谐波危害分析 (1)
谐波的产生和危害有哪些 谐波的抑制方法
谐波的产生和危害有哪些谐波的抑制方法谐波使电网中的电器元件产生了附加的谐波损耗,降低了输变电及用电设备的效率。
关于“谐波的产生和危害有哪些谐波的抑制方法”的详细说明。
1.谐波的产生和危害有哪些1.谐波使电网中的电器元件产生了附加的谐波损耗,降低了输变电及用电设备的效率。
2.谐波可以通过电网传导到其他的电器,影响了许多电气设备的正常运行,比如谐波会使变压器产生机械振动,使其局部过热,绝缘老化,寿命缩短,以至于损坏;还有传导来的谐波会干扰电器设备内部软件或硬件的正常运转。
3.谐波会引起电网中局部的串联或并联谐振,从而使谐波放大。
4.谐波或电磁辐射干扰会导致继电器保护装置的误动作,使电气仪表计量不准确,甚至无法正常工作。
5.电磁辐射干扰使经过变频器输出导线附近的控制信号、检测信号等弱电信号受到干扰,严重时使系统无法得到正确的检测信号,或使控制系统紊乱。
2.谐波的抑制方法(一)降低谐波源的谐波含量在谐波源上采取治理措施,从源头上最大限度地避免谐波的产生。
这就需要在设计、制造和使用谐波源设备时,要注意谐波对供电系统及其供用电设备的影响,采取切实可行的治理措施。
用电业务管理部门要严格把关,对于没有采取治理措施的谐波源用户,要禁止其入网运行。
(二)在谐波源处吸收谐波电流这种方法是对已有谐波进行有效抑制的方法,也是目前电力系统使用最为广泛地抑制谐波的方法。
其主要方法有以下几种:1.无源滤波器无源滤波器安装在电力电子设备的交流侧,由L、C、R元件构成谐振回路,当LC回路的谐振频率和某一高次谐波电流频率相同时,即可阻止该次谐波流入电网。
这种方法由于具有投资少、效率高、结构简单、运行可靠及维护方便等优点,是目前采用的抑制谐波及无功补偿的主要手段。
2.有源滤波器有源滤波器即利用可控的功率半导体器件向电网注入与原有谐波电流幅值相等、相位相反的电流,使电源的总谐波电流为零,达到实时补偿谐波电流的目的。
3.防止并联电容器组对谐波的放大在电网中并联电容器组起改善功率因数和调节电压的作用。
谐波危害及抑制谐波的方法
谐波危害及抑制谐波的方法谐波是指频率高于基波的电磁波,它们会频繁出现在我们的电力系统和其他电力设备中。
虽然谐波在一些应用中可产生有益效果,但在大多数情况下,它们都是一种电力质量问题,会给电力系统和其他设备带来一系列危害。
1.设备损坏:谐波会增加设备内的电流和电压,导致设备发热加剧,并可能引起设备元件过热、熔断或焚毁。
此外,频繁的谐波还会引起设备的机械振动,造成设备损坏。
2.电力系统不稳定:谐波引起系统的电流和电压的波形失真,导致电力系统不稳定。
此外,谐波会导致电力系统中的谐振现象,这些谐振可以引起电力系统中的电流和电压急剧增加,可能破坏设备。
3.通信干扰:谐波会产生大量的高频干扰信号,这些信号可能干扰无线通信和其他电磁波设备的正常运行。
在高度电子化的社会中,这种通信干扰可能会带来严重的问题。
为了抑制谐波带来的危害,可以采取以下方法:1.装置谐波滤波器:谐波滤波器用于减小电力系统中的谐波。
滤波器通常会将谐波通过处理电路转化成其他形式,或者将它们绕过电力系统,以防止它们对设备和系统产生影响。
2.使用变压器:变压器可以用来减小谐波的影响。
通过在电力系统中安装特定的谐波抑制变压器,可以将谐波电流限制在合理的范围内,从而降低谐波的危害。
3.电源滤波器:为敏感设备提供干净的电力供应也是一种有效的抑制谐波的方法。
电源滤波器可以滤除电力供应中的谐波元素,从而降低谐波对设备的危害。
4.合理的电源设计:在电力系统设计阶段,可以采取一些措施来减小谐波的生成。
例如,选择适当的线路,减小高谐波的产生,或者选择低谐波的电力设备。
5.故障检测和维护:及时发现和处理设备和系统中的谐波问题至关重要。
定期进行电力设备的检查和维护,可以发现并消除谐波带来的潜在危害。
总而言之,谐波在电力系统和其他电力设备中的存在可能带来很多危害。
为了抑制这些危害,我们可以采取各种措施,包括使用谐波滤波器、变压器、电源滤波器、合理的电源设计以及进行定期的检查和维护。
谐波危害分析
谐波危害的详细分析一、 对输电线路的影响谐波对电晕起始和熄灭的影响是峰一峰电压的函数。
峰值电压与谐波和基波的相角关系有关,所以即使有效值电压在限值以内而峰值电压高出额定值也是可能的。
因此,在输电线路的设计中要适当考虑这一影响,以降低事故的可能性。
超高压长距离输电线路,常采用单相自动重合闸来提高电力系统稳定性。
较大的高次谐波电流(几十安培以上)能显着地延缓潜供电流的熄灭,导致单相重合闸失败或不能采用较小的自动重合闸时间,不利于在电缆输电的情况下,谐波电压以正比电场强度。
这一影响增大了局部放电、介损和温了事故次数。
电缆的额定电压等级越高,谐波引 谐波电流流过导体表面时会产生集肤效中有交流电流流过或者处于交变电磁场中,由于布不均匀,越接近表面处电流密度或者磁通密度的电导率和磁导率越大,趋肤厚度就越小,这时就会相当严重,使导体的电阻增大。
互靠近磁场中,同时还处个导体中电流的分布和它单独存在时不一样,会做邻近效应。
电流频率愈高,导体靠得愈近,邻应是共存的,它会使导体中电流的分布更加不均以上两多的附加发热,从而影响绝缘寿命。
除此之外,由,这种情况下绝缘的局部放电加剧,介质损耗显绝缘寿命。
电流流热,其大小由下面的公式决定:I 为线式中:THDi -谐波电流的畸变率;2I 、3I 、…n I -2、3…n 谐波电流有效值; 1I -基波电流。
可以看出,没有谐波电流时,电流的有效值就是基波电流的大小,但是当谐波畸变率达到100%时,电流的有效值则比基波电流增大将近50%。
ac R 是导体的交流电阻,用下式表示:式中:c k -交流电阻和直流电阻的比值,也叫附加损耗系数;se k -集肤效应引起的电阻增大系数;pe k -邻近效应引起的电阻增大系数; dc R -导体的直流电阻。
从式可以看出影响线路损耗的因素有两个:电流和电阻,它们同时又分别受其他因素制约。
电流的大小主要由负载情况决定,电阻则受电流频率、导体材质和尺寸的影响。
谐波的危害与治理
谐波的危害与治理谐波是指工业、农业及其他领域电器设备产生的不同频率的电流或电压的干扰信号。
谐波的产生对人类的健康和设备的正常运行产生了相当大的危害。
在以下的几个方面,我们将详细介绍谐波的危害性以及相应的治理方法。
首先,谐波对人类的健康造成了威胁。
在人体组织中,脑、肌肉、神经等都是通过电信号进行传递和控制的。
而谐波的存在会使得这些电信号被扭曲、失真甚至干扰,从而导致血液循环、神经传导、肌肉运动等功能受到影响。
长期暴露在谐波环境下,人们可能会出现头痛、疲劳、失眠、注意力不集中、神经衰弱等症状。
其次,谐波对电力系统的稳定性和设备的正常运行产生了影响。
谐波信号会加大电网中的负荷,降低系统的功率因数,导致电网负荷不均衡、频率偏移等问题。
同时,谐波还会增加电力设备的损耗,缩短使用寿命,引发电力设备故障和事故。
特别是对于高精度的仪器设备和敏感的电子设备来说,谐波的存在会严重影响其正常运行和测量结果的准确性。
另外,谐波还会影响到公共环境和通信系统。
在城市中,电网中的谐波信号可能会通过建筑物和地下管道传播到附近的电子设备或通信系统中,导致通信信号的干扰和传输中断。
在无线通信领域,谐波会引起频谱污染,减少频谱资源的利用效率。
针对谐波的治理,有以下几个主要方法:1.滤波器:通过引入滤波器来削弱或消除谐波信号。
滤波器可以根据谐波的频率特性进行设计,将谐波信号从电力系统中分离出来,保证电力系统的正常运行。
2.接地:正确接地可以有效降低谐波信号的存在。
接地系统的设计和维护需要严格按照相关标准进行,确保接地电阻的有效连接和在线监测,减少谐波的传播。
3.变压器改进:采用带低谐波的高效变压器,可以有效削弱变压器内部的谐波产生和传播。
例如,采用三脉动焊接变压器可以避免谐波的产生和增强Transformer(SVPWM)技术等。
4.现代电气设备:使用具有谐波抑制功能的现代电气设备,可以降低谐波产生和传播的风险。
例如,使用高效节能的电子节能灯、电力电容器、有源滤波器等。
电力系统中谐波的危害与产生(三篇)
电力系统中谐波的危害与产生电力系统中的谐波是由于电力设备的非线性特性引起的。
在电力系统中,谐波的危害包括对电力设备的损坏、电能质量的恶化以及对用户的影响等方面。
谐波的产生与非线性负载、电力设备的设计及运行、电网接地等因素有关。
谐波对电力设备的损坏是谐波危害的主要方面之一。
谐波会引起设备的绝缘老化、过热、机械振动等问题。
尤其是对于变压器和电动机等设备来说,由于谐波的存在会引起电流和电压的畸变,导致设备的工作效率下降,甚至引发设备的故障和停机。
此外,谐波还会引起电容器的谐振和过电压问题,增加电力设备的工作负荷,缩短其使用寿命。
谐波对电能质量的恶化也是谐波危害的重要方面之一。
谐波会导致电能质量的下降,主要表现为电压和电流的畸变,波形失真,功率因数的下降等。
这不仅会影响电力设备的正常工作,还会对电力系统的稳定性和可靠性造成影响。
谐波还会引起电力设备的谐振现象,导致设备振动,造成噪音污染,影响人们的生活质量。
谐波对用户的影响主要体现在电力质量的下降和对电子设备的损坏。
谐波会引起电压的波动和电流的畸变,导致电子设备的正常工作受到干扰,增加设备的故障率,降低设备的使用寿命。
尤其是对于一些对电力质量要求较高的用户来说,如计算机、通讯设备、医疗设备等,谐波对其正常工作的影响更为显著。
此外,谐波还会导致电能的浪费,增加用户的用电成本。
谐波的产生与非线性负载、电力设备的设计及运行、电网接地等因素有关。
非线性负载是产生谐波的主要原因之一。
非线性负载如电子设备、电力电子器件等在工作过程中会产生非线性电流,其含有大量谐波成分。
此外,电力设备的设计及运行也会引起谐波的产生,如电容器的谐振,变压器的匝间谐振等。
而电网的接地情况也会影响谐波的产生和传播,如电网的接地方式不当会引起谐波回流和间接接触问题。
为了减少谐波的危害,需要采取一系列的措施。
首先,可以通过合理选择电力设备和设备的工作参数来降低其谐波产生的概率。
其次,可以采用滤波器等设备对谐波进行抑制和补偿。
谐波的危害
谐波的危害电网系统谐波的存在,严峻降低了电能质量,电能质量的降低影响了生活生产,带来的危害主要有以下几个方面:1) 谐波对电力输送造成的危害:利用集肤效应节约线路材料、降低电能损耗的原理来进行电能输送。
当线路中存在大量的谐波,会产生多余的有功损耗。
相比较基波电流,虽然谐波重量只占了少量,但是由于集肤效应,频率越高,谐波重量越靠近线路表层,造成谐波电阻高于基波电阻,因此谐波所引起的额外线损也不行忽视;由于中性线正常时流过电流很小,故其导线较细,当大量仅次于基波电流的三次谐波流过中性线时,会使导线过热、绝缘老化、寿命缩短以至损坏;在电网平安方面,断路器掌握着电力的通断,对事故的掌握、以及检修的需要起着很重要的作用,当电网中较大的谐波重量经过断路器电流波形过零点时,由于谐波的存在可能造成高的di/dt,这将使开断困难,并且延长故障电流的切除时间,其高频特性会造成断路器的误动并且谐波引起公用电网局部的并联谐振和串联谐振,从而使谐波放大,严峻将甚至会造成电力事故;工频下,系统装设的各种用途的电容器比系统中的感抗要大得多,不会产生谐振,但谐波频率时,感抗值成倍增加而容抗值成倍削减,这就有可能消失谐振,谐振将放大谐波电流,导致电容器等设备被烧毁;2) 谐波对电网数据监控的影响:目前电能计量逐步采纳智能电表,谐波将会造成爱护装置的误动或者拒动,并使测量分析仪表和电能计量消失较大误差,不利于实时采分析数据;3) 谐波对对电机和变压器的危害:电机与变压器其主要构成部分是铜制线圈及铁芯,谐波在能量转换中是多余的存在,造成变压器附加损耗,增加设备的运行压力,影响设备内部稳定。
高次谐波经过电机与变压器时,会引起设备的局部过热,产生严峻的噪声,当设备长时间处于高次谐波运行状态下,将加速设备的老化,降低其绝缘性,影响设备的使用寿命,消失不行预知的事故。
4) 谐波对通信系统的干扰:为了实时监测及掌握电网系统,当前的网架建设对于电力通信系统的精密性有很高的要求。
谐波谐振的危害及防治措施
谐波谐振的危害及防治措施第一篇:谐波谐振的危害及防治措施谐波谐振的危害及防治措施在电网运行中,不可避免地会产生谐波与谐振,二者既有联系,更有区别,以下就其定义、产生原因、危害及预防措施作以介绍,供参考。
1、定义谐波是一个周期的正弦波分量,其频率为基波频率的整数倍,又称高次谐波。
通俗地说,基波频率是50HZ,那末谐波就是频率为100HZ、150HZ、200HZ...N*50HZ的正弦波。
谐振是交流电路的一种特定工作状况,在由电阻、电感和电容组成的电路中,当电压相量与电流相量同相时,就称这一电路发生了谐振。
谐波在电网中长期存在,而谐振仅是电网某一范围内的一种异常状态。
2、产生原因谐波的产生是由于电网中存在着非线性负荷(谐波源),如电力变压器和电抗器、可控硅整流设备、电弧炉、旋转电机、家用电器等,另外,当系统中发生谐振时,也要产生谐波。
谐振的发生是由于电力系统中存在电感和电容等储能元件,在某些情况下,如电压互感器铁磁饱和、非全相拉合闸、输电线路一相断线并一端接地等,在部分电路中形成谐振。
谐波也可产生谐振,由谐波源和系统中的某一设备或某几台设备可能构成某次谐波的谐振电路。
3、危害及防治措施由于谐波的存在,使得电压、电流的波形发生畸变,可导致变压器、旋转电机等电气设备的损耗增大;电容器绝缘老化加快,使用寿命缩短;引起系统内继电保护和自动装置误动或拒动;干扰通讯信号等危害。
当电网中谐波含量超出国家规定,就必须采取措施消除或抑制谐波,电力系统多采用滤波器装置来消除谐波。
谐振可导致系统一定范围内的过电压和过电流。
谐振过电压不仅危害设备的绝缘,而且产生大的零序电压分量,出现虚假接地和不正确的接地指示,并使小容量的异步电机发生反转。
持续的过电流会引起PT熔件熔断甚至烧毁PT。
在发生谐振时,运行人员应根据电压、电流的异常指示,判断谐振类型及可能产生的原因,并果断采取措施,防止事故扩大。
第二篇:变频器的谐波危害及其治理措施变频器的谐波危害及其治理措施变频器谐波危害治理引言在工业调速传动领域中,与传统的机械调速相比,使用变频器调速有诸多优点,故其应用非常广泛,但由于变频器逆变电路的开关特性,对其供电电源形成了一个典型的非线性负载,变频器在现场通常与其它设备同时运行,例如计算机和传感器,这些设备常常安装得很近,这样可能会造成相互影响。
谐波的危害.doc
谐波的危害
(1)增加输、供和用电设备的额外附加损耗,使设备的温度过热,降低设备的利用率和经济效益:
(2)电力谐波对输电线路的影响:
谐波电流使输电线路的电能损耗增加。
当注入电网的谐波频率位于在网络谐振点附近的谐振区内时,对输电线路和电力电缆线路会造成绝缘击穿。
(3)电力谐波对变压器的影响:
谐波电压的存在增加了变压器的磁滞损耗、涡流损耗及绝缘的电场强度,谐波电流的存在增加了铜损。
对带有非对称性负荷的变压器而言,会大大增加励磁电流的谐波分量。
(4)电力谐波对电力电容器的影响:
含有电力谐波的电压加在电容器两端时,由于电容器对电力谐波阻抗很小,谐波电流叠加在电容器的基波上,使电容器电流变大,温度升高,寿命缩短,引起电容器过负荷甚至爆炸,同时谐波还可能与电容器一起在电网中造成电力谐波谐振,使故障加剧。
(5)影响继电保护和自动装置的工作可靠性:
特别对于电磁式继电器来说,电力谐波常会引起继电保护及自动装置误动或拒动,使其动作失去选择性,可靠性降低,容易造成系统事故,严重威胁电力系统的安全运行。
(6)对通讯系统工作产生干扰:
电力线路上流过的幅值较大的奇次低频谐波电流通过磁场耦合
时,会在邻近电力线的通信线路中产生干扰电压,干扰通信系统的工作,影响通信线路通话的清晰度,甚至在极端的情况下,还会威胁着通信设备和人员的安全。
(7)对用电设备的影响:
电力谐波会使电视机、计算机的图形畸变,画面亮度发生波动变化,并使机内的元件温度出现过热,使计算机及数据处理系统出现错误,严重甚至损害机器。
此外,电力谐波还会对测量和计量仪器的指示不准确及整流装置等产生不良影响,它已经成为当前电力系统中影响电能质量的大公害。
(完整版)谐波的危害
1、高次谐波能使电网的电压与电流波形发生畸变,另外相同频率的谐波电压和谐波电流要产生同次谐波的有功功率和无功功率,从而降低电网电压,增加线路损耗,浪费电网容量,2、影响供电系统的无功补偿设备,谐波注入电网时容易造成变电站高压电容过电流和过负荷,在谐波场合下,电容柜无法正常投切,更严重的请况下,电容柜会将电网谐波进一步放大。
3、影响设备的稳定性,尤其是对继电保护装置,危害特大。
4、谐波的存在会造成异步电动机效率下降,噪声增大;使低压开关设备产生误动作;对工业企业自动化的正常通讯造成干扰,影响电力电子计量设备的准确性。
5、谐波的存在会使电力变压器的铜损和铁损增加,直接影响变压器的使用容量和使用效率;还会造成变压器噪声增加,缩短变压器的使用寿命。
谐波对公用电网和其他系统的危害大致有以下几个方面:1、加大企业的电力运行成本由于谐波不经治理是无法自然消除的,因此大量谐波电压电流在电网中游荡并积累叠加导致线路损耗增加、电力设备过热,从而加大了电力运行成本,增加了电费的支出。
2、降低了供电的可靠性谐波电压在许多情况下能使正弦波变得更尖,不仅导致变压器、电容器等电气设备的磁滞及涡流损耗增加,而且使绝缘材料承受的电应力增大。
谐波电流能使变压器的铜耗增加,所以变压器在严重的谐波负荷下将产生局部过热,噪声增大,从而加速绝缘老化,大大缩短了变压器、电动机的使用寿命,降低供电可靠性,极有可能在生产过程中造成断电的严重后果。
3、引发供电事故的发生电网中含有大量的谐波源(变频或整流设备)以及电力电容器、变压器、电缆、电动机等负荷,这些电气设备处于经常的变动之中,极易构成串联或并联的谐振条件。
当电网参数配合不利时,在一定的频率下,形成谐波振荡,产生过电压或过电流,危及电力系统的安全运行,如不加以治理极易引发输配电事故的发生。
4、导致设备无法正常工作对旋转的发电机、电动机,由于谐波电流或谐波电压在定子绕组、转子回路及铁芯中产生附加损耗,从而降低发输电及用电设备的效率,更为严重的是谐波振荡容易使汽轮发电机产生震荡力矩,可能引起机械共振,造成汽轮机叶片扭曲及产生疲劳循环,导致设备无法正常工作。
谐波的危害与对策
谐波的危害与对策谐波是指频率为基波频率整数倍的电磁波。
谐波通常是电子设备和电力系统中的一种电磁干扰源,会对设备的正常运行产生危害。
本文将分析谐波的危害,并提出相关的对策。
1.电力系统中的危害:谐波会对电力系统的稳定性和可靠性产生负面影响。
谐波会导致电磁振荡,引起额外的电流和电压谐振,进而使设备损坏或系统瘫痪。
此外,谐波还会导致电力系统中的电能损耗增加,引起线路过热和设备寿命缩短。
2.设备损坏和故障:谐波会对设备造成过电压和过电流,使设备损坏或故障。
例如,谐波电流会引起电动机的过热,降低绝缘性能,导致设备寿命缩短。
谐波还会导致变压器的热损耗增加,引起变压器过热甚至发生爆炸。
此外,谐波还会导致电子设备的干扰,干扰正常的工作。
3.对人体健康的影响:谐波对人体健康产生的危害包括电磁辐射对人体的直接伤害和电磁辐射引起的各种健康问题。
长期处于高谐波环境中,人体可能会产生头痛、眩晕、失眠等症状。
同时,谐波还可能破坏人体的生物电位平衡,产生诸如心律失常等疾病。
为了应对谐波的危害,以下是一些可能的对策:1.传统滤波器技术:在电力系统中,可以采用传统的主动或被动滤波器来抑制谐波。
主动滤波器可以通过电子器件来消除不需要的谐波,并提供对称负载,减少谐波产生。
被动滤波器则是利用电抗器等设备来阻塞谐波流过的路径,减少谐波对电力系统的影响。
2.多层次的电力系统设计:在电力系统设计中,可以采用多层次的配置来抑制谐波。
通过在系统中增加合适的变压器、电抗器和滤波器等设备,可以减少谐波的传播和影响。
3.谐波监测与控制:通过谐波监测装置对电力系统中的谐波进行实时监测,并及时采取相应的控制措施。
例如,可以在容易受到谐波干扰的设备附近安装滤波器,通过选择合适的滤波参数和工作模式,减少谐波对设备的影响。
4.加强人体防护措施:对于电磁辐射对人体健康的直接威胁,应采取一系列的防护措施。
例如,在工作场所中,可以采用屏蔽层、防辐射窗等装置来减少辐射的传播和接触。
谐波电流的危害及改善措施
谐波电流的危害及改善措施
谐波电流是一种频率高于基波频率的电流,当它传导到电力系统中时,会对电气设备和系统造成一定的危害。
以下是谐波电流的危害及改善措施:
1. 危害:
(1) 对电气设备造成损坏:谐波电流会使变压器、发电机、电缆等电气设备产生热量,加剧其老化,增加故障率。
(2) 影响电能质量:谐波电流会导致电能质量下降,增加电能损失,影响电力系统的稳定运行。
(3) 产生干扰:谐波电流会在两根导线之间产生电磁场,产生电磁干扰,影响其他电子设备的正常工作。
2. 改善措施:
(1) 使用滤波器:滤波器是一种能够将谐波电流滤除的电子元件,通过使用滤波器可以有效降低谐波电流对电气设备的影响。
(2) 采用合适的电气设备:选用具有耐受谐波电流特性的电气设备,在设计电力系统时应充分考虑谐波电流的影响。
(3) 加强监测和维护:定期对电力系统进行检测和维护,及时发现和排除谐波电流带来的影响,保障电力系统的正常运行。
谐波电流对于电力系统的影响是极其重要的,为了保障电力系统的安全稳定运行,应该加强科学合理的设计、选用合适的设备、加强监
测和维护等工作,减少谐波电流的危害。
谐波的危害
谐波的危喜电力系统的谐波像发电厂的烟尘对周围空气产生环境污染一样,会对电网产生严重污染,影响电能质量,增加能量损耗,甚至危害电气设备和电力系统的安全运行。
主要危害有:(1可转电机附加损耗增加、出力降低,绝缘老化加速。
谐技电流与基波磁场间的相互作用引起的振药力矩严重时能使发电机产生机械共振,使汽轮机叶片疲劳损坏。
当诺被电流在三相感应电动机内产生的附加莫转磁场与基波旋转碱场相反时,将降低电动机的效率,使电动机过热。
在直流电机中,谐波除附加发热外,还会引起换相恶化和噪声。
(2器将因效和邻效,变器烧组中引起附加铜耗。
谐波电压可使变压器的磁满及涡流损耗增加。
3次谐波及其信数的潜波在变压器三角形接法的绕组中形成的环流会使变压器绕组过热。
此外谐波还会使变压器的噪声增大,使绝缘材料中的电场强度增大,缩短变压器的使用寿命。
(3作用在对率敏感(频率越高,电抗越降低)的电容元件上,例如电容器和电缆等,会使之严重过电流,导致发热,介质老化,甚至损坏。
(4)次电流过串联电器时,会在申联电抗器上形成过高的压降,使电抗器的匝间绝缘受损。
(5)电流流输电线(包括电缆)时,输电线的电阻会因集肤效庞的增大,加大了线路的损耗。
谐波电压的存在可能使导线的对地电压和相间电压增大,使线路的绝缘受到影响,或使线路的电量问题变得严重起来。
(6)电和波电将对电工仪表的测量正确度产生影响。
过大的高次谐被电海流人电脑表,可能烧环电流线图:预率过高(达划1000z以上)时,眼像表可能停转。
(7)供线路(尤其是电力机车25kV接触网)中存在的高次谐波所产生的静电感应和电础感应会对与之平行的通信线路产生声频干扰,影响到通信质量。
谐波的危害与治(三篇)
谐波的危害与治引言随着现代科技的发展,谐波问题在各个领域中日益突出。
谐波是指在电力系统或电子设备中,在基频上产生的频率是基频的整数倍的特殊电压或电流成分。
尽管谐波本身并不造成太大的危害,但长期存在的谐波问题会导致设备的过载、故障、减寿等问题,甚至可能对人体健康产生负面影响。
因此,对谐波进行合理治理和控制是至关重要的。
本文将探讨谐波的危害以及治理范本。
一、谐波的危害1.设备故障和过载在电力系统中存在谐波电流时,会导致设备的过载和故障。
谐波电流会加大设备的电流负荷,使得设备运行在额定负荷以上,从而加速设备的老化过程,减少设备的使用寿命。
并且,谐波电流还会产生额外的热量,进一步加剧设备的过载,从而引发设备的故障。
2.能源浪费和降效谐波电流会导致能源的浪费。
谐波电流在电力系统中流动时,由于产生压降、损耗等现象,会导致能源的损失。
此外,谐波电流在设备内部的传导和流动过程中也会产生额外的功耗,进一步降低了设备的效率。
3.电网负面影响谐波电流会对电网产生负面影响。
大量的谐波电流会导致电网的电压和电流波形失真,进而影响电网的稳定运行。
在严重的情况下,甚至会导致电网的故障和瘫痪。
4.对人体健康的危害谐波电流还可能对人体健康产生负面影响。
长时间暴露在高谐波电压或电流环境中,可能导致头痛、失眠、神经衰弱等症状。
并且,据研究表明,长期暴露在谐波电流环境中,还可能增加患癌症、心脏病等疾病的风险。
二、谐波治理的范本1.谐波源控制谐波问题的治理首先要从源头入手,减少谐波电流的产生。
可以采取以下措施来控制谐波源:(1)对发电设备进行合理规划和设计,降低发电设备的谐波产生;(2)采用高质量的电力电子设备和组件,降低设备本身产生的谐波;(3)合理设计电力系统的连接和布线,降低谐波电流的传播和影响范围。
2.谐波抑制装置的应用谐波抑制装置是指一种专门用于抑制谐波现象的设备。
通过安装谐波抑制装置,可以有效地降低谐波电流的水平,减小谐波的影响。
2024年电力系统中谐波的危害与产生(三篇)
2024年电力系统中谐波的危害与产生电网谐波造成电网污染,正弦电压波形畸变,使电力系统的发供用电设备出现许多异常现象和故障,情况日趋严重。
本文全面论述了电力系统中谐波的危害及产生情况,希望能引起我们的高度重视。
谐波的危害电力系统中谐波的危害是多方面的,概括起来有以下几个方面:1.对供配电线路的危害(1)影响线路的稳定运行供配电系统中的电力线路与电力变压器一般采用电磁式继电器、感应式继电器或晶体管继电器予以检测保护,使得在故障情况下保证线路与设备的安全。
但由于电磁式继电器与感应式继电器对10%以下含量高达40%时又导致继电保护误动作,因而在谐波影响下不能全面有效地起到保护作用。
晶体管继电器虽然具有许多优点,但由于采用了整流取样电路,容易受谐波影响,产生误动或拒动。
这样,谐波将严重威胁供配电系统的稳定与安全运行。
(2)影响电网的质量电力系统中的谐波能使电网的电压与电流波形发生畸变。
如民用配电系统中的中性线,由于荧光灯、调光灯、计算机等负载,会产生大量的奇次谐波,其中3次谐波的含量较多,可达40%;三相配电线路中,相线上的3的整数倍谐波在中性线上会叠加,使中性线的电流值可能超过相线上的电流。
另外,相同频率的谐波电压与谐波电流要产生同次谐波的有功功率与无功功率,从而降低电网电压,浪费电网的容量。
2.对电力设备的危害对电力电容器的危害当电网存在谐波时,投入电容器后其端电压增大,通过电容器的电流增加得更大,使电容器损耗功率增加。
对于膜纸复合介质电容器,虽然允许有谐波时的损耗功率为无谐波时损耗功率的1.38倍;对于全膜电容器允许有谐波时的损耗功率为无谐波时的1.43倍,但如果谐波含量较高,超出电容器允许条件,就会使电容器过电流和过负荷,损耗功率超过上述值,使电容器异常发热,在电场和温度的作用下绝缘介质会加速老化。
尤其是电容器投入在电压已经畸变的电网中时,还可能使电网的谐波加剧,即产生谐波扩大现象。
另外,谐波的存在往往使电压呈现尖顶波形,尖顶电压波易在介质中诱发局部放电,且由于电压变化率大,局部放电强度大,对绝缘介质更能起到加速老化的作用,从而缩短电容器的使用寿命。
供电系统中谐波的危害及其抑制措施
供电系统中谐波的危害及其抑制措施引言:谐波是指电力系统中频率为原有电源频率的整数倍的电磁波分量。
随着电气设备的广泛应用,电网中的谐波也越来越普遍。
由于谐波的存在会导致电网系统工作不稳定、设备冗余损耗等问题,因此谐波的危害和抑制措施是电力系统工程中的重要问题。
一、谐波的危害1.对设备的影响:谐波电流和电压会导致电机、变压器、开关等设备的温升增加,降低设备的效率和寿命。
2.能量损耗:谐波电流所造成的功率损耗将占据供电系统中的电容器和导线,由于功率因数降低,导致线路和装置的不稳定和能量损耗加大。
3.对电网中其他用户的影响:谐波会引起电网中电压失真、电压不平衡等问题,影响其他用户的用电设备正常工作。
4.电磁兼容问题:由于谐波电流会加剧设备的辐射干扰,影响其他设备的正常工作,尤其在医疗和科研领域对设备的精度要求很高,谐波电流的存在将会造成不可忽视的影响。
二、谐波抑制的措施为了减小或消除谐波对电力系统的危害,人们提出了许多谐波抑制的方法。
下面列举几种常见的抑制措施:1.谐波源侧的抑制措施(1)使用非线性负载的限制:通过控制非线性负载的使用,减少非线性负载对电网的谐波污染。
(2)滤波器:在负载侧安装滤波器,通过滤除谐波电流的方式来减小谐波对电力系统的影响。
2.网络侧的抑制措施(1)电网的并联阻抗:增大电网的抑制阻抗,使其通过阻抗特性吸收掉谐波电流,减小谐波对电网的影响。
(2)使用无源滤波器:通过在电网中安装无源滤波器,将谐波电流引导到负载并以无功功率的形式吸收,降低谐波的影响。
3.负载侧的抑制措施(1)使用线性负载:减少非线性负载的使用,使用线性负载来替代原有的非线性设备,降低谐波问题。
(2)线性化处理:通过加装谐波抑制器或使用线性补偿装置对非线性负载进行线性化处理,减小谐波的产生。
结论:谐波对电力系统的危害不可忽视,为了减小其危害,需要采取相应的抑制措施。
谐波抑制的措施可以从谐波源侧、网络侧和负载侧入手,通过控制非线性负载的使用、安装滤波器、增大电网的抑制阻抗、使用无源滤波器等方法,可以有效地减小谐波的影响。
谐波的危害和治理
谐波的危害和治理什么是谐波谐波的定义是对周期性非正弦电量进行傅立叶级数分解,除了得到与电网基波频率相同的分量,还得到一系列大于电网基波频率的分量,这部分电量称为谐波。
谐波频率与基波频率的比值(n=fn/f1)称为谐波次数。
电网中有时也存在非整数倍谐波,称为非谐波(Non-harmonics)或分数谐波。
谐波实际上是一种干扰量,使电网受到污染。
电工技术领域主要研究谐波的发生、传输、测量、危害及抑制,其频率范围一般为2?n?40。
三.谐波产生的原因及危害性谐波的危害表现为引起电气没备(电机、变压器和电容器等)附加损耗和发热:使同步发电机的额定输出功率降低,转矩降低,变压器温度升高,效率降低,绝缘加速老化,缩短使用寿命,甚至损坏:降低继电保护、控制、以及检测装置的工作精度和可靠性等。
谐波注入电网后会使无功功率加大,功率因数降低,甚至有可能引发并联或串联谐振,损坏电气设备以及干扰通信线路的正常工作。
供电系统中的谐波危害主要表现在以下几个方面。
1、增加了发、输、供和用电设备的附加损耗,使设备过热,降低设备的效率和利用率。
由于谐波电流的频率为基波频率的整数倍,高频电流流过导体时,因集肤效应的作用,使导体对谐波电流的有效电阻增加,从而增加了设备的功率损耗、电能损耗,使导体的发热严重。
(1)对旋转电机的影响谐波对旋转电机的危害主要是产生附加的损耗和转矩。
由于集肤效应、磁滞、涡流等随着频率的增高而使在旋转电机的铁心和绕组中产生的附加损耗增加。
在供电系统中,用户的电动机负荷约占整个负荷的85%左右。
因此,谐波使电力用户电动机总的附加损耗增加的影响最为显著。
由于电动机的出力一般不能按发热情况进行调整,由谐波引起电动机的发热效应是按它能承受的谐波电压折算成等值的基波负序电压来考虑的。
试验表明,在额定出力下持续承受为3%额定电压的负序电压时,电动机的绝缘寿命要减少一半。
因此,国际上一般建议在持续工作的条件下,电动机承受的负序电压不宜超过额定电压的2%。
谐波的危害与治(2篇)
谐波的危害与治随着工业的发展,客户的用电量不断增长,谐波的影响和危害也日益严重。
1谐波源电力系统中谐波源有以下几种:一是各种非线性用电设备,如换流设备、调压装置、电气化铁道、电弧炉、光灯、家用电器以及各种电子节能控制设备等是电力系统谐波的主要来源。
这些设备即使供给它理想的正弦波电压,它取用的电流也是非线性的,即有谐波电流存在。
这些设备产生的谐波电流也会注入电力系统,使系统各处电压产生谐波分量,这些设备的谐波含量决定于它本身的特性和工作状况,基本上与电力系统参数无关。
二是供电系统本身存在的非线性,元件这些非线性元件主要有变压器励磁支路、交直流换流站的晶闸管控制元件、晶闸管控制的电容器、电抗器组等。
三是家用电器,如荧光灯等的单个容量不大,但数量很多且分布于各处,又难以管理。
如果这些设备的电流谐波含量过大,会对电力系统造成严重影响,此类设备的谐波含量,在制造时即应限制在一定的范围之内。
2电容器不能正常投入问题的分析通常将低压电容器组接到配变二次侧或0.4kV母线上,以补偿变压器和负荷的无功损耗,由于无功自动补偿装置能够根据负荷的变化自动投切电容器组,使功率因数保持在0.9以上,且不过补偿,能够获得良好的补偿效果。
但装设电容器后系统的谐波阻抗随系统的谐波频率不同会发生变化,即可大可小,并且当系统的谐波频率达到某一特定值时,并联电容器可能会与系统发生并联谐振或导致该次谐波被放大。
谐波电流一旦被电容器放大并迭加在电容的基波电流上,这将使流过电容器电流的有效值增加,电力电容器会由于谐波电流引起绝缘介质损耗加大、温度升高,加快电容器绝缘老化,甚至引起过热使电容器损坏。
此外,谐波电流放大引发的谐波电压增大一旦叠加在电容器的基波电压上,同样会使电容器承受电压有效值增大,并且电压峰值也会大大增加,造成电容器发生局部放电,这也是电容器损坏的一个主要原因。
由于电容器对谐波电流的放大作用,它不仅危害电容器本身,而且会危及电网中的其它电气设备,严重时会造成电气设备损坏,甚至破坏电网的正常运行。
谐波的危害与治理
谐波的危害与治理谐波是电气设备运行中不可避免出现的问题之一,其危害主要体现在设备损坏、能耗增加和工作效率下降等方面。
为了有效治理谐波,可以采取多种措施,包括谐波过滤器的应用、降低非线性负载、改进供电系统等方法。
本文将详细描述谐波的危害及治理方法。
谐波是电流或电压波形中频率是基波频率整数倍的成分。
当电力系统中存在谐波时,会带来以下危害:1. 电力设备的损坏:谐波会引起电力设备的过热、电容器的老化、电动机转矩波动、继电器误动等问题。
长此以往,会导致设备寿命的缩短,增加维护成本。
2. 能源浪费:谐波会导致电能的损失和能耗的增加。
电网中谐波电流的存在会导致额外的功率损耗,增加用户电费开支。
3. 工作效率下降:谐波会导致电力系统的电流和电压波形失真,使电力设备的工作效率下降。
例如,电机的转矩波动会降低效率,造成额外的能源浪费。
针对谐波问题,可以采取以下治理措施:1. 谐波过滤器的应用:谐波过滤器是一种能够降低电力系统谐波水平的设备,其原理是通过控制谐波电流的流向和大小来达到滤波效果。
可以根据实际需要选择合适的谐波过滤器类型,如有源谐波过滤器、无源谐波过滤器等,并在关键位置进行安装和配置。
2. 降低非线性负载:非线性负载是谐波产生的主要原因之一,如电力电子器件、变频器等。
通过控制这些非线性负载的使用,例如合理选择负载电压和电流的容量、增加电感元件等措施,可以减少非线性负载引起的谐波。
3. 改进供电系统:对供电系统进行改进也是治理谐波的重要方法。
例如,加装谐波补偿设备,通过补偿谐波电流来降低谐波水平;重新设计电力系统的接地系统,减小系统电容;提高系统电压等方法都可以有效地改进供电系统,从而减少谐波。
4. 加强维护管理:定期对电力设备进行巡检和维护,及时处理设备异常情况,可以减少谐波对设备的损坏。
此外,还可以加强对设备的监测和数据分析,及时发现谐波问题的存在,采取相应措施进行处理。
综上所述,谐波的危害主要包括电力设备损坏、能耗增加和工作效率下降等方面。
谐波的危害与治理
谐波的危害与治理谐波(Harmonics)是一种电力质量问题,指的是电力系统中频率是电力系统基波频率整数倍的电力信号。
由于现代社会对电力供应的要求越来越高,而电子设备的普及也带来了大量频率非线性负载,这使得谐波问题变得日益突出。
谐波的产生会对电力系统及相关设备带来一系列危害,因此需要进行治理。
本文将对谐波的危害及其治理进行全面探讨。
一、谐波的危害1. 对供电网造成负荷加重:谐波电流会增加供电系统的总功率需求,使电网负荷加重。
由于谐波电流的存在,设备的运行效率降低,电网传输能力减小,给供电企业带来电能损失和运行成本的增加。
2. 对设备造成电磁烦扰:谐波电流会引起电力设备内部漏磁力的增加,产生电磁烦扰现象。
这种电磁烦扰会影响到设备的正常运行,造成设备的故障、损坏甚至火灾。
3. 对电力设备造成损坏:谐波电流会引起设备内部电涌、过热等问题,导致电力设备的损坏。
特别是对低压配电设备,谐波容易引起设备的过载和损坏,给用电客户和企业带来不必要的维修成本。
4. 对电力质量造成污染:谐波会引起电压畸变,特别是谐波电压会使系统电压波形变形,导致电压失真。
这不仅影响设备的正常运行,还会在输配电系统中产生大量的电能损耗,降低电力质量,影响用户的用电质量。
5. 对通信设备造成干扰:谐波会产生高频电磁辐射,对无线通信设备产生干扰。
这种干扰会导致通信设备的信号质量下降,甚至影响通信的稳定性和安全性。
二、谐波的治理谐波治理是指采取一系列措施来减少或消除谐波对电力系统造成的危害。
谐波治理需要从源头和末端两个方面进行考虑,下面将介绍一些常见的谐波治理方法。
1. 谐波源控制:谐波源控制是对产生谐波的负载进行控制,减少谐波的产生。
常见的谐波源控制方法有:(1)采用低谐波负载:选择具有较低谐波水平的负载设备,例如使用变频器时选择带有滤波器的变频器,这样可以减少负载引起的谐波电流。
(2)限制非线性负载容量:对于存在大量非线性负载的设备,可以分时控制其使用量,减少谐波产生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
谐波危害的详细分析一、对输电线路的影响谐波对电晕起始和熄灭的影响是峰一峰电压的函数。
峰值电压与谐波和基波的相角关系有关,所以即使有效值电压在限值以内而峰值电压高出额定值也是可能的。
因此,在输电线路的设计中要适当考虑这一影响,以降低事故的可能性。
超高压长距离输电线路,常采用单相自动重合闸来提高电力系统稳定性。
较大的高次谐波电流(几十安培以上)能显着地延缓潜供电流的熄灭,导致单相重合闸失败或不能采用较小的自动重合闸时间,不利于系统稳定运行。
在电缆输电的情况下,谐波电压以正比于其幅值电压的形式增加了介质的电场强度。
这一影响增大了局部放电、介损和温升,缩短了电缆的使用寿命,增加了事故次数。
电缆的额定电压等级越高,谐波引起的上述危害也越大。
谐波电流流过导体表面时会产生集肤效应和邻近效应。
集肤效应是指导体中有交流电流流过或者处于交变电磁场中,由于电磁感应使电流或磁通在导体中分布不均匀,越接近表面处电流密度或者磁通密度越大的现象。
电流频率越高,导体的电导率和磁导率越大,趋肤厚度就越小,这时只要导体的截面积稍大,集肤效应就会相当严重,使导体的电阻增大。
互靠近的导体中流过交流电流时,每一个导体不仅处于自身电流产生的磁场中,同时还处于其他导体产生的磁场中,这时各个导体中电流的分布和它单独存在时不一样,会受到邻近导体的影响,这种现象叫做邻近效应。
电流频率愈高,导体靠得愈近,邻近效应愈显着。
邻近效应和集肤效应是共存的,它会使导体中电流的分布更加不均匀,使导体的电阻更加增大。
以上两种现象都会使线路或设备产生更多的附加发热,从而影响绝缘寿命。
除此之外,由于谐波电流会产生较高频率的电场,这种情况下绝缘的局部放电加剧,介质损耗显着增加,致使温升增加,也会影响绝缘寿命。
电流流过导体,其热效应会引起导体发热,其大小由下面的公式决定:I为线路电流的有效值,用下式表示:式中:THDi-谐波电流的畸变率;2I 、3I 、…n I -2、3…n 谐波电流有效值; 1I -基波电流。
可以看出,没有谐波电流时,电流的有效值就是基波电流的大小,但是当谐波畸变率达到100%时,电流的有效值则比基波电流增大将近50%。
ac R 是导体的交流电阻,用下式表示:式中:c k -交流电阻和直流电阻的比值,也叫附加损耗系数;se k -集肤效应引起的电阻增大系数;pe k -邻近效应引起的电阻增大系数; dc R -导体的直流电阻。
从式可以看出影响线路损耗的因素有两个:电流和电阻,它们同时又分别受其他因素制约。
电流的大小主要由负载情况决定,电阻则受电流频率、导体材质和尺寸的影响。
一般情况下,由于谐波含量很低,可以忽略高频信号的影响,认为c k 等于0。
但是当谐波畸变率高时,高频信号的影响就必须考虑了。
前面已经提到,电流频率越高,集肤效应和邻近效应就越明显,c k 也越大。
线路损耗的增加必然导致线路温度的升高,导线外面包有绝缘层和保护层,温度的分析较为复杂,这里通过分析裸导体实现导线温度的定性判断。
对于裸导体,流过一定电流时,其稳定温升有下面的公式:式中:I -流过导体的电流; ac R -导体的交流电阻;-导体的总换热系数;F -导体的换热面积。
从式中可以看出,对于具体的电线电缆来说,如果假定两种情况下流过电流的有效值相同,那么稳定温升的差异只取决于电阻的大小。
对于电缆和电线来说,由于有厚厚的绝缘层和保护层,热交换的效率必然没有裸导体高,因此流过相同电流时,稳定温升要高一些,谐波电流引起的温升增加量相应也要增大。
温度升高会加速电缆线的老化,减短电缆的寿命,严重情况可能会致使相线与中线火地之间发生短路引发火灾,甚至发生爆炸事故。
据统计,2000年中国火灾中因电气原因引发的火灾为31933起,占中国火灾总数的%,其中电缆老化引起的火灾占整个电气火灾的50%以上,造成了巨大的财产损失。
在化学反应动力学中,由反应速率方程及Amhenius 方程,可知高分子材料的热老化方程为:式中: τ、T -分别表示材料的寿命(h)和老化温度(K);a -与规定失效性能相关的常数;b -×E/R)是与活化能E 有关的常数,R 是气体常数J ·mol-1·K-1)。
根据资料记载,对于丁苯橡胶热5346b =;对于阻燃电缆5394b =;对于聚氯乙烯电缆5807b =。
假设温度为1T 时的老化寿命为1τ,2T 时的老化寿命为2τ,则对于丁苯橡胶:对于阻燃电缆: 对于聚氯乙烯电缆:假设温度为500时三种材料的老化寿命都为20年,那么每升高10,电缆的寿命如下表,表中的数据表示老化寿命,单位为年:表A 电缆温度与老化寿命对应表由表中的数据可以看出,三种材料的电缆,随着温度的升高,老化寿命急剧下降,当平均温度升高10℃后,老化寿命仅为正常工作温度下寿命的1/4。
二、 对变压器的影响谐波电压的存在增加了变压器磁滞损耗、涡流损耗以及绝缘的电场强度,谐波电流的存在增加了铜损。
对带有非对称性负荷的变压器而言,若负荷电流含有直流分量,引起变压器磁路饱和,会大大增加励磁电流的谐波分量,它的幅值几乎与直流电流成正比,对于较低次的谐波,这种线性关系更为明显。
谐波电流在变压器中造成的附加损耗可用下式估算:式中 h I -通过变压器的h 次谐波电流;T R -变压器工频等值电阻; hT K -由于 谐波的集肤效应和邻近效应使电阻增加的系数,当h 为5、7、11和13时,hT K 可分别取、、和。
对于普通变压器,特别重要的影响是3次及其倍数次零序谐波,这些谐波在三角形连接的绕组中形成换流。
除非设计时已经考虑到这些问题,否则这些换流将使变压器绕组过热。
对于供给不对称负荷的变压器,还有一个重要问题应当考虑到,即如果负荷电流中含有直流分量,则它将使变压器磁路的饱和度提高,从而使交流励磁电流的谐波分量大大增加。
对电力变压器内△接法的绕组而言,虽然该接法为三次倍数的谐波电流提供了一个通路,但却增加了绕组内的环流。
除非在设计时另有考虑,这一额外的环流可能使绕组电流超过额定值。
变压器副边输出谐波电压使输电线路热损耗增加,绝缘老化,寿命缩短;据有关部门试验,相同的电缆铺设条件,若通过一般的工频电流,其使用寿命为25年,而含有高次谐波的非正弦电流,其使用寿命只有9年。
三、 对无功补偿电容器的影响电力谐波和电容器之间的作用是相互的,它不仅在电容器中产生额外的电力损耗,而且可能与电容器一起产生串联或并联谐振。
谐波电压在电容器中产生额外的电力损耗: 式中 c —电容;tg δ—介质损耗系数;n ω—n 次谐波的角频率; n U —n 次谐波电压有效值。
当同一母线上接有电容器和谐波源时,设电源为纯感性的,当下式成立时就会发生并联谐振。
式中 f —基波频率; n f —谐振频率;S S —系统短路容量; C S —电容器容量。
因在高频电路中电容阻抗较小故可略去负荷电阻。
在此条件下,当下式成立时就会发生串联谐振。
式中 t S —变压器容量; t Z —变压器阻抗标幺值L S —负荷容量; c S —电容器容量在电容器的作用下,谐波电流可以被放大2~5倍,而在谐振时可达30倍以上。
谐振引起的过电压和过电流会大大增加电容器的损耗和过热,这往往导致电容器的损坏。
四、 对继电保护装置的影响谐波对继电保护的影响主要表现为使继电器动作特性畸变或效果降低,其后果常是保护装置的拒动或误动,并且由于不同类型继电器的设计和工作原理不用,谐波的影响程度也不尽相同。
1、谐波对电磁型继电器的影响谐波对各种形式的继电器和保护装置均有不同程度的影响。
对于当前推广使用的微机保护来说,由于广泛采用先进的数字滤波电路和数值算法,得到的波形基本上是滤去各主要高次谐波的正弦波,可以认为谐波不能对其动作特性构成影响。
然而对目前仍广泛使用的电磁式继电器来说,谐波的威胁是存在的。
常规的电磁型电流继电器的电磁动作转矩为:式中 F —电磁力; p L —动片与支点的力臂长度—磁通; I —流入线圈的电流有效值2W —线圈匝数; m R —磁通Φ所经过磁路的磁阻由式可得电磁动作转矩与线圈电流有效值的平方成正比。
实验证明,该型继电器线圈无论通入基波还是通入2~7次单频谐波,只要有效值相同,继电器都会动作。
按基波整定的电磁型继电器在谐波的作用下可能误动。
虽然,电磁型继电器动作速度慢,定值容许误差较大,在谐波含量小于10%时可认为谐波影响不是主要问题,然而在某些情况下,谐波的含量会大大超过这一允许值。
例如变压器空载合闸时,由于断路器三相不同期,三相励磁涌流极不平衡,在同一母线上并列运行的所有变压器零序回路中引起零序涌流,其波形中含有很大的谐波分量,其二次谐波分量有时甚至大于基波分量。
这时,虽然其基波电流尚未达到继电器的起动值,但各次谐波综合的有效值已超过整定值,使电磁型继电器起动。
由于整个衰减过程达10s 以上,超过零序保护动作时间,可使该母线上运行中的投入零序保护的变压器同时误跳。
2、谐波对感应型继电器的影响感应型继电器的可动部分惯性较大,动作速度慢,谐波转拒对其影响并不严重。
这种继电器中的圆盘或圆筒在磁场的作用下都将产生感应电流,该电流和空间中另一磁场相互作用产生电磁转拒,推动圆盘和圆筒。
经验证,随着输入电流的频率由50Hz增加到250Hz时,继电器的起动灵敏度将降低,这是由于畸变电流中谐波分量在继电器磁盘上产生了附加转矩所致。
由畸变电流产生作用在继电器磁盘上的转矩等于该电流中基波分量和各次谐波分量产生的转矩总和,其中3次谐波和5次谐波电流产生的转矩对继电器的灵敏度影响比较大。
谐波电流分量产生的转矩可正可负,因而继电器可能产生误动也可能产生拒动,其后果由各同次频率谐波间的相位差以及谐波分量的有效值确定。
3、谐波对整流型继电器的影响整流型继电器的主要特点是将输入交流量进行整流,或者将几个输入交流量组合后进行整流,继电器的动作特性取决于整流后的电压信号(电流信号)及其动作判据,以两个电气量的环形整流比相器回路构成的方向阻抗继电器为例进行分析。
当电流回路中含有谐波分量时,其动作特性不在是一个圆,而是呈现未一个不规则的封闭曲线由许多凹凸不平点。
基本上每隔2π/n时有凹点(或凸点)出现,而且谐波含量越大,凹凸越厉害。
主要是因为在电流回路通入含有谐波分量电流时,环形整流比相器输出的交流分量增大,从而造成继电器动作特性损坏不光滑。
在某些情况下,如输出线路发生接地短路时,由于电流中谐波分量较大,导致整流型保护装置拒动。
4、谐波对静态型继电器的影响静态保护所采用的继电器包括通称的静态继电器和固态继电器,主要由无机械运动的电子器件构成。
由于在抗干扰和消除谐波影响方面具有较好的有效性,静态保护已日益收到人们的关注。
按相位比较原理构成的继电器,被比较的两个交流电量可用积分比相器或微分比相器来实现。