输电线路故障测距

输电线路故障测距
输电线路故障测距

输电线路故障测距的研究

入学年级:2014秋

学生姓名:范晓晨

电气工程及其自动化

学号:142512*********

所学专业:电气化及其自动化

东北农业大学

中国·哈尔滨

2016年11月

摘要:对高压架空输电线路进行准确的故障测距是保障电力系统安全稳定运行的有效途径之一。为此,文章全面地介绍了国内外在此方面的研究现状。根据各种测距算法采用的原理不同,将现有的各种测距算法分为阻抗法、故障分析法、和行波法。阻抗法是根据故障时测量到的电压、电流量而计算出故障回路的阻抗,由于线路长度与阻抗成正比,因此便可求出由装置装设处到故障点的距离;故障分析法是利用故障时记录下来的电压、电流量,通过分析计算,求出故障点的距离;行波法是根据行波传输理论实现输电线路的故障测距方法,按其原理可分为A、B、C型3种方法,然后利用小波变换对输电线路故障测距进行模拟仿真。最后,对高压架空输电线路故障测距的研究及应用前景进行了展望。

关键词:故障测距;行波;输电线路;小波变换

1. 概述

高压输电线路是电力系统的命脉,它担负着传送电能的重任。同时,它又是系统中发生故障最多的地方,并且极难查找。因此,在线路故障后迅速准确地把故障点找到,不仅对及时修复线路和保证可靠供电,而且对电力系统的安全稳定和经济运行都有十分重要的意义。

根据故障测距装置的作用,对它提出以下几点基本要求[1]。

1)可靠性

2)准确性

3)经济性

4)方便性

目前已有的输电线故障测距装置按其工作原理可以分为以下几种。

1)阻抗法

2)故障分析法

3)行波法

本论文的主要工作如下:

1)对基于电气量的输电线路故障测距进行研究。

2)了解输电线路行波的产生和传播原理、电力系统故障分析。

3)具体掌握基于行波法的输电线路故障测距原理,利用小波变换对行波突变点检测进行研究,并对输电线路故障测距进行模拟仿真。

4)总结并对输电线路故障测距应用前景进行了展望。

2 阻抗法

?

F

I F

R mF

ZD DL

Z m

n

?

n

E R

Z S

Z ?

m

E ?

m

I ?

n

I

图2-1 单相线路内部故障

设m 端为测量端,则测量阻抗可表示为

Z ZD R I I ZD I U Z mF F m

F mF m

m m ?+=+

==

?

?

??

(2-1)

3 故障分析法

由图2-1可写出下列电压方程

F F mF m m R I ZD I U ?

?

?

+= (3-1)

由于故障点与m 端电流的故障分量之间存在以下关系

?

?

?

?

=-=F M mH m mg I C I I I (3-2)

将式(3-2)代入式(3-1)可得

M

mg F

mF m m C I R ZD I U ?

?

?+= (3-3)

将式(3-3)两端分别乘以?

mg I 的共轭复数*

mg I 可写出

2

??

???+=mg M

F mF

mg m mg m I C R ZD I I I U (3-4) 对上式两端取虚部,经整理即可求出

?

?

=

]

Im[]Im[mg m M mg m M mF I I Z C I U C D (3-5) 4. 行波法故障测距

4.1 行波法的概述

行波法的原理早已在上个世纪50年代提出,可分为A 、B 、C 型三类。 1) A 型测距

A 型行波测距方法是利用故障产生的行波进行单端测距的方法。在线路发生故障

时,故障点产生的电流(电压)行波在故障点与母线之间来回反射,根据行波在测量点与故障点之间往返一次的时间和行波的波速来确定故障点的距离。下面以金属性接地为例,说明A 型行波测距的原理。

2) B 型测距

B 型测距原理见图3-3,设被测线路的波行时间为τ,由故障点到m 端,n 端的波行时间分别为m τ,n τ, 显然n m τττ+=。在线路m ,n 两端各设有起动元件,在故障点方向来的行波波头到达时,起动元件动作。在m 端的起动元件动作后开始计时,设为Q t ;在n 端的起动元件动作后,启动发信机发信。设在T t 时收信机有输出,停止计时,由此可确定出故障点的位置。设故障时刻为0t ,两侧起动元

起动元件

起动元件

收信机收信机收信机

&

F

m n

m τn

ττ

计时

图4-1 B 型行波法测距原理示意图

件的动作时间为D t ,n 端起动发信到m 端收信机输出的时间为C t

,则:

)(2

1

C Q T n t t t --=τ (4-1)

于是故障点到n 端的距离为

)(2

C Q T n nF t t t v

v D --=

=τ (4-2) 式中行波速度是已知的,时间C t 可事先测定,Q T t t -是计数器记录的时间。

3) C 型测距

C 型测距法是根据脉冲反射测距原理提出[2]-[4],见图3-4。当线路F 点发生故障时,测距装置起动,向线路发出探测脉冲,探测脉冲以速度v (接近光速)沿线路传播,到达故障点F 时,由于波阻抗发生变化,产生反射脉冲,反射脉冲返回测距装置。则故障点到测距装置的距离为:

x t v

x 2

=

(4-3)

测距装置x

F

m n

图4-2 C型行波法测距原理示意图

4.1.1 行波信号源

为了实现行波测距,首先要有行波信号源[5]。根据行波法进行故障测距的信号源有两种,其一是外加信号,另一是利用故障时产生的信号,前者用于C型测距仪,后者用于A和B型测距仪中。

4.1.2 行波信号的提取方法

目前提取行波信号的方法有[6]:

1) 利用高频通道的耦合设备

2) 专用线性耦合设备

3) 利用电压或电流互感器

4.1.3 行波测距法存在的缺陷

纵观现有的行波测距方法,特别是新型测距方法,尚有几个问题有待解决:

1) 线路两端非线性元件的动态时延[7]

2) 参数的频变和波速的影响因素

3)行波到达时间。

4)行波反射波的识别。

5) 采用全球卫星定位系统(GPS)的成本较高

4.2 线路故障的行波过程

4.2.1 波动方程

图4-4 单导线等值电路

波动方程可简写为:

??????

???=??-??=??-t u C x

i t i L x u

(4-7) 对式(4-7)进行拉式变换[8]

求解,可得:

????????

??

?

+-=+-?=-++-=++-=)

(1)()

(1)()

()()()(v x t u z v x t i v x t u z v x t i v x t i v x t i i v x t u v x t u u f f q

q f

q f q (4-8) 由上述方程组可以得出无损单导线中波过程的一些基本规律, ?????

?

??-=?=+=+=f f

q q f

q f q i

z u i z u i i i u u u (4-9) 4.2.2 行波的反射与透射

图4-5 故障点的反射和透射

对于线路1Z 有

???

?

?

??

?-=?=+=+=f f q q f q f q i z u i z u i i i u u u 11111111111 (4-13)

对于线路2Z ,因2Z 上的反行电压波u 2f =0,故

?

??

??===q q q q

i z u i i u u 2222222 (4-14)

在结点A 处只能有一个电压和电流值,故

???

==2121i i u u (4-15) 综上所得[9]:

???

???

??????

?=?+==+==+-==+-=q i q f q u q q

q i q f q

u q f i i z z z i u u z z z u i i z z z z i u u z z z z u 112111112122112

1211112

112122ααββ (4-16) 4.2.3 三相线路故障的行波过程

由于三相电力系统的线路之间存在着电磁耦合,描述每一相的波动方程[10],相互之间不是独立的,电压电流的求解比较复杂。模变换法是一种对三相系统进行解耦的方法,解耦后,三相系统的波动方程分解为三个独立的模量[11],从而可以把单相系统的分析结果推广到三相系统中。

对于平衡换位的三相线路,线路的阻抗与导纳矩阵是对称的,电压与电流的模变

换矩阵相同。模变换矩阵有多种,其中常用的是Clark 变换[12] (又称α、β、0变换)[1]。

4.2.4 行波测距信号的选择

三相线路的行波包含地模和线模两个分量[13]。地模分量存在着严重的损耗和参数随频率变化的现象[14],行波衰耗大,波速不稳,影响测距的精度,因此,三相线路的故障测距一般选择损耗较小,参数比较稳定的线模量作为检测信号[1,17]。

1) 多相故障[15] AB 相

b

a m

b a m I I I V V V -=-= (4-19)

BC 相

c

b m

c b m I I I V V V -=-= (4-20)

CA 相

a

c m a c m I I I V V V -=-= (4-21)

在发生三相故障时,测量信号可以选择上面三组中的任何一个。

2) 单相故障[6]

线路在发生单相故障时,测量信号选择为故障相与另两相中之一的信号差。如A 相故障时,测量信号为:

b

a m b

a m I I I V V V -=-= (4-22)

4.3 行波经小波变换线路故障测距法

4.3.1 小波变换基本原理与奇异性检测

信号)()(2R L t f ∈的连续小波变换定义为[18]-[21]

dt s

x

t t f s

x s f W ?

---=)(

)(),(2

/1ψψ (4-23) 式中s 和x 分别是尺度参数和时间参数;)(t ψ是满足允许条件的母小波。

设),(x s f W ψ是信号)(t f 的小波变换,在尺度s 下,若对于任意x ,),(00δδ+-∈x x x 有

),(),(0x s f W x s f W ψψ≤ (4-24)

则0x 称为小波变换在尺度s 下的模极大值点,),(0x s f W ψ为小波变换的模极大值。

αAs x s f W ≤),(max (4-25)

式中A 是常数。

以上关系式表明信号突变点(此时0≥α)的小波变换模极大值随着尺度s 的增大而增大或保持不变;而由白噪声(此时0<α)产生的小波变换模极大值随着尺度s 的增大而明显减小。这表明小波变换有很强的去噪能力。信号的奇异点与不同尺度下小波变换模极大值的关系如图3-3所示。图中1,2点的Lipischitz 指数均大于0。3点为δ函数,其Lipischitz 指数小于0,实际信号中噪声信号多为这一类函数,其小波变换模极大值随着尺度的增大而明显减小,因而可判断为噪声。

4.3.2 小波变换故障测距原理

考虑到电容式电压互感器的频宽满足不了行波测量的要求,而电流互感器能有效地传送高频信号[22],因此则使用电流互感器获取电流行波进行故障定位。

在三相输电线路中,行波是相互耦合的。每一相行波都是几种速度不同的行波分量的混合,不适合用作故障测距,必须将测得的相信号变换成模信号。每一模信号的传输速度是一定的。在此采用了Clarke 变换。

根据反射波与入射波的小波变换模极大值的相对极性[23],可判断反射波是来自故障点还是对端母线。通过确定由故障点反射波分别到达线路两端的时间,根据公式

2

)(L t t v x n m +-=,求的故障点。

5.小波双端法故障测距的仿真

电力系统中经常发生断路故障[24],其中包括三相短路、两相短路、两相接地短路及单相接地短路。故本文对四种短路故障测距进行仿真研究。

设故障网络接线如图5—1所示:

M N

f

R f

Z S Z R

m

I&

n

I&

f

I&n

U&

m

U&

m

E&

n

E&

ZL

Zx

图5—1 故障网络接线图

应用Matlab仿真软件对本系统进行仿真,其中模拟示波器中,黄色代表A相电流,红色代表B相电流,绿色代表C相电流,模块结构如5-2图所示

图5-2 Matlab仿真模块图

波速度,在三相系统中应用行波方法时应先进行相模变换。然后根据行波模量的波形和速度来进行故障定位。在本文中采用的是克拉克变换。

在 Matlab对数据进行编程:

M=1/3*[1 1 1;1 -1 0;1 0 -1];

ImA=Im(:,2);ImB=Im(:,3);ImC=Im(:,4);

Im012=M*[ImA';ImB';ImC'];

Im1=Im012(2,:);

InA=In(:,2);InB=In(:,3);InC=In(:,4);

In012=M*[InA';InB';InC'];

In1=In012(2,:);

仿真得到不同故障情况下的故障数据,利用第4章中的小波检测算法,采用双端行波故障测距原理对所得到的故障数据进行了测距仿真,并给出了测距结果。测距误差全部都控制在几十米以内,能够满足现场运行的需要。故障点的接地电阻对行波法输电线路故障测距影响很小,可以忽略不计。

参考文献

1 葛耀中.新型继电保护与故障测距原理与技术.西安:西安交通大学出版社,1996.

2 万耕,穆华宁.高压架空输电线路的行波故障测距方法.高压电器,2005,41(2):135-138.

3 马长贵.高压电网继电保护原理.水利电力出版社,1988,6.

4 吴必信.综述单端故障测距算法(三).电力自动化设备,1996,(1):15-19.

5 束洪春,司大军,葛耀中,等.小波变换应用于输电线路行波故障测距(Ⅱ).云南水利发电,2002,18(2):16-21.

6 束洪春,王平才,司大军,等.小波变换应用于输电线路行波故障测距(Ⅰ).云南水利发电,2002,18(2):10-15+38.

7 全玉生,杨敏中,王晓蓉,等.高压架空输电线路的故障测距方法.电网技术,2000,24(4):27-33.

8严凤.中性点非有效接地系统单相接地行波定位方法的研究.保定:华北电力大学,2003.

9 董振河.输电线路行波故障测距.山东电力技术,2000,(2):8-10.

10 陈崇源,颜秋容.电路理论-端口网络与均匀传输线.华中理工大学出版社,1997.

11 王学峰,周俊宇.用小波变换技术定位输电线路故障,高压电器,2006,32(1):84-87.

12 崔锦泰.小波分析导论.程正兴译.西安:西安交通大学出版社,l995.

13 李加波,于瑞红,戴玉松,等.基于小波变换的输电线路行波测距研究.湖南电力,2005,25(1):15-18.

14 董新洲,葛耀中,徐丙垠.利用暂态电流行波的输电线路故障测距研究.中国电机工程学报,1999,19(4):76-80.

15 黄子俊,陈允平.基于小波变换模极大值的输电线路单端故障定位.电力自动化设备,2005,25(2):10-14.

16 覃剑,葛维春,邱金辉,等.输电线路单端行波测距法和双端行波测距法的对比.电力系统自动化,2006,30(6):92-95.

成绩论文评阅组签字

电缆故障测距方法.

电缆故障测距方法 在线测距方法 故障定位技术的发展主要经历了三个阶段:模拟式定位技术、单端数字式定位技术、双端定位技术。早期的故障定位装置是机电式或静态电子仪器构成的模拟式装置。后期的故障录波器是以光电转化为原理、以胶片为记录载体、根据故障录波仪记录的电信号来粗略估计故障点位置。测试技术的出现以及计算机技术和通信技术都加速了故障定位技术的发展。这个阶段出现了许多利用计算机进行故障定位的方法,其特点是采用单端信息,应用计算机的超强运算能力对各自算法进行修正,求得故障距离。有些算法已应用到实际故障定位装置中,不足之处是无法克服故障电阻对故障定位精度的影响。 其中,单端阻抗法只用到线路一侧的电压、电流测量值,由于其理论上无法克服过渡电阻的影响,需要在测距算法中做一定的假设,所以其测量精度在很多情况下难以保证,但是有着造价低,不受通信因数的限制的优点,在实际应用中有着一定的应用需求。单纯依靠单端信息不能有效地消除因素包括:负荷电流;系统运行阻抗;故障点过渡电阻,这自然影响到测距的精度。 单端行波法 是基于单端信息量的一种测距方法,其中单端行波测距的关键是准确求出行波第一次到达监测端与其从故障点反射回到监测端的时间差,并包括故障行波分量的提取。常用的行波单端故障定位算法有求导数法、相关法、匹配滤波器法和主频率法。由于行波在特征阻抗变化处的折反射情况比较复杂(如行波到达故障点后会发生反射也会通过故障点折射到对侧母线上去),非故障线路不是“无限长”,由测量点折射过去的行波分量经一定时间后,又会从测量点折射回故障线路等,使行波分析和利用单端行波精确故障定位有较大困难。 双端行波测距 是通过计算故障行波到达线路两端的时间差来计算故障位置,其测距精度基本不受线路的故障位置、故障类型、线路长度、接地电阻等因素的影响。双端行波法的关键是准确记录下电流或电压行波到达线路两端的时间,误差应在几微秒以内,以保证故障定位误差在几百米内,行波在线路上的传播速度近似为300m/μs,1μs 时间误差对应约150m 的测距误差。双端信号要求严格的同步,随着GPS对民用开放,使得双端故障定位法迅速发展。这种定位方法的定位精度高,已成为近几年来故障定位方法研究的热点。 电缆故障定位技术经过国内外专家学者几十年的共同努力,已取得了

电力系统输电线路故障测距研究方法

电力系统输电线路故障测距方法研究 摘要:本文首先全面地介绍了故障测距在国内外发展历程和研究现状。根据各测距算法采用的原理不同,将现有的各种测距算法分为行波法、阻抗法、故障分析法以及智能法,然后逐类对各种算法的理论基础和应用条件上进行了分析、对比和讨论,并在此基础上总结得出了各测距算法的优点及存在的问题,指出了每种测距算法的适用范围和应用局限性。 其次设计了一套高压输电线路新型故障测距装置,该测距装置采用专门设计 的高速采样单元捕获暂态电流行波信号,采用全球定位系统GPS为线路两端提供精度高达s 1的统一时标,从而可实现高精度的双端行波法测距。 为了验证本论文提出的故障定位方法的可行性,通过分析研究,其结果说 明本系统的实验方案确实可行。理论和仿真结果表明,本文所作的工作提高了行波故障测距在不同线路结果情况下的适应性、精度和可靠性。 关键词:输电线路;故障测距;电力系统;行波;全球定位系统(GPS) Research about the measure of fault

location in power system transmission line Abstract:The development and general situation of the research in this field in China and in other countries is introduced in this paper. All the existing algorithms can be classified into 4 main methods those are traveling wave location, impedance location, fault analysis location and Intelligence location .Then the principle and application condition of each algorithm are presented and discussed. Based on the analysis and comparison of each algorithm, the corresponding merits and application limitation are concluded. In this article, a new design scheme of the fault locator for HV transmission lines is presented. By using high-speed data acquisitioning unit designed specially to capture traveling waves of transient current, using Global Positioning System (GPS) to supply high precise time tagging for both ends and using wavelet transform theories to identify the head of the traveling waves, the fault locator can realize high precise double-ended traveling waves location. At the same time, using two-terminal voltages and currents sampled by the medium-speed sampling and processing unit synchronized by the Pulse Per Second (1PPS) of GPS, can realize accurate double ended steady state location. In order to verifying the feasibility of the fault location method, which is presented in this thesis, the experiment is performed based on the locale condition. The result shows that the experimental scheme of this thesis is feasible. The analysis and simulation results indicate that the studies in this dissertation can improve the accuracy, reliability and adaptability of traveling wave fault location. Keywords: power transmission line; Traveling wave; power system;Global Positioning System (GPS) ;fault location 第1章绪论

设备完好率设备利用率设备故障率设备开动率OEEMTTRMTTFMTBF

1、设备完好率 定义:设备完好率,指的是完好的生产设备在全部生产设备中的比重,它是反映企业设备技术状况和评价设备管理工作水平的一个重要指标。 计算公式:设备完好率=完好设备总台数/生产设备总台数× 100% 标准:所谓完好设备一般标准是: ①设备性能良好,如机械加工设备的精度达到工艺要求; ②设备运转正常,如零部件磨损、腐蚀程度不超过技术规定标准,润滑系统正常、 设备运转无超温、超压现象; ③原料、燃料、油料等消耗正常,没有油、水、汽、电的泄漏现象。对于各种不同类 型的设备,还要规定具体标准。例如传动系统的变速要齐全、滑动部分要灵敏、油路系统要畅通等。 公式中的设备总台数包括在用、停用、封存的设备。在计算设备完好率时,除按全部设备计算外,还应分别计算各类设备的完好率。 2、设备利用率 定义:设备利用率是指每年度设备实际使用时间占计划用时的百分比。是指设备的使用效率。是反映设备工作状态及生产效率的技术经济指标。 在一般的企业当中,设备投资常常在总投资中占较大的比例。因此,设备能否充分利用,直接关系到投资效益,提高设备的利用率,等于相对降低了产品成本。所以,作为企业的管理者,在进行生产决策的时候,一定要充分认识到这一点。 一般包括:设备数量利用指标―实有设备安装率,已安装设备利用率;设备时间利用指标―设备制度台时利用率,设备计划台时利用率;设备能力利用指标―设备负荷率; 设备综合利用指标―设备综合利用率。过去,设备利用率一般仅指设备制度台时利用率。 计算公式: 公式一: 设备利用率=每小时实际产量/ 每小时理论产量×100% 公式二: 设备利用率=每班次(天)实际开机时数/ 每班次(天)应开机时数×100% 公式三: 设备利用率=某抽样时刻的开机台数/ 设备总台数×100% 3、设备故障率

输电线路行波故障测距技术的发展与应用

输电线路行波故障测距技术的发展与应用 发表时间:2018-03-13T16:20:56.700Z 来源:《电力设备》2017年第30期作者:常文杰 [导读] 摘要:伴随我国现代化建设的初步完成与城市化水平的不断提升,对于电力的需求也在不断的增长,然而较早的供配电系统常因安全性、供电质量等出现各种不间断的故障,怎样才能利用一些新技术 (国网新疆电力有限公司检修公司新疆乌鲁木齐 830001) 摘要:伴随我国现代化建设的初步完成与城市化水平的不断提升,对于电力的需求也在不断的增长,然而较早的供配电系统常因安全性、供电质量等出现各种不间断的故障,怎样才能利用一些新技术,更快速、更准确的将这些故障及时诊断出来,并为维护与检修提供充足的时间,并使电力恢复更为及时,是当下应该考虑的重要问题;另一方面,我国在火力发电、水力发电以及新的生物能源发电方面,有了长足的累积,尤其是随着三峡工程、南水北调工程等这些重大项目的完成,更是为发电企业提供了一股新的动力;加之配套性的电网改造也成功的实现了电网的升级与优化,向智能化、自动化、一体化方面又迈进了重要的一步。 关键词:故障测距;行波;行波故障测距装置 引言 随着我国电力行业的不断发展,为保证电力系统安全可靠性,我们国家对电力系统提出了更高的标准要求。为保证可靠供电,降低停电损失,在输电线路发生故障时,要求对电力系统输电线路故障进行快速准确的定位。早期的故障测距方法可以分为阻抗法、故障分析法、行波法等3种。其中,阻抗法和故障分析法受故障点过渡电阻等因素影响,有比较大的测距误差,不但达不到运行要求,而且适用性不高。而行波法测距主要是通过采集故障电压或电流的波形,标定行波到达时刻来进行测距。运用行波法的原理进行测距,其精度比较高,也有广泛的适用性,故而大量应用在电力系统中进行测距。本文通过对国内外行波测距关键技术、改进算法、实际装置的调研,对行波测距关键技术的发展、算法的改进和实际中应用的装置进行了总结,对行波测距技术的未来发展提出了展望。 1行波测距技术原理、特征 (1)行波的发现有赖于研究者对输电线路故障点在附加电源作用的影响分析,行波主要是指输电线路在此情况下,线路上出现与光速传播较接近的电压、电流行波;从原理的角度来看,行波理论主要是以行波为载体,分析故障点、测量点之间传播的时间差,利用它计算或测量出故障距离,对其加以定位。(2)行波测距方法表现为4大类型,分别为单端测距、雷达测距、脉冲信号测距、双端测距。(3)与基于工频量的故障测距技术比较,行波测距技术与行波测距特征表明了自身的最大优势,目前来看,集中表现在不受故障点过渡电阻、线路结构等因素的阻碍,另外,如同概述所言,它在测量方面测距精度非常高,适用范围也相当广泛;而且由于在行波理论流行的现在,小波变换理论、数学形态理论也在不断发展,对于各种交叉性质的理论研究,在未来的突破可能性极大,所以行波测距技术的可发展空间还非常广阔,也表明了它的研究需要不断加强,从而向着完善化的方向不断推进。 2行波测距的关键技术 2.1行波信号的提取 暂态行波所覆盖的频带很宽,信号的提取可由电压或电流互感器完成。高压输电线路普遍采用的电容分压式电压互感器CVT (capacitivevoltagetransformer),截止频率低,传变高频电压信号会带来衰减和相移,因此很少使用。常规的电流互感器可以传变100kHz以上的电流暂态分量,能够满足行波测距的要求,在实际应用中常用电流互感器提取行波信号。同时,对于新建变电站使用的电子式电流互感器ECT(electroniccurrenttransformer),文献提出了相应的行波信号提取方法。 2.2行波信号的采集与时间同步 行波传播波速接近光速,1μs的采样误差将带来约±150m的测距误差。因此对行波信号的采样频率要求在1MHz及以上,使用双端原理时,线路两侧必须配置高精度和高稳定度的实时时钟。随着微电子技术的高速发展,实现高速数据采集和处理己非难事,现有的A/D转换芯片转换频率完全可以满足,并且GPS接收模块的电力系统同步时钟装置可以实现1μs时间同步以满足测距要求,为实现准确的TWFL奠定了所需的硬件基础。在实际应用中,由于GPS接收模块存在输出信号不稳定、卫星失锁、时钟跳变、信号干扰等原因导致的同步时钟信号失步的问题,因此必须附加高稳定度守时钟,并且需要消除偏差超过某一限定范围的时间同步信号,从而提高双端原理的测距精度。 2.3行波信号达到时间的标定 行波信号到达时间的标定和波速的确定是行波法最关键的技术,时间与波速相互对应,必须同时讨论才有意义。判定检测到的行波波头频率,然后根据线路参数的频率特性计算出行波在该频率下的传播速度,以此用于测距是最为准确的。求取暂态行波信号的一阶或二阶导数,并与设定的门槛值进行比较来判断行波信号是否到达,此方法对噪声比较敏感,当故障距离较短,行波中高频分量明显时,其效果较好。相关法和匹配滤波器法是以首次到达母线的行波信号为参考,利用从故障点反射回母线的行波信号与参考信号的反极性相似性,根据互相关函数的最大值判定反射波达到时间,进而求出故障位置的方法,但其测距结果受母线端所连接的输电线数目等因素影响,行波在传播过程中的波形畸变会降低算法的可靠性。中的主频率法是一种频域分析方法,该方法从较长的时间段来考察行波频率范围,由行波中频谱最强的分量决定行波到达时间,然后求解故障距离,其缺点是所求行波主频往往较低,定位精度会受到影响。小波分析方法利用小波变换在时频域内都具有局部化特性,对信号进行局部化分析,可有效提取故障行波特征,得到信号中的奇异点,小波分量的模极大值出现时间即为电流行波脉冲的到达时刻,并且通过得到信号被分析频带的中心频率和模极大值对应时间能同时解决行波到达时间和传播速度的选取问题,在实际设备中也有广泛的应用。 3行波故障测距系统应用实例 当系统中任一被监视信号超过预设值,高速采集单元启动,发出触发信号,标定当前时间,激活CPU中的采集控制定时电路,经过大约几毫秒时间,高速采集单元终止工作从而向CPU发外部中断信号。CPU在中断服务程序中获取到这次触发的时间信息后释放高精度时钟,并处理触发的暂态数据,判断是否为有效触发。如果有效,设置启动标志。在主循环程序中,系统进入故障处理程序的前提是CPU能够获取到启动标志,数据存储过程也是在处理程序中进行,从而形成启动报告,通过串口发出上报信号。

线路故障测距的人工智能算法研究

Smart Grid 智能电网, 2016, 6(2), 64-72 Published Online April 2016 in Hans. https://www.360docs.net/doc/746194158.html,/journal/sg https://www.360docs.net/doc/746194158.html,/10.12677/sg.2016.62008 A Fault Locator for Transmission Line Based on Artificial Intelligent Algorithm Yu Zou Qinzhou Power Supply Bureau, Guangxi Power Grid Co., Ltd., Qinzhou Guangxi Received: Mar. 24th, 2016; accepted: Apr. 8th, 2016; published: Apr. 11th, 2016 Copyright ? 2016 by author and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.360docs.net/doc/746194158.html,/licenses/by/4.0/ Abstract Considering the transmission line with multi-branch, a dynamic fault location algorithm based on intelligent algorithm is presented in this paper. Based on the measured voltage and current at two terminals, a discrimination index is proposed by which the faulted section can be located first. Af-ter that the equivalent voltage and current at the branch node is obtained by the equivalent calcu-lation of the healthy branches. It corrects the results of fault location method based on genetic al-gorithm by the way of neural network algorithm, with the ranging accuracy improved when there are faults at two terminals of transmission line. The proposed algorithm only demands the meas-ured voltage and current on the two terminals, and inherits the advantages of fault location me-thod based on genetic algorithm, which is independent of fault type, fault resistance at fault point, etc., the influence on ranging accuracy by line parameters deviation is greatly reduced. The pro-posed method is simulated by PSCAD, and the results verified the correctness and high precision of the algorithm. Keywords Transmission Lines with Multi-Branch, The Principle of Superposition, Fault Location, Genetic Algorithm, Artificial Intelligence Algorithm 线路故障测距的人工智能算法研究 邹宇 广西电网有限责任公司钦州供电局,广西钦州

直供线路故障测距修正方法

直供线路故障测距修正说明 1.测距原理 直供测距定值说明: 表测距定值表(针对直供线路有效) 注意单位电抗和总电抗都是二次换算值. 测距分段数:测距时将此馈线根据不同的电抗区段分成的测距分段的个数。 单位电抗:在此分段内接触网的单位电抗值,为二次值,x2=x1*K U/K I,单位Ω/Km. 总电抗:保护安装处到此分段末端的总电抗,为二次值,单位Ω。 距离:保护安装处到此分段末端的总距离,单位Km。 以4段分段的故标定值设置举例如下: 变电所 供电线区间线路站场区间线路 设馈线压互变比27.5/0.1,流互变比800/5, 供电线单位电抗0.65Ω/Km,接触网线路单位电抗0.42Ω/Km,站场单位电抗0.2Ω/Km,L1=1Km,L2=10Km,L3=12Km,L4=25Km。则故障测距定值设置如下:

2.测距修正方法 具备原始测距整定数据,现场保护动作数据,实际短路位置数据等相关参数 主要有:整定数据:N,x1,X1,L1,x2,X2,L2,……. 动作数据: Xs,Lj 所在段K, 实际故障距离Ls 设修正后的测距定值:N,x1’,X1’,L1,x2’,X2’,L2,……. 3.计算原理 1)第一段内故障,测距定值修正方法: X1’=L1/Ls*X1 x1’=X1’/L1,其他段根据此参数重新计算 2)第二段内故障,测距定值修正方法: X2’=X1+(L2-L1)*(X-X1)/(Ls-L1) x2’=(X2’-X1)/(L2-L1),后续分段根据此参数重新计算 3)第I段(I≠1) XI’=X I-1+(L I-L I-1)*(X-X I-1)/(L S-L I-1) x i’=(X I’-X I-1)/(L I-L I-1), 后续分段根据此参数重新计算 4.验算为保证正确性,最好按照计算结果划出线性分段图,将故障时的Xs通过坐标及计算,检验是否对应结果为Ls.

电力电缆的故障测距与定点方法探讨

电力电缆的故障测距与定点方法探讨 摘要:电力电缆作为整个电力系统的重要组成部分,一旦发生故障将直接影响着整个电力系统的安全运行。因此,如何快速、准确地查找电缆故障,减少故障修复费用及停电损失,成为电力工程领域与研究界日益关注的问题。文章分析了电力电缆故障的原因及分类,探讨了电力电缆的故障测距与定点方法,并对电力电缆故障在线监测的发展进行了探讨。 关键词:电力电缆;故障测距;故障定点;在线监测;脉冲 随着我国经济建设的高速发展,我国的城市电网改造工作大力地开展。由于电力电缆应用成本的下降,以及电力电缆自身所具有的供电可靠性高、不受地面、空间建筑物的影响、不受恶劣气候侵害、安全隐蔽耐用等特点,因而获得了越来越广泛的应用。然而,与架空输电线路相比,虽然电力电缆的上述优点却为后期电缆的维护工作特别是故障测距与定位带来了较大的难度,尤其电缆长度相对较短、线路故障不可观测性等特点都决定了电缆线路要求有更精确的故障测距方法。另一方面,电力电缆作为整个电力系统的重要组成部分,一旦发生故障将直接影响着整个电力系统的安全运行,并且如故障发现不及时,则可能导致火灾、大规模停电等较大的事故后果。因此,如何快速、准确地查找电缆故障,减少故障修复费用及停电损失,成为电力工程领域与研究界日益关注的问题。 一、电力电缆故障原因及类型 (一)电力电缆故障原因 随着电缆数量的增多及运行时间的延长,由于电缆绝缘老化特性等因素,故障发生概率大大增加。电缆故障点的查找与测量是通讯和电力供应畅通的有力保障,但是因为电缆线路的隐蔽性、个别运行单位的运行资料不完善以及测试设备的局限性,使电缆故障的查找非常困难。尤其是在狂风、暴雨等恶劣天气中,给故障的查找、维修带来了很大不便。了解电缆故障的原因,对于减少电缆的损坏,快速地判定出故障点是十分重要的。 电缆发生故障的原因是多方面的,常见的几种主要原因包括: 1.机械损伤。主要由于电缆安装敷设时不小心造成的机械损伤或安装后靠近电缆路径作业造成的机械损伤而直接引起的。 2.绝缘老化变质。主要是由于电缆绝缘内部气隙游离造成局部过热,从而使绝缘炭化。 3.化学腐蚀。电缆路径在有酸碱作业的地区通过,或煤气站的苯蒸汽往往造成电缆铠装和铅(铝)护套大面积长距离被腐蚀。 4.设计和制作工艺不良。拙劣的技工、拙劣的接头,电场分布设计不周密,材料选用不当,不按技术要求敷设电缆往往都是形成电缆故障的重要原因。 5.过电压。过电压主要是指大气过电压(雷击)和电缆内部过电压。 (二)电力电缆故障类型 根据故障电阻与击穿间隙情况,电缆故障可分为低阻、高阻、开路与闪络性故障。

输电线路故障测距系统现状及发展趋势综述

输电线路故障测距系统现状及发展趋势综述 发表时间:2016-10-18T15:34:19.453Z 来源:《电力技术》2016年第8期作者:关昕[导读] 本文阐述了输电线路行波故障测距技术的原理、发展历程,介绍了输电线路行波故障测距系统在国内的应用现状。 贵州电网公司都匀供电局贵州都匀 558000摘要:本文阐述了输电线路行波故障测距技术的原理、发展历程,介绍了输电线路行波故障测距系统在国内的应用现状,分析了工程应用中存在的问题。针对上述问题,并结合近年来电力科技发展,本文提出了行波故障测距系统的后续技术发展方向。 关键词:输电线路;行波法;故障测距 1.引言 输电线路是电网中较容易故障的部分,输电线路故障后,快速、精确的定位故障点位置对缩短线路停电时间、快速恢复供电、降低停电带来的经济损失具有重要意义。从长期运行的角度看,精确的故障点定位信息有助于运行单位的事故分析,及时地发现故障隐患,采取有针对性的措施,提高线路运行的长期可靠性。 输电线路故障测距方法(故障定位)从原理上可分为阻抗法、行波法、时域法、频域法等。目前,获得实际应用的主要是阻抗法和行波法,保护/录波装置中主要应用的是阻抗法,行波故障测距装置则一般是单独组屏。相对而言,阻抗法受过渡电阻、系统运行方式、互感器等因素影响,在长线路、高阻故障情况下,定位误差较大,因此,输电线路行波故障测距装置是目前国内电力运营单位最主要的故障定位手段。本文首先阐述了输电线路行波故障测距系统在国内发展及应用现状,介绍了存在的问题,并对后续技术发展进行了分析。 2.输电线路行波故障测距技术原理及发展历程 2.1 输电线路行波故障测距原理 输电线路行波测距法(也称为行波故障定位),根据需要的电气量的不同,可分为单端法、双端法、脉冲法。目前,现场运行装置基本上都是采用采用双端法,其原理是利用故障产生的暂态行波,通过计算暂态行波到达线路两端的时间差来计算故障位置。故障测距计算中主要解决以下两个问题:①行波在传输过程中的衰减及波形畸变(即信号色散);②不同线路类型中行波波速的确定。 图1 双端行波测距原理 2.2 输电线路行波故障测距技术发展历程 在上世纪70年代,国外相关研究单位就提出了行波故障定位概念,但受采样、授时等技术的限制一直未能实用化。在行波测距技术实用化之前,电力系统主要通过保护/录波装置数据利用阻抗测距法完成故障定位,但受故障过渡电阻、互感器误差等因素的影响,测距精度和可靠性较低,并且不适用直流输电、T阶等类型线路。上世纪80年代以后,随着GPS、数字信号处理技术的成熟,行波故障测距装置技术上逐渐成熟。而在行波故障测距理论研究领域也取得了突破,中国电科院、山东科汇等单位采用小波变换、模量变换、自适应滤波器等手段[1~7]的综合应用解决了色散、波速确定等问题,行波故障测距装置进入实用化阶段。 3.输电线路故障测距系统发展现状 3.1 应用规模 目前,基于行波原理的输电线路故障测距装置在我国电网已经获得了广泛应用,安装厂站数量超过3000个,全面覆盖500kV/330kV以上电压等级线路,距离较长的220kV电压等级线路也基本安装有行波故障测距装置。在国内,从事该领域产品研制与开发的主要厂家是:南京南瑞集团公司,山东科汇公司、山大电力等,由于国内在此领域的应用水平较高,在装置开发和相关技术研究方面与国外机构差距较小。 3.2 应用效果 实际运行统计表明,输电线路行波故障测距装置的精度基本上达到500米~1000米,在现场运行中主要发挥了以下作用: 1)输电线路行波故障测距装置的应用有效缩短了线路停电时间,仅在辽宁电网,根据2006年~2009年统计,挽回停电损失上亿元。 2)对于四川、青海、云贵等地电网,由于输电线路多跨越山区、林地,巡线困难,行波故障测距装置的应用大大降低了巡线工作量。 3)输电线路故障点的准确定位有助于运营单位采取预防性措施,这也间接降低了输电线路后续故障发生的概率。 但需要指出的是,输电线路行波故障测距装置的应用效果与现场的运行维护情况相关。以辽宁电网为例,2014年上半年,220kV线路故障的定位成功率超过95%,平均误差在2级杆塔以内(不到500米误差);而运行维护不力的地区,故障定位成功率甚至不及50%。 3.3 存在的问题 (1)故障测距装置可靠性相对较低。 这是影响行波故障测距装置应用效果的最主要因素。由于行波故障测距装置系统构成较为复杂,包括装置采样、通讯、GPS授时(精度要求较高)多个环节,其中一个环节出现问题,即可能导致故障失败。根据各网省公司统计,由于通讯、GPS原因导致的故障定位失败占据故障总原因的70%以上。

行波测距法

行波法故障测距 行波法的研究始于本世纪四十年代初,它是根据行波传输理论实现输电线路故障测距的。现在行波法已经成为研究热点。 行波法的研究始于二十世纪四十年代初,它是根据行波传输理论实现输电线路故障测距的。现在行波法已经成为研究热点。 简介 (1)早期行波法 按照故障测距原理可分为A,B,C 三类: ① A 型故障测距装置是利用故障点产生的行波到达母线端后反射到故障点,再由故障点反射后到达母线端的时间差和行波波速来确定故障点距离的。但此种方法没有解决对故障点的反射波和对侧母线端反射波在故障点的透射波加以区分的问题,所以实现起来比较困难。 ② B 型故障测距装置是利用记录故障点产生的行波到达线路两端的时间,然后借助于通讯联系实现测距的。由于这种测距装置是利用故障产生后到达母线端的第一次行波的信息,因此不存在区分故障点的反射波和对侧母线端反射波在故障点的透射波的问题。但是它要求在线路两端有通讯联系,而且两边时标要一致。这就要求利用GPS 技术加以实现。 ③ C 型故障测距装置是在故障发生后由装置发射高压高频或直流脉冲,根据高频脉冲由装置到故障点往返一次的时间进行测距。这种测距装置原理简单,精度也高,但要附加高频脉冲信号发生器等部件,比较昂贵复杂。另外,测距时故障点反射脉冲往往很难与干扰相区别,并且要求输电线路三相均有高频信号处理和载波通道设备。 比较 三种测距原理的比较:A 型和 C 型测距原理属于单端测距,不需要线路两端通信,因都需要根据装置安装处到故障点的往返时间来定位,故又称回波定位法;而 B 型测距原理属于双端通讯, 需要双端信息量。A 型测距原理和 B 型测距原理适用于瞬时性和持久性故障,而C 型测距原理只适用于持久性故障。 (2)现代行波法 从某种意义上讲,现代行波法是早期A 型行波法的发展。60年代中期以来,人们对1926年提出的输电线路行波传输理论行了大量的深入的研究,在相模变换、参数频变和暂态数值计算等方面作了大量的工作,进一步加深了对行波法测距及诸多相关因素的认识。 1)行波相关法 行波相关法所依据的原理是向故障点运动的正向电压行波与由故障点返回的反向电压行波之间的波形相似,极性相反,时间延迟△ t 对应行波在母线与故障点往返一次所需要的时间。对二者进行相关分析,把正向行波倒极性并延迟△ t 时间后,相关函数出现极大值。 这种方法也存在对故障点的反射波和对侧母线端反射波在故障点的透射波加以区分的问题。由于在一些故障情况下存在对侧端过来的透射波,它们会与故障点发生的反射波发生重叠,从而给相关法测距带来很大困难。 2)高频行波法 高频行波法与其他行波法不同的是,它提取电压或电流的高频行波分量,然后进行数字信号处理,再依据 A 型行波法进行故障测距。这种方法根据高频下母线端的反射特性,成功的区分了故障点的反射波和对侧母线端反射波在故障点的透射波。 (3)利用行波法测距需要解决的问题 行波法测距的可靠性和精度在理论上不受线路类型、故障电阻及两侧系统的影响,但在实际中则受到许多工程因素的制约。 1)行波信号的获取 数字仿真表明:故障时线路上的一次电压与电流的行波现象很明显,包含丰富的故障信息,但需要通过互感器进行测量。关键是如何用一种经济、简单的方式从互感器二次侧测量到行波信号。一般来说,电压和电流的互感器的截止频率要不低于10khz,才能保证信号不过分失真。用于高压输电线路的电容式电压互感器(CVT)显然不能满足要求。利用故障产生的行波的测距装置,最好能做到与其他的线路保护(如距离保护)共用测量互感

高压架空输电线路的故障测距方法 叶锡元

高压架空输电线路的故障测距方法叶锡元 发表时间:2018-12-21T10:20:33.443Z 来源:《电力设备》2018年第23期作者:叶锡元 [导读] 摘要:架空线路是目前电力能源供应的主要方式,随着高压架空输电线路日益增多,输电线路故障问题也频繁出现,对电力系统运行造成影响。 (广东电网有限责任公司东莞西区供电局广东东莞 523960) 摘要:架空线路是目前电力能源供应的主要方式,随着高压架空输电线路日益增多,输电线路故障问题也频繁出现,对电力系统运行造成影响。由于输电线路分布广及穿越复杂地形,容易出现故障;且当架空线路出现故障时,如逐条线路实施排查,效率低,不能对故障及时排除,容易引发一系列连锁反应。实施有效措施对故障进行快速诊断可有利于故障排除,对保障电力系统正常运行将发挥重要作用。高压架空输电线路故障测距方法的使用可快速对故障点进行诊断,有利于故障排除。 关键词:高压架空输电线路的故障测距方法 一、架空输电线路故障概况及分析 具体来讲,关于高压架空输电线路的故障类型主要包括单相、两相等短路故障。就发生频率来讲,单相短路故障的发生率约占据总故障事件的65%以上,其中,三相故障发生概率最小,约占5%左右,但该类故障一旦发生,将对整个电路系统造成严重影响,如烧毁电力元件等,故障不能及时排除,容易引起较大经济损失。关于输电线路发生故障的原因主要是绝缘子被外力等因素击穿而引起接地故障所致。除此之外,天气原因、地理因素也是常见的故障原因,如雷电、大风等引发线路及电气元件损坏而引发故障。此外,腐蚀也是线路故障发生的主要原因,实际线路保护中应引起重视。 二、架空输电线路故障测距原理及方法 对于架空输电线路,故障类型主要包括单相接地故障、相间短路故障、两相短路接地故障等。长期以来,对于故障的诊断主要依靠人为巡检方式发现故障及排除。而随着微机及微处理技术的应用,一些架空线路故障测距装置的使用很大程度上解决了故障无法及时发现及排除的现状。关于故障测距,方法主要有阻抗法及行波法,具体如下。 (一)阻抗法 阻抗法主要是依据电路在故障时所测量所得的电压、电流计算故障回路阻抗,以便确定其故障位置及实施处理,其主要原理是利用线路长度与阻抗成正比的原理所得。该种测量方法原理简单、造价低及不受通行条件限制等优点,一直是各学者关注的重点。但,该种方式主要缺点在于精度不高,无法准确对故障点实施定位。而基于现有技术,如通信技术、GPS技术的应用,使得采用阻抗法实现输电线路故障测距精度的提升提供了技术保证。 (二)行波法 行波法测距主要是依据行波理论实现故障测距的方法,主要有单端算法及双端算法。如当电路发生故障后,从母线向故障点传播的行波实现折返,从而可以利用传播实现与故障距离成正比而实现测距的目的。测试原理如公式(1)所示。由于该方法测试较为准确,且可以实现对故障点的快速判断,可在实际高压架空输电线路故障测距中使用。 (1) 其中,XS为故障距离;v为波速度,Ts1为故障点初始行波到达母线时间,Ts2为故障点发射波到达母线时间。 双端行波法测距原理与单端行波法测距原理存在不同,即双端算法测距主要是依靠故障点所产生的行波第一次到达两端的时间差实现测距,测距原理见公式(2)所示: (2) 其中,XS为故障距离,v为波速度;Ts1为故障点到达母线一端的时间;Ts2为故障点到达母线另一端时间,L为线路长度。 (三)固有频率法测距 (1)固有频率法测距的基本原理 最早在1979年,Swift发现故障行波的频谱与故障距离及线路终端的结构有关,即:在一系列频率成分组成的行波频谱中,这一系列频率成分称为故障行波的固有频率,其中最低频所占的比重最大,称为行波频谱的主成分。在线路终端为理想的开路或者短路状态的情况下,行波频谱的主成分与故障距离之间有确定的函数关系。该研究局限于线路终端两种极特殊的情况下的故障定位,所以Swift的研究结论仅仅是固有频率法测距的雏形。线路终端为任意阻抗值条件下的故障距离和系统终端阻抗、行波固有频率之间的关系,使得利用行波固有频率的测距方法得到了完善。 (2)固有频率法测距的研究现状 利用固有频率法测距,无论应用场景是交流线路还是直流线路,都需要提取出精确的固有频率,目前提取行波固有频率的算法主要有傅里叶变换、多信号分类算法、小波变换,在此基础上,利用信号的时频相关性,先在频域确定行波频谱的主成分,再在该频率的邻域内确定行波信号的周期来得到更为准确的频率值。文献[43]先利用经验模态分解算法处理信号得到故障测距所需的行波成分,再在该成分中提取固有频率,减弱了频谱混叠对测距的影响。 直流输电线路的边界比较复杂,因此对终端阻抗的处理方式对测距精度有比较大的影响。将固有频率法应用于直流输电线路的故障定位中,该文献对线路终端阻抗的处理是把线路终端对高频分量而言看作是开路的,线路终端对低频分量的作用看作使其发生偏移。没有对线路终端的作用进行理论分析,而是利用神经网络的方法训练得到了测距结果。对线路终端阻抗的影响进行了量化分析,计算得到了行波主频率下的终端反射角,通过行波主频率和反射角计算出故障距离。在柔性直流输电线路中固有频率法的适应性。 三、故障测距方法比较及应用趋势分析 前面,对架空输电线路测距方法及原理进行分析。对于高压架空输电线路及现有测距技术而言,利用微分方程直接在时域中求解是最为直接的方式,这是现有高压架空电线故障测距的主要方式。(1)具体来讲,如利用电感、电容及电阻等参数,并用线路两边的电气量计算沿线电压分布而实现对故障距离的测试属于单回线时域测试法的一种。利用双同线环流网及两侧系统无关及电压为零的点而对线路两侧

2015设备故障率目标及措施

2015年设备故障率目标与措施 一、目标 1、综合故障率目标0.4%。 分厂项目故障(含事故)率定额指标烧结厂烧结机≤1.1% 炼铁厂高炉休风≤1.1% 炼钢厂转炉、连铸机≤1% 型钢厂一、二线≤1.1% 带钢厂轧线设备≤0.5 制氧厂氧透、氮透0 2、设备事故:一般设备事故控制在3起内。大事故以上为零。 3、下列情况不属于生产设备故障、事故范围。 A、因设备技术状况不良安排的临时检修。 B、生产过程中设备安全保护装置正常动作,安全件损坏使生产中断者,如安全销、断路器以及能源系统的保护动作等。 C、因生产工具损坏、使生产中断者。如:风口、渣口、烧嘴、连铸机结晶器、格栅、氧枪、轧辊、导卫装置等损坏。 D、生产工艺事故及操作不当使生产中断而造成设备或厂房结构损坏的。 二、措施 1、设备的检查与维护三个方面 ①设备的检查;岗位工开机前的检查,岗位点检、维修专业巡检,管

理人员的抽查。 ②设备的维护;确定设备维护标准与周期、级别,设备维护的内容,设备维护的人员。设备润滑的五定与消耗。 ③以上设备档案与记录、标准及考核。 2、设备维修七个方面 ①设备的磨损与故障规律;摸清设备磨损的类型,找出设备磨损的规律,总结设备故障的规律。 ②设备修理的类型与技术;划分设备修理的类型,总结设备修理的方法、设备修理的技术及提高维修人员的技能。 ③设备修理复杂系数与定额;确定设备修理的复杂系数,确定设备修理周期定额,确定设备修理工时定额。 ④设备修理计划的编制;年度设备修理计划,季度设备修理计划,月度设备修理计划,日常修理的计划。 ⑤设备修理时间确定;按既定的修理计划时间实施(定修),充分利用时序时间(机会)与生产工艺停机时间对设备进行检查、维护及修理。 ⑥设备修理的实施;修理前的检查,准备修理材料,设备修理的组织实施,设备修理的质量管理。 ⑦设备修理备件的管理;备件的提报的流程及准确性,备件的储备管理。 3、设备的故障管理有四个方面 ①设备故障的形式及模式;划分故障形式及模式的种类,分析对设备

智能电网行波故障测距系统的应用方法探讨

智能电网行波故障测距系统的应用方法探讨 故障测距系统的构成部分主要有两种,第一种为终端装置,第二种为主站。随着电力电子技术的快速发展,在电网建设中也融入了智能化技术,基于智能电网的构建也相应的产生了智能变电站,在变电站内部的故障测距系统终端装置中使用了不同的采样方式,并利用不同的装置解决了以往的通讯问题。本文分析了智能电网和传统故障测距系统之间存在的差异,探讨了在测距主站中如何保障测距系统可靠运行的有效措施,并提出了可以对故障进行智能化分析的系统,提高了电网故障的诊断效率。 标签:智能电网;行波故障;测距系统;应用方法 行波故障测距系统是使用极其广泛的一种系统,和传统的阻抗测距法相比,具有准确度高、可靠性高的优势,特别是在辽宁等地区已然形成了完善的测距系统。智能电网建设速度的不断提高,使得智能电网的规划和建设范围都有所扩大,因此为了保证稳定供电和人们生活的正常运行,就必须要在电力系统发生故障之后,在最短时间内完成供电恢复。在这种情况下传统的测距方法体现了极大的劣势,必须要根据智能电网的特点设计符合实际故障检测需求的测距系统。 一、传统测距系统存在问题 第一,传统的测距方法在信号接入方式方面存在着落后的现象。目前很多变电站内的测距终端装置无法和电子式的互感器信号相匹配,导致二者无法进行连接[1]。并且在采样的过程中需要把信号电缆放置于控制室的内部,才能够开展集中式采样工作,降低了采样的效率,也无法满足智能化变电站对技术的要求。第二,无法完成高效的信息共享。在传统的测距系统中会通过各种协议将测距结果上传,但是测距系统的录波数据无法向其他不同的装置或者系统进行数据传输,相应的也无法从其他装置中或者系统中获取数据。第三,没有对电网的整体数据和信息进行有效的利用。传统的测距系统只会考虑到在输电线路左右两侧的数据,因此导致算法无法对电网整体的数据进行合理的应用,导致系统运行的可靠性受到影响,也缩小了系统的使用范围。 二、智能电网故障测距系统构成 在智能电网下故障测距系统仍然是以原有系统为基础进行构建的[2]。测距终端装置主要负责的工作内容是采集电力系统或者电网在运行过程中产生的数据,并通过设定好的方式和途径发送到相应的位置。测距主站则是负责对数据和信息进行计算和分析,并对外进行信息发布。测距主站具有就地配置的特點,但是为了减轻后期主站维修和管理的工作压力和难度会选择在远方进行测距主站的配置。如果故障测距系统均选择就地配置的时候则会将其组合后的结构统一称之为测距装置。 三、智能电网行波故障测距系统的应用

相关文档
最新文档