直线EF 上的点B '处,折痕EM 与BC 的交点为M .这时NEM ∠的度数可知,而且图中存在互余或者互补的角. 解答问题:(1)求NEM ∠的度数;(2)①图2中,用数字所表示的角,哪些与A EN '∠互为余角?②写出A EN '∠的一个补角.解:(1)利用活动1可知,EN 是AEA '∠的平分线,EM 是BEB '∠的平分线,所以12A EN '∠=∠ ,12B EM '∠=∠ .由题意可知,AEB ∠是平角.所以12NEM A EN B EM ''∠=∠+∠=(∠ +∠ )= °. (2)①图2中,用数字所表示的角,所有与A EN '∠互余的角是: ; ②A EN '∠的一个补角是 .10、如图,ABC 是等边三角形,∥DE BC ,分别交AB ,AC 于点D ,E .(1)求证:ADE 是等边三角形;(2)点F 在线段DE 上,点G 在ABC 外,BF CG =,ABF ACG ∠=∠,求证:AF FG =.-参考答案-一、单选题1、D【分析】根据三角形的内角和定理、邻补角的性质即可得.【详解】解:如图,142536180∠+∠=∠+∠=∠+∠=︒, 142536540∴∠+∠+∠+∠+∠+∠=︒,又123180∠+∠+∠=︒,456540180360∴∠+∠+∠=︒-︒=︒,即三角形的外角和是360︒,故选:D .【点睛】本题考查了三角形的内角和定理、邻补角的性质,熟练掌握三角形的内角和定理是解题关键.2、D【分析】由等边三角形的性质及三角形外角定理即可求得结果.【详解】∵ABC是等边三角形∴∠C=60°∴∠ADB=∠DBC+∠C=40°+60°=100°故选:D【点睛】本题考查了等边三角形的性质、三角形外角的性质,掌握这两个性质是关键.3、A【分析】根据题意,结合图形,分两种情况讨论:①AB为等腰直角△ABC底边;②AB为等腰直角△ABC其中的一条腰.【详解】解:如图:分情况讨论:①AB为等腰直角△ABC底边时,符合条件的格点C点有0个;②AB为等腰直角△ABC其中的一条腰时,符合条件的格点C点有3个.故共有3个点,故选:A.【点睛】本题考查了等腰三角形的性质和判定;解答本题关键是根据题意,画出符合实际条件的图形,数形结合的思想是数学解题中很重要的解题思想.4、C【分析】根据∠ABC=45°,CD⊥AB可得出BD=CD;利用AAS判定Rt△DFB≌Rt△DAC,从而得出BF=AC;再利用AAS判定Rt△BEA≌Rt△BEC,即可得到CE=12BF;由CE=12BF,BH=12BC,在三角形BCF中,比较BF、BC的长度即可得到CE<BH.【详解】解:∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD,故①正确;在Rt△DFB和Rt△DAC中,∵∠DBF=90°﹣∠BFD,∠DCA=90°﹣∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.又∵∠BDF=∠CDA=90°,BD=CD,∴△DFB≌△DAC.∴BF=AC,故②正确;在Rt△BEA和Rt△BEC中∵BE平分∠ABC,∴∠ABE=∠CBE.又∵BE=BE,∠BEA=∠BEC=90°,∴Rt△BEA≌Rt△BEC.∴CE=12AC=12BF,故③正确;∵CE=12AC=12BF,BH=12BC,在△BCF中,∠CBE=12∠ABC=22.5°,∠DCB=∠ABC=45°,∴∠BFC=112.5°,∴BF<BC,∴CE<BH,故④错误;故选:C.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.在复杂的图形中有45°的角,有垂直,往往要用到等腰直角三角形,要注意掌握并应用此点.5、D【分析】设第三根木棒长为x厘米,根据三角形的三边关系可得8﹣5<x<8+5,确定x的范围即可得到答案.【详解】解:设第三根木棒长为x 厘米,由题意得:8﹣5<x <8+5,即3<x <13,故选:D .【点睛】此题主要考查了三角形的三边关系,要注意三角形形成的条件:任意两边之和>第三边,任意两边之差<第三边.6、C【分析】根据全等三角形的性质可证得BC=CE ,∠ACB =∠DCE 即∠ACD =∠BCE ,根据等腰三角形的性质和三角形的内角和定理求解∠B =∠BEC 和∠BCE 即可.【详解】解:∵ABC DEC ≌△△,∴BC=CE ,∠ACB =∠DCE ,∴∠B =∠BEC ,∠ACD =∠BCE ,∵75B ∠=︒,∴∠ACD =∠BCE=180°-2×75°=30°,故选:C .【点睛】本题考查全等三角形的性质、等腰三角形的性质、三角形的内角和定理,熟练掌握全等三角形的性质和等腰三角形的性质是解答的关键.7、B【分析】根据三角形全等的判定及三角形三边关系即可得出结果.【详解】解:A 、AB BC AC +<,不能组成三角形;B 、根据SSA 不可以确定选项中条件能作出唯一三角形;C 、根据AAS 可以确定选项中条件能作出唯一三角形;D 、根据ASA 可以确定选项中条件能作出唯一三角形;故答案为:B .【点睛】本题考查确定唯一三角形所需要的条件及三角形三边关系,解题关键在于对全等判定条件的理解.8、D【分析】根据三角形的内角和,180A B C ∠+∠+∠=︒①,进而根据已知条件,将,A B ∠∠代入①即可求得C ∠【详解】解:∵在△ABC 中,180A B C ∠+∠+∠=︒,∠A =∠B =14∠C , ∴1118044C C C ∠+∠+∠=︒解得120C ∠=︒故选D【点睛】本题考查了三角形内角和定理,掌握三角形内角和定理是解题的关键.9、A【分析】利用基本作图得到OD=OC=OD′=OC′,CD=C′D′,则根据全等三角形的判定方法可根据“SSS”可判断△OCD≌△O′C′D′,然后根据全等三角形的性质得到∠A′OB′=∠AOB.【详解】解:由作法可得OD=OC=OD′=OC′,CD=C′D′,所以根据“SSS”可判断△OCD≌△O′C′D′,所以∠A′OB′=∠AOB.故选:A.【点睛】本题考查了作图﹣基本作图和全等三角形的判定与性质,解题关键是熟练掌握基本作图和全等三角形的判定定理.10、A【分析】根据三根木条即为三角形的三边长,利用全等三角形判定定理确定唯一三角形即可得.【详解】解:三根木条即为三角形的三边长,即为利用SSS确定三角形,故选:A.【点睛】题目主要考查利用全等三角形判定确定唯一三角形,熟练掌握全等三角形的判定是解题关键.二、填空题1、120【分析】等边三角形中线与角平分线合一,有1302DBC ABC ∠=∠=︒,1302ECB ACB ∠=∠=︒,由180BFC DBC ECB ∠=︒-∠-∠可求得结果. 【详解】解:∵ABC 是等边三角形∴60ABC ACB ∠=∠=︒∵BD ,CE 是等边三角形ABC 的中线 ∴11303022DBC ABC ECB ACB ∠=∠=︒∠=∠=︒,又∵180BFC DBC ECB ∠=︒-∠-∠∴1803030120BFC ∠=︒-︒-︒=︒故答案为:120︒.【点睛】本题考查了等边三角形的性质,角度的计算.解题的关键在于熟练利用等边三角形三线合一的性质. 2、(6),-2【分析】按照在x 轴的上下方,分成两类情况讨论,如解析中的图像所示,分别利用边和角证明1Rt OAC Rt EB A ∆∆≌和2Rt OAC DB A ∆∆≌成立,然后根据对应边相等,即可求出两种情况对应的点B 的坐标.【详解】解:如下图所示:由()2,0A ,()0,4C -可知:2OA =,4OC =.当B 点在x 轴下方时,过点B 1向x 轴作垂线,垂足为E .90BAC ∠=︒,190OAC EAB ∴∠+∠=︒90OAC OCA ∠+∠=︒1OCA EAB ∴∠=∠在Rt OAC ∆与1Rt EB A ∆中:111AOC B EA OCA EAB AC AB ∠=∠⎧⎪∠=∠⎨⎪=⎩1()Rt OAC Rt EB A AAS ∴∆∆≌12EB OA ∴==,4EA OC ==6OE OA EA ∴=+=1B ∴点坐标为(6),-2当B 点在x 轴上方时,过点B 2向x 轴作垂线,垂足为D .由题意可知:2290B AC B AD OAC ∠=∠+∠=︒90OAC OCA ∠+∠=︒2B AD OAC ∴∠=∠在Rt OAC ∆与2Rt DB A ∆中222OAC B AD AOC B DA AC AB ∠=∠⎧⎪∠=∠⎨⎪=⎩2()Rt OAC DB A AAS ∴∆∆≌22DB OA ∴==,4AD OC ==2OD AD OA ∴=-=∴点2B 坐标为(22)-,故答案为:(6),-2或(22)-,. 【点睛】本题主要是考查了全等三角形的判定和性质以及坐标点的求解,熟练利用全等三角形证明边相等,进而利用边长求解点的坐标,这是解决该题的关键.3、1【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答.【详解】解:∵点E 是AD 的中点,∴S △ABE =12S △ABD ,S △ACE =12S △ADC ,∴S △ABE +S △ACE =12S △ABC =12×4=2cm 2,∴S △BCE =12S △ABC =12×4=2cm 2,∵点F 是CE 的中点,∴S △BEF =12S △BCE =12×2=1cm 2.故答案为:1.【点睛】本题考查了三角形的面积,主要利用了三角形的中线把三角形分成两个面积相等的三角形,原理为等底等高的三角形的面积相等.4、②【分析】根据两边及其夹角对应相等的两个三角形全等,即可求解.【详解】解:①若选45A ∠=︒,是边边角,不能得到形状和大小都确定的ABC ;②若选45B ∠=︒,是边角边,能得到形状和大小都确定的ABC ;③若选45C ∠=︒,是边边角,不能得到形状和大小都确定的ABC ;所以乙同学可以选择的条件有②.故答案为:②【点睛】本题主要考查了全等三角形的判定,熟练掌握两边及其夹角对应相等的两个三角形全等是解题的关键.5、①②【分析】由BD ⊥BC 及BD 平分∠GBE ,可判断①正确;由CB 平分∠ACF 、AE ∥CF 及①的结论可判断②正确;由前两个的结论可对③作出判断;由AE ∥CF 及AC ∥BG 、三角形外角的性质可求得∠BDF ,从而可对④作出判断.【详解】∵BD平分∠GBE∠GBE∴∠EBD=∠GBD=12∵BD⊥BC∴∠GBD+∠GBC=∠CBD=90°∴∠DBE+∠ABC=90°∴∠GBC=∠ABC∴BC平分∠ABG故①正确∵CB平分∠ACF∴∠ACB=∠GCB∵AE∥CF∴∠ABC=∠GCB∴∠ACB=∠GCB=∠ABC=∠GBC∴AC∥BG故②正确∵∠DBE+∠ABC=90°,∠ACB=∠GCB=∠ABC=∠GBC ∴与∠DBE互余的角共有4个故③错误∵AC∥BG,∠A=α∴∠GBE=α∴12 GBDα∠=∵AE∥CF∴∠BGD=180°-∠GBE=180°−α∴∠BDF=∠GBD+∠BGD=1+18018022ααα︒-=︒-故④错误即正确的结论有①②故答案为:①②【点睛】本题考查了平行线的判定与性质,互余概念,垂直的定义,角平分线的性质等知识,掌握这些知识并正确运用是关键.三、解答题1、(1)见解析;(2)△AEF、△ADG、△DCF、△ECD【分析】(1)根据已知条件得到∠BAE=∠CAD,根据全等三角形的性质得到∠AED=∠ABC,根据等腰三角形的性质得到∠ABC=∠AEB,于是得到结论;(2)根据等腰三角形的判定定理即可得到结论.【详解】证明:(1)如图1,∵∠BAE=∠CAD,∴∠BAE+∠CAE=∠CAD+∠CAE,即∠BAC=∠EAD,在△AED与△ABC中,AB AE BAC EAD AD AC ⎧⎪∠∠⎨⎪⎩=== ∴△AED ≌△ABC ,∴∠AED =∠ABC ,∵∠BAE +∠ABC +∠AEB =180°,∠CED +∠AED +∠AEB =180°,∵AB =AE ,∴∠ABC =∠AEB ,∴∠BAE +2∠AEB =180°,∠CED +2∠AEB =180°,∴∠DEC =∠BAE ;(2)解:如图2,①∵∠BAE =∠CAD =30°,∴∠ABC =∠AEB =∠ACD =∠ADC =75°,由(1)得:∠AED =∠ABC =75°,∠DEC =∠BAE =30°,∵AD ⊥AB ,∴∠BAD =90°,∴∠CAE =30°,∴∠AFE =180°−30°−75°=75°,∴∠AEF =∠AFE ,∴△AEF 是等腰三角形,②∵∠BEG=∠DEC=30°,∠ABC=75°,∴∠G=45°,在Rt△AGD中,∠ADG=45°,∴△ADG是等腰直角三角形,③∠CDF=75°−45°=30°,∴∠DCF=∠DFC=75°,∴△DCF是等腰直角三角形;④∵∠CED=∠EDC=30°,∴△ECD是等腰三角形.【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的判定,等腰三角形的判定和性质,熟练掌握全等三角形的判定与性质是解题的关键.2、(1)△AMN是是等腰三角形;理由见解析;(2)①证明见解析;②a﹣b.【分析】(1)由等腰三角形的性质得到∠ABC=∠ACB,由平行线的性质得到∠AMN=∠ABC,∠ANM=∠ACB,于是得到∠AMN=∠ANM,根据等角对等边即可证得结论;(2)①由角平分线的定义得到∠PBM=∠PBC,由平行线的性质得到∠MPB=∠PBC,于是得到∠PBM=∠MPB,根据等角对等边即可证得结论;②由①知MB=MP,同理可得:NC=NP,故△AMN的周长=AB+AC,再根据已知条件即可求出结果.(1)解:△AMN是是等腰三角形,理由如下:∵AB=AC,∴∠ABC=∠ACB,∵MN∥BC,∴∠AMN=∠ABC,∠ANM=∠ACB,∴∠AMN=∠ANM,∴AM=AN,∴△AMN是等腰三角形;(2)①证明:∵BP平分∠ABC,∴∠PBM=∠PBC,∵MN∥BC,∴∠MPB=∠PBC∴∠PBM=∠MPB,∴MB=MP,∴△BPM是等腰三角形;②由①知MB=MP,同理可得:NC=NP,∴△AMN的周长=AM+MP+NP+AN=AM+MB+NC+AN=AB+AC,∵△ABC的周长为a,BC=b,∴AB+AC+b=a,∴AB+AC=a﹣b∴△AMN 的周长=a ﹣b .【点睛】本题考查了等腰三角形的性质和判定,平行线的性质,列代数式,能够灵活应用这些性质是解决问题的关键.3、(1)BC CE ⊥(2)2CD BD EF -=或2BD CD EF -=,见解析【分析】(1)根据已知条件求出∠B =∠ACB =45°,证明△BAD ≌△CAE ,得到∠ACE =∠B =45°,求出∠BCE =∠ACB +∠ACE =90°,即可得到结论BC CE ⊥;(2)根据题意作图即可,证明ABD △≌ACE .得到BD CE =,B ACE ∠=∠,ADB AEC ∠=∠,推出ACB ACE ∠=∠.延长EF 到点G ,使FG EF =,证明ADC ≌AGC ,推出CD CG =.由此得到2CD BD EF -=.同理可证2BD CD EF -=.(1)解:90BAC ∠=︒,AB AC =,∴∠B =∠ACB =45°,∵DAE BAC ∠=∠,∴DAE DAC BAC DAC ∠-∠=∠-∠,即∠BAD =∠CAE ,∵AB AC =,AD AE =,∴△BAD ≌△CAE ,∴∠ACE =∠B =45°,∴∠BCE =∠ACB +∠ACE =90°,∴BC CE ⊥;(2)解:如图,补全图形;2CD BD EF -=.证明:∵BAC DAE ∠=∠,∴BAD CAE ∠=∠.又∵AB AC =,AD AE =,∴ABD △≌ACE .∴BD CE =,B ACE ∠=∠,ADB AEC ∠=∠.∵AB AC =,∴B ACB ∠=∠.∴ACB ACE ∠=∠.延长EF 到点G ,使FG EF =.∵AF CE ⊥,∴AE AG =.∴AEG G ∠=∠.∵ADB AEC ∠=∠,∴ADC AEG ∠=∠.∴ADC G ∠=∠.∵AC AC =,∴ADC ≌AGC .∴CD CG =.∵2CG CE EF -=,∴2CD BD EF -=.如图,同理可证2BD CD EF -=..【点睛】此题考查了全等三角形的判定及性质,等腰三角形的性质,熟记全等三角形的判定及性质是解题的关键.掌握分类思想解题是难点.4、OE ; CE ;全等三角形的对应角相等【分析】根据圆的半径相等可得OD =OE ,CD =CE ,再利用SSS 可证明OCD OCE ≌△△,从而根据全等三角形的性质可得结论.【详解】证明:连接CD ,CE由作图步骤②可知OD =___OE ___.由作图步骤③可知CD =__CE ___.∵OC OC =,∴OCD OCE ≌△△. ∴AOC BOC ∠=∠(__全等三角形对应角相等__)故答案为:OE ; CE ;全等三角形的对应角相等【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了全等三角形的判定和性质.5、(1)∠A+∠C=90°;(2)∠C﹣∠A=90°,见解析;(3)45°【分析】(1)过点B作BE∥AM,利用平行线的性质即可求得结论;(2)过点B作BE∥AM,利用平行线的性质即可求得结论;(3)利用(2)的结论和三角形的外角等于和它不相邻的两个内角的和即可求得结论.【详解】(1)过点B作BE∥AM,如图,∵BE∥AM,∴∠A=∠ABE,∵BE∥AM,AM∥CN,∴BE∥CN,∴∠C=∠CBE,∵AB⊥BC,∴∠ABC=90°,∴∠A+∠C=∠ABE+∠CBE=∠ABC=90°.故答案为:∠A+∠C=90°;(2)∠A和∠C满足:∠C﹣∠A=90°.理由:过点B作BE∥AM,如图,∵BE∥AM,∴∠A=∠ABE,∵BE∥AM,AM∥CN,∴BE∥CN,∴∠C+∠CBE=180°,∴∠CBE=180°﹣∠C,∵AB⊥BC,∴∠ABC=90°,∴∠ABE+∠CBE=90°,∴∠A+180°﹣∠C=90°,∴∠C﹣∠A=90°;(3)设CH与AB交于点F,如图,∵AE平分∠MAB,∴∠GAF=12∠MAB,∵CH平分∠NCB,∴∠BCF=12∠BCN,∵∠B=90°,∴∠BFC=90°﹣∠BCF,∵∠AFG=∠BFC,∴∠AFG=90°﹣∠BCF.∵∠AGH=∠GAF+∠AFG,∴∠AGH=12∠MAB+90°﹣12∠BCN=90°﹣12(∠BCN﹣∠MAB).由(2)知:∠BCN﹣∠MAB=90°,∴∠AGH=90°﹣45°=45°.故答案为:45°.【点睛】本题考查平行线的性质以及三角形外角的性质,由题作出辅助线是解题的关键.6、(1)见解析;(2)猜想:DE BD CE =+,见解析;(3)见解析【分析】(1)先证明BDA AEC ∠=∠和ABD CAE ∠=∠,再根据AAS 证明ABD CAE ≌即可;(2)根据AAS 证明ABD CAE ≌得BD AE =,DA EC =,进一步可得出结论;(3)分别过点C 、E 作CM l ⊥,EN l ⊥,同(1)可证ABF CAM ≌,ADF EAN ≌,得出CM =EN ,证明CMG ENG ≌得CG EG =,从而可得结论.【详解】解:(1)证明:∵BD l ⊥,CE l ⊥,∴90BDA AEC ∠=∠=︒,∴90ABD DAB ∠+∠=︒∵90BAC ∠=︒,∴90CAE DAB ∠+∠=︒∴ABD CAE ∠=∠,在ABD 与CAE 中BDA AEC ABD CAE AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴()ABD CAE AAS ≌(2)猜想:DE BD CE =+,∵BDA BAC α∠=∠=∴180180ABD DAB BDA α∠+∠=︒-∠=︒-,180180CAE DAB BAC α∠+∠=︒-∠=︒-∴ABD CAE ∠=∠,在ABD 与CAE 中BDA AEC ABD CAE AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()ABD CAE AAS ≌,∴BD AE =,DA EC =,∴DE AE DA BD CE =+=+(3)分别过点C 、E 作CM l ⊥,EN l ⊥,同(1)可证ABF CAM ≌,ADF EAN ≌,∴AF CM =,AF EN =∴CM EN =,∵CM l ⊥,EN l ⊥,∴90CMG ENG ∠=∠=︒在CMG 与ENG 中CMG ENG CGM EGN CM EN ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()CMG ENG AAS ≌,∴CG EG =,∴G 为CE 的中点.【点睛】本题考查了全等三角形的判定与性质、垂线的定义、角的互余关系,证得△ABD≌△CAE是解决问题的关键.7、(1)①(2)SAS(3)见解析【分析】(1)根据全等三角形的判定方法分析得出答案;(2)根据(1)直接填写即可;(3)利用SAS进行证明.(1)解:∵AC EF∥,∴∠A=∠F,∵AC=EF,∴当AB FD=时,可根据SAS证明ABC FDE∆≅∆;当BC DE =时,不能证明ABC FDE ∆≅∆,故答案为:①;(2)解:当AB FD =时,可根据SAS 证明ABC FDE ∆≅∆,故答案为:SAS ;(3)证明:在△ABC 和△FDE 中,AC EF A F AB FD =⎧⎪∠=∠⎨⎪=⎩, ∴ABC FDE ∆≅∆.【点睛】此题考查了添加条件证明两个三角形全等,正确掌握全等三角形的判定定理是解题的关键.8、答案见解析【分析】AB 为4个等边三角形组成的平行四边形的对角线,因此只要找到另一腰也4个等边三角形组成的平行四边形的对角线即可【详解】解:如图,……[答案不唯一]【点睛】本题考查等腰三角形的绘图,掌握等边三角形和等腰三角形性质即可.9、(1)AEA ',BEB ',AEA BEB '',,90;(2)①∠1、∠2;②∠CME 或∠NEB .【分析】()11118090222BEB AEA BEB '''∠=∠+∠=⨯︒=︒ 【详解】解:(1)∵折叠∴EN 是AEA '∠的平分线,EM 是BEB '∠的平分线,∴∠NEA =∠NEA ′=12AEA '∠,∠BEM =∠B′EM=12BEB '∠, ∵AEB ∠是平角.∴∠NEM =∠NEA ′+∠B′EM==12AEA '∠+()11118090222BEB AEA BEB '''∠=∠+∠=⨯︒=︒, 故答案为:AEA ',BEB ',AEA BEB '',,90;(2)①∵∠1=∠2,∠A′EN =∠3,∠NEM =90°,∴∠A′EN +∠1=∠NEM =90°,∴A EN '∠互为余角为∠1和∠2,故答案为:∠1、∠2;②∵∠A′EN =∠3,∠3+∠NEB =180°,∴∠A′EN 的补角为∠NEB .∵∠B =90°,∴∠2+∠EMB =90°,∴∠3=∠EMB ,∵∠CME +∠EMB =180°,∴∠3+∠CME =180°,∴∠A′EN 的补角为∠CME ,∴∠A′EN 的补角为∠CME 或∠NEB .故答案为∠CME 或∠NEB .【点睛】本题考查折叠性质,平角,角平分线,余角性质,补角性质,掌握折叠性质,平角,角平分线,余角性质,补角性质是解题关键.10、(1)见详解;(2)见详解【分析】(1)由题意易得60ABC ACB BAC ∠=∠=∠=︒,然后根据平行线的性质可得60ADE AED ∠=∠=︒,进而问题可求证;(2)连接AG ,由题意易得AB =AC ,然后可知△ABF ≌△ACG ,则有AF =AG ,进而可得∠FAG =60°,最后问题可求证.【详解】证明:(1)∵ABC 是等边三角形,∴60ABC ACB BAC ∠=∠=∠=︒,∵DE ∥BC ,∴60,60ADE ABC AED ACB ∠=∠=︒∠=∠=︒,∴60ADE AED ∠=∠=︒,∴ADE 是等边三角形;(2)连接AG ,如图所示:∵ABC 是等边三角形,∴60BAC ∠=︒,AB =AC ,∵BF CG =,ABF ACG ∠=∠,∴△ABF ≌△ACG (SAS ),∴,AF AG BAF CAG =∠=∠,∵60BAF FAC BAC ∠+∠=∠=︒,∴60CAG FAC FAG ∠+∠=∠=︒,∴AFG 是等边三角形,∴AF FG =.【点睛】本题主要考查全等三角形及等边三角形的性质与判定,熟练掌握全等三角形及等边三角形的性质与判定是解题的关键.。

2021-2022学年沪教版七年级数学第二学期第十四章三角形定向攻克试题(含答案解析)

2021-2022学年沪教版七年级数学第二学期第十四章三角形定向攻克试题(含答案解析)

沪教版七年级数学第二学期第十四章三角形定向攻克考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列长度的三条线段能组成三角形的是( )A .3,4,7B .3,4,8C .3,4,5D .3,3,72、如图,点F ,C 在BE 上,AC =DF ,BF =EC ,AB =DE ,AC 与DF 相交于点G ,则与2∠DFE 相等的是( )A .∠A +∠DB .3∠BC .180°﹣∠FGCD .∠ACE +∠B3、在下列长度的四根木棒中,能与3cm ,9cm 的两根木棒首尾顺次相接钉成一个三角形的是( )A .3cmB .6cmC .10cmD .12cm4、如图,等边ABC 中,D 为AC 中点,点P 、Q 分别为AB 、AD 上的点,4BP AQ ==,3QD =,在BD 上有一动点E ,则PE QE +的最小值为( )A .7B .8C .10D .125、如图,90A D ∠=∠=︒,AC ,BD 相交于点O .添加一个条件,不一定能使ABC ≌DCB 的是( )A .AB DC =B .OB OC = C .ABO DCO ∠=∠D .ABC DCB ∠=∠6、下列三个说法: ①有一个内角是30°,腰长是6的两个等腰三角形全等;②有一个内角是120°,底边长是3的两个等腰三角形全等;③有两条边长分别为5,12的两个直角三角形全等.其中正确的个数有( ).A .3B .2C .1D .07、已知长方形纸片ABCD ,点E 、F 分别在边AB 、CD 上,连接EF ,将∠BEF 对折,点B 落在直线EF 上的点B ′处,得折痕EM ,将∠AEF 对折,点A 落在直线EF 上的点A ′处,得折痕EN ,则图中与∠B ′ME 互余的角有( )A .2个B .3个C .4个D .5个8、如图,已知ACD ∠为ABC 的外角,60ACD ∠=︒,20B ∠=︒,那么A ∠的度数是( )A .30°B .40°C .50°D .60°9、如图,ABC 中,∠ABC =45°,CD ⊥AB 于D ,BE 平分∠ABC ,且BE ⊥AC 于E ,与CD 相交于点F ,DH ⊥BC 于H ,交BE 于G ,下列结论中正确的是( ) ①BCD 为等腰三角形;②BF =AC ;③CE =12BF ;④BH =CE .A .①②B .①③C .①②③D .①②③④10、已知等腰三角形有一个角为50°,则这个等腰三角形的底角度数是( ).A .65°B .65°或80°C .50°或80°D .50°或65°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,AE CF ∥,ACF ∠的平分线交AE 于点B ,G 是CF 上的一点,GBE ∠的平分线交CF 于点D ,且BD BC ⊥,下列结论:①BC 平分ABG ∠;②∥AC BG ;③与DBE ∠互余的角有2个;④若A α∠=,则1808BDF α∠=︒-.其中正确的是________.(请把正确结论的序号都填上)2、如图,在△ABC 中,∠C =62°,△ABC 两个外角的角平分线相交于G ,则∠G 的度数为_____.3、如图,在△ABC 中,∠ACB =90°,AC =BC ,BE ⊥CE 于点E ,AD ⊥CE 于点D .若AD =3cm ,BE =1cm ,则DE =_________.4、已知△ABC 的面积是12,AB =AC =5,AD 是BC 边上的中线,E ,P 分别是AC ,AD 上的动点,则CP +EP 的最小值为_______.5、如图,在Rt △ABC 中,∠ACB =90°,∠BAC =30°,BC =6,将△ABC 绕点C 顺时针旋转30°得到△A ′B ′C ,A 、B 分别与A ′、B ′对应,CA ′交AB 于点M ,则CM 的长为 ___.三、解答题(10小题,每小题5分,共计50分)1、如图,ABC 为等边三角形,D 是BC 中点,60ADE ∠=︒,CE 是ABC 的外角ACF ∠的平分线. 求证:AD DE =.2、如图,E 为AB 上一点,BD ∥AC ,AB =BD ,AC =BE .求证:BC =DE .3、ACB △中,90C ∠=︒,以点A 为中心,分别将线段AB ,AC 逆时针旋转60︒得到线段AD ,AE ,连接DE ,延长DE 交CB 于点F .(1)如图1,若60A ∠=︒,CFE ∠的度数为________;(2)如图2,当3060A ︒<∠<︒吋,①依题意补全图2;②猜想CF 与AC 的数量关系,并加以证明.4、如图,在ABC 中,AB AC =,AD 是角平分线,E 是AB 边上一点,连接ED ,CB 是ACF ∠的平分线,ED 的延长线与CF 交于点F .(1)求证:BE CF =;(2)若46CDF ∠=︒,AD DF =,则ACF ∠=______度.5、阅读填空,将三角尺(△MPN ,∠MPN =90°)放置在△ABC 上(点P 在△ABC 内),如图①所示,三角尺的两边PM 、PN 恰好经过点B 和点C ,我们来研究∠ABP 与∠ACP 是否存在某种数量关系.(1)特例探索:若∠A =50°,则∠PBC +∠PCB = 度,∠ABP +∠ACP = 度.(2)类比探索:∠ABP、∠ACP、∠A 的关系是 .(3)变式探索:如图②所示,改变三角尺的位置,使点P 在△ABC 外,三角尺的两边PM 、PN 仍恰好经过点B 和点C ,则∠ABP、∠ACP、∠A 的关系是 .6、如图,在△ABC 中,∠BAC =90°,AB =AC ,射线AE 交BC 于点P ,∠BAE =15°;过点C 作CD ⊥AE 于点D ,连接BE ,过点E 作EF ∥BC 交DC 的延长线于点F .(1)求∠F 的度数;(2)若∠ABE =75°,求证:BE ∥CF .7、如图,已知点E 、C 在线段BF 上,BE CF =,AB DE ∥,ACB F ∠=∠.求证:ΔΔΔΔ≅ΔΔΔΔ.8、已知:在△ABC 中,AD 平分∠BAC ,AE=AC .求证:AD ∥CE .9、如图,在ABC 中,AD 平分BAC ∠,CE AD ⊥于点E .求证:ACE B ECD ∠=∠+∠.10、如图,在等边ABC 中,D 为BC 边上一点,连接AD ,将ACD △沿AD 翻折得到AED ,连接BE 并延长交AD 的延长线于点F ,连接CF .(1)若20CAD ∠=︒,求CBF ∠的度数;(2)若a CAD ∠=,求CBF ∠的大小;(3)猜想CF ,BF ,AF 之间的数量关系,并证明.-参考答案-一、单选题1、C【分析】根据组成三角形的三边关系依次判断即可.【详解】A 、 3,4,7中3+4=7,故不能组成三角形,与题意不符,选项错误.B 、 3,4,8中3+4<8,故不能组成三角形,与题意不符,选项错误.C 、 3,4,5中任意两边之和都大于第三边,任意两边之差都小于第三边,故能组成三角形,符合题意,选项正确.D 、 3,3,7中3+3<7,故不能组成三角形,与题意不符,选项错误.故选:C .【点睛】本题考查了三角形的三边关系,在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边.2、C【详解】由题意根据等式的性质得出BC =EF ,进而利用SSS 证明△ABC 与△DEF 全等,利用全等三角形的性质得出∠ACB =∠DFE ,最后利用三角形内角和进行分析解答.【分析】解:∵BF =EC ,∴BF +FC =EC +FC ,∴BC =EF ,在△ABC 与△DEF 中,AC DF AB DE BC EF =⎧⎪=⎨⎪=⎩, ∴△ABC ≌△DEF (SSS ),∴∠ACB =∠DFE ,∴2∠DFE =180°﹣∠FGC ,故选:C .【点睛】本题考查全等三角形的判定与性质,其中全等三角形的判定方法有:SSS ;SAS ;ASA ;AAS ;以及HL (直角三角形的判定方法).3、C【分析】设第三根木棒的长度为x cm ,再确定三角形第三边的范围,再逐一分析各选项即可得到答案.【详解】解:设第三根木棒的长度为x cm ,则9393,x612,x所以A ,B ,D 不符合题意,C 符合题意,故选C【点睛】本题考查的是三角形的三边的关系,掌握“利用三角形的三边关系确定第三边的范围”是解本题的关键.4、C【分析】作点Q 关于BD 的对称点Q ',连接PQ '交BD 于E ,连接QE ,此时PE EQ +的值最小,最小值PE PQ PE EQ PQ +=+'=',据此求解即可.【详解】解:如图,ABC ∆是等边三角形,BA BC ∴=,∵D 为AC 中点,∴BD AC ⊥,4AQ =,3QD =,7AD DC AQ QD ∴==+=,作点Q 关于BD 的对称点Q ',连接PQ '交BD 于E ,连接QE ,此时PE EQ +的值最小.最小值PE QE PE EQ PQ +=+'=',4AQ =,7AD DC ==,3QD DQ ∴='=,4CQ BP ∴'==,10AP AQ ∴='=,60A ∠=︒,APQ ∴∆'是等边三角形,10PQ PA ∴'==,PE QE ∴+的最小值为10.故选:C .【点睛】本题考查等边三角形的性质和判定,轴对称最短问题等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.5、C【分析】直接利用直角三角形全等的判定定理(HL 定理)即可判断选项A ;先根据等腰三角形的性质可得ACB DBC ∠=∠,再根据三角形全等的判定定理(AAS 定理)即可判断选项B ;直接利用三角形全等的判定定理(AAS 定理)即可判断选项D ,由此即可得出答案.【详解】解:当添加条件是AB DC =时,在Rt ABC 和Rt DCB △中,AB DC BC CB=⎧⎨=⎩,()Rt ABC Rt DCB HL ∴≅,则选项A 不符题意;当添加条件是OB OC =时,ACB DBC ∴∠=∠,在ABC 和DCB 中,90A D ACB DBC BC CB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ()DCB A AA BC S ∴≅,则选项B 不符题意;当添加条件是ABC DCB ∠=∠时,在ABC 和DCB 中,90A D ABC DCB BC CB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ()DCB A AA BC S ∴≅,则选项D 不符题意;当添加条件是ABO DCO ∠=∠时,不一定能使ABC DCB ≅,则选项C 符合题意;故选:C .【点睛】本题考查了三角形全等的判定、等腰三角形的性质,熟练掌握三角形全等的判定方法是解题关键.6、C【分析】根据三角形全等的判定方法,等腰三角形的性质和直角三角形的性质判断即可.【详解】解:①当一个是底角是30°,一个是顶角是30°时,两三角形就不全等,故本选项错误; ②有一个内角是120°,底边长是3的两个等腰三角形全等,本选项正确;③当一条直角边为12,一条斜边为12时,两个直角三角形不全等,故本选项错误;正确的只有1个,故选:C.【点睛】本题考查了全等三角形的判定定理,等腰三角形的性质和直角三角形的性质,熟练掌握全等三角形的判定定理是解题的关键.7、C【分析】先由翻折的性质得到∠AEN=∠A′EN,∠BEM=∠B′EM,从而可知∠NEM=12×180°=90°,然后根据余角的定义找出∠B′ME的余角即可.【详解】解:由翻折的性质可知:∠AEN=∠A′EN,∠BEM=∠B′EM.∠NEM=∠A′EN+∠B′EM=12∠AEA′+12∠B′EB=12×180°=90°.由翻折的性质可知:∠MB′E=∠B=90°.由直角三角形两锐角互余可知:∠B′ME的一个余角是∠B′EM.∵∠BEM=∠B′EM,∴∠BEM也是∠B′ME的一个余角.∵∠NBF+∠B′EM=90°,∴∠NEF=∠B′ME.∴∠ANE、∠A′NE是∠B′ME的余角.综上所述,∠B′ME的余角有∠ANE、∠A′NE、∠B′EM、∠BEM.故选:C.【点睛】本题主要考查的是翻折的性质、余角的定义,掌握翻折的性质是解题的关键.8、B【分析】根据三角形的外角性质解答即可.【详解】解:∵∠ACD=60°,∠B=20°,∴∠A=∠ACD−∠B=60°−20°=40°,故选:B.【点睛】此题考查三角形的外角性质,关键是根据三角形外角性质解答.9、C【分析】根据∠ABC=45°,CD⊥AB可得出BD=CD;利用AAS判定Rt△DFB≌Rt△DAC,从而得出BF=AC;再利用AAS判定Rt△BEA≌Rt△BEC,即可得到CE=12BF;由CE=12BF,BH=12BC,在三角形BCF中,比较BF、BC的长度即可得到CE<BH.【详解】解:∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD,故①正确;在Rt△DFB和Rt△DAC中,∵∠DBF=90°﹣∠BFD,∠DCA=90°﹣∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.又∵∠BDF=∠CDA=90°,BD=CD,∴△DFB≌△DAC.∴BF=AC,故②正确;在Rt△BEA和Rt△BEC中∵BE平分∠ABC,∴∠ABE=∠CBE.又∵BE=BE,∠BEA=∠BEC=90°,∴Rt△BEA≌Rt△BEC.∴CE=12AC=12BF,故③正确;∵CE=12AC=12BF,BH=12BC,在△BCF中,∠CBE=12∠ABC=22.5°,∠DCB=∠ABC=45°,∴∠BFC=112.5°,∴BF<BC,∴CE<BH,故④错误;故选:C.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.在复杂的图形中有45°的角,有垂直,往往要用到等腰直角三角形,要注意掌握并应用此点.10、D【分析】50︒可以是底角,也可以是顶角,分情况讨论即可.【详解】当50︒角为底角时,底角就是50︒,︒-︒÷=︒,当50︒角为等腰三角形的顶角时,底角为(18050)265因此这个等腰三角形的底角为50︒或65︒.故选:D.【点睛】本题考查了等腰三角形的性质;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.二、填空题1、①②【分析】由BD⊥BC及BD平分∠GBE,可判断①正确;由CB平分∠ACF、AE∥CF及①的结论可判断②正确;由前两个的结论可对③作出判断;由AE∥CF及AC∥BG、三角形外角的性质可求得∠BDF,从而可对④作出判断.【详解】∵BD平分∠GBE∠GBE∴∠EBD=∠GBD=12∵BD⊥BC∴∠GBD+∠GBC=∠CBD=90°∴∠DBE+∠ABC=90°∴∠GBC=∠ABC∴BC平分∠ABG故①正确∵CB平分∠ACF∴∠ACB=∠GCB∵AE∥CF∴∠ABC=∠GCB∴∠ACB=∠GCB=∠ABC=∠GBC∴AC∥BG故②正确∵∠DBE+∠ABC=90°,∠ACB=∠GCB=∠ABC=∠GBC ∴与∠DBE互余的角共有4个故③错误∵AC∥BG,∠A=α∴∠GBE=α∴12 GBDα∠=∵AE∥CF∴∠BGD=180°-∠GBE=180°−α∴∠BDF=∠GBD+∠BGD=1+18018022ααα︒-=︒-故④错误即正确的结论有①②故答案为:①②【点睛】本题考查了平行线的判定与性质,互余概念,垂直的定义,角平分线的性质等知识,掌握这些知识并正确运用是关键.2、59°【分析】先利用三角形内角和定理求出∠CAB +∠CBA =180°-∠C =118°,从而利用三角形外角的性质求出∠DAB +∠EBA =2∠C +∠CAB +∠CBA =242°,再由角平分线的定义求出11==12122GAB GBA DAB EBA ++︒∠∠∠∠,由此求解即可. 【详解】解:∵∠C =62°,∴∠CAB +∠CBA =180°-∠C =118°,∵∠DAB =∠C +∠CBA ,∠EBA =∠C +∠CAB ,∴∠DAB +∠EBA =2∠C +∠CAB +∠CBA =242°,∵△ABC 两个外角的角平分线相交于G , ∴1=2GAB DAB ∠∠,12GBA EBA ∠=∠, ∴11==12122GAB GBA DAB EBA ++︒∠∠∠∠, ∴∠G =180°-∠GAB -∠GBA =59°,故答案为:59°.【点睛】 本题主要考查了三角形内角和定理,三角形外角的性质,角平分线的定义,熟知相关知识是解题的关键.3、2cm【分析】易证∠CAD=∠BCE,即可证明BEC≌△DAC,可得CD=BE,CE=AD,根据DE=CE-CD,即可解题.【详解】解:∵∠ACB=90°,∴∠BCE+∠DCA=90°.∵AD⊥CE,∴∠DAC+∠DCA=90°.∴∠BCE=∠DAC,在△BEC和△DAC中,∵∠BCE=∠DAC,∠BEC=∠CDA=90°.BC=AC,∴△BEC≌△DAC(AAS),∴CE=AD=3cm,CD=BE=1cm,DE=CE-CD=3-1=2 cm.故答案是:2cm.【点睛】此题是三角形综合题,主要考查了全等三角形的判定,全等三角形对应边相等的性质,本题中求证△CDA≌△BEC是解题的关键.4、24 5【分析】作BM⊥AC于M,交AD于P,根据等腰三角形的性质得到AD⊥BC,求得点B,C关于AD为对称,得到BP=CP,根据垂线段最短得出CP+EE=BP+EP=BE≥BM,根据数据线的面积公式即可得到结论.解:作BM⊥AC于M,交AD于P,∵△ABC是等腰三角形,AD是BC边上的中线,∴AD⊥BC,∴AD是BC的垂直平分线,∴点B,C关于AD为对称,∴BP=CP,根据垂线段最短得出:CP+EP=BP+EP=BE≥BM,∵AC=BC=5,∵S△ABC=12BC•AD=12AC•BM=12,∴BM=AD=245,即EP+CP的最小值为245,故答案为:245.【点睛】本题考查了等腰三角形的性质和轴对称等知识,熟练掌握等腰三角形和轴对称的性质是本题的关键.5、6根据旋转的性质可得,30ACA '∠=︒,所以60BCM ∠=︒,由题意可得:60B ∠=︒,BCM 为等边三角形,即可求解.【详解】解:∵90ACB ∠=︒,30BAC ∠=︒,∴60B ∠=︒,由旋转的性质可得,30ACA '∠=︒,∴60BCM ACB ACM ∠=∠-∠=︒,∴BCM 为等边三角形,∴6CM BC ==,故答案为:6【点睛】此题考查了直角三角形的性质,旋转的性质以及等边三角形的判定与性质,解题的关键是灵活掌握相关基本性质进行求解.三、解答题1、证明见解析.【分析】过D 作DG ∥AC 交AB 于G ,由等边三角形的性质和平行线的性质得到∠BDG =∠BGD =60°,于是得到△BDG 是等边三角形,再证明△AGD ≌△DCE 即可得到结论.【详解】证明:过D 作DG ∥AC 交AB 于G ,∵△ABC是等边三角形,∴AB=AC,∠B=∠ACB=∠BAC=60°,又∵DG∥AC,∴∠BDG=∠BGD=60°,∴△BDG是等边三角形,∠AGD=180°−∠BGD=120°,∴DG=BD,∵点D为BC的中点,∴BD=CD,∴DG=CD,∵EC是△ABC外角的平分线,∴∠ACE=12(180°−∠ACB)=60°,∴∠BCE=∠ACB+∠ACE=120°=∠AGD,∵AB=AC,点D为BC的中点,∴∠ADB=∠ADC=90°,又∵∠BDG=60°,∠ADE=60°,∴∠ADG=∠EDC=30°,在△AGD和△ECD中,AGD ECD GD CDADG EDC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AGD ≌△ECD (ASA ).∴AD =DE .【点睛】本题是三角形综合题,主要考查了平行线的性质,全等三角形的性质与判定,等边三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.2、见解析【分析】根据平行线的性质可得A DBA ∠=∠,利用全等三角形的判定定理即可证明.【详解】证明:∵AC BD ∥,∴A DBA ∠=∠.在ABC 和BDE 中,AB BD A DBA AC BE =⎧⎪∠=∠⎨⎪=⎩, ∴ABC BDE ≌,∴BC DE =.【点睛】题目主要考查全等三角形的判定定理和平行线的性质,熟练掌握全等三角形的判定定理是解题关键. 3、(1)120°(2)①图形见解析;②AC=【分析】(1)根据60∠=︒进而判断出点E在边AB上,得出△ADE≌△ABC(SAS),进而得出A∠AED=∠ACB=90°最后用三角形的外角的性质即可得出结论;(2)①依题意补全图形即可;②先判断出△ADE≌△ABC(SAS),进而得出∠AEF=90°,即可判断出Rt△AEF≌Rt△ACF,进而求出∠CAF=1∠CAE=30°,即可得出结论.2(1)(1)如图1,在Rt△ABC中,∠B=30°,∴∠BAC=60°,由旋转知,∠CAE=60°=∠CAB,∴点E在边AB上,∵AD=AB,AE=AC,∴△ADE≌△ABC(SAS),∴∠AED=∠ACB=90°,∴∠CFE=∠B+∠BEF=30°+90°=120°,故答案为120°;(2)(2)①依题意补全图形如图2所示,②如图2,连接AF,∵∠BAD=∠CAE,∴∠EAD=∠CAB,∵AD=AB,AE=AC,∴△ADE≌△ABC(SAS),∴∠AED=∠C=90°,∴∠AEF=90°,∴Rt△AEF≌Rt△ACF(HL),∴∠EAF=∠CAF,∴∠CAF=1∠CAE=30°,2AF,且AC2+CF2=AF2,在Rt△ACF中,CF=12∴AC【点睛】此题是三角形综合题,主要考查了旋转的性质,全等三角形的判定和性质,三角形的外角的性质,含30度角的直角三角形的性质,勾股定理,判断出△ADE≌△ABC是解本题的关键.4、(1)见解析,(2)46【分析】(1)根据等腰三角形的性质和角平分线得到∠B =∠ACB =∠BCF ,由AD 是角平分线,得到BD =CD ,证△BDE ≌△CDF 即可;(2)根据全等三角形的性质得到DE =DF =DA ,根据46CDF ∠=︒求得∠DAB ,进而求出∠B 的度数即可.【详解】(1)证明:∵AB AC =,∴∠B =∠ACB ,∵CB 是ACF ∠的平分线,∴∠ACB =∠BCF ,∴∠B =∠BCF ,∵AD 是角平分线,AB =AC ,∴BD =CD ,∵∠BDE =∠CDF ,∴△BDE ≌△CDF (AAS );∴BE CF =;(2)∵△BDE ≌△CDF ;∴ED =FD ,∵AD DF =,∴ED =AD ,∵46CDF ADE ∠=∠=︒,∴180672ADE BAD ︒-∠∠==︒, ∴2134BAC BAD ∠=∠=︒,∴∠B =∠ACB =∠BCF =23°,∴246ACF BCF ∠=∠=︒,故答案为:46.【点睛】本题考查了等腰三角形的性质和全等三角形的判定与性质,解题关键是熟练运用相关知识进行推理证明和计算.5、(1)90,40 ;(2)∠ABP +∠ACP +∠A =90°;(3)∠A +∠ACP -∠ABP =90°.【分析】(1)由三角形内角和为180°计算BPC △和ABC 中的角的关系即可.(2)由(1)所得即可得出∠ABP、∠ACP、∠A 的关系为∠ABP +∠ACP +∠A =90°.(3)由三角形外角的性质即可推出∠A +∠ACP -∠ABP =90°.【详解】(1)在BPC △中∵∠MPN =90°∴∠PBC +∠PCB =180°-∠MPN =180°-90°=90°在ABC 中∵∠A +∠ABC +∠ACB =180°又∵∠ABC =∠PBC +∠ABP,∠ACB =∠ACP +∠BCP∴∠A +∠PBC +∠ABP +∠ACP +∠BCP =180°∵∠PBC +∠PCB =90°,∠A =50°∴∠ABP +∠ACP =180°-90°-50°=40°(2)由(1)问可知∠A +∠PBC +∠ABP +∠ACP +∠BCP =180°又∵∠PBC +∠PCB =90°∴∠A +∠ABP +∠ACP =180°-(∠PBC +∠PCB )=180°-90°=90°(3)如图所示,设PN 与AB 交于点H∵∠A +∠ACP =∠AHP又∵∠ABP +∠MPN =∠AHP∴∠A +∠ACP =∠ABP +∠MPN又∵∠MPN =90°∴∠A +∠ACP =90°+∠ABP∴∠A +∠ACP -∠ABP =90°.【点睛】本题考查了三角形的性质以及三角尺的角度计算问题,三角板的角度分别为90°,45°,45°;90°,60°,30°两种直角三角尺,三角形内角和是180°,三角形的一个外角等于与它不相邻的两个内角的和.6、(1)30F ∠=︒;(2)证明见详解..【分析】(1)根据三角形内角和及等腰三角形的性质可得75PAC ∠=︒,45ABC ACB ∠=∠=︒,由各角之间的关系及三角形内角和定理可得30PCD ∠=︒,60PDC ∠=︒,最后由平行线的性质即可得出;(2)由题意及各角之间的关系可得30CBE ∠=︒,得出DCB CBE ∠=∠,利用平行线的判定定理即可证明.【详解】解:(1)∵90BAC ∠=︒,15BAE ∠=︒,AB AC =,∴75PAC ∠=︒,45ABC ACB ∠=∠=︒,∵CD AE ⊥,∴90ADC ∠=︒,18015ACD ADC DAC ∠=︒-∠-∠=︒,∴451530PCD PCA ACD ∠=∠-∠=︒-︒=︒,∴180903060PDC ∠=︒-︒-︒=︒,∵EF BC ∥,∴60DPC PEF ∠=∠=︒,30F DCP ∠=∠=︒,∴30F ∠=︒;(2)∵75ABE ∠=︒,45ABC ∠=︒,∴754530CBE ∠=︒-︒=︒,由(1)可得30DCP ∠=︒,∴DCB CBE ∠=∠,∴BE CF ∥(内错角相等,两直线平行).【点睛】题目主要考查平行线的判定与性质,三角形内角和定理等,熟练掌握平行线的判定与性质是解题关键.7、见解析【分析】由平行线的性质可证明B DEF ∠=∠.再由BE CF =,可推出BC EF =.最后即可利用“ASA ”直接证明ABC DEF≅.【详解】证明:AB DE∥B DEF∴∠=∠BE CF=BE EC CF EC∴+=+,即BC EF=.∴在ABC和DEF中,B DEF BC EFACB F ∠=∠⎧⎪=⎨⎪∠=∠⎩()ABC DEF ASA∴≅.【点睛】本题考查三角形全等的判定,平行线的性质,线段的和与差.掌握三角形全等的判定条件是解答本题的关键.8、见解析.【分析】先根据角平分线的定义得到∠BAD=12∠BAC,再根据等腰三角形的性质和三角形外角定理得到∠E=12∠BAC,从而得到∠BAD=∠E,即可证明AD∥CE.【详解】解:∵AD平分∠BAC,∴∠BAD=12∠BAC,∵AE=AC,∴∠E=∠ACE,∵∠E+∠ACE=∠BAC,∠BAC,∴∠E=12∴∠BAD=∠E,∴AD∥CE.【点睛】本题考查了角平分线的定义,等腰三角形的性质,平行线的判定,三角形外角定理,熟知相关定理并灵活应用是解题关键.9、证明见解析.【分析】延长CE交AB于F,求出∠AEC=∠AEF,∠FAE=∠CAE,根据ASA证△FAE≌△CAE,推出∠ACE=∠AFC,根据三角形外角性质得出∠AFC=∠B+∠ECD,代入即可.【详解】证明:延长CE交AB于F,∵CE⊥AD,∴∠AEC=∠AEF,∵AD平分∠BAC,∴∠FAE=∠CAE,在△FAE和△CAE中,∵FAE CAE AE AE AEF AEC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△FAE ≌△CAE (ASA ),∴∠ACE =∠AFC ,∵∠AFC =∠B +∠ECD ,∴∠ACE =∠B +∠ECD .【点睛】本题考查了全等三角形的性质和判定,三角形的外角性质等知识点,关键是作辅助线后求出∠AFC =∠ACE .10、(1)20°;(2)CBF α∠=;(3)AF = CF +BF ,理由见解析【分析】(1)由△ABC 是等边三角形,得到AB =AC ,∠BAC =∠ABC =60°,由折叠的性质可知,∠EAD =∠CAD =20°,AC =AE ,则∠BAE =∠BAC -∠EAD -∠CAD =20°,AB =AE ,()1180=802ABE AEB BAE ==︒-︒∠∠∠,∠CBF =∠ABE -∠ABC =20°; (2)同(1)求解即可;(3)如图所示,将△ABF 绕点A 逆时针旋转60°得到△ACG ,先证明△AEF ≌△ACF 得到∠AFE =∠AFC ,然后证明∠AFE =∠AFC =60°,得到∠BFC =120°,即可证明F 、C 、G 三点共线,得到△AFG 是等边三角形,则AF =GF =CF +CG =CF +BF .【详解】解:(1)∵△ABC 是等边三角形,∴AB =AC ,∠BAC =∠ABC =60°,由折叠的性质可知,∠EAD =∠CAD =20°,AC =AE ,∴∠BAE =∠BAC -∠EAD -∠CAD =20°,AB =AE ,∴()1180=802ABE AEB BAE ==︒-︒∠∠∠, ∴∠CBF =∠ABE -∠ABC =20°;(2)∵△ABC 是等边三角形,∴AB =AC ,∠BAC =∠ABC =60°,由折叠的性质可知,EAD CAD α∠=∠=,AC =AE ,∴602BAE BAC EAD CAD α∠=∠-∠-∠=︒- ,AB =AE , ∴()1180=602ABE AEB BAE α==︒-︒+∠∠∠, ∴CBF ABE ABC α∠=∠-∠=;(3)AF = CF +BF ,理由如下:如图所示,将△ABF 绕点A 逆时针旋转60°得到△ACG ,∴AF =AG ,∠FAG =60°,∠ACG =∠ABF ,BF =CG在△AEF 和△ACF 中,=AE AC EAF CAF AF AF =⎧⎪∠∠⎨⎪=⎩, ∴△AEF ≌△ACF (SAS ),∴∠AFE =∠AFC ,∵∠CBF +∠BCF +∠BFD +∠CFD =180°,∠CAF +∠CFA +∠ACD +∠CFD =180°,∴∠BFD =∠ACD =60°,∴∠AFE =∠AFC =60°,∴∠BFC =120°,∴∠BAC +∠BFC =180°,∴∠ABF+∠ACF=180°,∴∠ACG+∠ACF=180°,∴F、C、G三点共线,∴△AFG是等边三角形,∴AF=GF=CF+CG=CF+BF.【点睛】本题主要考查了等边三角形的性质与判定,旋转的性质,折叠的性质,全等三角形的性质与判定,三角形内角和定理,熟知相关知识是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十四章 三角形
一、单选题
1.以下各组线段为边,能组成三角形的是( )
A .1,2,4
B .8,6,4
C .12,5,6
D .2,3,6
2.下列说法中错误的是( )
A .三角形三条高至少有一条在三角形的内部
B .三角形三条中线都在三角形的内部
C .三角形三条角平分线都在三角形的内部
[
D .三角形三条高都在三角形的内部
3.如图,//,,160,AB CD DB BC ⊥∠=︒则2∠的度数是 ( )
A .30
B .40
C .50
D .60
4.如图,△ABC ≌△A E D ,∠C =40°,∠E AC =30°,∠B =30°,则∠E AD =(
);
A .30°
B .70°
C .40°
D .110°
5.如图,AC ∥DF ,AC =DF ,下列条件不能使△ABC ≌△DEF 的是( )

A .∠A =∠D
B .∠B =∠E
C .AB =DE
D .BF =EC
6.如图,∠ACB =90°,AC =BC .AD ⊥CE ,BE ⊥CE ,垂足分别是点D 、E ,AD =3,BE =1,则DE 的长是( )
A .32
B .2
C . D
7.已知等腰三角形的两边长分别是3和5,则该三角形的周长是( )
A .8
B .9
C .10或12
D .11或13
8.如图,直角坐标系中,点 A ( − 2,2)、B (0,1)点 P 在 x 轴上,且△PAB 的等腰三角形,则满足条件的点 P 共有()个

A.1B.2C.3D.4
9.在Rt△ABC中,∠C=90°,∠CAB=60°,AD平分∠CAB,点D到AB的距离DE=3.8cm,则BC等于()
A.3.8cm B.7.6cm C.11.4cm D.11.2cm
10.在如图所示的三角形中,∠A=30°,点P和点Q分别是边AC和BC上的两个动点,分别连接BP和PQ,把△ABC分割成三个三角形△ABP,△BPQ,△PQC,若分割成的这三个三角形都是等腰三角形,则∠C有可能的值有多少个?()
A.10B.8C.6D.4
'
二、填空题
11.如图,△ABC的中线AD,BE相交于点F.若△ABF的面积是7,则四边形CEFD的面积是____.
12.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内时,∠A与∠1+∠2之间有始终不变的关系是__________.
13.如图,点P在∠MON的平分线上,点A、B在∠MON的两边上,若要使△AOP≌△BOP,那么需要添加一个条件是_____.
·
14.在数学课上,老师提出如下问题:
己知:直线l和直线外的一点P.
于点Q.
求作:过点P作直线PQ l
小华的作法如下:
如图,第一步:以点P为圆心,适当长度为半径作弧,交直线于A,B两点;
*
的平分线,交直线l于点Q.直线PQ即为所求作.
第二步:连接PA、PB,作APB
老师说:“小华的作法正确”.
请回答:小华第二步作图的依据是__________.
三、解答题
15.已知:在△ABC中,∠B=30°,∠C=70°,AD⊥BC,AE是∠BAC的角平分线.(1)求∠EAC的度数;。

(2)求∠EAD的度数.
16.在Rt△ABC中,∠ACB=90°,点D、E分别在AB、AC上,且CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得到CF,连接EF.
(1)求证:△BDC≌△EFC;
(2)若EF∥CD,求证:∠BDC=90°.
17.如图所示,∠BAC=30°,D为角平分线上一点,DE⊥AC于E,DF∥AC,且交AB 于点F.
{
(1)求证:△AFD为等腰三角形;
(2)若DF=10cm,求DE的长.
∆的边长为10cm,点D从点C出发沿CA向点A运动,点E从点B出18.如图,等边ABC
发沿AB的延长线BF向右运动,已知点D,E都以1cm/s的速度同时开始运动,运动过程中DE与BC相交于点P,点D运动到点A后两点同时停止运动.
∆是直角三角形时,求D,E两点运动的时间;
(1)当ADE
(2)求证:在运动过程中,点P始终是线段DE的中点
~
\!
:
答案…1.B 2.D 3.A 4.D 5.C 6.B 7.D 8.D —9.C 10.D
11.7
12.2∠A =∠1+∠2
13.AO =BO 或∠OAP =∠OBP 或∠APO =∠BPO (写出一个即可). 14.等腰三角形三线合一
15.解:(1)∵∠B =30°,∠C =70°,
∴18080BAC B C ∠=︒-∠-∠=︒,

∵AE 是∠BAC 的角平分线 ∴1402EAC BAC ;
(2)∵AD ⊥BC
∴9020DAC C ∠=︒-∠=︒,
∴∠EAD=∠EAC -∠DAC=20°.
16.(1)由旋转的性质得,CD =CF ,∠DCF =90°,
∴∠DCE+∠ECF =90°,
∵∠ACB =90°,
&
∴∠BCD+∠DCE =90°,
∴∠BCD =∠ECF ,
在△BDC 和△EFC 中,
{CE BC
BCD ECF CD CF
=∠=∠=, ∴△BDC ≌△EFC (SAS ); (2)∵EF ∥CD ,
∴∠F+∠DCF =180°, ∵∠DCF =90°,
!
∴∠F =90°,
∵△BDC ≌△EFC , ∴∠BDC =∠F =90°. 17.(1)证明:
如图所示,
∵DF ∥AC ,
∴∠3=∠2,
{
∵AD 是角平分线, ∴∠1=∠2,
∴∠1=∠3,
∴FD =FA ,
∴△AFD 为等腰三角形.
(2)
如图,过D 作DG ⊥AB ,垂足为G ,
∵∠1=∠2=12
∠BAC ,∠BAC =30°, *
∴∠1=15°,
又∵∠1=∠3,
∴∠1=∠3=15°,
∴∠GFD =∠1+∠3=15°+15°=30°,
在Rt △FDG 中,DF =10cm ,∠GFD =30°,
∴DG =5cm ,
∵AD 为∠BAC 的平分线,DE ⊥AC ,DG ⊥AB , ∴DE =DG =5cm .

18.解:(1)ADE ∆中,60A ∠=︒,60AED ABC ∠≤∠=︒ 所以若ADE ∆是直角三角形,只能90ADE ∠=︒ Rt ADE ∆中,60A ∠=︒得,∠AED=30°
∴2AE AD =
设D 点运动时间为t ,则E 点运动时间也为t .
∴10AD t =-,10AE t =+
∴102(10)t t +=-,解得103
t = 所以当ADE ∆是直角三角形时,D ,E 两点运动时间为
103秒. (2)过点D 作//DK AB 交BC 于点K
∵等边三角形ABC ∆中.60A ∠=︒,60C ∠=° 且//DK AB
∴60C CDK CKD ∠=∠=∠=︒
∴CDK ∆为等边三角形
∴CD DK CK ==,120DKB ADK CBE ∠=︒=∠=∠ 设D ,E 运动时间为t 秒,则CD BE t ==
在DKP ∆与EBP ∆中
DPK EPB DKP EBP DK BE ∠=∠⎧⎪∠=∠⎨⎪=⎩
∴()DKP EBP AAS ∆∆≌
∴PD PE =
∴P始终为DE的中点。

相关文档
最新文档