板形控制的发展及其应用

板形控制的发展及其应用
板形控制的发展及其应用

龙源期刊网 https://www.360docs.net/doc/746911363.html,

板形控制的发展及其应用

作者:李坤

来源:《硅谷》2011年第06期

摘要:板形是板带的重要质量指标够。随着仪表、电器、汽车及轻工业的发展,对板带

板形的要求日趋严格。但在我国,带钢板形的自动控制还是一个相当薄弱的环节,每年由板形不良所造成的经济方面的损失十分严重,了解和解决我国板带生产中板形质量问题是一项具有巨大经济意义的课题。

关键词:板形控制;轧机;板形预测;变形

中图分类号:TG335文献标识码:A文章编号:1671-7597(2011)0320140-01

金属在轧辊作用下经过一系列的变形过程轧成需要的板材。最终产品的板形受到许多因素的影响,总括起来,这些因素可以分为内因(金属本性)和外因(轧制条件)两个方面。轧制条件的影响更为复杂,它包括更为广泛的内容。凡是能影响轧制压力及轧辊凸度的因素(例如摩擦条件、轧辊直径、张力、轧制速度、弯辊力、磨损等)和能改变轧辊间接触压力分布的因素(例如轧辊外形、初始轧辊凸度)都可以影响板形。

1 板形控制的发展

1.1 板形理论的发展。板形理论的发展可以分成三个阶段,第一阶段是以轧辊弹性变形为基础的理论;第二阶段是日本新日铁和美国为代表的以轧件为基础的动态遗传理论;第三阶段为钢铁研究总院建立的轧件轧辊统一的板形理论。

1.1.1 轧辊弹性变形的板形理论。最初的轧辊弹性变形研究是在二辊轧机L门上,并假设轧制力沿辊身全长均匀分布,也没有考虑轧件和轧辊之间的弹性压扁。由于物理模型过于简单,处理方法也十分粗糙,对要求处理的四辊和六辊轧机,并要求给出精确的轧后端面分布,这种简单方法不能胜任。自20世纪60年代,轧辊弹性变形的研究发展很快,其方法主要是以M.D.Stone为代表的弹性基础梁理论和以K.N.Shohet为代表的影响函数法以及有限元方法。我国轧钢界从20世纪70年代起对轧制理论与技术的研究大都集中在轧辊弹性变形的理论方面。这种理论对轧制过程主要起到分析指导作用,不能直接用于在线控制。

1.1.2 轧件连轧过程的板形理论。20世纪70年代末,日本新日铁与日立、三菱合作在HCPC等板形控制轧机的开发过程中,提出了以实验为基础的板形理论研究新思路,得到了板形于扰系数和遗传系数为基本参数的板形向量模型,直接应用于生产。20世纪80年代,美国阿姆柯钢铁公司提出影响矩阵方法,提出前面机架改变弯辊力或轧辊凸度不仅影响本机架板

自动控制现代控制与智能控制的关系

自动控制、现代控制与智能控制的关系 一、基本区别 控制理论发展至今已有100多年的历史,经历了“经典控制理论”和“现代控制理论”的发展阶段,已进入“大系统理论”和“智能控制理论”阶段。智能控制理论的研究和应用是现代控制理论在深度和广度上的拓展。20世纪80年代以来,信息技术、计算技术的快速发展及其他相关学科的发展和相互渗透,也推动了控制科学与工程研究的不断深入,控制系统向智能控制系统的发展已成为一种趋势。 自动控制理论中建立在频率响应法和根轨迹法基础上的一个分支。经典控制理论的研究对象是单输入、单输出的自动控制系统,特别是线性定常系统。经典控制理论的特点是以输入输出特性(主要是传递函数)为系统数学模型,采用频率响应法和根轨迹法这些图解分析方法,分析系统性能和设计控制装置。经典控制理论的数学基础是拉普拉斯变换,占主导地位的分析和综合方法是频率域方法。建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分。 在现代控制理论中,对控制系统的分析和设计主要是通过对系统的状态变量的描述来进行的,基本的方法是时间域方法。现代控制理论比经典控制理论所能处理的控制问题要广泛得多,包括线性系统和非线性系统,定常系统和时变系统,单变量系统和多变量系统。它所采用的方法和算法也更适合于在数字计算机上进行。现代控制理论还为设计和构造具有指定的性能指标的最优控制系统提供了可能性。 智能控制(intelligent controls)在无人干预的情况下能自主地驱动智能机器实现控制目标的自动控制技术。 二、华山论剑:自动控制的机遇与挑战 传统控制理论在应用中面临的难题包括:(1)传统控制系统的设计与分析是建立在已知系统精确数学模型的基础上,而实际系统由于存在复杂性、非线性、时变性、不确定性和不完全性等,一般无法获得精确的数学模型;(2)研究这类系统时,必须提出并遵循一些比较苛刻的假设,而这些假设在应用中往往与实际不相吻合;(3)对于某些复杂的和包含不确定性的对象,根本无法用传统数学模型来表示,即无法解决建模问题;(4)为了提高性能,传统控制系统可能变得很复杂,从而增加了设备的初始投资和维修费用,降低了系统的可靠性。 为了讨论和研究自动控制面临的挑战,早在1986年9月,美国国家科学基金会(NSF)及电气与电子工程师学会(1EEE)的控制系统学会在加利福尼亚州桑克拉拉大学(University of Santa Clare)联合组织了一次名为“对控制的挑战”的专题报告会。有50多位知名的自动控制专家出席了这一会议。他们讨论和确认了每个挑战。根据与会自动控制专家的集体意见,他们发表了《对控制的挑战——集体的观点》,洋洋数万言,简直成为这一挑战的宣言书。 到底为什么自动控制会面临这一挑战,还面临哪些挑战,以及在哪些研究领域存在挑战呢? 在自动控制发展的现阶段,存在一些至关重要的挑战是基于下列原因的:(1)科学技术

控制科学与工程专业介绍

控制科学与工程专业介绍 控制科学与工程是一门研究控制的理论、方法、技术及其工程应用的学科。它是20世纪最重要的科学理论和成就之一,它的各阶段的理论发展及技术进步都与生产和社会实践需求密切相关。11世纪我国北宋时代发明的水运仪象台就体现了闭环控制的思想。到18世纪,近代工业采用了蒸汽机调速器。但直到20世纪20年代逐步建立了以频域法为主的经典控制理论并在工业中获得成功应用,才开始形成一门新兴的学科——控制科学与工程。此后,经典控制理论继续发展并在工业中获得了广泛的应用。在空间技术发展的推动下,50年代又出现了以状态空间法为主的现代控制理论,并相继发展了若干相对独立的学科分支,使本学科的理论和研究方法更加丰富。60年代以来,随着计算机技术的发展,许多新方法和技术进入工程化、产品化阶段,显著加快了工业技术更新的步伐。在控制科学发展的过程中,模式识别和人工智能与控制相结合的研究变得更加活跃;由于对大系统的研究和控制学科向社会、经济系统的渗透,形成了系统工程学科。特别是近20年来,非线性及具有不确定性的复杂系统向“控制科学与工程”提出了新的挑战,进一步促进了本学科的迅速发展。目前,本学科的应用已经遍及工业、农业。交通、环境、军事、生物、医学、经济、金融、人口和社会各个领域,从日常生活到社会经济无不体现本学科的作用。 控制科学以控制论、信息论、系统论为基础,研究各领域内独立

于具体对象的共性问题,即为了实现某些目标,应该如何描述与分析对象与环境信息,采取何种控制与决策行为。它对于各具体应用领域具有一般方法论的意义,而与各领域具体问题的结合,又形成了控制工程丰富多样的内容。本学科的这一特点,使它对相关学科的发展起到了有力的推动作用,并在学科交叉与渗透中表现出突出的活力。例如:它与信息科学和计算机科学的结合开拓了知识工程和智能机器人领域。与社会学、经济学的结合使研究的对象进入到社会系统和经济系统的范畴中。与生物学、医学的结合更有力地推动了生物控制论的发展。同时,相邻学科如计算机、通信、微电子学和认知科学的发展也促进了控制科学与工程的新发展,使本学科所涉及的研究领域不断扩大。 本学科下设五个二级学科:控制理论与控制工程,检测技术与自动化装置,系统工程,模式识别与智能系统,导航、制导与控制。各二级学科的主要研究范畴及相互联系如下。 “控制理论与控制工程”学科以工程领域内的控制系统为主要对象,以数学方法和计算机技术为主要工具,研究各种控制策略及控制系统的建模、分析、综合、设计和实现的理论、技术和方法。 “检测技术与自动化装置”是研究被控对象的信息提取、转换、传递与处理的理论、方法和技术的一门学科。它的理论基础涉及现代物理、控制理论、电子学、计算机科学和计量科学等,主要研究领域包括新的检测理论和方法,新型传感器,自动化仪表和自动检测系统,以及它们的集成化、智能化和可靠性技术。

智能控制的主要应用领域

一)智能控制的主要应用领域? 答:1在机器人系统中的应用2)在CIMS计算机/现代集成制造系统和CIPS计算机/现代集成作业系统中的应用3)在航天航空控制系统中的应用4)在社会经济管理系统中的应用5)在交通运输系统中的应用。 二)专家系统的组成、主要类型? 答:专家系统主要有四部分组成1)知识库,包括事实、判断、规则、经验知识和数学模型2)推理机,首先把知识库中的专家知识及数据库中的有关事实,以一定的推理方式进行逻辑推理以给出结论3)解释机制是专家系统区别于传统计算机程的主要特征之一,它可以向用户回答如何导出推理的结论4)知识获取系统,主要完成机器学习。 类型:1)控制系统辅助设计2)过程监控、在先诊断、故障分析与预测维护;3)过程控制4)航天故障诊断与处理5)生产过程的决策与调度。 三)智能控制的产生和发展过程及其主要代表人物? 答:1)启蒙期从20世纪60年代起,F.W.史密斯提出采用性能模式识别器;1965年,美国扎德模糊集合;1966年,J.M.门德尔人工智能控制; 2)形成期20世纪70年代傅京孙、曼德尼3)发展期20世纪80年代4)高潮期20世纪90年代 四)人工神经网络的特点? 答:1)可以充分逼近任意复杂的非线形关系2)所有定量或定性的信息都分布储存于网络内的各神经元的连接上,故有很强的鲁棒性和容错性3)采用并行分布处理方法,使得快速进行大量运算成为可能4)可自学习和自适应不确知或不确定的系统。 五)智能控制的应用对象? 答:1)不确定的模型传统的控制是基于模型的控制,这里的模型包括控制对象和干扰模型。 2)高度的非线性传统控制理论中的线性系统理论比较成熟。 3)复杂的任务要求在传统的控制系统中,控制的任务或者是要求输出量为定值,或者是要求输出量跟随期望的运动轨迹,因此控制任务的要求比较单一。对于智能控制系统,任务的要求往往比较复杂。 六)傅京孙关于智能控制的论文中列举的三种智能控制系统? 答:1)人作为控制器的控制系统2)人机结合作为控制器的控制系统3)无人参与的智能控制系统。 七)模糊控制器的主要特点? 答:1)设计简单。模糊控制器是一种基于规则的控制。 2)适用于数学模型难以获取、动态特性不易掌握或变化非常显著的对象。 3)控制效果优于常规控制器。 4)具有一定的智能水平, 5)模糊控制系统的鲁棒性强。 八)隶属函数选择的基本准则? 答:1)表示隶属度函数的模糊集合必须是凸模糊集合。 2)变量所取隶属度函数通常是对称的、平衡的。 3)隶属度函数要符合人们的语义顺序,避免不恰当的重叠。 4)论域中每个点至少属于一个隶属度函数的区域,并应属于不超过两个隶属度函数的区域, 5)当两个隶属度函数重叠时,重叠部分对两个隶属度函数的最大隶属度不应有交叉,6)当两个隶属度函数重叠时,重叠部分的任何点的隶属度函数的和应该小于或等于1。九)隶属度函数确定的三种主要方法。

智能控制技术现状与发展

摘要:在此我综述智能控制技术的现状及发展,首先简述智能控制的性能特点及主要方法;然后介绍智能控制在各行各业中的应用现状;接着论述智能控制的发展。智能控制技术的主要方法,介绍了智能控制在各行各业中的应用。随着信息技术的发展,许多新方法和技术进入工程化、产品化阶段,这对自动控制技术提出犷新的挑战,促进了智能理论在控制技术中的应用,以解决用传统的方法难以解决的复杂系统的控制问题。 关键词:智能控制应用自动化 浅谈智能控制技术现状及发展 在无人干预的情况下能自主地驱动智能机器实现控制目标的自动控制技术。对许多复杂的系统,难以建立有效的数学模型和用常规的控制理论去进行定量计算和分析,而必须采用定量方法与定性方法相结合的控制方式。定量方法与定性方法相结合的目的是,要由机器用类似于人的智慧和经验来引导求解过程。因此,在研究和设计智能系统时,主要注意力不放在数学公式的表达、计算和处理方面,而是放在对任务和现实模型的描述、符号和环境的识别以及知识库和推理机的开发上,即智能控制的关键问题不是设计常规控制器,而是研制智能机器的模型。此外,智能控制的核心在高层控制,即组织控制。高层控制是对实际环境或过程进行组织、决策和规划,以实现问题求解。为了完成这些任务,需要采用符号信息处理、启发式程序设计、知识表示、自动推理和决策等有关技术。这些问题求解过程与人脑的思维过程有一定的相似性,即具有一定程度的“智能”。 一、智能控制的性能特点及主要方法 1.1根据智能控制的基本控制对象的开放性,复杂性,不确定性的特点,一个理想的智能控制系统具有如下性能: (1)系统对一个未知环境提供的信息进行识别、记忆、学习,并利用 积累的经验进一步改善自身性能的能力,即在经历某种变化后,变化后的

汽车巡航控制系统应用及发展趋势

汽车巡航控制系统地应用及发展趋势 摘要:汽车巡航控制系统(Cruise Control System 或CCS,又称车辆速度控制系统,是指在一定地车速范围内,驾驶员不用操控油门而能 使汽车保持设定地速度行驶地控制装置.采用了巡航控制系统地汽车,驾驶员不用控制加速踏板,降低了驾驶疲劳,提高了行驶安全性和燃 油经济性.本文介绍了汽车巡航控制系统地原理.功能及应用情况,对比了国内外汽车巡航控制系统地发展水平.同时对该系统地发展趋势做出了预测. 关键词:汽车;巡航控制系统;应用;发展趋势 0 引言 近年来,随着现代汽车控制技术和高速公路地飞速发展,在世界各国特别是发达国家,无论是运输业还是个人,汽车都已成为长距离运输地主要交通工具.在大陆型地国家,驾驶汽车长途行驶地机会较多,在高速公路上长时间行驶时,驾驶员长时间操纵加速踏板而得不到活动,容易造成腿部肌肉疲劳强度加大,甚至腿部会抽筋,失去制动能.汽车巡航控制系统(CCS)就是为解决此问题而诞生地. 1 汽车巡航控制系统简介 1.1 定义 汽车巡航控制系统,简称CCS,根据其特点一般又称为“巡航行驶

装置”.“速度控制系统”.“自动驾驶系统”等.汽车巡航控制系统(CCS)就是可使汽车工作在发动机有利转速范围内,减轻驾驶员地驾驶操纵劳动强度,提高行驶舒适性地汽车自动行驶装置[1].汽车在行驶中通过操纵调整开关,驾驶员不必踩踏油门调整车速,汽车也能以设定地车速进行定速行驶. 采用了汽车巡航控制系统(CCS)地车辆在行驶中,由于驾驶员无需踩踏加速踏板,尤其是装有自动变速器地汽车,因不需使用离合器,只需手握方向盘就可轻松驾驶,将驾驶员地右脚解放出来了,大大减轻了驾驶员地疲劳强度,使整个驾驶过程变得简便.轻松和舒适,降低了交通事故发生地几率.提高了行车地安全性. 此外,使用汽车巡航控制系统(CCS)后,在同样地行驶条件下,对一个有经验地驾驶员来说,可节约燃油15%[2].这是因为CCS系统中使用速度稳定装置后,可使汽车燃油地供给与发动机功率间地配合处于最佳状态,有效降低燃油消耗,减少有害气体排放,提高汽车地经济性和环保性. 1.2 功能 1.2.1 车速设定功能.当在高速公路上长时间稳定行驶时,在路况良好.分到行车.无人流地情况下,可按下“设定”开关,设定一个稳定行驶地车速,驾驶员无须操控油门和换挡,汽车一直以这一车速稳定运行. 1.2.2 消除功能.当驾驶员踩下制动踏板时,车速设定功能立即消失,驾驶员要用常规方法操作驾驶,直到再按另外地功能开关为止.

智能控制题目及解答

智能控制题目及解答 第一章绪论作业 作业内容 1.什么就是智能、智能系统、智能控制? 2.智能控制系统有哪几种类型,各自的特点就是什么? 3.比较智能控制与传统控制的特点。 4.把智能控制瞧作就是AI(人工智能)、OR(运筹学)、AC(自动控制)与 IT(信息论)的交集,其根据与内涵就是什么? 5.智能控制有哪些应用领域?试举出一个应用实例,并说明其工作原理与 控制性能。 1 答:智能:能够自主的或者交互的执行通常与人类智能有关的智能行为,如判断、推理、证明、识别、感知、理解、通信、设计、思考、规划、学习等一系列活动的能力,即像人类那样工作与思维。 智能系统:就是指具有一定智能行为的系统,对于一定的输入,它能产生合适的问题求解相应。 智能控制:智能控制就是控制理论、计算机科学、心理学、生物学与运筹学等多方面综合而成的交叉学科,它具有模仿人进行诸如规划、学习、逻辑推理与自适应的能力。就是将传统的控制理论与神经网络、模糊逻辑、人工智能与遗传算法等实现手段融合而成的一种新的控制方法。 2 答:(1)人作为控制器的控制系统:人作为控制器的控制系统具有自学习、自适应与自组织的功能。 (2)人-机结合作为作为控制器的控制系统:机器完成需要连续进行的并需快速计算的常规控制任务,人则完成任务分配、决策、监控等任务。 (3)无人参与的自组控制系统:为多层的智能控制系统,需要完成问题求解与规划、环境建模、传感器信息分析与低层的反馈控制任务。 3 答:在应用领域方面,传统控制着重解决不太复杂的过程控制与大系统的控制问题;而智能控制主要解决高度非线性、不确定性与复杂系统控制问题。 在理论方法上,传统控制理论通常采用定量方法进行处理,而智能控制系统大多采用符号加工的方法;传统控制通常捕获精确知识来满足控制指标,而智能控制通常就是学习积累非精确知识;传统控制通常就是用数学模型来描述系统,而智能控制系统则就是通过经验、规则用符号来描述系统。 在性能指标方面,传统控制有着严格的性能指标要求,智能控制没有统一的性能指标,而主要关注其目的与行为就是否达到。 但就是,智能控制与传统的或常规的控制有密切的关系,互相取长补短,而并非互相排斥。基于智能控制与传统控制在应用领域方面、理论方法上与性能指标等方面的差异,往往将常规控制包含在智能控制之中,智能控制也利用常规控制的方法来解决“低级”的控制问题,力图扩充常规控制方法并建立一系列新的理论与方法来解决更具有挑战性的复杂控制问题。 4 答:人工只能(AI)就是一个用来模拟人思维的知识处理系统,具有学习、记忆、信息处理、形式语言、启发推理等功能;自动控制(AC)描述系统的动力学特性,就是一种动态反馈;运筹学(OR)就是一种定量优化方法,如线性规划、网络规划、调度、管理、优化决策与多目标优化方法等;信息论(IT)信息论就是运用概率论与树立统计的方法研究信息、通信系统、数据传输、密码学、数据压缩等问题的应用数学学科。 早期产生的的二元结构被发现就是很大程度上局限于符号主义的人工智能,无助于智能控制的

智能控制技术及其发展趋势

智能控制技术及其发展趋势 智能控制(intelligent controls)在无人干预的情况下能自主地驱动智能机器实现控制目标的自动控制技术。对许多复杂的系统,难以建立有效的数学模型和用常规的控制理论去进行定量计算和分析,而必须采用定量方法与定性方法相结合的控制方式。定量方法与定性方法相结合的目的是,要由机器用类似于人的智慧和经验来引导求解过程。因此,在研究和设计智能系统时,主要注意力不放在数学公式的表达、计算和处理方面,而是放在对任务和现实模型的描述、符号和环境的识别以及知识库和推理机的开发上,即智能控制的关键问题不是设计常规控制器,而是研制智能机器的模型。此外,智能控制的核心在高层控制,即组织控制。高层控制是对实际环境或过程进行组织、决策和规划,以实现问题求解。为了完成这些任务,需要采用符号信息处理、启发式程序设计、知识表示、自动推理和决策等有关技术。这些问题求解过程与人脑的思维过程有一定的相似性,即具有一定程度的“智能”。 随着人工智能和计算机技术的发展,已经有可能把自动控制和人工智能以及系统科学中一些有关学科分支(如系统工程、系统学、运筹学、信息论)结合起来,建立一种适用于复杂系统的控制理论和技术。智能控制正是在这种条件下产生的。它是自动控制技术的最新发展阶段,也是用计算机模拟人类智能进行控制的研究领域。1965年,傅京孙首先提出把人工智能的启发式推理规则用于学习控制系统。1985年,在美国首次召开了智能控制学术讨论会。1987年又在美国召开了智能控制的首届国际学术会议,标志着智能控制作为一个新的学科分支得到承认。智能控制具有交叉学科和定量与定性相结合的分析方法和特点。 一个系统如果具有感知环境、不断获得信息以减小不确定性和计划、产生以及执行控制行为的能力,即称为智能控制系统。智能控制技术是在向人脑学习的过程中不断发展起来的,人脑是一个超级智能控制系统,具有实时推理、决策、学习和记忆等功能,能适应各种复杂的控制环境。 智能控制与传统的或常规的控制有密切的关系,不是相互排斥的。常规控制往往包含在智能控制之中,智能控制也利用常规控制的方法来解决“低级”的控制问题,力图扩充常规控制方法并建立一系列新的理论与方法来解决更具有挑战性的复杂控制问题。

电气工程的发展现状与发展趋势

电气工程的发展现状与发展趋势 一.电气工程的发展现状: 概论:我国电力工业正以“大机组,大电网,高电压,高参数,高度自动化”等“三大三高”的现代电力系统的模式超长规模的建设与发展,因此对工程技术设计人员的素质和能力提出了更新和更高的要求。未来的几十年,我国电力系统和电气工程会依然保持较快发展趋势,光伏发电和其他可再生资源将得到快速发展,新的电力电子技术,电工材料,计算机及网络技术,控制与管理手段具有巨大影响潜力。 1.电机的驱动及控制: 逆变器的出现推动了交流电机速度和转矩控制的发展,这使得电机在仅仅30年就应用到了不可思议的领域。功率半导体元件和数字控制技术的进步使得电机驱动能够实现高精度的位置和速度控制。交流驱动技术的应用也带来了能源节约和系统效率的提高。 电机本体及其控制技术在近几年取得相当大的进步。这要归功于半导体技术的空前发展带来的电力电子学领域的显着进步。电机驱动产业发展的利处已经触及各种各样的设备,从大型工业设备像钢铁制造厂、造纸厂的轧钢机等,到机床和半导体制造机中使用的机电一体化设备。交流电机控制器包括异步电机控制器和永磁电机控制器,这两者在电机驱动业的全过程中起着关键性作用。:目前,异步电动机矢量控制技术、直接转矩控制技术乃至无传感器的直接转矩控制技术已实用化。 2.电力电子技术的应用: 半导体的出现成为20世纪现代物理学的一项最重大的突破,标志着电子技术的诞生。而由于不同领域的实际需要,促使半导体器件自此分别向两个分支快速发

展,其中一个分支即是以集成电路为代表的微电子器件,而另一类就是电力电子器件,特点是功率大、快速化。自20世纪五十年代末第一只晶闸管问世以来,电力电子技术开始登上现代电气传动技术舞台,以此为基础开发的可控硅整流装置,是电气传动领域的一次革命,使电能的变换和控制从旋转变流机组和静止离子变流器进入由电力电子器件构成的变流器时代,这标志着电力电子的诞生。 电子电力技术包括电力电子器件、变流电路和控制电路3部分,是以电力为处理对象并集电力、电子、控制三大电气工程技术领域之间的综合性学科。电力技术涉及发电、输电、配电及电力应用,电子技术涉及电子器件和由各种电子电路所组成的电子设备和系统,控制技术是指利用外加的设备或装置使机器设备或生产过程的某个工作状态或参数按照预定的规律运行。电力电子器件是电力电子技术的基础,电力电子器件对电能进行控制和转换就是电子电力技术的利用。在21世纪已经成为一种高新技术,影响着人们生活的各种领域,因此对对电子电力技术的研究具有时代意义。 传统电力电子技术是以低频技术处理的,现代电力电子的发展向着高频技术处理发展。以功率MOS-FET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件的出现,表明已经进入现代电子电力技术发展时代。 20世纪以来,电力电子作为自动化、节材、节能、机电一体化、智能化的基础,正朝着应用技术高频化、产品性能绿色化、硬件结构模块化的现代化方向发展。3.电力系统及其自动化控制: 电力系统自动化即对电能生产、传输和管理实现自动控制、自动调度和自动化管理。电力系统自动化的领域包括生产过程的自动检测、调节和控制,系统和元件的自动安全保护,网络信息的自动传输,系统生产的自动调度,以及企业的自动化经济管理等。电力系统自动化的主要目标是保证供电的电能质量(频率和电压),

分布式控制系统的七个功能和应用

分布式控制系统的七个功能和应用 一、处理复杂的过程 在工业自动化结构中,PLC编程逻辑控制器用于对高速要求的过程参数进行控制和监视。但是由于I / O设备数量的限制,PLC不能处理复杂的结构。因此,对于复杂的控制应用而言,DCS是具有更多专用控制器的I / O的首选。这些用于多个产品的设计在多个过程(例如批量过程控制)中的制造过程中。 二、系统冗余 DCS可以在各个层面通过冗余功能提高系统的可用性。在任何停电后恢复稳态运行,无论是有计划的还是无计划的,与其他自动化控制设备相比都有所改善。 在系统运行过程中,即使在某些异常情况下,冗余系统也可以持续保持系统运行,从而提高了系统的可靠性。

三、很多自定义的功能块 四、强大的编程语言 它提供了更多的编程语言,如梯形图,功能块,顺序等,用于创建基于用户兴趣的自定义编程。 五、更复杂的HMI 与SCADA系统类似,DCS也可以通过HMI(人机界面)进行监控,为操作人员提供充足的数据,为各种过程充电,充当系统的核心。但是这种类型的工业控制系统覆盖了很大的地理区域,而DCS则覆盖了密闭区域。 DCS完全把整个加工厂作为PC窗口控制室。人机界面的趋势记录和图形表示提供了有效的用户界面。DCS强大的报警系统可以帮助操作员更快速地响应设备状况。

六、可扩展平台 通过在通信系统中添加更多的客户端和服务器,并在分布式控制器中增加更多的I / O模块,DCS的结构可以根据从小到大的服务器系统的I / O数量来扩展。 六、系统安全 获得控制各种过程导致工厂安全。DCS设计提供完善的安全系统来处理系统功能,从而实现更好的工厂自动化控也提供不同级别的安全性,如工程师级别,企业家级别,操作员级别等。 分布式控制系统的应用 DCS系统可以在一个简单的应用程序中实现,如使用微控制器网络的负载管理。这里的输入是从一个键盘给一个微控制器,与另外两个微控制器通信。其中一个微控制器用于显示过程的状态以及负载,另一个微控制器控制继电器驱动器。继电器驱动器又驱动继电器来操作负载。

控制理论与控制工程的发展应用-控制工程论文-工程论文

控制理论与控制工程的发展应用-控制工程论文-工程论文 ——文章均为WORD文档,下载后可直接编辑使用亦可打印—— 1.控制理论与控制工程的发展分析 1.1发展第二阶段 控制理论与控制工程发展第二阶段在上世纪至七十年代,在此阶段已经到了空间技术时期,此时的控制工程性能更加优化,并且在数字计算机融合下,使分析设计得到有效实现,而且还使多输出、多输入以及非线性等复杂系统得到有效完善。另外,还能够得出更加优化的控制模式,从而使现代控制理论更具完善性及科学性。 1.2发展第三阶段 上世纪七十年代至如今,控制理论及控制工程日趋成熟,无论是系统的结构方案还是整体设计,均显得十分成熟。并且,能够完成分解方法以及协调处理的相关基础性理论研究。对于智能控制理论来说,是基于控制理论更为深入的一种扩展模式,能够完成控制信息的传递,使人类实现进行智能化活动。总之,现如今控制理论研究以及控制工

程的发展呈现了良好的发展势态,具备广阔的应用前景。 2.控制理论与控制工程的具体应用探究 基于控制理论和控制工程应用当中,其核心内容是最优控制。在对最优控制进行研究的情况下,需充分满足相对应的约束条件,进一步将最优控制方案得出,进一步在获取性能指标最大值及最小值的基础上,使控制系统的性能指标达到最优效果。基于控制理论与控制工程应用过程中,还会涉及两类极具典型性的研究策略:其一为PDI控制器;其二为Ka1man滤波器。在诸多实际系统当中,这两种方法应用较为广泛,为了使投入应用的系统的稳定性得到有效实现,通常需要利用线性模型加以证实。从具体层面分析,上述两类方法还能够应用在非线性系统证明上,研究者对以控制理论及控制系统为基础的反馈机制加以利用,进一步进行定量研究便是结合了上述两类方法。从现实生活层面分析,对于控制理论与控制工程来说,在水槽内水位的控制利用较为广泛,同时在对电加热器温度的控制中也具有较为广泛的应用。其自动控制主要是对自动化的高度及温度测试仪进行了充分利用,进一步使测控目标得到有效实现。结合相关学者作出的研究,可以发现对控制理论进行应用,不但需要做好结构及性质层面的分析,还需要对系统运行状态加以调控。并且,反馈概念的应用也尤为重要,通过反馈主要使控制系统在很大程度上实现了工程智能化,工程智能化将进一步使工程相关系统的性能得到有效提升。除此之外,对于控制理

智能控制理论及其应用论文

智能控制理论及其应用 [摘要] 本文回顾了智能控制理论的提出与发展过程,介绍了智能控制的特点,给出了智能控制理论的主要类型及其特点,列举了智能控制理论与技术的主要应用领域,最后总结了智能控制理论的发展趋势。 [关键词] 智能控制模糊控制神经网络专家控制[abstract] this paper reviewed the development of intelligence control, and introduced its main methods and characteristics, and particularized their mostly application fields, and pointed out the prospects of intelligent control development trend and put forward the study direction. [key words] intelligent control fuzzy control net neural expert control 0.引言 随着工业和自动化技术的发展,控制理论的应用日趋广泛,所涉及的控制对象日益复杂化,对控制性能的要求也越来越高,控制对象或过程的复杂性主要体现在系统缺乏精确的数学模型、具有高维的判定空间、多种时间尺度和多种性能判据等,要求控制理论能够处理复杂的控制问题和提供更为有效的控制策略。现代控制理论从理论上解决了系统的可观、可控、稳定性以及许多复杂系统的控制。但实际中的许多复杂系统具有非线性、时变性、不确定性、多层次、多因素等热点,难以建立精确的数学模型,因此需要引入新

人工智能的发展及应用

人工智能的发展及应用 这是个信息爆炸自动控制飞速发展的时代,而在这样的时代中,人工智能也取得了飞速的发展。成为了最前沿最热门的学科和研究方向之一。 人工智能的定义 “人工智能” (Artificial Intelligence) 一词最初是在1956 年Dartmouth 学会上提出的。人工智能是指研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支, 它企图了解智能的实质, 并生产出一种新的能以人类智能相似的方式做出反应的智能机器。目前能够用来研究人工智能的主要物质手段以及能够实现人工智能技术的机器就是计算机, 人工智能的发展历史是和计算机科学与技术的发展史联系在一起的。 人工智能理论进入21 世纪, 正酝酿着新的突破,人工智能的研究成果将能够创造出更多更高级的智能“制品” , 并使之在越来越多的领域超越人类智能, 人工智能将为发展国民经济和改善人类生活做出更大贡献。 人工智能的应用领域 1. 在管理系统中的应用 (1) 人工智能应用于企业管理的意义主要不在于提高效率, 而是用计算机实现人们非常需要做, 但工业工程信息技术是靠人工却做不了或是很难做到的事情。在《谈谈人工智能在企业管理中的应用》一文中刘玉然指出把人工智能应用于企业管理中, 以数据管理和处理为中心, 围绕企业的核心业务和主导流程建立若干个主题数据库, 而所有的应用系统应该围绕主题数据库来建立和运行。换句话说, 就是将企业各部门的数据进行统一集成管理, 搭建人工智能的应用平台, 使之成为企业管理与决策中的关键因子。 2. 在工程领域的应用

(1) 医学专家系统是人工智能和专家系统理论和技术在医学领域的重要应用, 具有极大的科研和应用价值,它可以帮助医生解决复杂的医学问题, 作为医生诊断、治疗的辅助工具。事实上, 早在1982年, 美国匹兹堡大学的Miller 就发表了著名的作为内科医生咨询的Internist 2? 内科计算机辅助诊断系统的研究成果, 由此, 掀起了医学智能系统开发与应用的高潮。目前, 医学智能系统已通过其在医学影像方面的重要作用, 从而应用于内科、骨科等多个医学领域中,并在不断发展完善中。 (2) 地质勘探、石油化工等领域是人工智能的主要作用发挥领地。1978 年美国 斯坦福国际研究所就研发制成矿藏勘探和评价专家系统“PROSPECT”OR, 该系统用于勘探评价、区域资源估值和钻井井位选择等, 是工业领域的首个人工智能专家系统,其发现了一个钼矿沉积, 价值超过1 亿美元。 3. 在技术研究中的应用 (1) 在超声无损检测(NDT)与无损评价(NDE)领域中,目前主要广泛采用专家系统方法对超声损伤(UT)中缺陷的性质、形状和大小进行判断和归类;专家运用超声无损检测仪器, 以其高精度的运算、控制和逻辑判断力代替大量人的体力与脑力劳动减少了任务因素造成的无擦, 提高了检测的可靠性, 实现了超声检测和评价的自动化、智能化。 (2) 人工智能在电子技术领域的应用可谓由来已久。随着网络的迅速发展,网络技术的安全是我们关心的重点, 因此我们必须在传统技术的基础上进行网络安全技 术的改进和变更,大力发展数据挖掘技术、人工免疫技术等高效的AI技术,开发更 高级AI 通用和专用语言, 和应用环境以及开发专用机器, 而与人工智能技术则为我们提供了可能性。 人工智能的发展 人工智能的发展也并不是一帆风顺的,人工智能的研究经历了以下几个阶段: 孕育阶段:古希腊的Aristotle( 亚里士多德)( 前384-322) ,给出了形式逻辑的基本规律。英国的哲学家、自然科学家Bacon(培根)(1561-1626),系统地给出了归纳法。“知识就是力量”

VC轧机板形控制技术的发展

VC轧机板形控制技术的发展 本文详细阐述了VC轧机的结构原理和设计特点,并分析了该轧辊系统板形控制的基本原理。 标签:VC轧机结构特点板形控制 随着国内外冶金工业的发展,在我国的板带材生产中已经广泛应用四辊板带轧机,为了最大限度地提高轧制成材率,一方面采用合理的轧制工艺,通过将轧机工作辊、支承辊与原始磨削辊型进行配合;另一方面轧机还应具备一定的辊型调整手段。由于工作辊面所形成的有载辊缝形状决定了实际轧件的截面形状,而这又受到轧制时轧制力、轧辊配置、弯辊力等因素的影響和制约。因此,在板带轧制中如何根据产品的平直度原则进行四辊板带轧机的辊型的辊型设计及辊型调整越发重要。 1 冷轧板形缺陷与控制 所谓板形,就是轧制后带材所产生的波浪和瓢曲。实际上就是指板带材的翘曲程度。由于各种因素的影响,带材在辊缝中的纵向延伸方向往往是不均匀的。通过对板形进行检测进而实现板形自动控制,只有连续不断地、准确地将板形状况及时地反馈给控制系统,板形控制系统才能以此为依据向执行机构发出正确的调节指令,实现板形闭环自动控制。 2 控制板形问题的基本方法 2.1 HC轧机 在普通四辊冷轧机的基础上对HC轧机进行处理,通过在工作辊和支承辊之间设置可以进行轴向移动的中间辊,采用更小的直径的工作辊。主要特点是:①中间辊的位置可根据板宽调整,可以减小工作辊的弯曲挠度和工作辊与支撑辊的弹性压扁,因此可以显著地减小带钢边缘减薄现象;②中间辊的轴向移动在一定程度上减小了工作辊与支承辊的有害接触区,使有害接触区不再阻碍液压弯辊,液压弯辊的板形控制功能得到明显改善;③采用了较小的工作辊直径,减小了轧制力和轧制力矩。 2.2 CVC轧机 CVC轧制采用S型轧辊,上下轧辊的辊型相反布置,调节轧辊的轴向位置可以获得不同的辊缝形状,以满足轧制带钢的板凸度和板形要求。CVC轧机的特点主要表现在:①多组原始辊型不同的轧辊可以通过一组S型曲线轧辊进行代替,在一定程度上减少了轧辊的备用数量;②通过调整无级辊缝进而适应不同产品规格的变化;③辊缝调节范围大。

控制科学与工程学科发展现状及趋势

控制科学与工程学科发展现状及趋势 控制科学与工程学科发展现状及趋势2010-05-18 17:49一、引言 自动化是人类文明进步和社会现代化的标志。人类最初的活动,便具有扩 展自身体力和智力的意识和追求。自动化伴随人类社会的发展与进步、在社会 需求的不断推动下不断发展,人类的生产活动是自动化发展的主要推动力。控 制科学与工程学科的研究、应用和推广,对人类生产、生活等方式已经并正在 产生深远的影响。 小到一个全自动化的洗衣机、恒温的电冰箱,稍大一点的工厂现场的生产 以及设备等自动运行、工厂自动化,甚至于无人智能化工厂,还有智能建筑, 这些都是与自动化息息相关的产业。还有航空航天更是一个自动化应用的大舞台。 自动化是一门涉及到多个学科,应用广泛的综合性科学技术。其主要涉及 到自动控制和信息处理两个方面,主要研究包括理论、方法、硬件和软件等。 在我国,"控制科学与工程"作为一级学科,共包括五个下属二级学科:(1)控制理论与工程(2)模式识别与智能系统(3)系统工程(4)检测与自动化装置(5)导航、制导与控制。 二、国内外的研究状况 自动化是延伸人能体能和智能、提高劳动生产率和产品质量的关键技术, 自动控制理论是自动化的研究方法,是自动化的基础和灵魂,自动化器件和系 统是实现自动控制原理的工具和载体。 自动化总的来说分成如下几个阶段: 20世纪30年代到40年代:经典控制理论发展初期,这一段时期工作主要 建立在频率法和根轨迹法的基础上,这一阶段通常被称之为经典控制理论。经 典控制理论主要研究对象一般为单输入、单输出系统,特别是线性定常系统。 其特点是以输入输出特性为系统的数学模型,采用频率响应法和根轨迹法来分

机电控制系统原理及工程应用试卷汇总

填空题 1.使用PWM技术在同一逆变器中可以实现调压和变频功能。 2.自动控制系统中的比较元件是用来比较输入信号与反馈信号,并产生两者偏差的信号。 3.传递函数只与系统本身的内部结构和参数有关,而与系统输入量、扰动量等外部因素无关。 4.延迟环节对系统的对数幅频特性不产生影响,但却会使系统对数相频特性产生一个滞后为的角度。5.幅频特性曲线描述了系统输出响应的复制随正弦激励信号频率变化的特性。 6.若按系统是否存在反馈来分,可将系统分为开环系统和闭环系统。 7.系统的传递函数是指在零初始条件下,系统输出的拉氏变换式与系统输入的拉氏变换式之比。 9、PLC执行程序的过程分为输入采样、程序执行、输出刷新三个阶段。 10、传感器通常由敏感元件和转换元件组成。 11、逆变器是将直流电变换为交流电的装置。 13.机电控制系统的基本性能要求是稳定性,快速性,准确性。 14、PLC是由输入部分、输出部分、 CPU 、存储器和电

源及外围设备组成。 判断题 (√)1.传感器是实现自动检测和自动控制的首要环节。×()2.SPWM各脉冲的幅值是相等的。 ()3.异步电动机变频调速过程中,在调节频率的同时,还要协调的控制其他量,才可以使电动机具有良好的 性能。 ()4.开环系统是由给定信号值控制的,而闭环系统则是由偏差信号值控制的。 ()5.PWM变换器(斩波器)是把恒定的直流电压,调制成频率不变,宽度不变的脉冲直流电压。 ()6.传感器的静态特性主要由线性度、灵敏度和重复性来描述。 ()7.按正反馈或负反馈原理组成的闭环控制系统能实现自动控制的功能。 ()8.偏差信号是指参考输入与主反馈信号之差。 ()9.电容式位移传感器的输出特性是线性关系。 ()10.SPWM载频信号为等腰三角波,而基准信号采用正弦波。 选择题 1.PID控制器的控制对象是。 (A)给定值(B)偏差信号(C)扰动信号 (D)

智能控制发展趋势及应用

智能控制的发展趋势和应用 学号0000000 姓名****** 老师钟春富

摘要:描述了智能控制产生的历史以及全世界对于智能控制有研究的多个国家在智能控制的研究方向以及研究水平,介绍了智能控制的发展趋势以及智能控制发展面临的问题,详述了智能控制的主要研究方向,说明了智能控制的应用方向以及具体应用,展望了智能控制的发展前景以及对于社会生产和日常生活的积极意义。 关键词:智能控制、模糊控制、神经网控制、专家控制、智能化。 一、智能控制的产生 人类的进化归根结底是智能的进化,而智能反过来又为人类的进步服务。我们学习与研究智能系统、智能机器人和智能控制等,其目的就在于创造和应用智能技术和智能系统,从而为人类进步服务。因此,可以说对智能控制的钟情、期待、开发和应用,是科技发展和人类进步的必然趋势。 在科学技术发展史上,控制科学同其他技术科学一样,它的产生与发展主要由人类的生产发展需求和人类当时的知识水平所决定和限制的。 20世纪以来,特别是第二次世界大战以来,控制科学与技术得到了迅速的发展,由研究单输入单输出被控对象的经典控制理论,发展成了研究多输入多输出被控对象的现代控制理论。1948年,美国著名的控制论创始人维纳(N.Wiener)在他的《控制论》中第一次把动物和机器相提并论,引起哲学界的轩然大波,有人骂控制论是“伪科学”。 直到1954年钱学森博士在《工程控制论》中系统地揭示了控制论这一新兴学科对电子通讯、航空航天和机械制造工业等领域的重要意义和深远影响后,反控制论的热潮才逐渐开始平息。20世纪60年代,由于空间技术,海洋技术和机器人技术发展的需要,控制领域面临着被控对象的复杂性和不确定性,以及人们对控制性能要求越来越高的挑战。被控对象的复杂性和不确定性表现为对象特性的高度非线性和不确定性,高噪声干扰,系统工作点动态突变性,以及分散的传感元件与执行元件,分层和分散的决策机构,复杂的信息模式和庞大的数据量。 面对复杂的对象,复杂的环境和复杂的任务,用传统控制(即经典控制和现代控制)

板形控制

板形控制作业实现板形控制的主要方法及原理 李艳威机电研一班s2*******

实现板形控制的主要方法及原理 李艳威1, (1. 太原科技大学研1201班太原) 摘要:介绍了六种类型的实现板形控制方法,包括热轧过程中对板形的控制;采用液压AGC系统控制板厚及板形;通过轧辊有载辊缝的控制,进行板形控制;通过选择机型实现板形控制;采用板形控制新技术以及控制策略和控制系统的结构对板形控制的影响。每个类型的方法中列举了具体实现的技术,并简要介绍了该技术的基本原理。 关键词:板形控制方法原理 The Method of Achieving Plate-shaped Control and Principle LI Yanwei1 (1. Taiyuan University Of Science And Technology,The graduate class of 1201,Taiyuan) Abstract:Introduced six types of shape control method , Including the plate-shaped control in the hot rolling process;Adopt Hydraulic AGC System to control the shape of plate;Through the roll-load roll gap control the shape of plate;By selecting models to achieve plate-shaped control;Adopt new technologies plate-shaped control. Listed for each type of method to achieve technical, and briefly describes the basic principles of the technology. Keyword: plate-shaped control method principles 0 前言 为了说明金属纵向变形不均的程度,引入了板形(Shape)这个概念。板形是板带的重要指标,包括板带的平直度、横截面凸度(板凸度)、边部减薄三项内容。直观说来,所谓板形是指板材的翘曲程度;就其实质而言,是指带钢内部残余应力的分布。作为带材重要的质量指标之一,板形已越来越受到生产厂商与用户的重视,其好坏直接影响到带材对市场的占有率。下面介绍几种常见的板形控制技术及其简单原理。 热轧过程中带钢的板形及带钢性能在 宽度方向上和轧制方向上的控制、酸洗的拉矫过程、冷轧过程的板形控制、连续退火时温度和张力的控制、乎整机的板形控制及涂层前的拉矫等构成了一个全过程的复杂的 冷轧板形控制系统.在这个系统中,前一个工序的出口板形影响后一个工序的板形.所以,带钢的最终板形不可能单独由系统中的某一个工序或某一设备所决定,而由整个系统决定。 1 热轧过程中对板形的控制 热轧过程中,根据钢种不同,设定热轧目标终轧温度.必要时还要提高钢坯的出炉温度,确保热轧带钢的边部终轧温度控制晶粒均匀成长,尽量消除硬度沟的影响,为冷轧提供较为合适的板形.尤其是热轧后部设立平整机,通过在热状态下,平整机的拉伸矫平,消化板形缺陷。 2 采用液压AGC系统 为了实现轧件的自动测厚控制(简称AGC),使得纵向板形得以实现平直度,在现代板带轧机上一般装有液压压下装置.采用液压压下的自动厚度控制系统,通常称为液压AGC.AGC系统包括:(1)测厚部分,

相关文档
最新文档