拉深模工作部分的设计计算
压边力、拉深力和拉深功的计算

压边力、拉深力和拉深功的计算一、压边力1.压边条件为了防止在拉深过程中,工件的边壁或凸圆起皱,应使毛坯(或半成品)被拉入凹模圆角以前,保持稳定状态,起稳定程度主要取决于毛坯的相对厚度,或以后各次拉深半成品的相对厚度,拉深时是采用压边圈的条件,列表于1。
表1采用或不采用压边圈的条件拉深方法第一次拉深以后各次拉深×100×100用压边圈可用可不用不用压边圈<1.51.5~2.0>2.0<0.60.6>0.6<11~1.5>1.5<0.80.8>0.8为了作出准确的估计,还应考虑拉深系数的大小,在实际生产中可以用下述公式计算。
锥形凹模拉深时,材料不起皱的条件是:首次拉深以后各次拉深普通平端面凹模拉深时,毛坯不起皱的条件是:首次拉深以后各次拉深如果不能满足上述公式要求,则可在拉深模设计时应考虑实用压边圈。
2.压边力的计算压边圈的压力必须适当,如果过大,就需要增加拉深力,因而会使工件拉裂,而压边圈的压力过低,就会使工件的边壁或凸缘起皱。
在生产中单位压边力p可以按下表选取,压边力为压边面积乘单位压边力,即:FQ=Ap公式中,FQ-压边力(N)A-在压边圈下毛坯的投影面积(mm2)p-单位压边力(Mpa)压边力的计算列于表2。
表 2 压边公式的计算公式拉深情况公式拉深任何形状的工件筒形件第一次拉深(用平毛坯)筒形件以后各次拉深(用筒形毛坯)注:—压边圈的面积; —单位压边力; —平毛坯直径;、、……—拉深件直径;—凹模圆角半径。
P的经验公式:式中——各工序拉深系数的倒数;——毛坯的抗拉强度(MPa);——材料厚度(mm);——毛坯直径(mm)。
值亦可有表4-52或表4-53查得。
二、拉深力及拉深功1.拉深力的计算在确定拉深条件所需的压力机吨位时,必须先求得拉深力。
如果给定了毛坯的材质,直径和板料厚度,拉深模的直径及凹模的圆角半径等,则、在拉深圆筒形件时,其最大拉深力可按下式计算:式中——拉深力;——材料的抗拉强度(MPa);——材料的屈服极限(MPa);——拉深凹模直径(mm);对于长方形盒件,可按下面经验公式:式中——拉深力(N);——工件底部的圆角半径(mm);——直边部分全长(mm);=0.5时,用于拉深很浅的工件;=2.5时,用于拉深深度为的工件;=0.2 用于间隙较大,且无压边圈时;=0.3 用于牙边力为时;=1.0 用于拉深很困难时。
拉深模设计(180柴油机通风口座子)

拉深模设计零件名称:180柴油机通风口座子生产批量:大批量材料:08酸洗钢板零件简图:如图17所示图17通风口座子设计步骤按如下程序进行(一)分析零件的工艺性这是一个不带底的阶梯形零件,其尺寸精度、各处的圆角半径均符合拉深工艺要求。
该零件形状比较简单,可以采用:落料一拉深成二阶形阶梯件和底部冲孔一翻边的方案加工。
但是能否一次翻边达到零件所要求的高度,需要进行计算。
1. 翻边工序计算一次翻边所能达到的高度:按相关表取极限翻边系数K最小=0.68由相应公式计算得:H最大=D/2(1-K最小)+0.43r+0.72δ=56/2(1-0.68)+0.43*8+0.72*1.5=13.48(mm)而零件的第三阶高度H=21.5>H最大=13.48。
由此可知一次翻边不能达到零件高度要求,需要采用拉深成三阶形阶梯件并冲底孔,然后再翻边。
第三阶高度应该为多少,需要几次拉深,还需继续分析计算。
计算冲底孔后的翻边高度h(见图18):取极限翻边系数K最小=0.68拉深凸模圆角半径取r凸=2σ=3mm由相关公式得翻边所能达到的最大高度:h最大=D/2(1-K最小)+0.57r凸=56/2(1-0.68)+0.57*3=10.67(mm)取翻边高度 h=10(mm)计算冲底孔直径d:d=D+1.14r凸-2h=56+1.14×3-2×10=39.42(mm) 图18拉深后翻边实际采用Ф39mm。
计算需用拉深拉出的第三阶高度h´h´=H-h+r凸+δ=21.5-10+3+1.5=16(mm)根据上述分析计算可以画出翻边前需拉深成的半成品图,如图19所示。
2.拉深工序计算图19所示的阶梯形半成品需要几次拉深,各次拉深后的半成品尺寸如何,需进行如下拉深工艺计算。
计算毛坯直径及相对厚度:先作出计算毛坯分析图,如图20所示。
为了计算方便,先按分析图中所示尺寸,根据弯曲毛坯展开长度计算方法求出中性层母线的各段长度并将计算数据列于表6中。
课程设计带凸缘筒形件首次拉深的拉深模设计

课程设计带凸缘筒形件首次拉深的拉深模设计一、工艺分析1,冲压工艺方案的设定:考虑到零件的生产批量,经过分析得采用反拉深复合膜生产。
2,先剪切条料→落料→第一次拉深→……第四次拉深→修边。
二、工艺参数的计算 。
如上右图所示的拉深件。
(1) 查表4-6选取修边余量Δd 由d 凸d=7529=2.6 、 d 凸=75mm 得出Δd=2.2实际d 凸=75+2×2.2=79.4≈79 (2),初算毛坯直径。
根据公式(4-9a )得出:D =√d 12+4d 2h +2πr (d 1+d 2)+4πr 2+d 42−d 32,将d 1=20 d 2=29 d 3=38d 4=79 h=40 r=4 代入上式得出D=√202+4×29×40+2×3.14×4(20+29)+4×3.14×42+792−382 =√6472+4797≈106,其中6472为工件不包含凸缘部分的表面积,即零件实际需要拉深部分的面积。
(3),判断能否一次拉出。
由h d =4929=1.69 、d 凸d=7929=2.72 、 t D ×100=1106x100=0.94查表4-14得出h1d 1=0.17﹣0.21、而零件实际需要的为1.69、因此不能一次拉深完成。
(4),计算拉深次数及各工序的拉深直径。
,因此需要用试凑法计算利用表4-14来进行计算,但由于有两个未知数m和d td1拉深直径。
下面用逼近法来确定第一的拉深直径。
的值为由于实际拉深系数应该比极限拉伸系数稍大,才符合要求,所以上表中d td11.5、1.6、1.7的不合适。
因为当d t的值取1.4的时候,实际拉深系数与极限拉深系数接近。
故初定第一次d1拉深直径d1=56.因以后各次拉深,按表4-8选取。
故查表4-8选取以后各次的拉深系数为当m2=0.77时d2=d1×m2=56×0.77=43mm当m2=0.79时d3=d2×m3=43×0.79=34mm当m3=0.81时d4=d3×m4=34×0.81=27mm<29mm因此以上各次拉程度分配不合理,需要进行如下调整。
圆筒形件拉深工艺计算

拉深工艺与拉深模设计
圆筒形件拉深工艺计算
三、圆筒形件拉深的压料力与拉深力
2.拉深力与压力机公称压力 (2)压力机公称压力
单动压力机,其公称压力应大于工艺总压力Fz。 工艺总压力为 Fz F FY
注意: 当拉深工作行程较大,尤其落料拉深复合时,应使工艺
力曲线位于压力机滑块的许用压力曲线之下。
在实际生产中,可以按下式来确定压力机的公称压力 Fg : 浅拉深 Fg (1.6 ~ 1.8)Fz 深拉深 Fg (1.8 ~ 2.0)Fz
(1)工序件直径的确定
确定拉深次数以后,由表查得各次拉深的极限拉深系
数,适当放大,并加以调整,其原则是:
1)保证m1m2…mn= 2)使m1<m2<…mn
d D
最后按调整后的拉深系数计算各次工序件直径:
d1=m1D d2=m2d1
…
dn=mndn-1
拉深工艺与拉深模设计
圆筒形件拉深工艺计算
二、拉深次数与工序件尺寸
极限拉深系数[m]
从工艺的角度来看,[m]越小越有利于减少工序数。
拉深工艺与拉深模设计
圆筒形件拉深工艺计算
一、拉深系数与极限拉深系数
2.影响极限拉深系数的因素
(1)材料的组织与力学性能 (2)板料的相对厚度t / D
t/D
[m]
(3)拉深工作条件
1)模具的几何参数 2)摩擦润滑 3)压料圈的压料力
拉深工艺与拉深模设计
圆筒形件拉深工艺计算
二、拉深次数与工序件尺寸
1.拉深次数的确定 (2)推算方法
1)由表4.4.1或表4.4.2中查得各次的极限拉深系数; 2)依次计算出各次拉深直径,即
d1=m1D;d2=m2d1;…;dn=mndn-1; 3)当dn≤d时,计算的次数即为拉深次数。
拉深件展开计算公式

拉深件展开计算公式【实用版】目录1.拉深件的概念及其应用2.拉深件的展开计算公式3.应用举例正文一、拉深件的概念及其应用拉深件是一种常见的金属加工工艺,主要用于制造各种金属制品,如汽车零部件、电器外壳等。
拉深件是指通过压力作用,使金属材料在一定的模具形状下产生塑性变形,从而获得所需形状和尺寸的零件。
拉深件的制造过程包括拉伸、深拉、整形等步骤,其质量直接影响到产品的性能和外观。
二、拉深件的展开计算公式拉深件的展开计算公式是金属塑性加工中一个重要的计算方法,主要用于预测拉深后的零件形状和尺寸。
拉深件展开计算公式主要包括以下几个方面:1.拉伸系数拉伸系数是指拉深前后金属材料的长度变化与原始长度之比,用λ表示。
它是一个重要的参数,直接影响到拉深件的尺寸和形状。
2.拉深件的展开面积拉深件的展开面积是指拉深后零件展开后的总面积。
它主要取决于拉深件的形状、尺寸和材料性质等因素。
3.拉深件的展开公式拉深件的展开计算公式如下:S = λ^2 * A其中,S 表示拉深件的展开面积,λ表示拉伸系数,A 表示拉深件的原始面积。
三、应用举例假设我们要制造一个直径为Φ200mm,高度为 H100mm 的圆柱形拉深件,材料为钢。
首先需要计算拉深系数λ,根据拉伸工艺参数和材料性质,可得拉伸系数λ=1.2。
然后,根据原始面积 A=π*(Φ/2)^2=π*(200/2)^2=10000π,代入公式 S = λ^2 * A,可得拉深件的展开面积S=1.2^2 * 10000π=14400π。
根据展开面积 S,可以设计拉深模具,并进行拉深加工,从而得到所需的拉深件。
拉深模具设计

毕业设计(论文)题目拉深模具设计系 (部) 工程技术系专业模具设计与制造班级姓名学号指导老师系主任2012年5月3日毕业设计(论文)任务书兹发给模具设计与制造班学生毕业设计(论文)任务书,内容如下:1、毕业设计(论文)题目:拉深模具设计2、应完成的项目:(1)模具结构必须满足精冲工艺要求,并能在工作状态下形成压应力体系;(2)模具具有较高的强度和刚度,功能可靠,导向精度好;(3)认真考虑模具的润滑、排气,并能可靠清除冲出的零件及废料;(4)合理选用精冲模具材料、热处理方法和模具零件的加工工艺性;(5)模具结构简单、维修方便,具有良好的经济性。
3、参考资料以及说明:[1] 王芳.冷冲压模具设计指导.机械工业出版社1982.[2] 徐政坤.冷压模具及设备. 机械工业出版社 2005[3] 成虹.冲压工艺与模具设计.高等教育出版社 2006[4] 丁松聚 .冷冲模设计.机械工业出版社 2003.[5] 杨占尧.冲压模具图册.高等教育出版社[6] 马正元 .冲压工艺与模具设计.机械工业出版社 1998[7] 模具实用技术从书编委会.冲模设计与应用实例.1986[8] 齐占庆主编.机床电气控制技术.第三版.北京:机械工业出版社,2005[9] 孙锡红.模具制造工. 中国劳动社会保障出版社 20044.、本毕业设计(论文)任务书于2011年10月25日发出,应于2012年1月10日前完成。
指导教师:签发2011 年10 月25 日学生签名:2011 年10 月28 日毕业设计(论文)开题报告不论冲压件的几何形状和尺寸大小如何,其生产过程一般都是从原材料剪切下料开始,经过各种冲压工序和其他必要的辅助工序(如退火,酸洗,表面处理等)加工出图纸所要求的零件。
对于某些组合冲压件或精度要求较高的冲压件,还需要经过切削,焊接或铆接等加工,才能完成。
冲压件工艺过程的制定和模具设计是冷冲压课程设计的主要内容。
进行冲压设计就是根据已有的生产条件,综合考虑影响生产过程顺利进行的各方面因素,合理安排零件的生产工序,最优地选用,确定各工艺参数的大小和变化范围,设计模具,选用设备等,以使零件的整个生产过程达到优质,高产,低耗,安全的目的冲压工艺规程是模具设计的依据,而良好的模具结构设计,又是实现工艺过程的可靠保证,若冲压工艺有改动,往往会造成模具的返工,甚至报废。
拉深工艺及拉深模设计

拉深工艺及拉深模设计本章内容简介:本章在分析拉深变形过程及拉深件质量影响因素的基础上,介绍拉深工艺计算、工艺方案制定和拉深模设计。
涉及拉深变形过程分析、拉深件质量分析、圆筒形件的工艺计算、其它形状零件的拉深变形特点、拉深工艺性分析与工艺方案确定、拉深模典型结构、拉深模工作零件设计、拉深辅助工序等。
学习目的与要求:1.了解拉深变形规律、掌握拉深变形程度的表示;2.掌握影响拉深件质量的因素;3.掌握拉深工艺性分析。
重点:1. 拉深变形特点及拉深变形程度的表示;2.影响拉深件质量的因素;3.拉深工艺性分析。
难点:1.拉深变形规律及拉深变形特点;2.拉深件质量分析;3.拉深件工艺分析。
拉深:利用拉深模将一定形状的平面坯料或空心件制成开口空心件的冲压工序。
拉深工艺可以在普通的单动压力机上进行,也可在专用的双动、三动拉深压力机或液压机上进行。
拉深件的种类很多,按变形力学特点可以分为四种基本类型,如图5-1所示。
图5-1 拉深件示意图5.1 拉深变形过程分析5.1.1 拉深变形过程及特点图5-2所示为圆筒形件的拉深过程。
直径为D、厚度为t的圆形毛坯经过拉深模拉深,得到具有外径为d、高度为h的开口圆筒形工件。
图5-2 圆筒形件的拉深1.在拉深过程中,坯料的中心部分成为筒形件的底部,基本不变形,是不变形区,坯料的凸缘部分(即D-d的环形部分)是主要变形区。
拉深过程实质上就是将坯料的凸缘部分材料逐渐转移到筒壁的过程。
2.在转移过程中,凸缘部分材料由于拉深力的作用,径向产生拉应力,切向产生压应力。
在和的共同作用下,凸缘部分金属材料产生塑性变形,其“多余的三角形”材料沿径向伸长,切向压缩,且不断被拉入凹模中变为筒壁,成为圆筒形开口空心件。
3.圆筒形件拉深的变形程度,通常以筒形件直径d与坯料直径D的比值来表示,即m=d/D(5-1)其中m称为拉深系数,m越小,拉深变形程度越大;相反,m越大,拉深变形程度就越小。
5.1.2 拉深过程中坯料内的应力与应变状态拉深过程是一个复杂的塑性变形过程,其变形区比较大,金属流动大,拉深过程中容易发生凸缘变形区的起皱和传力区的拉裂而使工件报废。
拉深模具设计说明书

前言冷冲压是建立在金属塑性变形的基础上,在常温下利用安装在压力机上的模具对材料施加压力,使其产生分离或塑性变形,从而获得一定形状、尺寸和性能的零件的一种压力加工方法。
在冷冲压加工中,将材料(金属或非金属)加工成零件(或半成品)的一种特殊工艺装备称为冷冲压模具(俗称冷冲模)。
冷冲模在实现冷冲压加工中是必不可少的工艺装备,没有先进的模具技术,先进的冲压工艺就无法实现。
冷冲压的特点有:1,节省材料2,制品有较好的互换性3制品有较好的互换性4生产效率高5操作简单6由于冷冲压生产效率高,材料利用律,故生产的制品成本较低。
冷冲压加工在汽车、拖拉机、电机、电器、仪表和日用品生产中,已占据十分重要的地位,特别是在电子工业产品生产中,已成为不可缺少的主要加工方法之一。
随着科学技术的不断进步和工业生产的迅速发展,冲压及模具技术也在不断革新与发展。
主要表现在以下几个方面:一.工艺分析计算方法现代化现在已开始采用有限变形的弹塑性有限方法,对复杂成形件的成形过程进行应力应变分析的计算机模拟。
二.模具设计制造技术现代化工业发达国家正在大力开展模具计算辅助设计和制造(CAD/CAM)的研究。
采用这一技术,一般可提高模具设计制造效率的2-3倍,应用这一技术,不仅可以缩短模具设计制造周期,还可提高模具质量,减少设计和政治早人员的重复劳动,使设计者有可能把精力用在创新开发上。
三.冲压生产机械化与自动化与柔性化为了适应大批量,高效率生产的需要,在冲压模具和设备上广泛应用了各种自动化的进出料机构。
对于大型冲压件,专门配置了机械手和机器人,这不仅大大的提高了冲压件的生产品质和生产率,而且也增加了冲压工作和冲压工人的安全性。
在中小件的大批量生产方面,现已广泛应用于多工位压力机活、或高速压力机。
在小批量生产方面,正在发展柔性制造系统(FMS)。
四.为了满足产品更新换代快和小批量生产的需要,发展了一些新的成形工艺,简易模具,数控冲压设备和冲压柔性制造技术等。
圆筒拉深件毛坯尺寸计算

4 . 2 直壁旋转体零件拉深工艺的设计圆筒形零件是最典型的拉深件,掌握了它的工艺计算方法后,其它零件的工艺计算可以借鉴其计算方法。
下面介绍如何计算圆筒形零件毛坯尺寸、拉深次数、半成品尺寸,拉深力和功,以及如何确定模具工作部分的尺寸等。
4.2.1 圆筒形拉深件毛坯尺寸计算 1.拉深件毛坯尺寸计算的原则<1)面积相等原则由于拉深前和拉深后材料的体积不变,对于不变薄拉深,假设材料厚度拉深前后不变,拉深毛坯的尺寸按“拉深前毛坯表面积等于拉深后零件的表面积”的原则来确定(毛坯尺寸确定还可按等体积,等重量原则>。
<2)形状相似原则拉深毛坯的形状一般与拉深件的横截面形状相似。
即零件的横截面是圆形、椭圆形时,其拉深前毛坯展开形状也基本上是圆形或椭圆形。
对于异形件拉深,其毛坯的周边轮廓必须采用光滑曲线连接,应无急剧的转折和尖角。
拉深件毛坯形状的确定和尺寸计算是否正确,不仅直接影响生产过程,而且对冲压件生产有很大的经济意义,因为在冲压零件的总成本中,材料费用一般占到60 %以上。
由于拉深材料厚度有公差,板料具有各向异性;模具间隙和摩擦阻力的不一致以及毛坯的定位不准确等原因,拉深后零件的口部将出现凸耳(口部不平>。
为了得到口部平齐,高度一致的拉深件,需要拉深后增加切边工序,将不平齐的部分切去。
所以在计算毛坯之前,应先在拉深件上增加切边余量(表42.1、4.2.2>。
表4.2.1无凸缘零件切边余量Δh<mm>拉深件高度h拉深相对高度h/d或h/B附图>0.5~0.8 >0.8~1.6 >1.6~2.5 >2.5~4≤10>10~20 >20~50 >50~100 >100~150 >150~200 >200~250>250 1.01.22345671.21.62.53.856.37.58.51.522.53.856.37.58.522.5468101112[img=118,139]mhtml:file://F:\冲压\4 _ 2 直壁旋转体零件拉深工艺的设计.mht![/img]表4.2.2有凸缘零件切边余量ΔR<mm>凸缘直径dt或Bt相对凸缘直径dt/d或Bt/B附图< 1.5 1.5~2 2~2.5 2.5~3< 25>25~50 >50~100 >100~150 >150~200 >200~250>250 1.82.53.54.35.05.56.01.62.03.03.64.24.65.01.41.82.53.03.53.84.01.21.62.22.52.72.83.0[img=125,125]mhtml:file://F:\冲压\4 _ 2 直壁旋转体零件拉深工艺的设计.mht![/img]2.简单形状的旋转体拉深零件毛坯尺寸的确定(图4.2.1>对于简单形状的旋转体拉深零件求其毛坯尺寸时,一般可将拉深零件分解为若干简单的几何体,分别求出它们的表面积后再相加(含切边余量在内> 。
落料—拉深复合冲压模具课程设计【完整版】

落料—拉深复合冲压模具课程设计【完整版】(文档可以直接使用,也可根据实际需要修订后使用,可编辑放心下载)零件简图:如右图所示生产批量:大批量材料:08钢材料厚度:2mm1.冲压件工艺性分析该工件属于典型圆筒形件拉深,形状简单对称。
所有尺寸均为自由公差,尺寸容易保证。
高度尺寸91mm可在拉深后采用修边到达要求。
2.冲压工艺方案确实定该工件包括落料、拉深两个根本工序。
可有以下三种工艺方案:方案一:先落料,后拉深。
采用单工序模生产。
方案二:落料—拉深复合冲压。
采用复合模生产。
方案三:拉深级进冲压。
采用级进模生产。
方案一模具结构简单,但需两道工序两副模具,生产效率低,难以满足该工件大批量生产的要求。
方案二只需一副模具,生产效率较高,尺管模具结构较方案一复杂,但由于零件的几何形状简单对称,模具制造并不困难。
方案三也只需一副模具,生产效率高,但模具结构比拟复杂,送进操后不方便,加之工件尺寸偏大。
通过对上述三种方案的分析比拟,该件假设能一次拉深,那么其冲压生产采用方案二为佳。
3.主要设计计算(1)毛坯尺寸计算根据外表积相等原那么,用解析法求该零件的毛坯直径DD=√ ̄〔d2* d2+4*d2H-1.72rd2-0.56r*r〕D=√ ̄(160*160+4*160*91-1.72*12*160-0.56*12*12)D=283.65 mm(2)排样及相关计算采用有废料直排的排样方式,相关如下示冲裁件面积A=∏*D*D/4=∏=63159平方毫米条料宽度B=D+2a+C=283.65+2*1.8+1=288.25 mma——侧搭边值,查冲压教程表得最小侧搭边值a=1.8mmc——导料板与最宽条料之间的间隙,其最小值查冲压教程表得c=1步距s=D+a=283.65+1.5=285.15 mm式中a1——工件间搭边值,查冲压教程表得a1=1.5mm一个步进距的材料利用率∩=A/BS*100℅∩℅∩=76.8℅式中:A——一个步距内冲裁件的实际面积B———条料宽度S———步距〔3〕成形次数确实定该工件为简单圆筒形拉深件,求出拉深相对高度H/h=91/160=0.57。
模具设计第五章 拉深工艺及拉深模

七、拉深模制造特点
4)由于拉深过程中材料厚度变化及回弹变形等原因,复杂拉深件 坯料形状和尺寸设计值与实际值往往存在误差,坯料形状和尺寸 最终是在试模后确定。 2.拉深模凸、凹模的加工方法
26627D
七、拉深模制造特点
表5-4 拉深凸模常用加工方法
26627D
七、拉深模制造特点
表5-5 拉深凹模常用加工方法
一、拉深变形分析
26627D
图5-3 拉深件的网格变化
二、拉深件的主要质量问题
1.起皱
26627D
图5-4 起皱破坏
二、拉深件的主要质量问题
(1)影响起皱的主要因素 1)坯料的相对厚度t/D。 2)拉深系数m。 (2)起皱的判断 在分析拉深件的成形工艺时,必须判断该冲件 在拉深过程中是否会发生起皱,如果不起皱,则可以采用无压边 圈的模具;否则,应该采用带压边装置的模具,如图5-5所示。
26627D
图5-10 圆筒形件
三、圆筒形件的拉深
解 由于t=2mm>1mm,所以按中线尺寸计算。 1)确定修边余量。 2)计算坯料展开直径。 3)确定是否用压边圈。 4)确定拉深次数。 5)确定各次拉深直径。 6)求各工序件高度。 7)画出工序图,如图5-11所示。
26627D
四、拉深模的典型结构
26627D
图5-9 多次拉深时筒形件直径的变化
三、圆筒形件的拉深
2.拉深系数
表5-3 圆筒形件带压边圈时的极限拉深系数
3.拉深次数 4.圆筒形件拉深各次工序尺寸的计算
(1)工序件直径 从前面介绍中已知,各次工序件直径可根据各 次的拉深系数算出。
Hale Waihona Puke 26627D三、圆筒形件的拉深
第08章--拉深模具设计PPT课件

以由弹簧或橡皮产生,也可以由气垫产生。
5
带凸缘零 件的拉深模结 构,毛坯用定 位板定位,在 下模座上安装 了定距垫块, 用来控制拉深 深度,以保证 制件的拉深高 度和凸缘直径。
图8.6 凸缘件拉深模(定距垫块) 6
图8.7 凸缘件拉深模(打料块定距)
毛坯用固定挡料销定位,打料块同时起定距垫块的作用, 作用同样是控制拉深高度和凸缘直径。
第8章 拉深模具设计
8.1 单动压力机首次拉深模
8.1.1 无压边圈的拉深模
适用于底部平整、 拉深变形程度不大、 相对厚度(t/D)较大和 拉深高度较小的零件。
1
图8.1 无压边圈有顶出装置的拉深模
8.1.2 带压边圈的拉深模
板料毛坯 被拉入凹模。 在拉簧力的作 用下,刮件环 又紧贴凸模, 在凸模上行时 可以将制件脱 出,由下模座 孔中落下。
下止点
30°
60°
曲轴转角α
90° 23
8.6.4 模具工作部分尺寸的计算
1. 凸、凹模间隙 2. 凸、凹模圆角半径 3. 凸、凹模工作尺寸及公差 4. 凸模通气孔
24
8.6.5 模具的总体设计
模具的总装图如 图8.26所示。
采用正装式结构, 落料拉深凸凹模安装 在上模;
刚性卸料板卸去 废料,也起导尺作用,
线,
若落料拉深力曲线处于许用负荷曲线之下,则所选设备符合
工作要求;
若落料拉深力曲线超出许可范围(见图8.25),则需选择标称
压力更大型号的压力机,继续以上校核过程。
26
图8.25 许用负荷与实际负荷
27
用导尺和固定挡 料销定位;
打料块将卡在凸 凹模内的工件推出。
图8.26 落料首次拉深复合模 25
第四章 拉深工艺与模具设计

t D
Ky (1
m1 )
以后各次拉深中制件不起皱的条件是: 实践证明:
t di1
K
y
(
1 m1
1)
直壁圆筒形件的首次拉深中起皱最易发生的时刻:拉深的初期
(二)拉裂 当筒壁拉应力超过筒壁材料的抗拉强度时,拉深件就会在底部圆角与 筒壁相切处——“危险断面”产生破裂。
为防止拉裂,可以从以下几方面考虑: (1)根据板材成形性能,采用适当的拉深比和压边力; (2)增加凸模表面粗糙度;改善凸缘部分的润滑条件; (3)合理设计模具工作部分形状;选用拉深性能好的材料等。
第四章 拉深工艺与模具设计
拉深变形过程分析
直壁旋转体零件拉深 工艺计算
非直壁旋转体零件拉深 成形方法
盒形件的拉深
拉深工艺设计 拉深模具的类型与结构
其他拉深方法 拉深模工作部分的设计
返回
拉伸:
拉深是利用拉深模具将冲裁好的平板毛坯压制成各种开口的空心工 件,或将已制成的开口空心件加工成其它形状空心件的一种冲压加 工方法。拉深也叫拉延。
(二)筒壁传力区的受力分析
1.压边力Q引起的摩擦力:
m
2Q dt
2.材料流过凹模圆角半径产生弯曲变形的阻力
w
1 4
b
rd
t t
/
2
3.材料流过凹模圆角后又被拉直成筒壁的反向弯曲w 力 仍按上式进行计
算,拉深初期凸模圆角处的弯曲应力也按上式计算
w
w
1 4
b
rd
t t
2)筒底圆角半径rn
筒底圆角半径rn即是本道拉深凸模的圆角半径rp,确定方法如下:
r r 一般情况下,除末道拉深工序外,可取 pi = di。 对于末道拉深工序:
拉深工艺与拉深模设计

82449 9(76 3.8)6.2 87.584 87.52 20.572 20m8m
案例分析(毛坯尺寸计算) 电容器外壳 由图4-2可得:
d1=17.6mm d2=21.2mm h1=26.8mm h=28.6mm r=1.8mm h/d=28.6÷21.2=1.35
r
y
α
O
y
a)
b)
圆心重心位置
a)圆弧与水平线相交
b)圆弧与垂直线相交
O
2)作图解析法 ①将零件按母线分成若干个简单的几何部分;
②求出各简单几何部分的重心至旋转轴的旋转半径r1、r2、 r3……rn;并求出各部分母线长度l1、l2、l3……ln;则其 乘积之和lr= l1r1+l2r2+l3r3+……+lnrn;
当零件尺寸标注在外形时
D dD m a0 x .7 5 0 d
D pD m a0 x.7 5 Z0 p
当零件尺寸标注在内形时
dddm in 0.40 d
dpdm in 0.4Z0 p
D0 -Δ
Z /2
D +Δ 0
Z /2
Dp
dp
Dd
a)
零件尺寸标注
dd
b)
对于多次拉深,工序尺寸无需严格要求,凸、凹
(2)凸模圆角半径的确定 首次拉深,凸模圆角半径
rp1=(0.7~1.0)rd1 最后一次拉深,凸模圆角半径
r—零件圆角半径。
rpn=r
如果r<t时,则rpn≥t,然后整形。
中间各次拉深,凸模圆角半径
rpi-1=0.5(di-1-di-2t)
式中 di-1,di—各工序的外径(mm)。
阶梯件拉深模设计说明书

阶梯件拉深模设计说明书阶梯形零件拉深模设计说明书⼯件图如下图所⽰:材料:08钢料厚:0.8 mm⽑坯直径:D =344.25mm审图及⼯艺性分析如下图所⽰,⼯件为有凸缘圆筒阶梯形零件,⽆孔,有4个圆⾓需要加⼯,材料为08钢,为极软的碳素钢,强度、硬度很低,⽽韧性和塑性极⾼,具有良好的拉延性。
厚度为0.8mm ,精度等级为IT10级。
由此可知该⼯件适合拉深⼯艺。
⼯艺⽅案确定经过分析,可以确定采⽤单⼯序模⼀次拉深成型。
模具结构简单,操作⽅便,⽣产成本较低,可以满⾜设计要求。
因为=?=?000010025.3448.0100D t 0.23﹪<1.5﹪故由参【1】表4-11知,采⽤带压边圈的结构。
三、拉深⼯艺计算1、拉深系数及拉深次数计算(1)拉深系数的确定438.125.191275==d d t 及⽑坯的相对厚度000027.0100=?D t ,由参【6】表4-10查得拉深系数m =0.51(2)拉深次数的确定由参【1】式5-35得,349.05.1375.2325.191342211=+=+d h d h ⽽349.0481.05.1375.57>==d h故可以⼀次拉深成型。
2、拉深⼒的计算由参【1】公式5-27的得,拉深所需拉深⼒:F Z =F +F Y⽽ F =K dt b σπ=KN 392.1741.13308.025.19114.3= KNKN AP F Y 501.703.2023.306533.2])225.191()2275[(22=?=?-==π式中b σ取330MpaK 取1.1 (由参【1】表5-9得)p 取2.3 (由参【1】表5-8得)故 F Z =174.392+70.501=244.893KN3、初选压⼒机由参【2】压⼒机的公称压⼒F 0≥(1.6~1.8)F Z 取F 0=1.8F Z =1.8×244.893KN =440.807KN所以初选压⼒机公称压⼒630KN 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.结构参数
(一)凸、凹模间隙
间隙的影响如下: 1.拉深力 间隙愈小,拉深力愈大。 2.零件质量
间隙过大,容易超皱,而且毛坯口部的变厚得 不到消除;另外,也会使零件出现锥度。而间 隙过小,则会使零件拉断或变薄特别严重。 3.模具寿命 间隙小,则磨损加剧。
确定间隙的原则:考虑板材本身的公差, 和毛坯口部的增厚。 间隙值可按下式计算:
(三)凸、凹模结构形式
1.无压边圈的拉深模
一次拉深成形的拉深件,其凸、凹模结构形式如图。 图a适宜于大型零件;图b、c适于中小型零件。
多次拉深时,其凸、凹模结构如图。
2.有压边圈的拉深模
图a多用于尺寸较小的拉深件;图b为有斜角的凸模和 凹模,优点是毛坯在下一次拉深时容易定位,减轻了 毛坯的反复弯曲变形程度,减少了零件的变薄以及提 高了零件侧壁的质量等。它多用于尺寸较大的零件。
Z tmax Ct
式中tmax—材料的最大厚度,其值tmax=t+△ △—板料的正偏差; C—增大系数,考虑材料的增厚以减小摩擦,其值
见表5-18(w)。
(二)凹模与凸模圆角半径
凹模的圆角半径过小: 板材在经过凹模圆角部分时的变形阻力以及在 间隙内的阻力都要增大,引起总的拉深力增大 和模具寿命的降低。
(d
0.4)
0
p
凹模尺寸:Dd (d 0.4 2Z)0d
二、典型模具结构
(一)首次拉深模
1.无压边装置的简单拉深模
上模是整体的。凸模直径过小 可加上模柄。凸模上设计通气 孔。凹模下部有通孔,以便刮 件环将零件从凸模上脱下后, 能排出零件。这种结构一般适 用于厚度大于2mm及拉深深度 较小的零件。
3.带限制圈的结构
对不经中间热处理的多次拉深的零件,在拉深后, 易在口部出现龟裂,可以采用带限制圈的结构。
(四)凸、凹模工作部分尺寸及其公差
当零件要求外形尺寸时: 凹模尺寸:Dd (D 0.75)0d 凸模尺寸:Dp (D 0.75 2Z)0p
当零件要求内形尺寸时:
凸模尺寸:
Dp
凹模圆角半径过大: 拉深初始阶段不与模具表面接触的毛坯宽度加 大,这部分毛坯很容易起皱。在拉深后期,过 大的凹模圆角半径也会使毛坯外边缘过早地脱 离压边圈的作用呈自由状态而起皱。
凸模圆角半径过小:
毛坯在受到过大的弯曲变形,降低毛坯危 险断面的强度,使极限拉深系数增大;引 起危险断面的局部变薄;等
2.有压边装置的模具
(1)弹簧压边圈装在上部的模具
正装拉深模,弹性元件 装在上模,适宜于拉深深度 不大的零件。
(2)弹簧(或橡皮)压边圈装在下部的模具;
倒装拉深模。弹性元件装在模座下 压力机工作台的孔中,可以拉深深 度较大的零件。这套模具采用了锥 形压边圈,有利于拉深变形。
3.在双动压力机上用的带刚性压边圈的模具
(三)反拉深模
图a为无压边正装反拉深模,
图b为有压边正装反拉深模; 图c为有压边倒装反拉深模。
(四)复合拉深模
落料拉深复合模
正反向拉深复合膜:适于双动压力机用, 外滑块带动第一次拉深凹模,内滑块带 动第二次拉深凸模,图a为首次拉深,图 b为第二次拉深。
凸模圆角半径过大:
在拉深初始阶段不与模具表面接触的毛坯 宽度加大,毛坯起皱。
1.凹模圆角半径 首次拉深时的凹模圆角 半径rd1可由下式确定
rd1 0.8 D Dd t
或 rd1=C1C2t
式中D——毛坯直径 Dd——凹模内径 t——材料厚度 C1——考虑材料力学性能的系数;对于软钢C1=1,对 于紫钢、黄铜、铝C1=0.8; C2——考虑材料厚度与拉深系数的系数。
双动压力机上有两个滑块, 凸模装在内滑块上,压边圈 装在外滑块上,下模装在工 作台上。工作时,外滑块先 下行压住毛坯,然后内滑块 下行进行拉深。拉深完毕后, 零件由下模漏出或将零件顶 出凹模。
Hale Waihona Puke (二)以后各次拉深模图62为无压边后续拉深模,凹模采用锥形,具有 抗失稳起皱的作用。图4-63为有压边后续拉深模。
以后各次拉深的凹模圆角半径rdn可逐渐 缩 小 , 一 般 可 取 rdn=(0.6-0.8)rd(n-1), 不 应 小于2。
2.凸模圆角半径
除最后一次应取与零件底部圆角半径相 等的数值外,其余各次可以取与rd相等或 略小一些,并且各道拉深凸模圆角半径 逐次减小。即:rp=(0.7-1.0)rd。