第三章力矩和平面力偶系第四章平面任意力系
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
▪
在同一平面内的两个力偶,只要两力偶的
力偶矩的代数值相等,则这两个力偶相等。这
就是平面力偶的等效条件。
▪ 根据力偶的等效性,可得出下面两个推论:
▪ 推论1 力偶可在其作用面内任意移动和转动, 而不会改变它对物体的效应。
▪ 推论2 只要保持力偶矩不变,可同时改变力 偶中力的大小和力偶臂的长度,而不会改变它 对物体的作用效应。
第三节 平面力偶系的合成与平衡
一、平面力偶系的合成
作用在物体同一平面内的各力偶组成平面力偶系。
m1=F1•d1,m2=F2•d2, m3=-F3•d3,
P1•d=F 1•d1 ,P2•d=F2•d2 , -P3•d =-F3•d3
FR=P1+P2-p3
FR′=P1′+P2′-P3′
M=FR d=(P1+P2-P3)d
尺寸如图所示 ,试求支座A、B的反力。
解:(1)取梁AB为研究对象
m
(2)画受力图 。由支座的约束 A 性质可知,RB的方位为铅直,而
5m m
R A的方位不定。但根据力偶只能与 A
力偶相平衡的性质,可知力RA必与
RA
力RB组成一个力偶,即RA= -RB,RA和RB的指向假设如图。
B
B RB
(3)列平衡方程求未知量 由力偶系的平衡方程有
▪ 也可以用三角形 OAB 的
▪ 面积的两倍表示,即
▪ Mo(F)=±2ΔABC
▪ 在国际单位制中, ▪ 力矩的单位是牛顿•米(N•m)
BF
A d
O
L
▪ 或者千牛顿•米(kN•m)。
由上述分析可得力矩的性质:
▪ (1)力对点之矩,不仅取决于力的大小,还与矩心的位置有关。力矩随 矩心的位置变化而变化。
(2)根据合力矩定理计算。
将力F在C点分解为两个正交 的分力,由合力矩定理可得
mA(F)= mA(Fx)+ mA(Fy) =-Fx•b+ Fy•a =-F(bcosα+asinα)
=F(asinα-bcຫໍສະໝຸດ Baidusα)
当力臂不易确定时,用后一种 方法较为简便。
例 2 求图中荷载对A、B两点之矩
(a)
(b)
m0,
5RA m0
RA
m 5
10 5
02
0k
N
RB RA 20kN
计算结果RA、RB皆为正值,表示它们假设的指向与实际的指向相同。
例:如图所示,电动机轴通过联轴器与工作轴相连,联轴器上4个螺栓A、 B、C、D的孔心均匀地分布在同一圆周上,此圆的直径d=150mm,电动 机轴传给联轴器的力偶矩m=2.5 kN•m,试求每个螺栓所受的力为多少?
第三章 力矩与力偶
第一节 力对点之矩
一、 力矩的概念
力使物体绕某点转动的力学效应,称为力对该点之矩。
B
F
A d
O
L
力F对O点之矩定义为:力的大小F与力臂d的乘积冠以适当的正负号, 以符号mo(F) 表示,记为 :Mo(F)=±Fd
通常规定:力使物体绕矩心逆时针方向转动时,力矩为正,反之为负。
▪ 力 F 对O 点之矩的大小,
解:
图(a):
MA = - 8×2 = -16 kN ·m
MB = 8×2 = 16 kN ·m
图(b): MA = - 4×2×1 = -8 kN · m
MB = 4×2×1 = 8 kN ·m
第二节 力偶
▪ 一、力偶 力偶矩
▪
在日常生活和工程实际中经常见到物体受动两个大小相等、方向相反,
但不在同一直线上的两个平行力作用的情况。例如
二、力偶的性质
▪ 力和力偶是静力学中两个基本要素。力 偶与力具有不同的性质:
▪ (1)力偶不能简化为一个力,即力偶不 能用一个力等效替代。因此力偶不能与 一个力平衡,力偶只能与力偶平衡。
▪ (2)无合力,故不能与一个力等效;
▪ (3)力偶对其作在平面内任一点的矩恒 等于力偶矩,与矩心位置无关。
结论:
(图a)司机转动驾
驶汽车时两手作用在方
向盘上的力;
(图b)工人用丝锥
攻螺纹时两手加在扳手
上的力;
(图c)以及用两个
手指拧动水龙头所加的
力等等。
1.力偶:在力学中把这样一对等值、反向而不共线的平行力称为力偶 用符号 ( F ,F′)表示。
两个力作用线之间的垂直距离称为力偶臂
两个力作用线所决定的平面称为力偶的作用面
推论一
只要保持力偶矩不变,力 偶可在作用面内任意移动 或转动,其对刚体的作用 效果不变
推论二
保持力偶矩不变,分别改变力和力偶臂大小, 其作用效果不变
力偶的作用效果取决于三个因素:构 成力偶的力、力偶臂的大小、力偶的转 向。
故在平面问题中用一带箭头的弧线来 表示如图所求,其中箭头表示力偶的转 向,m表示力偶矩的大小。
例3-1 试计算力对A点之矩。
解 本题有两种解法。 方法一: 按力矩的定义计算 由图中几何关系有:
d=ADsinα =(AB-DB)sinα =(AB- BCctgα)sinα =(a- bctgα)sinα =asinα-bcosα
所以
mA(F)=F•d =F(asinα-bcosα)
方法二:
▪ (2)力对任一点之矩,不因该力的作用点沿其作用线移动而改变,再次 说明力是滑移矢量。
▪ (3)力的大小等于零或其作用线通过矩心时,力矩等于零。
二、合力矩定理
定理:平面汇交力系的合力对其平面内任一点的矩等于 所有各分力对同一点之矩的代数和。
Mo(FR)=ΣMo(F)
上式称为合力矩定理。合 力矩定理建立了合力对点之矩 与分力对同一点之矩的关系。 这个定理也适用于有合力的其 它力系。
2.力偶矩:
▪ 作为力偶对物体转动效应的量度,称为力偶矩,
用m或m( F ,F′)表示。在平面问题中,将力偶中
的一个力的大小和力偶臂的乘积冠以正负号,如图:
即m(F)=F•d=±2ΔABC
通常规定:力偶使物体逆时针方 向转动时,力偶矩为正,反之为 负。
在国际单位制中,力矩的单位 是牛顿•米(N•m)或千牛顿•米 (kN•m)。
= P1•d+P2•d-P3•d
=F 1•d1+F2•d2-F3•d3
所以
M=m1+m2+m3
若作用在同一平面内有个力偶,则上 式可以推广为
M=m1+m2+…+mn=Σm
由此可得到如下结论:
平面力偶系可以合成为一合力偶, 此合力偶的力偶矩等于力偶系中各力 偶的力偶矩的代数和。
二、平面力偶系的平衡条件
平面力偶系中可以用它的合力偶等效代替,因此,若合力 偶矩等于零,则原力系必定平衡;反之若原力偶系平衡,则 合力偶矩必等于零。由此可得到
平面力偶系平衡的必要与充分条件:
平面力偶系中所有各力偶的力偶矩的代数和等于零。
即Σm=0
平面力偶系用这个平衡方程,可以求解未知量。
例 梁AB受一力偶作用,其矩m=-100kNm.