[荧光,纳米,标记]纳米标记材料荧光碳点的制备探析
碳点的研究现状
![碳点的研究现状](https://img.taocdn.com/s3/m/31b0bd3b53ea551810a6f524ccbff121dd36c5b5.png)
碳点的研究现状一、引言碳点是指直径在1到10纳米之间的碳纳米颗粒,具有优异的光学和电学性能。
近年来,碳点研究成为了热门话题,因其在生物荧光成像、药物传递等领域中具有广泛应用前景。
本文将对碳点的研究现状进行全面详细地探讨。
二、碳点的制备方法1. 热分解法:将有机化合物加热至高温,产生碳化物,然后通过氧化或酸处理得到碳点。
2. 电化学法:利用电解反应在电极表面生成碳点。
3. 激光剥离法:利用激光脉冲将固体材料剥离成细小颗粒,并通过后续处理得到碳点。
4. 微波辅助法:利用微波辐射加速有机化合物的分解和聚合反应,得到碳点。
5. 水热合成法:将有机物与金属离子在高温高压下反应生成稀释溶液,再通过酸处理得到碳点。
三、碳点的表征方法1. 透射电子显微镜(TEM):观察碳点的形貌和尺寸。
2. 紫外-可见吸收光谱(UV-Vis):测定碳点的吸收特性。
3. 荧光光谱:测定碳点的荧光特性。
4. X射线衍射(XRD):分析碳点的晶体结构。
5. 傅里叶变换红外光谱(FTIR):分析碳点表面官能团。
四、碳点在生物成像中的应用1. 生物荧光成像:利用碳点在近红外区域的发射波长,可以有效避免组织自身荧光干扰,提高成像质量。
2. 细胞追踪:通过将碳点与靶细胞标记,可以实现对细胞行为和迁移轨迹的跟踪。
3. 药物递送载体:利用碳点作为药物递送载体,可以提高药物稳定性和生物利用度。
五、碳点在电化学储能中的应用1. 锂离子电池:利用碳点作为负极材料,可以提高电池循环寿命和容量。
2. 超级电容器:利用碳点作为电极材料,可以提高超级电容器的能量密度和循环寿命。
六、碳点在催化领域中的应用1. 水处理:利用碳点作为催化剂,可以降解有机物和重金属离子。
2. 氢气制备:利用碳点作为催化剂,可以促进氢气的产生和分离。
七、结论随着碳点研究的不断深入,其在生物成像、电化学储能和催化等领域中的应用前景越来越广阔。
未来,碳点的制备方法和性能优化将是研究的重要方向。
发光碳点的制备
![发光碳点的制备](https://img.taocdn.com/s3/m/b2086947178884868762caaedd3383c4bb4cb401.png)
发光碳点的制备一、引言发光碳点(Carbon dots)是一种新型的纳米材料,具有很强的光致发光性质。
它们在生物成像、传感器、光电器件等领域展示出巨大的应用潜力。
因此,发光碳点的制备方法备受关注。
本文将介绍两种常见的发光碳点制备方法。
二、氨基酸碳点制备方法氨基酸碳点的制备方法较为简单,成本较低。
制备步骤如下:1. 准备材料:选择一种或多种氨基酸作为原料,一般常用的有甘氨酸、蛋氨酸、赖氨酸等。
2. 制备预体溶液:将氨基酸与一定比例的溶剂(如水或有机溶剂)混合,通过超声处理使其均匀混合。
3. 热处理:将预体溶液加热至一定温度,并保持一定时间。
温度和时间的选择对最终产物的荧光性能有很大影响。
4. 凝胶分离:将热处理后的溶液通过离心或其他分离方式分离得到沉淀物,即为发光碳点。
5. 表征与应用:通过透射电子显微镜(TEM)、紫外-可见吸收光谱、荧光光谱等手段对产物进行表征,并在生物成像、传感器等领域中进行应用。
三、碳量子点制备方法碳量子点制备方法相对较复杂,但制备得到的碳点尺寸分布较窄,发光性能稳定。
制备步骤如下:1. 选择前体材料:常用的前体材料有葡萄糖、柠檬酸、聚苯乙烯等。
2. 制备预体溶液:将前体材料与一定比例的溶剂混合,通过溶解、超声处理等手段使其均匀混合。
3. 碳化反应:将预体溶液加热至高温,通常在氮气保护下进行,通过碳化反应将前体材料转化为碳点。
4. 凝胶分离:将碳化后的溶液通过离心或其他分离方式分离得到沉淀物,即为碳量子点。
5. 表征与应用:同样地,通过一系列表征手段对产物进行表征,并在各领域中应用。
四、发光机制探讨发光碳点的发光机制目前尚不完全清楚,但主要有两个理论:量子限域效应和表面缺陷效应。
量子限域效应认为,碳点尺寸小到一定程度时,其电子在三维空间中受限,从而导致光致发光。
表面缺陷效应认为,碳点表面存在着各种缺陷,这些缺陷能够激发光致发光。
五、发光碳点的应用前景发光碳点具有较好的生物相容性和荧光性能,因此在生物成像、荧光探针、传感器等领域具有广泛的应用前景。
荧光碳点的制备及其肿瘤诊断和治疗中的应用研究进展
![荧光碳点的制备及其肿瘤诊断和治疗中的应用研究进展](https://img.taocdn.com/s3/m/04e43e245b8102d276a20029bd64783e09127dc8.png)
荧光碳点的制备及其肿瘤诊断和治疗中的应用研究进展吕春祥;李利平【摘要】碳点是一种新型的碳基荧光纳米材料,因具有优异的荧光性能、低毒性、良好的水溶性及表面易修饰等优点,在生物医学领域有很好的应用潜力.本文重点从工艺的角度对碳点的制备进行阐述,介绍红光和近红外荧光碳点的研究进展,及碳点在诊断和治疗肿瘤方面的应用研究,探讨目前碳点发展的限制因素及未来的发展趋势.%Carbon dots (CDs),as a novel class of carbon-based nanomaterials,have attracted tremendous attention in biomedicine owing to their excellent optical properties,low toxicity,good water solubility and easy surface modification.In this review,we introduce various methods for their synthesis based on technology and recent research progress on red-emission and near-infrared emission CDs,and address the use of CDs in the diagnosis and therapy treatment of tumors.The review also summarizes the limiting factors that affect the development of CDs and possible new advances.【期刊名称】《新型炭材料》【年(卷),期】2018(033)001【总页数】7页(P12-18)【关键词】碳点;制备;红光;诊断和治疗【作者】吕春祥;李利平【作者单位】中国科学院山西煤炭化学研究所,中国科学院炭材料重点实验室,山西太原030001;碳纤维制备技术国家工程实验室,山西太原030001;中国科学院山西煤炭化学研究所,中国科学院炭材料重点实验室,山西太原030001;中国科学院大学,北京100049;山西医科大学,山西太原030001【正文语种】中文【中图分类】TQ127.1+11 前言碳点(Carbon dots, 简称CDs)是一种尺寸小于10 nm的碳纳米粒子,因其具有良好的荧光性能,也被称为荧光碳点。
一种溶剂热法制备荧光碳点的方法与流程
![一种溶剂热法制备荧光碳点的方法与流程](https://img.taocdn.com/s3/m/554cbfa19a89680203d8ce2f0066f5335b81674d.png)
一种溶剂热法制备荧光碳点的方法与流程随着纳米材料在生物成像、荧光探针、药物输送等领域的广泛应用,荧光碳点作为一种新型的纳米材料备受关注。
而溶剂热法制备荧光碳点是一种简单高效的方法,本文将介绍该方法的步骤和流程。
1. 实验原理溶剂热法是指将碳源和溶剂充分混合后,进行加热反应,生成荧光碳点。
在这个过程中,溶剂不仅起到了溶解碳源的作用,还能够调节反应的温度和时间,最终控制碳点的形貌和光学性质。
2. 实验步骤(1) 准备实验材料:碳源、溶剂、辅助剂等。
(2) 混合溶剂:将碳源和溶剂按一定比例混合均匀,确保碳源完全溶解。
(3) 反应加热:将混合溶剂加热至一定温度,保持一定时间进行反应。
(4) 沉淀分离:待反应结束后,通过离心或过滤的方式将产生的荧光碳点从溶剂中分离出来。
(5) 洗涤干燥:用适当的溶剂对荧光碳点进行洗涤,去除杂质和残留的溶剂,最后将其干燥得到荧光碳点。
3. 实验条件控制(1) 碳源的选择:碳源的种类和性质对荧光碳点的结构和性能有较大影响,常用的碳源包括葡萄糖、柠檬酸、聚苯乙烯等。
(2) 溶剂的选择:溶剂的选择应考虑其与碳源的相容性、反应活性和对最终产物的影响,常用的溶剂有乙二醇、乙醇、水等。
(3) 反应温度和时间:反应温度和时间是影响荧光碳点形貌和光学性质的重要因素,需根据实际情况进行合理选择。
4. 实验结果分析通过透射电镜(TEM)、红外光谱(FTIR)、紫外-可见吸收光谱(UV-Vis)等手段对制备的荧光碳点进行表征,分析其形貌、结构、荧光性质等。
5. 实验应用展望溶剂热法制备的荧光碳点具有简单、高效的特点,适用于大规模生产,且可通过调节反应条件控制产物的性质,因此在生物成像、荧光探针、传感器等领域有着广阔的应用前景。
溶剂热法制备荧光碳点是一种简单高效的方法,通过合理选择碳源、溶剂和反应条件,可得到具有良好性能的荧光碳点,有望在纳米材料领域发挥重要作用。
溶剂热法制备荧光碳点的方法与流程在过去的几年里,由于其独特的结构和优异的性能,荧光碳点作为一种新型的纳米材料备受科学界和工业界的关注。
荧光碳点的制备与性质研究
![荧光碳点的制备与性质研究](https://img.taocdn.com/s3/m/414ec76c763231126edb11e1.png)
1451 荧光碳点概述1.1 荧光材料概述荧光材料的主要发光机理就是在材料受到光照或者是外电场的刺激之后电子跃迁从基态到激发态,最终电子在从激发态跃迁到基态的一个过程,在这个过程中会将多余的能量通过光的形式进行释放,想要荧光材料在实际应用中有好的发光效果首先需要保证荧光颗粒有良好的分散性并且颗粒度要保持均匀。
目前在市面上所研究的荧光粉粒通常是微米级的,尺寸统一。
但是想要荧光材料在医学、生物等领域得到更好的应用,那么需要的颗粒尺寸要求则更小。
荧光材料按照材质分类可以分为无机和有机荧光材料,如果按照物质的状态分析可以分为气体、液体以及固体,如果按照激发方式来分类的话主要可以分成电致发光、光致发光、X射线发光以及阴极射线发光材料等几种,通过荧光材料不同的性质可以进行不同的分类。
1.2 碳点简介近30年以来碳纳米材料一直是科学研究的热门方向,在碳材料中富勒烯、石墨烯等材料的发现者均获得了诺贝尔奖,除了以上两者之外坦纳米管也受到了广泛的应用以及研究。
在2004年来自美国卡罗莱纳大学的Scrivens研究组的研究人员从通过琼脂糖电泳对电弧制备放电制备的单壁碳纳米管的纯化的过程中发现了具有荧光性能的碳纳米材料。
在2006年,美国克莱蒙森大学的科学家Sun等通过将石墨粉进行热压处理之后和粘合剂的混合物作用下制备碳靶,然后将其进行激光烧蚀之后得到了没有荧光性能的碳纳米粒子,之后将所得到的粒子通过硝酸的回流氧化处理之后,用PEG1500N进行表面钝化处理,得到了具有荧光性质的碳纳米粒子,由此第一个提出了碳点的概念,这是突破性的研究,由于碳家族其他成员较高的应用价值使得碳点一经问世便受到了广泛的研究与关注。
2 实验部分2.1 试剂与仪器本实验中所使用的草酸购于天津市润金特化学品有限公司,尿素和二甲基亚砜购于上海阿拉丁化学试剂有限公司。
实验室所用水均为超纯水,所使用的试剂全部为分析纯试剂。
所使用的微波炉仪器为家用格兰仕微波炉,生产厂家为广东格兰仕微波炉电气公司,型号为G70F20CN3L-C2。
荧光碳点的制备及应用
![荧光碳点的制备及应用](https://img.taocdn.com/s3/m/f9605a023069a45177232f60ddccda38376be138.png)
荧光碳点的制备及应用1、荧光碳点的制备荧光碳材料是一种典型的无机荧光纳米材料,为目前热点研究的功能纳米材料之一。
荧光碳点指的是一种尺寸小于10 nm的零维纳米材料,其中碳元素采用sp2杂化,并可进行N、P、O、S等元素的掺杂。
通过调节荧光碳点的尺寸大小、元素组成和表面结构,可制备出不同发光特性的荧光碳点。
荧光碳点的制备分为“自上而下”法和“自下而上”法。
“自上而下”法是指用电解、激光刻蚀等方法,将块状石墨粉碎成纳米尺寸的荧光碳点,“自下而上”法是指以有机物为前驱体,在高温条件下合成荧光碳点。
相较于“自上而下”的合成方法,“自下而上”法具有简单、快捷、产率高的优势,应用于本科生实验,可重复性强、成功率高,故本实验采用“自下而上”法,即以有机物柠檬酸、柠檬酸铵、尿素和多乙烯多胺作为前驱体,分别制备蓝色荧光碳点(BC-dot)和氮掺杂的绿色荧光碳点(GC-dot)2、发射原理荧光碳材料是一种典型的无机荧光纳米材料,为目前热点研究的功能纳米材料之一。
荧光碳点指的是一种尺寸小于10 nm的零维纳米材料,其中碳元素采用sp2杂化,并可进行N、P、O、S等元素的掺杂。
通过调节荧光碳点的尺寸大小、元素组成和表面结构,可制备出不同发光特性的荧光碳点。
荧光碳点的制备分为“自上而下”法和“自下而上”法。
“自上而下”法是指用电解、激光刻蚀等方法,将块状石墨粉碎成纳米尺寸的荧光碳点,“自下而上”法是指以有机物为前驱体,在高温条件下合成荧光碳点。
相较于“自上而下”的合成方法,“自下而上”法具有简单、快捷、产率高的优势,应用于本科生实验,可重复性强、成功率高,故本实验采用“自下而上”法,即以有机物柠檬酸、柠檬酸铵、尿素和多乙烯多胺作为前驱体,分别制备蓝色荧光碳点(BC-dot)和氮掺杂的绿色荧光碳点(GC-dot)3、量子产率荧光量子产率是表示物质发射荧光的能力的一个基本参数,指的是荧光物质吸光后所发射的荧光的光子数与吸收的激发光的光子数的比值,可采用绝对法和相对法测定,用Yf表示:Yf=发射的光量子数吸收的光量子数Yf=发射的光量子数吸收的光量子数(1)本实验采用相对法测定荧光碳点的荧光量子产率,即以罗丹明6G(R6G)的乙醇溶液作为本实验的参比物质。
环境监测中荧光碳点的应用探究
![环境监测中荧光碳点的应用探究](https://img.taocdn.com/s3/m/101a83aeb9f67c1cfad6195f312b3169a551ea69.png)
环境监测中荧光碳点的应用探究近年来,随着环境污染问题的日益严重,人们对环境监测的需求也越来越迫切。
传统的环境监测方法通常需要耗费大量的时间和人力,而且往往只能监测到有限的污染物。
科学家们一直在寻找一种更有效的环境监测方法,以便能够更准确、更快速地监测各种污染物。
一、荧光碳点的制备和性质荧光碳点是一种尺寸在1-10纳米之间的碳基纳米材料,其来源可以包括天然和人工合成两种。
天然来源的荧光碳点通常来自于天然物质,比如柠檬、橘子等水果;人工合成的荧光碳点则可以通过碳化学反应或者热解法制备而成。
荧光碳点在环境监测中的应用主要基于其优良的荧光性能。
这些碳点通常表现出宽波长的荧光发射,而且其发光强度和波长可以通过改变其制备条件进行调控。
这种可调控的荧光性能使得荧光碳点可以用于监测不同种类的污染物,比如重金属离子、有机物等。
荧光碳点还具有较高的化学稳定性和生物相容性,这意味着它们可以在复杂的环境中进行长时间的监测而不会出现显著的漂移或者降解。
这些特性使得荧光碳点成为了一种具有广泛应用前景的环境监测材料。
二、荧光碳点在环境监测中的应用1. 水质监测2. 大气环境监测荧光碳点还可以作为大气环境监测中的重要工具。
随着工业化和城市化的加剧,大气污染问题已成为了当前社会关注的热点问题。
传统的大气监测方法往往需要使用昂贵的仪器设备,并且监测结果往往需要经过较长时间的处理才能得出。
而使用荧光碳点作为探针,则可以大大简化监测流程,并且可以实现对大气中各类污染物的实时监测。
这对于大气环境监测而言是一个重大的突破,有望为大气污染治理提供更为准确的数据支持。
3. 土壤污染监测由于其较好的生物相容性,荧光碳点还可以被应用于土壤污染监测领域。
传统的土壤监测方法往往需要取样和实验室测试,并且测试结果往往需要较长时间才能得出。
而利用荧光碳点,可以实现对土壤中污染物的实时监测,并且可以通过控制其制备条件来获得对特定污染物的高选择性和灵敏度。
这为土壤污染监测提供了一种全新的可能性,将有助于及时发现并治理土壤污染问题。
荧光碳点的制备及其在I-检测中的应用
![荧光碳点的制备及其在I-检测中的应用](https://img.taocdn.com/s3/m/2ee9abc951e2524de518964bcf84b9d529ea2c5b.png)
碘是人体必需的微量元素之一,可参与甲状腺激素的合成,调控人体的生长发育[1-3]。
长期缺碘可引起甲状腺功能低下,而长期碘过量则容易引起碘中毒,表现为消化道刺激症状等[4-5]。
因此,准确测定生物、环境样品及食品蔬菜中的碘含量对人体健康状况分析、食物营养评价和环境评估有重要意义。
目前,I -的检测方法主要有离子色谱法、分光光度法、电化学法、中子活化法和色谱光谱法等[6-9]。
这些方法具有灵敏度高和选择性好的优点,但成本高,操作复杂。
与之相比,荧光分析法不仅选择性好,而且操作简便、成本低廉,可以高灵敏快速检测I -[10-13]。
CDs 与传统的石墨烯量子点相比,其光学性质对荧光碳点的制备及其在I -检测中的应用庞纪平1,江英霞2,颜范勇2,施锦辉3(1.天津中新药业集团股份有限公司中新制药厂,天津300450;2.天津工业大学分离膜与膜过程国家重点实验室/国家分离膜国际联合研究中心,天津300387;3.南通海关综合技术中心,江苏南通226004)摘要:为灵敏快速检测碘离子(I -),以柠檬酸和乙二胺为原料,通过一步水热法合成具有蓝色发射的荧光碳点CDs 。
通过透射电子显微镜(TEM )、紫外-可见吸收光谱(UV-vis )、傅里叶变换红外光谱(FTIR )和荧光光谱对CDs 的结构和光学性能进行表征;并采用CDs 检测水样中的I -,考察其检测效果和淬灭机理。
结果表明:I -可以特异性识别并淬灭CDs 的荧光,淬灭机理为静态淬灭;I -浓度与CDs 的荧光强度在20~90滋mol/L 范围内具有良好的线性响应,检测限为1.743滋mol/L ;加标回收试验表明该方法可成功应用于真实水样中I -的检测。
关键词:碳点;荧光;碘离子;检测;淬灭机理中图分类号:TQ421.32文献标志码:A 文章编号:员远苑员原园圆源载(圆园21)园5原园园62原06收稿日期:2020-09-07基金项目:国家自然科学基金资助项目(51678409);天津市应用基础和先进技术研究计划资助项目(19JCYBJC19800)第一作者:庞纪平(1975—),男,博士,高级工程师,主要研究方向为中药新药开发与生产工艺改进。
碳点的制备方法
![碳点的制备方法](https://img.taocdn.com/s3/m/f92f1d6f326c1eb91a37f111f18583d049640fdb.png)
碳点的制备方法
碳点是一种尺寸小于10纳米的碳纳米材料,它的独特性能使其在许多领域有
广泛的应用,例如生物成像、光电子学和能源存储等。
碳点的制备方法包括化学
还原法、电化学法、微波辅助法、激光剥离法等多种方法。
其中,化学还原法是最常用的制备碳点的方法之一。
该方法的原理是利用还原剂将碳源还原成具有荧光性的碳点。
这种方法简单易行,操作条件温和,成本低廉,能够控制碳点的大小和形状。
但是,该方法所需的还原剂通常有毒性,且产生的碳点质量不够稳定。
电化学法是另一种常用的制备碳点的方法。
该方法是通过在电极上进行电解,使得碳源在电极上析出,并形成碳点。
这种方法具有环境友好、生产成本低、反应条件温和、可以控制碳点的大小和形状等优点。
然而,该方法的制备过程相对较慢,且需要使用大量的电解液和电极。
微波辅助法是一种新型的碳点制备方法。
该方法是通过在微波场下加热碳源,使其快速析出成碳点。
这种方法反应时间短,制备速度快,能够获得高质量的碳点。
但是,该方法需要特殊的微波设备,成本较高。
激光剥离法是一种高效制备碳点的方法。
该方法是通过用激光将固体碳源表面剥离形成碳点。
这种方法可以在常温下进行,制备出的碳点具有高度的纯度和荧
光强度。
但是,该方法的制备过程需要特殊的激光设备,成本较高。
总之,不同的制备方法有各自的优缺点,根据实际需要和具体情况选择适合的制备方法是非常重要的。
荧光碳点的制备及重金属离子检测和吸附研究
![荧光碳点的制备及重金属离子检测和吸附研究](https://img.taocdn.com/s3/m/256aac4c52d380eb62946d5a.png)
荧光碳点的制备及重金属离子检测和吸附研究荧光碳点(CDs)是一种粒径小于10 nm的新型碳纳米材料,具有低毒性、生物相容性好等优点,可作为一种新型荧光探针,然而CDs在荧光量子产率、灵敏度、选择性方面以及荧光活性等方面尚不够高。
因此,具有高荧光量子产率的功能化荧光CDs探针的开发和应用就变得非常重要。
本文通过不同的氨基钝化剂制备了三种CDs。
鉴于CDs聚集态下会导致荧光淬灭,且水溶性极强,不利于工业化应用的问题,将荧光量子产率最高的CDs聚合到微凝胶中,制备了兼具重金属离子检测和吸附双重功能的凝胶材料。
将特异性检测Hg<sup>2+</sup>的CDs接枝到聚对苯二甲酸乙二醇酯(PET)无纺布上,制备了Hg<sup>2+</sup>荧光检测材料。
首先,分别采用乙二胺、三聚氰胺和聚酰胺胺作为钝化剂,柠檬酸作为碳源,通过水热法,合成了 CDs-1、CDs-2、CDs-3三种荧光碳点,并对其组成、结构和荧光性能进行了表征。
研究表明,三种不同钝化剂所制备的荧光碳点均具有-NH2、-COOH、-OH等大量官能团,没有明显聚集,分布较均一,粒径分布均在7-8 nm左右,均具有激发波长依赖性。
CDs-1荧光强度最高,荧光量子产率最大为86.37%;在金属离子选择性方面,Hg<sup>2+</sup>、Cu<sup>2+</sup>-和Fe<sup>3+</sup>对CDs-1具有淬灭效应;Hg<sup>2+</sup>对CDs-2具有特异性淬灭;Hg<sup>2+</sup>、Cu<sup>2+</sup>对该CDs-3有明显淬灭效果。
将CDs-1与甲基丙烯酸缩水甘油酯(GMA)反应,得到具有双键的PCD (Polymerizable carbon dots),将其作为荧光探针,与丙烯酰胺(Am)和2-丙烯酰胺-2-甲基丙磺酸(AMPS)通过反相乳液聚合,制备了 P(Am-CD-AMPS)微凝胶。
碳点生长过程
![碳点生长过程](https://img.taocdn.com/s3/m/80d57726dcccda38376baf1ffc4ffe473268fd6c.png)
碳点生长过程碳点,也被称为碳量子点或碳纳米点,是一类具有显著荧光性能的零维碳纳米材料,它由超细的、分散的、准球形、尺寸低于10 nm的碳纳米颗粒组成。
在制备过程中,自下而上法是目前最常用的一种方法,具体过程如下:首先,选择适当的前驱体,如葡萄糖、柠檬酸、乙二醇等。
这些前驱体在高温下分解,生成碳点。
这一步骤的反应条件需要严格控制,包括反应温度、时间以及气氛等。
通过调整这些参数,可以对所生成碳点的尺寸和形状进行调控。
接着,将得到的产物进行分离和提纯。
这通常是通过离心、过滤等物理方法进行的。
最后,得到纯净的碳点。
总的来说,通过精确控制自下而上法的各个步骤,可以实现对碳点的大小、形状以及光学性质的有效调控,从而满足不同的应用需求。
以下是自下而上法制备碳点的更具体过程:首先,选择适当的有机物作为前驱体,常用的有柠檬酸、葡萄糖、聚乙二醇、尿素、离子液体等。
这些前驱体在高温条件下进行分解反应,生成的碳点会呈现出显著的荧光性能。
这一步骤是生成碳点的核心环节,需要对反应温度、时间以及气氛等条件进行精确控制,以便于调控所生成碳点的尺寸和形状。
接着,将得到的产物进行分离和提纯。
这通常是通过离心、过滤等物理方法进行的。
最后,便得到了纯净的碳点。
目前,“自下而上”制备碳点的方法相较于“自上而下”法更具成本效益、可扩展性和生态友好性,因此在实际工程应用中更受青睐。
而随着碳点的开发进展,其结构和特性已经发生了巨大变化,引起了分类方面的关注。
为此,根据对结构和性能特征的分析,还提出了一种新的碳点分类,称为碳化聚合物点(CPD),它被揭示为具有独特的聚合物/碳杂化结构和特性的新兴碳点类。
碳点的制备及在荧光分析中的应用
![碳点的制备及在荧光分析中的应用](https://img.taocdn.com/s3/m/0320ddb6b1717fd5360cba1aa8114431b90d8ea7.png)
碳点的制备及在荧光分析中的应用郭颖;李午戊;刘洋;杨连利【摘要】综述了碳点的制备方法、碳源材料以及碳点在荧光分析中的应用(包括生物成像、生物分子检测和金属离子检测)。
碳点的合成方法包括自上而下法(电弧放电法、激光消融法、电化学合成法和酸氧化法)及自下而上法(微波法、水热法和超声法),并对碳点的发展前景进行了展望(引用文献79篇)。
%A review on the preparation of carbon dots,carbon source materials as well as application of carbon dots in fluorescence analysis(including biological imaging,biological molecule detection and metal ion detection)was presented.Methods for preparation of carbon dots comprising the methods of top-down (including arc discharge method,laser ablation method,electrochemical method and acid oxidation method)and bottom-up (microwave method,hydrothermal method and ultrasonic method)were described.Prospects on the trends of development in this field were also given (79 ref.cited).【期刊名称】《理化检验-化学分册》【年(卷),期】2016(052)008【总页数】7页(P986-992)【关键词】碳点;制备;荧光分析;应用【作者】郭颖;李午戊;刘洋;杨连利【作者单位】咸阳师范学院化学与化工学院,咸阳 712000;咸阳师范学院化学与化工学院,咸阳 712000;咸阳师范学院化学与化工学院,咸阳 712000;咸阳师范学院化学与化工学院,咸阳 712000【正文语种】中文【中图分类】O657.3碳点是碳纳米家族的一种新型的荧光碳纳米材料,除了具有类似于传统的半导体量子点的优良的光学性能,还具有光稳定性好、毒性低、良好的生物相容性和环境友好性、制备碳点的反应条件温和、步骤简单、原料丰富廉价等传统量子点无可比拟的优点[1-2]。
荧光碳点的制备及应用_颜范勇
![荧光碳点的制备及应用_颜范勇](https://img.taocdn.com/s3/m/28833e7127284b73f24250b3.png)
( 4 ) R* — — —R + hν( 发光过程)
聚合物 以 及 生 物 活 性 物 质 修 饰 后 性 能 可 以 得 到 提升。 除了优异的光学性质与生物相容性以外, 碳点 还具有近红外发光特性, 光电荷转移特性, 高抗盐 性, 以及拟酶催化的能力。 这些优异性能使得碳点 [8 ] 在很多领域存在着潜在的应用 。
including fullerene,the carbon nanotube and graphene. This kind of nanomaterial has successfully overcome some defects of traditional semiconductor quantum dots. It is highly evaluated not only for the excellent optical performance and small size effect, but also the great biocompatibility and ease to achieve surface functionalization. Carbon dots can be w idely used in the field of biochemical sensing , fluorescent probes, environmental testing ,photocatalytic technology ,drug carriers and so on. In this review ,the progress made in the field of carbon dots in recent years,especially in latest developments of applications are review ed,the characteristics of carbon dots are outlined,the problems remaining to be solved are summarized and the further advances are prospected. Key words Contents 1 2 Introduction Properties of the carbon dots carbon dots; fluorescent; optical properties; synthesis; application 2. 1 2. 2 3 Optical property Low toxicity and biocompatibility Preparation of carbon dots
发光碳点的制备
![发光碳点的制备](https://img.taocdn.com/s3/m/e635dd5759fafab069dc5022aaea998fcc224035.png)
发光碳点的制备一、引言发光碳点是一种具有发光性质的纳米材料,具有较小的颗粒尺寸和独特的光学性能。
发光碳点在生物成像、荧光探针、光电转换等领域具有重要的应用前景。
因此,发光碳点的制备成为了研究热点之一。
二、传统制备方法传统的发光碳点制备方法包括碳化剂热解法、碳化剂氧化法、碳纳米管破碎法等。
这些方法通常需要高温、高压、长时间的处理过程,且产率低,操作复杂。
三、碳量子点的制备方法近年来,碳量子点的制备方法得到了快速发展。
下面介绍几种常用的碳量子点制备方法。
1. 水热法水热法是一种简单且高效的碳量子点制备方法。
通常将有机物作为碳源和表面修饰剂,与溶剂一起加入反应体系中。
反应体系经过高温高压处理,形成碳量子点。
水热法制备的碳量子点具有尺寸均一、分散性好等优点,但需要高温高压反应条件。
2. 微波法微波法是一种快速制备碳量子点的方法。
将碳源溶液放入微波反应器中,通过微波加热使溶液中的碳源迅速热解,形成碳量子点。
微波法制备的碳量子点具有高度结晶度、较小的颗粒尺寸等特点。
3. 激光剥离法激光剥离法是一种通过激光辐照材料表面剥离碳量子点的方法。
激光的作用下,材料表面的碳层被剥离形成碳量子点。
激光剥离法制备的碳量子点具有较高的结晶度和纯度。
四、碳量子点的表征方法为了确定制备的碳量子点的性质和结构,需要进行表征。
常用的表征方法包括透射电子显微镜(TEM)、扫描电子显微镜(SEM)、紫外-可见吸收光谱(UV-Vis)、荧光光谱等。
1. TEM透射电子显微镜(TEM)可以观察到碳量子点的形貌和尺寸。
通过TEM观察,可以确定碳量子点的粒径分布和形状。
2. SEM扫描电子显微镜(SEM)可以观察到碳量子点的表面形貌。
通过SEM观察,可以了解碳量子点的形貌特征和表面结构。
3. UV-Vis紫外-可见吸收光谱(UV-Vis)可以测量碳量子点在紫外和可见光区域的吸收特性。
通过UV-Vis光谱,可以了解碳量子点的能带结构和能带间距。
4. 荧光光谱荧光光谱可以测量碳量子点的发光特性。
碳点的荧光机理
![碳点的荧光机理](https://img.taocdn.com/s3/m/fc651b22ae1ffc4ffe4733687e21af45b307fef7.png)
碳点的荧光机理引言:碳点是一种具有特殊性质的纳米材料,其独特的荧光特性引起了人们的广泛关注。
本文将从碳点的荧光机理入手,探讨碳点在荧光材料领域的应用前景。
一、碳点的荧光机理碳点是一种由碳原子构成的纳米粒子,其尺寸一般在1-10纳米之间。
碳点的荧光特性源自于其特殊的能带结构和表面官能团。
碳点的能带结构中存在着能级间的跃迁,当碳点受到外界激发能量后,电子从低能级跃迁到高能级,再从高能级跃迁回到低能级时会释放出光子,产生荧光现象。
二、碳点的荧光发射机制碳点的荧光发射机制主要有两种:光致激发和电荷转移。
光致激发是指碳点在受到光照射后产生电子激发跃迁,从而发出荧光;而电荷转移是指碳点与周围环境中的化学物质发生电子转移,导致能级的改变,从而产生荧光发射。
三、碳点的荧光颜色调控机制碳点的荧光颜色可以通过不同的方法进行调控,主要有以下几种机制:1.尺寸效应:碳点的尺寸与其能带结构和能级间跃迁的能量有关,尺寸越小,能级间跃迁的能量越高,发出的荧光波长也就越短,颜色就越蓝。
2.表面官能团:碳点的表面官能团可以通过调整官能团的种类和含量来调控荧光颜色,不同官能团对能带结构的影响不同,从而导致荧光颜色的变化。
3.掺杂:将其他元素或化合物引入碳点的晶格中,可以改变碳点的能带结构和能级间跃迁的能量,从而调控荧光颜色。
四、碳点在荧光材料领域的应用前景碳点具有许多优异的性质,如良好的光稳定性、高荧光效率、可调控的荧光颜色等,因此在荧光材料领域具有广阔的应用前景。
1.生物成像:由于碳点具有良好的生物相容性和低毒性,可以用于生物标记和生物成像,如细胞成像、癌症诊断等。
2.光电器件:碳点可以用作光电器件的发光层,如有机发光二极管(OLED)、有机太阳能电池(OPV)等,提高器件的发光效率。
3.荧光探针:碳点可以用作荧光探针,用于检测环境中的化学物质,如重金属离子、有机污染物等。
4.荧光传感器:碳点可以通过与特定物质的相互作用来改变其荧光特性,从而实现对这些物质的检测和传感。
碳点的制备及在生物成像中的应用
![碳点的制备及在生物成像中的应用](https://img.taocdn.com/s3/m/5813b169302b3169a45177232f60ddccda38e6ad.png)
碳点的制备及在生物成像中的应用碳点是一种新兴材料,在生物成像领域具有广泛的应用前景。
由于其化学活性低、荧光强度高、生物相容性好等特点,碳点在生物成像方面的应用已经受到了广泛关注。
本文将对碳点的制备方法和在生物成像中的应用进行介绍。
1.碳点的制备方法目前,碳点的制备方法主要分为物理法、化学法和生物法三种。
1.1物理法物理法主要通过化学气相沉积、等离子体化学气相沉积、电弧放电等方法制备碳点。
这些方法基本上是通过炭黑分散成小粒子,然后在高温高压的条件下进行场解离,从而制备出碳点。
使用物理法制备碳点的主要优点是样品纯净度高,但其缺点在于碳点的尺寸分布不均匀。
1.2化学法化学法是制备碳点的主要方法之一,也是最经常使用的方法。
这种方法涉及多种化学反应,包括热分解法、电化学法、水热法、微波辐射法等。
比如,热处理法是将有机物或碳化合物加热,使其分解成碳点。
其中,无机盐和葡萄糖作为前体,与硫酸和硝酸混合后加热,形成的碳点具有比较均匀的尺寸分布和较强的荧光性能。
1.3生物法生物法主要涉及将碳点制备在多肽、蛋白质和DNA等的表面上,有助于增强生物相容性,并使其易于在生物学系统中应用。
这种方法的优点在于制备的碳点具有较高的生物相容性,并且生物酶可用于其合成。
2.碳点在生物成像中的应用碳点在生物成像领域的应用主要分为生物标记、光热疗法、药物递送和成像探针四个方面。
2.1生物标记由于碳点具有较高的荧光性能、化学稳定性、生物相容性和荧光色谱性质,因此可作为生物标记。
此外,碳点还具有更高的灵敏度和更长的荧光寿命,可以作为荧光共振能量传递(FRET)的接受者,进一步扩展了生物标记的监测范围。
2.2光热疗法光热疗法是一种利用光热效应治疗癌症的方法,可以将光敏剂转换为活性的金属(如IR-780)与碳点相结合。
碳点所发出的荧光信号可以作为光热治疗系统的实时监控工具,监测药物释放和热敏效应。
2.3药物递送由于碳点具有较强的化学惰性和生物相容性,因此可以作为药物递送载体。
碳点的制备与应用
![碳点的制备与应用](https://img.taocdn.com/s3/m/40cc3496b04e852458fb770bf78a6529647d3531.png)
碳点的制备与应用近年来,碳点作为一种新型纳米材料,因其独特的光电性能和化学特性而备受关注。
本文将介绍碳点的制备方法及其在各领域中的应用。
一、碳点的制备方法1. 模板法制备碳点模板法是一种常用的制备碳点的方法之一。
首先,选择一种合适的模板材料,例如聚苯乙烯微球。
将模板材料与碳源(如葡萄糖)进行共沉淀,然后通过高温煅烧的方式去除模板材料,最终得到碳点。
2. 水热合成法制备碳点水热合成法是一种简单有效的碳点制备方法。
将碳源(如柠檬酸)和合适的氧化剂(如过氧化氢)混合在一起,然后在高温高压条件下反应一段时间。
随后,通过过滤、洗涤等步骤将产物纯化,得到纯净的碳点。
3. 气相热解法制备碳点气相热解法是一种利用高温热解碳源得到碳点的方法。
将碳源(如葡萄糖)放入高温炉中,在特定温度和气氛条件下进行热解,生成碳点。
这种方法制备的碳点通常具有较高的结晶度和较窄的尺寸分布。
二、碳点的应用1. 生物成像碳点由于其良好的生物相容性和荧光特性,被广泛应用于生物成像领域。
通过将碳点功能化,可用于细胞染色、细胞追踪以及肿瘤靶向治疗等方面。
同时,碳点还可以作为荧光探针用于药物分析和生物传感器等领域。
2. 光电器件碳点的优异光电性能使其成为制备光电器件的重要材料。
在太阳能电池领域,碳点可以作为增强层,提高光电转换效率。
此外,碳点还可用于光电检测器、发光二极管等器件的制备。
3. 催化剂碳点具有丰富的官能团,可以作为优良的催化剂应用于化学催化领域。
碳点催化剂在氧气还原反应、氧气电极和可见光催化等方面显示出良好的催化性能,具有很高的应用潜力。
4. 超级电容器碳点因其高比表面积和可调控的导电性能,成为制备超级电容器的理想材料。
通过将碳点负载到电极材料上,可以提高电极的电容性能,实现高能量密度和高功率密度的超级电容器。
结语总之,碳点作为一种新型纳米材料,其制备方法多样,应用领域广泛。
随着对碳点研究的深入,相信碳点在光电子学、生物医学和能源领域等方面的应用潜力将逐渐展现,为我们的生活带来更多的惊喜和改变。
荧光碳点的制备和性质及其应用研究进展
![荧光碳点的制备和性质及其应用研究进展](https://img.taocdn.com/s3/m/6f060564905f804d2b160b4e767f5acfa0c78340.png)
荧光碳点的制备和性质及其应用研究进展一、本文概述荧光碳点,作为一种新兴的碳纳米材料,近年来在科研领域引起了广泛关注。
由于其独特的光学性质、良好的生物相容性、易于表面功能化以及出色的稳定性,荧光碳点在生物成像、药物递送、传感器以及光电器件等领域展现出巨大的应用潜力。
本文旨在全面概述荧光碳点的制备方法、基本性质以及最新的应用研究进展。
我们将首先介绍荧光碳点的合成策略,包括自上而下和自下而上的主要方法,并讨论其结构、光学特性及稳定性等基本性质。
接着,我们将综述荧光碳点在生物成像、药物递送、传感器、光电器件等领域的应用案例和最新研究进展。
通过本文的阐述,我们期望能够为读者提供一个关于荧光碳点全面而深入的了解,为其在科研和实际应用中的进一步发展提供有益的参考。
二、荧光碳点的制备方法荧光碳点(Carbon Dots,简称CDs)作为一种新兴的纳米材料,因其独特的光学性质、良好的生物相容性和环境友好性,在生物成像、传感、光电器件等领域展现出巨大的应用潜力。
近年来,荧光碳点的制备方法得到了广泛的研究和发展。
自上而下法:自上而下法主要通过物理或化学手段将大尺寸的碳材料(如石墨、碳纳米管等)剥离或切割成纳米尺寸的碳点。
例如,激光烧蚀法就是利用高能量的激光束照射碳源,使其瞬间蒸发并冷凝形成碳点。
这种方法制备的碳点通常具有较好的结晶性和均一性,但设备成本较高,产率较低。
自下而上法:自下而上法则是通过化学反应,如热解、水热、微波等,使小分子碳源(如柠檬酸、葡萄糖等)发生碳化并聚集形成碳点。
这种方法操作简单,原料易得,因此在实际应用中更为常见。
例如,水热法就是在高温高压的条件下,使碳源发生碳化并生成碳点。
这种方法制备的碳点通常具有丰富的表面官能团,易于进行后续的修饰和功能化。
模板法:模板法是利用具有特定形貌和结构的模板材料,通过物理或化学手段将碳源填充到模板的孔道或空腔中,然后去除模板,得到具有特定形貌和结构的碳点。
这种方法可以精确控制碳点的尺寸和形貌,但制备过程较为复杂,且需要去除模板,可能引入杂质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纳米标记材料荧光碳点的制备探析近年来,半导体荧光量子点因其优良的光电性能在生物、医学及光电器件等领域得到了广泛应用. 但是用于生物和医学领域最成熟的量子点,大多是含重金属镉的CdTe,CdSe 和CdS 等量子点,限制了其在生物医学领域的应用. 因此,降低和消除荧光量子点的毒性,一直是研究者密切关注的课题. 直到2006 年,Sun 等用激光消融碳靶物,经过一系列酸化及表面钝化处理,得到了发光性能较好的荧光碳纳米粒子碳量子点( CQDs) . 作为新型荧光碳纳米材料,碳量子点不仅具有优良的光学性能与小尺寸特性,还具有很好的生物相容性、水溶性好、廉价及很低的细胞毒性,是替代传统重金属量子点的良好选择. 水溶性碳量子点因其表面具有大量的羧基、羟基等水溶性基团,并且可以和多种有机、无机、生物分子相容而引起广泛关注,这些性质决定了碳量子点在生物成像与生物探针领域有更大的应用前景. Zhu H和王珊珊等将PEG - 200 和糖类物质的水溶液进行微波加热处理,得到了具有不同荧光性能的碳量子点,虽然利用微波合成碳量子点可以合成修饰一步实现,但是与水热法相比荧光量子的产率并没有显著地提高. 目前,该领域的科研工作主要集中在3 个方面: 碳量子点形成与其性能的机理特别是光致发光机理、如何简单快速的制备出性能优异的碳量子点以及碳量子点如何成功高效地应用于实际之中.本文采用单因素法分析影响荧光碳量子点合成的几种因素,寻求高性能荧光碳量子点的最佳合成条件,并比较微波法和水热法合成荧光碳量子点的优劣,为制备出高性能荧光纳米标记材料性能提供一定的实验依据和科学方法.1 实验部分1. 1 试剂与仪器葡萄糖( AR,中国医药集团上海化学试剂公司) 、聚乙二醇( PEG - 200,AR,中国医药集团上海化学试剂公司) 、硫代乙醇酸( TGA,AR,国药集团化学试剂有限公司) 、CS( 大连鑫蝶) 、牛血清蛋白( BSA 99%,德国默克公司) 购自武汉凌飞生物科技公司) ; 盐酸( HCl,AR,信阳市化学试剂厂) ; 十二水合磷酸氢二钠( Na2HPO412H2O,AR,国药集团化学试剂有限公司) ; 二水合磷酸二氢钠( NaH2PO42H2O,AR,国药集团化学试剂有限公司) ; 氢氧化钠( NaOH,AR,国药集团化学试剂有限公司) .荧光分光光度计( LS55 型,PerkinElmer,American) ; 紫外- 可见吸收光谱仪( U - 3010 型,Hitachi,Japan) ; 纯水仪( UP 型,上海优普实业有限公司) ; 台式电热恒温干燥箱( 202 - 00A 型,天津市泰斯特仪器有限公司) ; 傅立叶红外变换光谱仪( VERTEX70 型,德国BRUKER 公司) ; 透射电子显微镜( JEM -2100UHR STEM/EDS 型,日本) ; 微波反应器( Milestone, Italy) ; 电子天平( METTER - TOLEDO,梅特勒- 托利多仪器( 上海) 有限公司) ; 电动搅拌器( DJIC - 40,金坛市大地自动化仪器厂) ; 智能恒温电热套( ZNHW 型,武汉科尔仪器设备有限公司) ; 数显恒温水浴锅( HH - S2s,金坛市大地自动化仪器厂) ; 紫外灯.所有光谱分析均在室温下进行. 实验中所用水为电阻率大于18 Mcm 的高纯水. 紫外- 可见吸光光度计设置为: 夹缝2 nm,扫描速度600 nm/min,扫描范围200 ~ 600 nm; 荧光分光光度计设置为: 激发波长为350 nm,扫描范围为350 ~ 650 nm,扫描速度600 nm/min.激发夹缝: 10 nm,发射夹缝: 15 nm.1. 2 碳量子点的制备影响碳量子点荧光性能的因素较多,其主要因素有反应物摩尔比、反应温度和反应时间. 为更好的控制实验条件,提高碳量子点的性能,采用了三因素三水平的正交实验方法. 该方法以较少的实验次数完成多条件下最优选择. 选择碳源为葡萄糖,表面修饰剂为PEG,温度分别选择为150 ℃,160 ℃和180 ℃,时间分别选择为1. 5 min,2. 5 min 和3. 5 min,PEG 与葡萄糖的摩尔比分别选择为4,5和6. 此外在确定最佳条件时,除了考虑碳量子点的荧光强度之外,还要综合考虑实验条件、产物的毒性和生物相容性等因素.称取葡萄糖2 g,将其溶解到3 mL 水中,与不同体积的聚乙二醇( PEG - 200) 混合,得到澄清溶液,然后放在微波反应器或电热恒温水浴锅中,设定一定温度和反应时间,微波辐射或水浴加热,得到不同棕红色的溶液,即碳量子点原液; 再将碳量子点原液于不同转速下离心分离纯化,测定比较其光学性能,最后选定在6000 r /min 转速下离心分离纯化,取上层清液,稀释不同倍数用于表征.1. 3 碳量子点的表征分析将上述得到的碳量子点稀释不同倍数后,分别用U - 3010 型紫外- 可见吸收光谱仪和LS55 型荧光分光光度计测试制得的碳量子点的光致发光性能.紫外可见吸收光谱测定: 将制备好的碳量子点稀释若干倍( 激发波长处吸收值为0. 1) ,先进行紫外扫描确定其吸收峰位置. 以碳量子点的紫外吸收峰波长为激发波长,激发和发射狭缝均为5. 0 nm,PMT 电压设置为700 V,激发波长是290 ~ 350 nm 进行多次荧光发射光谱扫描,确定激发波长为350 nm 时,其荧光发射峰位置为435 nm 左右,碳量子点的荧光谱峰更好.荧光光谱测定: 取2. 5 mL 左右的待测碳量子点溶液于荧光比色皿中,在室温下用LS55 型荧光光谱仪检测其荧光,激发波长为350 nm,激发和发射狭缝宽度均为5 nm,扫描波长范围300 ~ 650 nm,扫描速度1 200 nm/min.透射电子显微镜( 加速电压200 kV) 观察碳量子点样品的微观形态和尺寸; 将得到碳量子点原液等体积与无水乙醇混匀后滴在KBr 压片上后放到台式电热恒温干燥箱中干燥直到变干,然后放于傅立叶红外变换光谱仪中得到红外谱图.2 结果与讨论2. 1 微波合成碳量子点的因素分析本实验选择反应物摩尔比( n) 、反应温度( T) 和反应时间( t) 3 种影响因素,每种因素选择3 种不同的水平,即三因素三水平正交实验方法安排试验,探讨微波法制备碳量子点时对其荧光强度的影响因素,找到最优的合成条件. 根据三因素三水平的条件,选择正交表34 型.碳量子点合成中,不同影响因素在不同水平下的趋势变化,在同一因素下,随着水平的变化,实验指标也发生变化,根据图中趋势,可以得到微波合成碳量子点的最优条件是: PEG 与葡萄糖摩尔比为6,反应温度为180 ℃,反应时间为2. 5 min,在此条件下合成的碳量子的荧光强度最好.从趋势图还可看出,微波辅助反应时间并不是越长越好,但反应时间小于3.5 min 时,碳量子点的的荧光强度有随反应时间减少而提高的趋势.由以上正交实验的直观分析得到了优化条件,然后在该条件下微波合成了荧光碳量子点,优化条件下制备的碳量子点与实验组中最好的第9 号实验条件下制备的碳量子点的荧光发射光谱.在其他条件相同的情况下,优化合成的碳量子点的荧光强度为234,远远大于第9 号实验组的碳量子点的荧光强度153. 17.改变前驱溶液pH 值( 分别为3,7和9) ,对实验结果进行分析处理,随着溶液pH 值的增加,碳量子点的荧光强度先减小再增加. 在前驱体为碱性条件即pH=9 时,所得碳量子点荧光强度最大,在酸性条件pH=3 时次之,在中性条件pH=7 时最小. 其原因可能是在葡萄糖-PEG 体系中,制备出来的碳量子点表面含有丰富的羟基和羧基官能团( 在图8 中得到了证明) ,在酸性条件下,由于碳量子点表面大量羟基与H + 形成大量氢键,导致体系较为稳定,碳量子点能较好的分散,所以发出较好的荧光; 而在碱性条件下,碳量子点表面的羧基与OH - 的相互作用致使体系较为稳定,碳量子点也能很好的分散; 但是在中性条件下,生成的碳量子点由于高的表面能而发生团聚,致使粒子粒径增加,粒径分布变宽.2. 2 微波法与水热法的比较在上述相同的优化条件下,分别采用微波法和水热法2 种方法合成碳量子点,并对其光学性能进行初步比较.2. 2. 1 碳量子点的紫外可见吸收光谱2 种方式得到的碳量子点的紫外可见吸收光谱图,两者的吸收峰位置都是在280 nm 左右,吸收峰位置并没有随着加热方式的变化而变化,这说明2 种加热方式形成碳量子点的机制可能是一致的. 此外,在同等合成条件下,微波法制备的碳量子点的紫外可见吸收光谱强度小于水热法的吸收峰强度.2. 2. 2 碳量子点的荧光发射光谱将微波优化合成得到的一组碳量子点稀释后,依次增大激发波长,观察其荧光发射波长变化. 微波合成碳量子点在不同激发波长( 340 ~ 450 nm) 下的荧光发射光谱,随着激发波长的增大,荧光发射峰位置发生红移,荧光强度也先增大后减小,其中,激发波长为350 nm 时,碳量子点的荧光发射强度最大. 因此,选择350 nm 作为本实验中碳量子点的激发波长.2. 2. 3 碳量子点的荧光机理探讨碳量子点的荧光性能主要来源于2 种不同类型的发射,一种是其表面能的陷阱发射,另一种是其内在的状态发射,即电子和空穴的重新结合产生的发射,也就是通常所说的量子点的量子尺寸效应所导致的碳量子点的TEM 图射. 在本文中,一方面葡萄糖的高温热解生成的碳量子点,其表面能陷阱发射产生荧光; 另一方面,PEG 可以作为碳量子点的表面钝化剂. 而在本研究中,前驱体是葡萄糖和PEG的混合物,因此,PEG 在此合成体系中,一方面发挥了稳定剂的作用,另一方面也发挥了表面修饰剂的作用,PEG 含有大量的羟基等基团,在碱性条件下,羟基等官能团引入碳量子点表面,抑制了碳量子点的缺陷状态发射,使得能够产生荧光的电子和空穴的辐射结合更加便利,即内在的本征态发射更加容易,进而提高了碳量子点的荧光强度.2. 2. 4 碳量子点的TEM从中可以看出,碳量子点与半导体量子点类似,外貌呈圆球形,分散性较好,尺寸分布较均匀,平均粒径在5 ~ 8 nm 左右,表明在葡萄糖热解制备碳量子点的过程中,聚乙二醇作为分散剂和表面修饰剂起到了比较好的作用,能有效防止碳量子点团聚.2. 2. 5 碳量子点的红外光谱不同方法制备的碳量子点的红外光谱( a. 微波法; b. 水热法)在相同的优化条件下,微波法和水热法。
2种方法得到的碳量子点的红外谱图峰位和峰形基本一致,只是吸收峰强度略有不同,这可能与碳量子点的浓度有关.羟基伸缩振动谱带出现在3 700 ~ 3 100cm - 1区域,在大多数含羟基的化合物中,由于分子间氢键很强,在3 500 ~ 3 100 cm - 1区域出现一条很强、很宽的谱带. 在3 370cm - 1附近2 种方法制备的碳量子点都有宽化的吸收峰,是O - H 键的伸缩振动特征峰,同时在指纹区1 101 cm - 1处和1 247cm - 1同出现较强的吸收峰,分别属于C - O - C的对称收缩和不对称伸缩振荡,证明了羟基的存在; 同时在1 643 cm - 1处观察到两者的吸收峰,这是C=O的伸缩振动,证明了羧基的存在. 由此判断,碳量子点表面带有羟基和羧基官能团,这不仅增强了量子点的水溶性和生物相容性,更为后续的修饰该类碳量子点提供了有益的指导.3 结论通过正交实验方法初步确定了微波法制备纳米荧光碳量子点的合适实验条件为: 反应时间为2. 5 min,反应温度为180 ℃,PEG 与葡萄糖摩尔比为6,pH=9. 合成中影响因素从主到次顺序为: 反应时间摩尔比反应温度.同时发现极差R空白R温度,表明实验过程中,还有其他重要的因素需要探讨,其中,最可能忽略的因素是搅拌. 在相同优化条件下,水热法合成的碳量子点的光学性能要略优于微波合成的,究其原因可能除了本文提到的是否使用搅拌装置有关外,可能还与合成时碳量子点的生长速度、表面修饰程度和状态等因素有关.这些因素的联合作用,导致荧光碳量子点晶格缺陷没有得到很好的控制,而表面缺陷、边缘效应等又会导致陷阱电子或空穴对的产生,它们反过来又会影响量子点的发光性质,有待今后进一步实验验证. 总之,2 种加热方式所制备的荧光碳量子点均具有较好的光学性能,可望用于荧光标记领域.。