运筹学习题课上课讲义
运筹学讲义3
第三讲 整数规划⎧:0,j MaxZ CX AX b ST x ==⎨≥⎩x j 部分或全部为整数一、整数规划模型(12年,第一题,15分)一家公司打算在甲地、乙地或甲乙两地新建工厂,一地至多建一个工厂,并且在甲乙两地至多建一个仓库,仓库位置随工厂地点而定(即,如某地有工厂,该地可设仓库或不设仓库;但如该地不设工厂,则该地一定不设仓库),若总资本可用量为20(百万元),其他数据如下表所示,问一个最大化净现值收益的决策是什么?只建模不求解。
例:一辆货车的有效载重量是20吨,载货有效空间是35立方米。
现有六件货物可选择运输,每件货物的重量、体积及收入见下表。
另外,货物2和货物3不能混装;如果装载货物4,就必须装载货物5。
问怎样安排货物装载才能使收入最大,建立数学模型(不用求解)。
例:某大型企业每年需要进行多种类型的员工培训。
假设共有需要培训的需求(如技术类、管理类)为6种,每种需求的最低培训人数为a i,i=1,...,6,可供选择的培训方式(如内部自行培训、外部与高校合作培训)有5种,每种的最高培训人数为b j,j=1,...,5。
又设若选择了第1种培训方式,则第3种培训方式也要选择。
记x ij为第i种需求由第j种方式培训的人员数量,Z为培训总费用。
费用的构成包括固定费用和可变费用,第j种方式的固定培训费用为h j(与人数无关),与人数x ij相应的可变费用为c ij。
如果以成本费用为优化目标,试建立该培训问题的结构优化模型。
二、分支定界法(07年,第三题15分)设有整数规划问题如下,其松弛问题的最优解为(7/6,8/3),若要用分支定界法求其整数解,需要对其进行分支(仅作一级分支,不要求求解)。
是以x1为分之对象,用示意图表示其分支问题的可行域,并写出可行域的约束方程。
12121212542,0z x x x x x x x x =++≤-≥≥max s.t. 2 且为整数12121212121211121255B 42 B 4221,0,0z x x z x x x x x x x x x x x x x x x x =+=+⎧⎧⎪⎪+≤+≤⎪⎪⎪⎪-≥-≥⎨⎨⎪⎪≥≤⎪⎪⎪≥⎪≥⎩⎩max max s.t. 2s.t. 2问题1 问题2三、割平面法(11年,第五题,10分)对于MAX 型整数规划问题,若其松弛问题的最优单纯形表中有一行数据如表3。
运筹学讲义
《管理运筹学》1、运筹学的工作步骤(1)提出和形成问题.(2)建立模型.(3)求解.(4)解的检验.(5)解的控制.(6)解的实施.2、运筹学模型三种基本形式:(1)形象模型(2)模拟模型(3)符号或数学模型构模的五种方法和思路: (1)直接分析法 (如线性规划)(2)类比法(手机的普及与电视机的普及)(3)数据分析法(如汽车销售量预测模型)(4)试验分析法(销售量与价格之间的关系模型)(5)想定(构想)法(销售与心理)3、如何将线性规划问题的一般形式化为标准形式:1.如果问题是求目标函数的最小值,求min f=∑Cjxj则可先将目标函数乘(-1),化为求极大值问题,即求 max Z=-f=-∑Cjxj2.如果有某个bk≤0,则可将该等式两边均乘以(-1),使右端常数项bk=-bk≥03.如果第k个约束条件是∑akjxj≤bk,引入松弛变量sk≥0 , 将它写成∑akjxj+sk=bk如果第l个约束条件是∑aljxj≥bl则引入剩余变量(也可称为松弛变量)sl≥0,将它写成∑aljxj—sl=bl 且使松弛变量和剩余变量在目标函数中的系数为零。
4.如果对某个变量xj没有非负限制(这种变量称为自由变量或无约束变量),则引进两个非负变量xj′,xj″,令xj=xj′-xj″代人目标函数和约束条件中,可将它化为对全部变量都有非负限制的问题。
4、①目标函数为变量的线性函数,约束条件也为变量的线性等式或不等式的模型称之为线性规划。
②如果目标函数是变量的非线性函数,或约束条件中含有变量非线性的等式或不等式的数学模型则称之为非线性规划。
③满足所有约束条件的解称为该线性规划的可行解。
④把使得目标函数值最大(即利润最大)的可行解称为该线性规划的最优解,此目标函数值称为最优目标函数值,简称最优值5、图解法的启示1.最优解:如果某一个线性规划问题有最优解,则一定有一个可行域的顶点对应一个最优解。
(一般为封闭可行域凸集)2.无穷多个最优解:若将上例中的目标函数变为求maxZ=50x1+50x2则代表目标函数的直线平移到最优位置后将和直线x1+x2=300重合。
运筹学讲义
第一章绪论一运筹学的发展历史1学科起源:二战期间英美等国军事部门集中多学科人员,研究提高武器系统效能,如反空袭雷达控制系统,使雷达和高炮相配合。
诺将物理学家布莱克特(Blackett)领导研究小组“Operational Research”,多学科构成(布莱克特马戏团)。
战争结束后专家转移到企业和院校——学科形成。
2我国古代的运筹思想:齐王赛马——齐王“上中下”,田忌“下上中”丁渭修皇宫——北宋真宗宰相丁渭(澶chan州之盟的主和派),主持皇宫失火后的修复。
宫前大街取土、引汴河运料、完工后回填废土。
3我国近代以来:50年代开始钱学森、许志国等引进运筹学理论,华罗庚教授回国后从事优选法和统筹法研究推广(烧茶壶的故事)4翻译:来自汉高祖“夫运筹帷幄之中,决胜千里之外,吾不如子房;填国家,抚百姓,给饷馈,不绝粮道,吾不如萧何;连百万之众,战必胜,攻必取,吾不如韩信。
”台湾地区直译为“运作研究”。
二运筹学的特点运筹学存在多种定义,如“依照给定目标和条件,从众多方案中选择最优方案的最优化技术”,学科特点:最优化、定量化1 多种专家的协作2 科学的方法:从实际情况出发,通过假设的模型打到一个符合实际的结论3 目的在于解决实际问题。
4 需要系统的信息资料5 需要建立模型——运筹学的核心问题就是通过合适的模型分析系统的未来情况6 对于复杂问题,需要计算机三运筹学的模型运筹学的主要特点是通过模型来描述和分析所认定范围内的系统状态。
分析过程包括:1 系统分析和问题描述。
认定问题的实质——社会经济问题复杂性、不可重复性,不同于具有可控性的物理模型(提高企业效益:开发市场?增加设备?加强研发?)。
明确系统的主要目标(利润最大化、市场占有率最大化、销售收入最大化?GDP增长、可持续协调增长?)、找出系统主要变量和参数、变化范围、相互关系及其对目标的影响。
分析问题的可行性:技术可行性—有无现成的运筹学方法?经济可行性—研究的成本和预期的效果,考虑运筹决策的时间和代价,要对研究问题的深度和广度作出一定限制操作可行性—研究人员的配备2 建立数学模型——要尽可能简单;要能完整的描述所研究的系统。
运筹学课程讲义
运筹学课程讲义第一部分线性规划第一章线性规划的基本性质1.1 线性规划的数学模型一、线性规划问题的特点胜利家具厂生产桌子和椅子两种家具。
桌子售价50 元/个,椅子售价30 元/个。
生产桌子和椅子需木工和油漆工两种工种。
生产一个桌子需要木工4 小时,油漆工2小时。
生产一个椅子需要木工3 小时,油漆工1 小时。
该厂每月可用木工工时为120 小时,油漆工工时为50 小时。
问该厂如何组织生产才能使每月的销售收入最大?max z 50x1 30x24x1 3x2 1202x1 x2 50x1,x2 0 例:某工厂生产某一种型号的机床。
每台机床上需要 2.9m、2.1m、1.5m的轴,分别为1根、2根和1根。
这些轴需用同一种圆钢制作,圆钢的长度为74m。
如果要生产100台机床,问应如何安排下料,才能用料最省?二、数学模型的标准型1. 繁写形式2. 缩写形式3. 向量形式4. 矩阵形式若原模型中变量 x j 有上下界,如何化为非负变量?三、 任一模型如何化为标准型?1. 若原模型要求目标函数实现最大化,如何将其化为最小化问题?2. 若原模型中约束条件为不等式,如何化为等式?3. 若原模型中变量 x k 是自由变量,如何化为非负变量?1. 2 图解法该法简单直观,平面作图适于求解二维问题。
使用该法求解线性规划问题时,不必把原模型化为标准型。
一、 图解法步骤1. 由全部约束条件作图求出可行域2. 作出一条目标函数的等值线3. 平移目标函数等值线,作图求解最优点,再算出最优值 max z 5x 1 6x 2 7x 3x 1 5x 23x 3 15 5x 1 6x 210x 3 20 x 1 x 2 x 3 5x 1 0,x 2 0,x 3无约束令 x 1' x 1,x 3 x 3' x 3'',x 3' ,x 3'' 0, Z 1Z ' 1 1 min z ' 5x 1' 6x 2 7x 3' 7x 3'' 0x 5 Mx 6 1 x 1' 5x 2 1 11 3x 3' 3x 3'' x 4 x 6 15 1 5x 1' 6x 2 10x 3' 10x 3'' x 5 20 1 x ' x 1 ' II '' 54.Mx 7 x 1, x 2 , x 3, x 3, x 4 , x 5 ,x 6, x 7 0从图解法看线性规划问题解的几种情况1. 有唯一最优解2. 有无穷多组最优解3. 无可行解4. 无有限最优解(无界解)min z 6x1 4x?2x〔X2 13 最优解(1,0),最优值33x14x2 22x1, x20直观结论:1)线性规划问题的可行域为凸集,特殊情况下为无界域(但有有限个顶点)或空集;2)线性规划问题若有最优解,一定可以在其可行域的顶点上得到。
运筹学讲义完整版
等可能准则
n
max{
i
1 n
Vij
j=1
}
S1 A1 20 A2 9 A3 6
S2
S3
Vi =
1 3
Vij
1 -6
5
80
5
2 3
max=5
2 3
54
5
选 A2
第36页
5.后悔值准则(Savage原则 ) (最小机会损失决策)
定义:称每个方案aj在结局Si下的最大可能 收益与现收益的差叫机会损失,又称后悔值 或遗憾值。记Rij(si,aj)=MaxQij(si,aj)-Qij(si,aj)
第27页
收益矩阵
事件 高
方案
S1
A1
20
A2
9
A3
6
中
低
S2 S3(万元)
1
-6
8
0
5
4
第28页
1.乐观准则(Hurwicz原则、MaxMax ) (冒险型决策)
对于任何行动方案 ,都认为将是最好的状态发 生,即益损值最大的状态发生。然后,比较各 行动方案实施后的结果,取具有最大益损值的 行动为最优行动的决策原则,也称为最大最大 准则。
第39页
(3)在机会损失表中,从每一行选一 个最大的值,即每一方案的最大机会损 失值 Max Rij(si,aj) (4)再在选出的 Max Rij(si,aj)选择最 小者:
第37页
对于任何行动方案aj ,都认为将是 最大的后悔值所对应的状态发生。然后, 比较各行动方案实施后的结果,取具有 最小后悔值的行动为最优行动的决策原 则,称为后悔值准则。记
R (s,aopt) = Min Max Rij(si,aj) ji
《运筹学》精品课程习题集
《运筹学》精品课程习题集精品课程建设小组二○○六年六月三十日目录第一章线性规划 (1)第二章运输问题 (9)第三章整数规划 (14)第四章目标规划 (20)第五章动态规划 (21)第六章图与网络分析 (24)第七章存储论 (27)第八章对策论 (28)第一章 线性规划1、将下列线性规划问题化为标准型(1) max Z = 3x 1+ 5x 2- 4x 3+ 2x 4⎪⎪⎩⎪⎪⎨⎧≥=+≥+≤++0x , x , x 9 5x -3x -4x x -13 2x -2x 3x -x 18 3x x -6x 2x s.t.421432143214321 (2) min f = 3x1+ x2+ 4x3+ 2x4 ≤ 1⎪⎪⎩⎪⎪⎨⎧≤≥=++≥+≤+0 x 0, x , x15 2x 3x -4x 2x 7- x -2x 2x -3x 51- 2x - x -3x 2x s.t. 4214214321 43213 (3) min F=x1+x2+x3+x4⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥+≥+≥+≥+0x ,x ,x ,x 7x x 8x x 6x x 5x x s.t.432143222141 (4) 3213min x x x F -+=⎪⎪⎩⎪⎪⎨⎧≤≤≥≥0x ,x ,x 4x +5x +x -22x +x -3x +x +x ..32132121321t s 2、求出下列不等式组所定义的多面体的所有基本解和基本可行解(极点):⎪⎩⎪⎨⎧≥≥++≥++0 x ,x ,x 12 4x 3x 2x -6 3x 3x 2x 3213213213、用图解法求解下列线性规划问题⎪⎪⎩⎪⎪⎨⎧≥≤≤≤+=0x ,x 3 x 122x +3x 6 x -2x ..max )1(211212121t s X X Z⎪⎩⎪⎨⎧≥≥≥++-=0 x ,x 155x -3x 56 7x 4x ..3min )2(21212121t s x x Z4、在以下问题中,列出所有的基,指出其中的可行基,基础可行解以及最优解。
运筹学讲义
运筹学讲义《管理运筹学》1、运筹学的工作步骤(1)提出和形成问题.(2)建立模型.(3)求解.(4)解的检验.(5)解的控制.(6)解的实施.2、运筹学模型三种基本形式:(1)形象模型(2)模拟模型(3)符号或数学模型构模的五种方法和思路: (1)直接分析法 (如线性规划)(2)类比法(手机的普及与电视机的普及)(3)数据分析法(如汽车销售量预测模型)(4)试验分析法(销售量与价格之间的关系模型)(5)想定(构想)法(销售与心理)3、如何将线性规划问题的一般形式化为标准形式:1.如果问题是求目标函数的最小值,求min f=∑Cjxj则可先将目标函数乘(-1),化为求极大值问题,即求 max Z=-f=-∑Cjxj2.如果有某个bk≤0,则可将该等式两边均乘以(-1),使右端常数项bk=-bk≥03.如果第k个约束条件是∑akjxj≤bk,引入松弛变量sk≥0 , 将它写成∑akjxj+sk=bk如果第l个约束条件是∑aljxj≥bl则引入剩余变量(也可称为松弛变量)sl≥0,将它写成∑aljxj—sl=bl 且使松弛变量和剩余变量在目标函数中的系数为零。
4.如果对某个变量xj没有非负限制(这种变量称为自由变量或无约束变量),则引进两个非负变量xj′,xj″,令xj=xj′-xj″代人目标函数和约束条件中,可将它化为对全部变量都有非负限制的问题。
4、①目标函数为变量的线性函数,约束条件也为变量的线性等式或不等式的模型称之为线性规划。
②如果目标函数是变量的非线性函数,或约束条件中含有变量非线性的等式或不等式的数学模型则称之为非线性规划。
③满足所有约束条件的解称为该线性规划的可行解。
④把使得目标函数值最大(即利润最大)的可行解称为该线性规划的最优解,此目标函数值称为最优目标函数值,简称最优值5、图解法的启示1.最优解:如果某一个线性规划问题有最优解,则一定有一个可行域的顶点对应一个最优解。
(一般为封闭可行域凸集)2.无穷多个最优解:若将上例中的目标函数变为求maxZ=50x1+50x2则代表目标函数的直线平移到最优位置后将和直线x1+x2=300重合。
清华版《运筹学》(第三版)课后习题详解、...
解:用决策变量 x1, x2 , x3 , x4 , x5 , x6 分别表示 2:00~6:00, 6:00~10:00 ,10:00~14:
00 ,14:00~18:00,18:00~22:00, 22:00~ 2:00 时间段的服务员人数。
其数学模型可以表述为: min Z = x1 + x2 + x3 + x4 + x5 + x6
x1 + x6 >= 3 x1 + x2 >= 9 x2 + x3 >= 12 x3 + x4 >= 5 x4 + x5 >= 18 x5 + x6 >= 4 x1, x2 , x3, x4 , x5 , x6 ≥ 0
3、现要截取 2.9 米、2.1 米和 1.5 米的元钢各 100 根,已知原材料的长度是 7.4 米,问应如 何下料,才能使所消耗的原材料最省。试构造此问题的数学模型。
(0, 0, 0, 5, 2, 6)T ,Z=5。
初始单纯行表为:
cj
2
-1
1
1
CB
XB
x1
x2
x3
x4
1
x4
-1
1
1
1
0
x5
1
1
0
0
0
0
b
x5
x6
0
0
5
1
0
2
0
x6
2
1
1
0
0
1
6
σj
3
-2
0
0
0
0 z=0
(2)非基变量 x2 , x3 仍然取零, x1 由 0 变为 1,即 x1 =1, x2 =0, x3 =0,代入约束条件得一个可 行解 X= (1, 0, 0, 6,1, 4)T 。其目标函数值为 Z=8
运筹学教学课件(全)
实用举例
某公司通过市场调研,决定生产高中档新型拉杆箱。 某分销商决定买进该公司3个月内的全部产品。拉杆箱生 产需经过原材料剪裁、缝合、定型、检验和包装4过程。
通过分析生产过程,得出:生产中档拉杆箱需要用 7/10小时剪裁、5/10小时缝合、1小时定型、1/10小时检 验包装;生产高档拉杆箱则需用1小时剪裁、5/6小时缝合、 2/3小时定型、1/4小时检验包装。由于公司生产能力有限, 3月内各部的最大生产时间为剪裁部630小时、缝合部600 小时、定型部708小时、检验包装部135小时。
D {x | Ax b, x (x1,, xi ,, xn ) 0}
是凸集(凸多面体)。
引理2.1:线性规划的可行解 x (x1 ,, xn )T 为基本可行解的 充分必要条件是x的正分量所对应的系数列向量是线性无关的, 即每个正分量都是一个基变量。
定理2.2:线性规划问题的基本可行解x对应于可行域的顶点
通过分析生产过程,得出:生产中档拉杆箱需要用
7/10小时可剪裁以、通5/1过0小线时性缝合规、划1小求时定解型!、1/10小时
检验包装;生产高档拉杆箱则需用1小时剪裁、5/6小时 缝合、2/3小时定型、1/4小时检验包装。由于公司生产 能力有限,3月内各部的最大生产时间为剪裁部630小时、 缝合部600小时、定型部708小时、检验包装部135小时。
x2
L1:x1=6 L3:2x1+3x2=18
B 可行域
L2:x2=4 最优解
x1
4x1+3x2
解的特殊情况——解的特殊情况——无界解
线性规划的基本性质
若线性规划有最 优解,则最优解必在可 行域的顶点上达到。
X
可行域内部的点 • 可行解? 是 • 最优解? 不
第四章 非线性规划 山大刁在筠 运筹学讲义
第四章 非线性规划教学重点:凸规划及其性质,无约束最优化问题的最优性条件及最速下降法,约束最优化问题的最优性条件及简约梯度法。
教学难点:约束最优化问题的最优性条件。
教学课时:24学时主要教学环节的组织:在详细讲解各种算法的基础上,结合例题,给学生以具体的认识,再通过大量习题加以巩固,也可以应用软件包解决一些问题。
第一节 基本概念教学重点:非线性规划问题的引入,非线性方法概述。
教学难点:无。
教学课时:2学时主要教学环节的组织:通过具体问题引入非线性规划模型,在具体讲述非线性规划方法的求解难题。
1、非线性规划问题举例例1 曲线最优拟合问题已知某物体的温度ϕ 与时间t 之间有如下形式的经验函数关系:312c t c c t e φ=++ (*)其中1c ,2c ,3c 是待定参数。
现通过测试获得n 组ϕ与t 之间的实验数据),(i i t ϕ,i=1,2,…,n 。
试确定参数1c ,2c ,3c ,使理论曲线(*)尽可能地与n 个测试点),(i i t ϕ拟合。
∑=++-n 1i 221)]([ min 3i t c i i e t c c ϕ例 2 构件容积问题通过分析我们可以得到如下的规划模型:⎪⎪⎩⎪⎪⎨⎧≥≥=++++=0,0 2 ..)3/1( max 212121222211221x x S x x x x a x x t s x x a V ππππ基本概念设n T n R x x x ∈=),...,(1,R R q j x h p i x g x f n j i :,...,1),(;,...,1),();(==,如下的数学模型称为数学规划(Mathematical Programming, MP):⎪⎩⎪⎨⎧===≤q j x h p i x g t s x f j i ,...,1,0)( ,...,1,0)( ..)( min约束集或可行域X x ∈∀ MP 的可行解或可行点MP 中目标函数和约束函数中至少有一个不是x 的线性函数,称(MP)为非线性规划令 T p x g x g x g ))(),...,(()(1=T p x h x h x h ))(),...,(()(1=,其中,q n p n R R h R R g :,:,那么(MP )可简记为⎪⎩⎪⎨⎧≤≤ 0)( 0 ..)( min x h g(x)t s x f 或者 )(min x f X x ∈ 当p=0,q=0时,称为无约束非线性规划或者无约束最优化问题。
运筹学课件--运筹学完整课件
设备 产品
A
B
C
D 利润(元)
甲
2
1
4
0
2
乙
2
2
0
4
3
有效台时
12
8
16 12
2020/12/15
运筹学
线性规划问题的数学模型
Page 14
解:设x1、x2分别为甲、乙两种产品的产量,则数学模型为:
max Z = 2x1 + 3x2 2x1 + 2x2 ≤ 12
x1 + 2x2 ≤ 8
s.t.
4x1
(5) 目标函数是最小值,为了化为求最大值,令z′=-z,得到max z′=-z,即当z达到最小值时z′达到最大值,反之亦然;
2020/12/15
运筹学
线性规划问题的数学模型
标准形式如下:
max Z
2 x1
x2
3(
x
3
x3)
0x4
0x5
5 x1
x2
(
x
3
x3)
x4
7
x1 x2 ( 5x1 x2
2020/12/15
运筹学
运筹学简述
运筹学的历史
“运作研究(Operational Research)小组”:解决复 杂的战略和战术问题。例如:
1. 如何合理运用雷达有效地对付德军的空袭 2. 对商船如何进行编队护航,使船队遭受德国潜
艇攻击时损失最少; 3. 在各种情况下如何调整反潜深水炸弹的爆炸深
度,才能增加对德国潜艇的杀伤力等。
Page 4
2020/12/15
运筹学
运筹学的主要内容
Page 5
数学规划(线性规划、整数规划、目标规划、动态 规划等) 图论 存储论 排队论 对策论 排序与统筹方法 决策分析
运筹学讲义第1章
(2) 和式: max z= cjxj
j=1
n
s.t.
aijxj≤bi (i=1,2,……,m)
j=1
n
xj≥ 0
(j=1,2,……,n)
其中:cj---------表示目标函数系数 aij---------表示约束条件系数 bi ---------表示约束右端项
2007/08
-7-
---第 1 章 线性规划---
起迄时间 2----6 时 6---10 时 10--14 时 14--18 时 18--22 时 22---2 时
2007/08
服务员人数 4 8 10 7 12 4
-18-
---第 1 章 线性规划---
建立线性规划模型要求:
(1)要求决策的量是连续的、可控的量,或 者是可以简化为连续取值的变量;
1
n
xj≥0
(j=1,2,……,n)
(1)可行解:满足所有约束方程和变量符号限制条件的一组变量的 取值。 (2)可行域:全部可行解的集合称为可行域。 (3)最优解:使目标函数达到最优值的可行解。
2007/08 -20-
---第 1 章 线性规划---
(4)基:设A为线性规划模型约束条件系数矩阵(m n,m<n), 而B为其mm子矩阵,若|B|≠0,则称B为该线性规划模型的一个基。
可行解:X=(0,0)T,X=(0,1)T,X=(1/2,1/3)T 等。 x3 x4 ——基变量 x x x x
1 2 3 4
设
A=
1 1
1 2
1
0
0
1
,令 B=
1
0
0
1
,则 | B |=1≠0,
《运筹学习题课》PPT课件
引进的人工变量实际上最后必须是0,
所以它们在求极大(小)问题的目标函数
的系数都是-M(M),这里的M是一个很大
的正数。此方法故也叫“大M法”,也
可叫“罚函数法”,M叫“罚因子”。
17
h
01.01.2021
单纯形法中无最优解 LP问题没有最优解分两种情况:
1.没有可行解(当然没有最优解) :如引进 了人工变量,最后它们中有不能为0的.
Max z =-2x1-3x2 + 0x3 + 0x4 + 0x5
x1 + x2- x3
= 350
s.t. x1
- x4
= 125
2x1 + x2
+ x5 = 600
x1 , x2 , x3 , x4 , x5 ≥ 0
8
h
01.01.2021
Max z =-2x1-3x2 + 0x3 + 0x4 + 0x5
b
比值
x3 0
3 10 1 0 0
0 150 15
x4 0
1
0 01 0
0 30 0
0 x6 -1000 1
1 0 0 -1 1 40 40
zj σj=cj-zj
x2 30
-1000 -1000 0
1020 1030 0 0.3 1 0.1
0 1000 -1000
0 -1000 0
00
0
-40000
x1 + x2- x3
= 350
s.t. x1
- x4 = 125
2x1 + x2
+ x5= 600
x1 , x2 , x3 , x4 , x5 ≥ 0
运筹学讲义(复习)
j 1
b
i 1
i
yi
Z bi
yi
• 影子价格不是资源的实际价格,而是资源配置结构的反映, 是在其它数据相对稳定的条件下某种资源增加一个单位导致 的目标函数值的增量变化。 对资源i总存量的评估:购进 or 出让 对资源i当前分配量的评估:增加 or 减少
13
SHUFE
1
SHUFE
线性规划标准型
目标函数极大化, 约束条件为等式, 右端常数项bi≥0, 决策变量非负。
• 标准型
maxZ=c1x1+c2x2+…+cnxn a11x1+a12x2+…+a1nxn =b1 a21x1+a22x2+…+a2nxn =b2 …………… am1x1+am2x2+…+amnxn=bm x1,x2,…,xn ≥0
二、表上作业法 1、确定初始方案:最小元素法、西北角法和Vogel法。 2、解的最优性检验:闭回路法和对偶变量法(位势法) 3、解的改进。 三、进一步讨论 将产销不平衡的问题转换为产销平衡问题。
17
SHUFE
1、已知运输问题的供需关系与单位运价表,试用表上作业 法求最优解
销地 产地
甲
乙
丙
丁
产 量
1
基变量
XS I 0
XB
CB XB Cj-Zj B-1 b I 0
XN
B-1 N CN- CB B-1 N
XS
B-1 I - CB B-1
11
SHUFE
• 二、基本性质(P57) • 1、弱对偶性:极大化原问题的任一可行解的目标函数值, 不大于其对偶问题任意可行解的目标函数值。 • 2、最优性。 • 3、强对偶性。 • 4、互补松弛性。
运筹学例题及答案ppt课件
解:a)
1
b
4
0
0
2/3 1/3 0 0 1 2 b 1/3 2/3 0 043
1 1 1 0 0 5 2/3 1/3 0 1 0 2
将其加到表(1)的最终单纯形表的基变量b这一列数 字上得表(2)
(表2)
cj 3 2 0 0 0 0 cB xB b x1 x2 x3 x4 x5 x6 2 x2 10/3 0 1 2/3 -1/3 0 0 3 x1 1/3 1 0 -1/3 2/3 0 0 0 x5 -2 0 0 -1 1 1 0 0 x6 -4/3 0 0 -2/3 1/3 0 1
5(x1 x2 x3)10x7 6000 7(x4 x5 x6)9x8 12x9 10000
6(x1 x4)8(x7 x8)4000 4(x2 x5)11x9 7000
7(x3 x6)4000
xj 0
对偶理论
1. 已知线性规划问题:
max z 2 x 1 4 x 2 x 3 x 4
cj- zj 0 0 -1/3 -4/3 0 0 1/3
因x2已变化为x/2,故用单纯形法算法将x/2替换出基变 量中的x2,并在下一个表中不再保留x2,得表(9)
表9
cj 3 2 0 0 0 0 cB xB b x1 X’2 x3 x4 x5 x6 4 X’2 1 0 1 1/2 -1/4 0 0 3 x1 3 1 0 -1/2 3/4 0 0 0 x5 3 0 0 -1 1 1 0 0 x6 0 0 0 -1 1/2 0 1
y1 2 y2 y4 2
3
y
1
y2
y3
y4
4
s.t. y3 y4 1
y1
y3
1
y1, y2 , y3 , y4 0
运筹学第二讲ppt课件 31页
一个算法的执行时间大致上等于其所有语句执行时间的总和, 而语句的执行时间则为该条语句的重复执行次数和执行一次所需时 间的乘积。
语句的频度(Frequency Count):一条语句的重复执行次数。 △ 算法的执行时间=∑原操作(基本操作)的执行次数(频度)× 原操作的执行时间 △ 设每条语句一次执行的时间都是相同的,为单位时间。这 样我们对时间的分析就可以独立于软硬件系统。
lim T(n)/n3 lim (2n33n22n1)/n32
n
n
一个算法的时间复杂度(Time Complexity)是该算法的执行时
间,记作T(n),T(n)是该算法所求解问题规模n的函数。
当问题的规模趋向无穷大时,T(n)的数量级称为算法的渐近时
间复杂度,记作
T(n)=〇(f(n))
(3) x++;
(4) for(i=1;i<=n;i++)
T(n)=〇(n2)
(5) for(j=1jj<=n;j++)
(6)
y++;
例1.7 变量计数之二
ni j
ni
n
1j i(i1)/2
(1) x=1;
i1 j1 k1 i1 j1
i1
(2) for(i=1;i<=n;i++) [n(n1)(2n1)/6n(n1)/2]/2
它表示随问题规模n的增大,算法执行时间的增长率和f(n)的
增长率相同,简称时间复杂度。我们就是要找这个f(n) 。
例1.5 交换x和y的值。
temp=x;
《运筹学》全套课件(完整版)
服务时间分布
负指数分布、确定型分布、一般分布等。
顾客到达和服务时间的独立性
假设顾客到达和服务时间是相互独立的。
单服务台排队系统
M/M/1排队系统
顾客到达服从泊松分布,服务时间服从负指 数分布,单服务台。
M/D/1排队系统
顾客到达服从泊松分布,服务时间服从确定 型分布,单服务台。
投资组合优化
确定投资组合中各种资产的最 优配置比例,以最大化收益或
最小化风险。
03
整数规划
整数规划问题的数学模型
01
整数规划问题的定 义
整数规划是数学规划的一个分支 ,研究决策变量取整数值的规划 问题。
02
整数规划问题的数 学模型
包括目标函数、约束条件和决策 变量,其中决策变量要求取整数 值。
03
Edmonds-Karp算法
介绍Edmonds-Karp算法的原理、步骤和实现方法,以及其与FordFulkerson算法的比较。
网络最大流问题的应用
列举网络最大流问题在资源分配、任务调度等领域的应用案例。
最小费用流问题
最小费用流问题的基本概 念
介绍最小费用流问题的定义、 分类和应用背景。
Bellman-Ford算法
优点是可以求解较大规模的整数规划问题,缺点是计算量较大,需 要较高的计算精度。
割平面法
割平面法的基本思想
通过添加新的约束条件(割平面)来缩小可行域的范围,从而逼 近最优解。
割平面法的步骤
包括构造割平面、求解子问题和更新割平面三个步骤,通过不断 迭代找到最优解。
割平面法的优缺点
优点是可以处理较复杂的整数规划问题,缺点是构造割平面的难 度较大,需要较高的数学技巧。
最新运筹学(第三版课后习题答案第一章ppt课件
9 高
关心 员工 5
× 缓和(1,9)
正视(9,9)×
妥协(5,5) ×
1
× 回避(1,1)
低
压制(9,1)×
12 低
3 45 关心工作
67
89 高 组织 行 为学
四、冲突管理
3.冲突管理策略(三):
布坎南组织冲突的“组织—协调”四阶段模型
布坎南关于组织冲突的组织——协调四阶段模型提到了实现激发冲突的几 种方法。
运筹学(第三版)课后习题答案 第一章
1.4 (1)
1.5
1.6
1.7 (1)
1.12
华
章
组文 渊
织
行
第十章 冲突与冲突管理
为
学
Organizational Behavior
本章内容
冲突的基本概念
• 概念、特征 • 类型
冲突产生的根源
• 杜布林 • 纳尔逊和奎克 • 罗宾斯
二、冲突产生的根源
2.纳尔逊和奎克对冲突根源的分析
专业化
相互依赖性
结
共用资源
构
因
目标差异
素
职权关系
地位矛盾 管辖权的模糊
在一个组织中,责任界限不清楚,当发 生了一件无法界定责任的事件时,员工 们就会倾向于“推卸责任”,或避免接 触这件事,这样,关于问题的责任就产 生了冲突。
组织 行 为学
二、冲突产生的根源
在这个过程中.一方努力去抵消 另一方的封锁行为,因为另一方的
封锁行为将妨碍他达到目标 或损害他的利益。
罗宾斯
组织 行 为学
一、冲突的基本概念
1.冲突的概念
冲突是否存在不仅是一个客观性问题,也是一个主观的知觉问题。 冲突产生的必要条件是,存在某种形式的对立或不相容以及相互作用。 冲突的主体可以是组织、群体或个人,冲突的客体可以是利益、权力、资 源、目标、方法、意见、价值观、感情、程序、信息、关系等。 冲突是一个过程,它是从人与人、人与群体、人与组织、群体与群体、组 织与组织之间的相互关系和相互作用过程中发展而来的。
《运筹学习题课》PPT课件
s.t. x1
- x4
+ x7 = 125
2x1 + x2
+ x5
= 600
x1 , x2 , x3 , x4 , x5 , x6 , x7 ≥ 0
显然x6 , x7必须为0, 想一想两个M(大正数)的意图。
10
《运筹学》习题课
13.11.2020
㈡用单纯形法 基变量是谁?
迭代 次数
基变量
CB
x1 -2
x2 -3
x3 0
x4 0
x5 0
x6 x7 -M -M
b 比值
x6 -M 1 1 -1 0 0 1 0 350 350
0
xx75
-M
0
1 2
0 1
0 0
-1 0
0 1
0 0
1 125 125 0 600 300
zj -2M -M M
σj=cj-zj -2+2M –3+M -M
M
-M
0 -M
00
-M -475M
x1 + x2- x3
= 350
s.t. x1
- x4
= 125
2x1 + x2
+ x5 = 600
x1 , x2 , x3 , x4 , x5 ≥ 0
8
《运筹学》习题课
13.11.2020
Max z =-2x1-3x2 + 0x3 + 0x4 + 0x5
x1 + x2- x3
= 350
s.t. x1
0
C求1B比列值填xxx651谁什zj -最-么M02小?计-?1002 算12-M011Z5,j
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
条件下,最多应购进多少?
(6)写出此线性规划问题的对偶问题。
3.如下所示的运输问题中,若一产地有一个单位物资未运出,就 将发生贮存费用。假定三产地单位物资贮存费用分别为5,4,3 。又假定产地2的物资至少要运出38个单位,产地3的物资至少要 运出27个单位,试列出用运输问题模型求解时的产销平衡表和单 位运价表(不必求解)。
销地
产地
Ⅰ
Ⅱ
Ⅲ
产量
1 2 3 销量
1
2
2
20
1
4
5
40
2
3
3
30
30
20
20
3)对于求目标函数最小化的线性规划问题,在采用大M(充分 大的正数)法求解时,人工变量在目标函数中的系数为( )。
A. 0
B. –M
C. + M D. +∞
6.用对偶单纯形法解最大化的线性规划问题,选择进基变 量的原则是( )。
A.
选
min
bi aik
aik 0
bl alk
对应的xl
B.
选
max
bi aik
aik 0
bl alk
对应的xl
C. 选 对应的x
min
j alj
alj 0
k alk
k
D. 选
min
j alj
alj
0
k alk
对应的xk
2.某厂生产甲、乙两种产品,需A、B两种原料,生产消耗参数
如下:
原料
产品 甲
乙
可用量
(1)如何安排生产,使 该厂利润最大?试建
(千克) (千克) (千克) 立线性规划模型并用单纯形Leabharlann 求解;A24
160 (2)原料A、B的影子
B
3
2
180 价格各为多少?
利润(3()现元有/件新) 产品丙2 ,每件3需消耗3千克原料A和4千克原料B,利
润为3元/件,问该产品是否值得生产?
(4)如果甲产品的利润增加为4元/件,最优性是否改变? 最优
值是否改变?
(5)假设工厂可在市场上买到原料A,在保持原最优基不变的
5) 以下说法不正确的是( ) A.运输问题运价表的每个元素都加上同一个常数k,会影响最优
值。 B.运输问题运价表的每个元素都加上同一个常数k,不会影响最
优的分配方案。 C.运输问题运价表经过行缩减,改变最优的分配方案,也改变最
优值。 D.运输问题运价矩阵经过列缩减,不改变最优的分配方案,但改
变最优值。
一、选择题
1)若所求出的检验数全部( ),则表明运输问题已求得最优解。 A.小于或等于零 B.大于零 C.小于零 D.大于或等于零
2)若原问题中xi为自由变量,那么对偶问题中的第i个约束一定 为( )。 A.“≥”约束 B.“≤”型约束 C.等式约束 D.无法确 定
3)下列说法不正确的是( ). A.线性规划问题的基本可行解对应可行域的一个顶点。 B.线性规划问题的可行解如为最优解,则该可行解一定是基可行 解。 C.若线性规划问题存在最优解,它一定在可行域的某个顶点达到。 D.线性规划问题的最优解不一定都在顶点上达到。