不定积分典型例题
不定积分的典型例题50题答案
例1. 解法1).12)(12(1224+-++=+x x x x x而 +++)12(2x x )1(2)12(22+=+-x x x 所以)121121(21112242dx x x dx x x dx x x ⎰⎰⎰++++-=++ .)]12arctan()12[arctan(211)12()12211)12()12(21)21)22(121)22(1[212222c x x x x d x x d dx x dx x +++-=+++++--=++++-=⎰⎰⎰⎰解法2dxx x x x xx x dx x x ⎰⎰+++-++-=++)12)(12(2)12(1122242.arctan 21)12arctan(211212242c x x dx x xx x dx +++=++++=⎰⎰解法3⎰⎰⎰+-=++=++≠2222242)1(1111,0xx x x d dx x x x dx x x x 当 c x x xx x x d +-=+--=⎰21arctan 212)1()1(22,2221arctan 21lim 20π-=-+→x x x ,2221arctan 21lim 20π=--→x x x 由拼接法可有.02221arctan 2100,2221arctan 21112242⎪⎪⎩⎪⎪⎨⎧<+--=>++-=++⎰x cx x x x c x x dx x x ππ 例2.解 将被积函数化为简单的部分分式(*)1)1(1)1()1(222223⋅⋅⋅⋅⋅++++++=+++x DCx x B x A x x x 两边同乘以2)1(+x ,约去1+x 的因子后令1-→x 得 .211)1(2)1(23=+-+-=B 两边同乘以2)1(+x ,对x 求导,再令1-→x ,施以上运算后,右端得A,而左端为.2.2426)1()2(2)1(3lim ]12[lim )1()1()1(2[lim 22322123122231=∴=+=++-+=++=++++-→-→-→A x x x x x x x dx d x x x x dx d x x x 在分解式(*)中令,0=x 得,2D B A ++=所以.21-=D 分解式(*)两边同乘以x ,再令,+∞→x 得.1,1-=⇒+=C C A 故有.arctan 21)1ln(21)1(211ln 2]1)1(1[)1()1(2222223c x x x x dxx DCx x B x A dx x x x +-+-+-+=++++++=+++⎰⎰例3.解 令 ,2x u =再用部分分式,則⎰⎰++=++))(1(21)()1(22244u u u dudx x x x x,11)()1(1222+++++=++u D Cu u B u A u u u 两边乘以,u 再令,0→u 得.1=A 两边乘以,1+u 再令,1-→u 得.21-=B 两边乘以,u 再令,+∞→u 得.21,0-=⇒++=C C B A 令.21,1-=⇒=D u.arctan 41)1()1(ln 81arctan 41)1ln(81)1ln(41ln 21arctan 41)1ln(811ln 41ln 21]12121)1(211[21))(1(21)()1(2422824222222244c x x x x c x x x x c u u u u du u u u u u u u dudx x x x x +-++=+-+-+-=+-+-+-=+--++-=++=++∴⎰⎰⎰ 例4828872882815)1(1181)1()1(dx x x dx x x x dx x x ⎰⎰⎰+-+=⋅+=+)1(])1(111[818288++-+=⎰x d x x .)1(81)1ln(8188c x x ++++= 例5. 解 令 ,2tant x =则=-++⎰dx xx xsin cos 1cos 1 .2)sin 1ln(21arctan )1ln(211ln )1111()1)(1(212121111112222222c x x ct t t dtt t t dtt t dx t t t t t t t ++--=++++--=+++--=-+=+⋅+-+-++-+⎰⎰⎰ 例6dx x x 122+⎰⎰+=22421dx x x.1ln 811)12(81))21(ln(161)21(41)21(21)21()21()21(212222222222222c x x x x x c u u u u du u x d x +++-++=+-+--=-=+-+=⎰⎰分部积分例7.25342)2()1(25232121232c x x x dx x x x dx x x ++-=+-=-⎰⎰-分项例8dx x x dx x ]1111[2111224++-=-⎰⎰ .arctan 2111ln 41c x x x ++-+= 例9.dx x x dx x x ⎰⎰+-+=+1111.134132111c x x x dx xdx x ++-+=+-+=⎰⎰例10.⎰⎰⎰---=-+=+)24(cos )24()2cos(1sin 12x x d x dxx dx πππ.)24tan(c x +--=π 例 11c t t dt x xdx tx +=-=-⎰⎰=arcsin 11212⎪⎩⎪⎨⎧-<+>+-=.1,1arcsin 1,1arcsin x c x x c x 例12.解 .2cos 41)2sin 211(c x x dx x J I ++=-=+⎰dx x x x x x dxxx x x x J I ⎰⎰++-=++-=-222)sin (cos )2sin 211)(sin (cos sin cos )2sin 211)(sin (cos.)12ln(sin 412sin 412sin 12cos )2sin 211(c x x dx x xx +++=++=⎰解上面的联立方程可得出.,J I例13. ).(,)1ln(31)1ln(1111111,)21(332arctan 332.1,1111111332322333233略从而可解出可求出令I c x x dx x x dx x dx x x x x dx x x J I c x J I dx x x J dx x x dx x x dx xx x dx x I ++-+=+-+=+-+-=+-=-+-=++=+-+-=+-+=+=⎰⎰⎰⎰⎰⎰⎰⎰⎰ 例14.)1(12arcsin 12arcsin++=+⎰⎰x d xxdx x x .212arcsin )1(112arcsin1c x xxx dx xx x x ++++=+++=⎰)(分部积分例15.解 令,)21(12,211,12222dt t t t dx t t x t x x x +++=+-=⇒+-=++ .)1212(231212ln 231ln 2])12(23)12(231[2)21(12222222c x x x x x x x x x dt t t t dt t t t t I ++++++++++-+++=+-+-=+++=⎰⎰例16.解 .sin 2cos 5]cos 2sin 5[x x x x +='- 被积函数的分子是x x sin ,cos 的线性组合,故有.1,2,cos )25(sin )25()cos 2sin 5()cos 2sin 5(cos sin 12==⇒-++='-+-=+B A x A B x B A x x B x x A x x 于是.cos 2sin 5ln 2cos 2sin 5)cos 2sin 5()cos 2sin 5(2cos 2sin 5cos sin 12c x x x dx x x x x x x dx x x x x +-+=-'-+-=-+⎰⎰例17.解 ⎰⎰⎰-=-+-=+=4cos 13)(cos sin 3sin 2cos 22t dtx x d x xdx t x .cos 2cos 2ln 41]2121[41c xx dt t t ++-=+--=⎰ 例18.⎰⎰+=+x xdxx dx 222cos )2cos 1(cos 21 .3tan arctan 313arctan 313tan 3)(tan 2cos )(tan 222c x c t t dtx x d xx d +=+=+=+=+⎰⎰⎰ 例19..)1ln(18189623266332366c x x x x x dx x x x t x +++-+-=⋅⋅⋅=+-=⎰例20..15arctan 21515ln153215c x xx x x x dx x xx t x x+-------+-=⋅⋅⋅=---=--⎰例21..]1ln [arctan 2112sin 22c x x x x x dx tx t +-++=⋅⋅⋅=-+=≤⎰π 例22.,11ln 21211222tan 232c x x x x x dxx tx t +++-+-=⋅⋅⋅=+=<⎰π例23.⋅⋅⋅=+-=⎰t e x x xe e dx232换元后有理函数积分例24..1arcsin arcsin 2c x x x xdx+-+=⎰分部积分例25..)(c e dx e e dx exxx e xe xe +==⎰⎰+例26.”)妙用“1(cos sin 1ln cos sin 1)cos sin 1(cos sin 12cos c x x x x x x d x x xdx ++=++=+⎰⎰例27..)13()(2dx e x x e x x x x +++⎰.])[(32])[()()13(])[(23222322c e x x e x x d e x x e x x e x x x x x e ++=++=∴++='+⎰原式例28..11)1(arctan .)1(arctan 2111arctan22x x c x dx x x +-='+-=+⎰例29.=++-=+⎰⎰xb x a x b x a d a b dxx b x a x22222222222222sin cos )sin cos (1sin cos 2sin .2sin )()sin cos (.sin cos 2222222222222x a b x b x a c x b x a ab -='+++-例30.)ln ()ln (1)ln (ln 1)ln (ln 1222x xx d xx x dxxx x xxdx x x x ---=--=--⎰⎰⎰ .ln ln 1c x x xc xx x +-=+-=例31..1212ln2211)1(22sin 22c xx xx xdxt x +---+-=-+⎰=例32..111)1(22tan 2323c x x dx x x tx ++++=+=⎰例33..313222sec 0422c x a x a dx x a x t a x a +⎪⎪⎭⎫⎝⎛-⋅=-=>⎰例34dt tt t dt t t x dx tx ⎰⎰⎰--=+=-+=22sin 2cos 1cos cos cos 1cos 11 .arcsin 112c x x x x ++-+-=例35..ln 212ln 141)1(2)1()2(72717c x x dt tttx x dxtx +++-=-⋅+=+⎰⎰=例36..13)12(2)431(]43)21[()1(2232121232232c xx x t tdt x dxx x dx tx ++++=+-=++=++⎰⎰⎰=+例37..22)(212)2(2222c e x x dx e x x x e x dx x e x x xx x ++-='+++-=+⎰⎰ 例38..)2ln(201ln 21)2()2(101010910c x x x x dx x x x dx ++-=+=+⎰⎰ 例39..1ln 72ln )2()1()1()1(71076777c x x x x dx x x x x dx x ++-=+-=+-⎰⎰ 例40..)1ln (1)()111(111112c x x nx d x n dx x x x x dx x n n n n n n n n n ++-=+-=+⋅=+⎰⎰⎰-- 例41..)1(121003dx x x ⎰-+9899111003)1(493)1(1331)1(12----=-+=-⎰x x dx x x u x例51. 求,))((dx x b a x ⎰-- 其中.b a < 解 由配方得2,)2())((22a b R b a x R x b a x -=+--=--其中,令,2b a u x ++=则有原式 .))((4)(2)(2arcsin )(41cos sin 22)2sin 412(22cos 1cos 2222222sin 22c x b a x b a x ab b a x a bc t t R t R c t t R dt t R tdt R du u R t R u +--+-+-+--=++=++=+==-=⎰⎰⎰= 例52.设)(x f 有一个原函数,sin xx 求.)(⎰'dx x f x 解 用分部积分法有 (*))()()()(⋅⋅⋅⋅⋅⋅-=='⎰⎰⎰dxx f x xf x xdf dx x f x.sin cos ]sin [])([)(sin )(211xx x x c x x dx x f x f c x x dx x f -='+='=⇒+=⎰⎰ 代入(*)有 1sin sin cos )(c xx x x x dx x f x ---='⎰, 即 .sin 2cos )(c x x x dx x f x +-='⎰。
最新不定积分的典型例题
不定积分的典型例题例1.計算«Skip Record If...»解法1«Skip Record If...»而«Skip Record If...»«Skip Record If...»所以«Skip Record If...»«Skip Record If...»解法2 «Skip Record If...»«Skip Record If...»解法3«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»由拼接法可有«Skip Record If...»例2.求«Skip Record If...»解将被积函数化为简单的部分分式«Skip Record If...»两边同乘以«Skip Record If...»,约去«Skip Record If...»的因子后令«Skip Record If...»得«Skip Record If...»两边同乘以«Skip Record If...»,对«Skip Record If...»求导,再令«Skip Record If...»,施以上运算后,右端得A,而左端为«Skip Record If...»在分解式(*)中令«Skip Record If...»得«Skip Record If...»所以«Skip Record If...»分解式(*)两边同乘以«Skip Record If...»,再令«Skip Record If...»得«Skip Record If...»故有«Skip Record If...»例3.求«Skip Record If...»解令«Skip Record If...»再用部分分式,則«Skip Record If...»«Skip Record If...»两边乘以«Skip Record If...»再令«Skip Record If...»得«Skip Record If...»两边乘以«Skip Record If...»再令«Skip Record If...»得«Skip Record If...»两边乘以«Skip Record If...»再令«Skip Record If...»得«Skip Record If...»令«Skip Record If...»«Skip Record If...»例4 «Skip Record If...»«Skip Record If...»«Skip RecordIf...»例5.求«Skip Record If...»解令«Skip Record If...»则«Skip Record If...»«Skip Record If...»例6 «Skip Record If...»«Skip Record If...»«Skip Record If...»例7«Skip Record If...»例8«Skip Record If...»«Skip Record If...»例9.«Skip Record If...»«Skip Record If...»例10.«Skip Record If...»«Skip Record If...»例 11«Skip Record If...»«Skip Record If...»例12.求«Skip Record If...»其中«Skip Record If...»解由配方得«Skip Record If...»,令«Skip Record If...»则有原式«Skip Record If...»例13.求«Skip Record If...»解«Skip Record If...»«Skip Record If...»«Skip Record If...»解上面的联立方程可得出«Skip Record If...»例14.计算«Skip Record If...»«Skip Record If...»例15.«Skip Record If...»«Skip Record If...»例16.求«Skip Record If...»解令«Skip Record If...»«Skip Record If...»例17.设«Skip Record If...»有一个原函数«Skip Record If...»求«Skip Record If...»解用分部积分法有«Skip Record If...»«Skip Record If...»代入(*)有«Skip Record If...»,即«Skip Record If...»例18.求«Skip Record If...»解«Skip Record If...»被积函数的分子是«Skip Record If...»的线性组合,故有«Skip Record If...»于是«Skip Record If...»例19.求«Skip Record If...»解«Skip Record If...»«Skip Record If...»例20.«Skip Record If...»«Skip Record If...»例21.«Skip Record If...»例22.«Skip Record If...»例23.«Skip Record If...»例24.«Skip Record If...»例25.«Skip Record If...»例26.«Skip Record If...»例27.«Skip Record If...»例28.«Skip Record If...»例29.«Skip Record If...»«Skip Record If...»例30.«Skip Record If...»例31«Skip Record If...»«Skip Record If...»例32.«Skip Record If...»«Skip Record If...»例33.«Skip Record If...»«Skip Record If...»例34.«Skip Record If...»例35.«Skip Record If...»例36.«Skip Record If...»例37«Skip Record If...»«Skip Record If...»例38.«Skip Record If...»例39.«Skip Record If...»例40.«Skip Record If...»例41.«Skip Record If...»例42.«Skip Record If...»例43.«Skip Record If...»例44.«Skip Record If...»(令«Skip Record If...»)«Skip Record If...»例45.«Skip Record If...»(先约分,分子加一减一)例46.«Skip Record If...»例47.«Skip Record If...»例48.«Skip Record If...» «Skip Record If...»例49.«Skip Record If...»例50.«Skip Record If...»例51.«Skip Record If...»(分项分部积分)«Skip Record If...»例52.求«Skip Record If...»«Skip Record If...»例53.求«Skip Record If...»解令«Skip Record If...»«Skip Record If...»利用原函数的连续性,有«Skip Record If...»从而解出«Skip Record If...»故«Skip Record If...»。
(完整版)不定积分习题与答案
不定积分(A)1、求下列不定积分1)⎰2xdx2)⎰xxdx23)dxx⎰-2)2(4)dxxx⎰+2215)⎰⋅-⋅dxxxx325326)dxxxx⎰22sincos2cos7)dxxe x)32(⎰+8)dxxxx)11(2⎰-2、求下列不定积分(第一换元法)1)dxx⎰-3)23(2)⎰-332xdx3)dttt⎰sin4)⎰)ln(lnln xxxdx5)⎰xxdxsincos6)⎰-+xx eedx7)dxxx)cos(2⎰8)dxxx⎰-43139)dxxx⎰3cossin10)dxxx⎰--249111)⎰-122xdx12)dxx⎰3cos13)⎰xdxx3cos2sin14)⎰xdxx sectan315)dxxx⎰+23916)dxxx⎰+22sin4cos3117)dxxx⎰-2arccos211018)dxxxx⎰+)1(arctan3、求下列不定积分(第二换元法)1)dxxx⎰+2112)dxx⎰sin3)dxxx⎰-424)⎰>-)0(,222adxxax5)⎰+32)1(xdx6)⎰+xdx217)⎰-+21xxdx8)⎰-+211xdx4、求下列不定积分(分部积分法)1)inxdxxs⎰2)⎰xdxarcsin3)⎰xdxx ln24)dxxe x⎰-2sin25)⎰xdxx arctan26)⎰xdxx cos27)⎰xdx2ln8)dxxx2cos22⎰5、求下列不定积分(有理函数积分)1)dx xx⎰+332)⎰-++dxxxx1033223)⎰+)1(2xxdx(B)1、一曲线通过点)3,(2e,且在任一点处的切线斜率等于该点的横坐标的倒数,求该曲线的方程。
2、已知一个函数)(xF的导函数为211x-,且当1=x时函数值为π23,试求此函数。
3、证明:若⎰+=c x F dx x f )()(,则)0(,)(1)(≠++=+⎰a cb ax F a dx b ax f 。
不定积分例题与答案
求下列不定积分:知识点:直接积分法的练习——求不定积分的荃本方法。
思路分析:利用不定积分的运算性质和荃本积分公式,査接求出不定积分!★(1),旅思路:被积函敌|:,由积分表中的公式(2)可解。
K 77T 八★⑶思路:根裾不定积分的线性性质,将被积函数分为两项,分别积分。
解:j<2x +.K 2Wt = j2,rfA + f.rdv = -L.+lx i +C ★⑷J 仮(.丫-3皿 思酪:根拐不定积分的线性性质,将被积函薮分为两项,分别积分。
J7xU-3)rfv = |x-dv-3jA"dv = ^.v* -2.V-+C★★⑸『竺上竺旦厶息」廉:观察到3xJ3.E=w+ 1后,根拐不定积分的线性性质,将被积函数分项,分别积分。
丿 ~-V+ 1 ~~.C+ 1~"*A x 2+11 ,根据不定积分的线性性质,将被积函数分项,分别积分。
解:JI ' 心=j rfv-j ]:心=A -arctan .v+C.注.容島看出(5)(6)两題的解SI 思绝是一致的• 一般地,如果被积函数为一个有理的假分丈.谨常先将其分解为一个荃或加上或 减去一个真分丈的形丈.再分项积分.★(7) |(三二+W 心思路:分项积分。
4-~-r^ = J 'z£v -|-^<tv + 3|x 'rfv-4j.t u rfv★(8)上3 2 思路:分项积分。
■ J< ] 3 - F k£v = 3j J , dx-2jdr = 3arctan .v-2arcsinx + C.★★⑺j 后眾小思路:皿着看到皿頁=严—“直接积分。
解:J 厶斥曲Y = =加+ U息话:根据不定积分的线性性质,将被积函数分为两项,分别积分。
X ,.思路:注意到r_ JI + x* x l+x 2 l+.r 1+x 2 解: ★⑵ =x + arctan .v + C解:严小+认=★★(10) I忌路:裂项分项积分。
高等数学100题不定积分及答案
sin
5x
+
1 2
sin
x
+
c
∫ 63、 cos 2x cos 3xdx =
1 10
sin
5x
+
1 2
sin
x
+
c
∫ 64、 tan x sec xdx = sec x + c
∫ 65、
tan2 x sec xdx =
1 2
sec
x
tan
x
−
1 2
ln
|
sec
x
+
tan
x
|
+c
∫ 66、
tan x sec2 xdx =
x)2
+
c
∫ 78、
x
−
1
arctan + x2
x
dx
=
1 2
ln(1
+
x
2
)
3
−
2 3
(arctan
x)
2
+c
∫ 79、 arcsin x dx = (arc sin x )2 + c
x(1− x)
∫ 80、
1
dx = − 1 + c
(arcsin x)2 1− x2
arcsin x
∫ 81、 ex dx = ln(1+ ex ) + c
c
∫ 98、 cos x − sin xdx = ln | sin x + cos x | +c sin x + cos x
∫ 99、 sin x + 2 cos x dx = 3sin x + 4 cos x
不定积分经典例题
不定积分经典例题1. 计算不定积分:$\int \frac{1}{x^2} dx$解:该不定积分可以通过直接计算得到。
由于$\frac{1}{x^2}$ 的原函数是 $-\frac{1}{x}$,因此$$\int \frac{1}{x^2} dx = -\frac{1}{x} + C$$其中 $C$ 是常数。
2. 计算不定积分:$\int (2x+3)dx$解:使用不定积分的线性性质,可以将被积函数分解成两个分别可求积的部分。
所以$$\int (2x+3)dx = \int 2x dx + \int 3 dx = x^2 + 3x + C$$其中 $C$ 是常数。
3. 计算不定积分:$\int e^x \sin(x) dx$解:可以通过分部积分法来计算该不定积分。
设 $u = e^x$,$dv = \sin(x) dx$,则 $du = e^x dx$,$v = -\cos(x)$。
根据分部积分公式,$$\int e^x \sin(x) dx = -e^x \cos(x) - \int -e^x \cos(x) dx$$然后再次使用分部积分法,可得$$\int e^x \sin(x) dx = -e^x \cos(x) + e^x \sin(x) - \int e^x \sin(x) dx$$将右侧的不定积分移到左侧,可以得到$$2 \int e^x \sin(x) dx = -e^x \cos(x) + e^x \sin(x)$$因此$$\int e^x \sin(x) dx = \frac{-e^x \cos(x) + e^x \sin(x)}{2} + C$$其中 $C$ 是常数。
这只是一些经典的不定积分例题,当然还有很多其他的例题。
希望这些例题能够帮助你理解不定积分的计算方法。
不定积分的典型例题50题
cos 2 xdx
例 14. arcsin 2 x dx arcsin 2 x d ( x 1) 1 x 1 x 例 15. I 例 16.
dx x x2 x 1 .
12 sin x cos x dx. 5 sin x 2 cos x sin xdx . 例 17. 3 sin 2 x
1 dx. 例 13. I 1 x3
d (1 sin x cos x) 1 sin x cos x ln 1 sin x cos x c (妙用“ 1”) 2 x x ( x x ) e ( x 3 x 1 ) e dx . 例 27.
例 26.
1 sin x cos x
(x
4
x dx. 1) ( x 4 x 2 )
2
例 4. 例 5.
x15 x8 1 x8 1 1 8 7 dx x dx dx ( x8 1)2 ( x8 1)2 8 ( x8 1) 2
1 cos x dx. 1 cos x sin x
dx. 分子分母同乘( x 1 x )
1
1 x2
x 1
1 cost dt
cost
cost cos t dt 1 sin xdx 2 1 cos t x x x 2 2 x 例 45. dx sin 2 cos 22sin sin x cos x cos dx 2 dx 2 csc 2 xdx cot x c 3 sin 3 x 2 sin2 x
例 6. x 2 x 2 1dx
1 1 1 1 dx [ ]dx 例 8. 4 2 1 x 2 1 x 1 x2
不定积分典型例题
例例1812.2
xx44 11xx22
ddxx
xx14141x1x2211ddxx
((xx22111)1)((xxx2x22211))11ddxx
(x2
1 1 )dx 1
1 x2
3
x3xarctgxC。
例9.某厂生产某种产品,每日生产的产品的总成 本 y 的变化率是日产量 x 的函数 y 7 25 ,已知固定
例9
求
x (1 x)2 dx.
解
x
(1 x)2 dx
x 11 (1 x)2 dx
[1 (1
x)
1 (1 x)2
]d (1
x)
1 ln( x 1) C1 (1 x) C2
ln( x 1) 1 C (1 x)
例11 求 sin3 xdx
解 sin3 xdx sin2 x sin xdx (1 cos2 x)d cos x (cos x 1 cos3 x) C
ssiinn
22 xx 22
ddxx
11 22
((11
ccooss
xx))ddxx
11 22
((xx
ssiinn
xx)) CC
。。
例71.0
1
dx 4
sin 2 x cos 2 x
1 sin 2
x
dx
4ctg
xC。
22
)
1 x
dx
ln|x|(C1,1)
1 1 x2
dx arctgxC。
dx.
解
1
1 cos
x
dx
1 cos x 1 cos2 x
dx
1 cos x sin2 x
不定积分计算例题
高等数学二、计算题(共 200 小题,)1、设x x x f +=12)(,求)(x f 的定义 2、设xx x f -+=11)(,确定)(x f 的定义域及值域。
3、设)ln(2)(22x x x x x f -+-=,求)(x f 的定义域。
4、的定义域,求设)(sin 512arcsin)(x f x x x f π+-=。
5、的定义域,求设⎪⎭⎫ ⎝⎛++-=x f x f x x x f 1)(22ln )(。
6、的定义域求函数22112arccos )(x x xx x f --++=。
7、设)(x f 的定义域为[) )()()(m x f m x f x F b a ++-=,.,)0(<m ,求)(x F 的定义域。
8、的定义域,求设 )(16sin )(2x f x x x f -+=。
9、的定义域,求设)(12)(2x f xx x f --=。
10、设,求的定义域f x x x f x ()lg ()=+256。
11、设,求的定义域f x x xf x ()arctan ()=-+2512。
12、 ,2||)1(110==-++===x a y x y x f a y 及满足条件,设.)(y x f 及求 13、,55lg)(-+=x x x f 设的定义域;确定)()1(x f []的值,求若)2(lg )()2(g x x g f =。
14、),00()(≠≠++=abc x c bx xa x f , 设成立,对一切,使求数0)()(≠=x x f x m f m 。
15、1)()1(3)2(3)3()(2+-+++-+++=x f x f x f x f c bx ax x f ,计算设的值,其中cb a ,,是给定的常数。
16、)1()11(1)(2-≠+-+=x x x f xx x f ,求设。
17、)()0(13)1(243x f x x x x x x x f ,求 设≠+++=+。
不定积分 计算题
计算题(共 200 小题) 1、⎰⎰+=.d )( , sin d )()(x x f c x x x f n 求设 2、⎰'>+=.d )(),0()(2x x f x x x x f 试求设 3、.d x x ⎰求4、.)( .0,sin ,0)(2的不定积分求 设x f x x x x x f ⎩⎨⎧>≤= 5、已知,求它的原函数.f x x F x ()()=-1 6、.d x x ⎰求 7、⎰-233d x x 求 8、 .,d 2是常数其中求 a x x a ⎰9、.0,,d >⎰a a x e a x x 是常数其中求 10、.d tan csc 22x x x ⋅⎰求11、⎰⋅x x x d cot sec 22求 12、⎰+22d x x 求 13、⎰+82d 2x x求 14、⎰-9d 2x x 求 15、⎰-.63d 2x x 求 16、 ⎰+232d x x 求 17、.d 2432x xx x ⎰-求 18、x x x d ⎰⋅求 19、.d )1(23x x x ⎰+求 20、 .,,d )cosh sinh (均为常数其中求 b a x x b x a ⎰+ 21、⎰x x d cot 2求22、.d 11)(3x x x ⎰++求 23、.d x x x x ⎰求 24、⎰+.d )arccos (arcsin x x x 求 25、[].d )1(cos cos )1(sin sin x x x x x ⎰+++求 26、⎰⋅.d 2sin 22x x 求 27、⎰.d 2cos 22x x 求 28、.d sin 1sin 423x x x ⎰-求 29、⎰+.d )32(2x x x 求 30、.d 3273x x x ⎰--求 31、.d 22222x x x x ⎰-+-求 32、⎰---.d )31)(21)(1(x x x x 求 33、x x x x d )1(21222⎰++求 34、.d 323x xx e x x x ⎰+-求 35、.d )1()1(22x x x x ⎰++求 36、⎰+.d )sec (tan 22x x x 求 37、.d )csc (cot 22x x x +⎰求 38、.d sin sin 2222⎰+x xx x x 求 39、.d 122x xx ⎰+求40、⎰-.d 122x x x 求 41、.d 1322x x x ⎰-+求 42、.d 111422x x x x ⎰--++求 43、 .d 111422x x x x ⎰---+求44、 .d 2cos 1sin 12x xx ⎰-+求 45、.d 1cos sin 122x x x ⎰--求 46、.d cos sin d 22x xx x ⎰求 47、 ⎰++.d 2cos 1cos 12x xx 求 48、.d sin cos 2cos x xx x ⎰-求 49、 ).20(d 2sin 1π≤≤+⎰x x x 求 50、x xx x d sin cos 2cos 22⎰求 51、 ⎰+x x x 2sin 2cos d 求 52、求⎰++++x xx x x x d 13323。
不定积分例题(含过程及解析)
例题1dx e x x ⎰+)12( ce e x dxe e x x d e e x de x x x xx x x x+-+=•-+=+-+=+=⎰⎰⎰2)12(2)12()12()12()12( 根据分部积分法⎰⎰-=vdu uv udv ,(2x+1)为u ,e x 为v 。
(确定u 和v 的口诀:对反幂三指;对——对数函数、反——反函数、幂——幂函数、三——三角函数、指——指数函数)2x+1为幂函数,e x 为指数函数。
例题2dx xe x ⎰-ce xe dxe e xe dx e xe xde x x x x x x x++-=•+-=--=-=-------⎰⎰⎰1)(x e -是一个复合函数,其导数应为1-•-x e例题3⎰xdx arctanc x x x xd xx x dx x x x x xxd x x ++-=++-=+-•=-•=⎰⎰⎰)1ln(21arctan 11121arctan 1arctan tan arctan 2222arctanx ’=1/1+x 2,在这里会用到反三角函数的导数公式。
其它的反三角导数是arcsinx ’=211x -、arccosx ’=211x --、arccotx ’=211x +-例题4dx x x ⎰2cos 2sin|cos |ln 2cos cos 12cos sin 2cos cos sin 22x x d xdx xx dx xx x -=-===⎰⎰⎰这里用到二倍角公式,如下:Sin2x=2sinxcosxCos2x=2cos 2x-1=1-sin 2x-1例题5dx x x ⎰++2cos 1sin 12c x x x xdx dx dx x dx xx +-=-=-=-=⎰⎰⎰⎰21tan 21sec 121cos 1cos 2cos 22222 这里除了用到二倍角公式,还会用到sin 、cos 、sec 、csc 间的相互转化,sinx 和cscx 互为倒数、cosx 和secx 互为倒数。
不定积分典型例题48500精品
((xx
ssiinn
xx))
CC
。。
例71.0
1
dx 4
sin 2 x cos 2 x
1 sin 2
x
dx
4ctg
xC。
22
)
1 x
dx ln|x|(C1,1)
1 1 x2
dx arctgxC。
例例1812.2
xx44 ddxx xx441111ddxx ((xx2211))((xx2211))11ddxx
解 sin3 xdx sin2 x sin xdx (1 cos2 x)d cos x (cos x 1 cos3 x) C
3
正弦余弦三角函数积分偶次幂降幂,齐次幂拆开 放在微分号
例12 求
1
1 e
x
dx
.
解
1
1 e
x
dx
(1
1 e x
)e
tan x x C
x2+1, x<0.
例4. 求 f (x)dx,其中 f (x)=
1, 0 x 1 1, x 1 x
解: f (x)在(,0),[0,1]和[1,]内分别有
原函数
x3 3
x,
x
C1和ln
x
C2
(C1 , C2待定),
作函数
x3 x, x 0 3
(sec2 x 1)2 sec2 xd secx
(sec6 x 2sec4 x sec2 x)d secx
1 sec7 x 2 sec5 x 1 sec3 x C
不定积分例题及答案
第4章不定积分内容概要课后习题全解习题4-11.求下列不定积分:知识点:直接积分法的练习——求不定积分的基本方法;思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分★1⎰思路: 被积函数52x -=,由积分表中的公式2可解; 解:532223x dx x C --==-+⎰★2dx-⎰ 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分;解:1141113332223()24dx x x dx x dx x dx x x C --=-=-=-+⎰⎰⎰⎰ ★322x x dx +⎰()思路:根据不定积分的线性性质,将被积函数分为两项,分别积分;解:2232122ln 23x x x x dx dx x dx x C +=+=++⎰⎰⎰()★43)x dx -思路:根据不定积分的线性性质,将被积函数分为两项,分别积分;解:3153222223)325x dx x dx x dx x x C -=-=-+⎰⎰ ★★54223311x x dx x +++⎰思路:观察到422223311311x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分; 解:42232233113arctan 11x x dx x dx dx x x C x x ++=+=++++⎰⎰⎰ ★★6221x dx x +⎰思路:注意到222221111111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分;解:2221arctan .11x dx dx dx x x C x x =-=-+++⎰⎰⎰ 注:容易看出56两题的解题思路是一致的;一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分;★7x dx x x x ⎰34134(-+-)2 思路:分项积分;解:3411342x dx xdx dx x dx x dx x x x x --=-+-⎰⎰⎰⎰⎰34134(-+-)2 ★823(1dx x -+⎰思路:分项积分;解:2231(323arctan 2arcsin .11dx dx x x C x x =-=-+++⎰⎰ ★★9思路=11172488xx ++==,直接积分; 解:715888.15x dx x C ==+⎰ ★★10221(1)dx x x +⎰思路:裂项分项积分;解:222222111111()arctan .(1)11dx dx dx dx x C x x x x x x x=-=-=--++++⎰⎰⎰⎰ ★11211x x e dx e --⎰ 解:21(1)(1)(1).11x x x x x x x e e e dx dx e dx e x C e e --+==+=++--⎰⎰⎰★★123x x e dx ⎰思路:初中数学中有同底数幂的乘法: 指数不变,底数相乘;显然33x x x e e =();解:333.ln(3)x x x xe e dx e dx C e ==+⎰⎰()() ★★132cot xdx ⎰思路:应用三角恒等式“22cot csc 1x x =-”;解:22cot (csc 1)cot xdx x dx x x C =-=--+⎰⎰★★1423523x xx dx ⋅-⋅⎰思路:被积函数 235222533x x x x ⋅-⋅=-(),积分没困难; 解:2()2352232525.33ln 2ln 3x x xx x dx dx x C ⋅-⋅=-=-+-⎰⎰(()) ★★152cos 2x dx ⎰ 思路:若被积函数为弦函数的偶次方时,一般地先降幂,再积分;解:21cos 11cos sin .2222x x d dx x x C +==++⎰⎰★★1611cos 2dx x +⎰ 思路:应用弦函数的升降幂公式,先升幂再积分;解:221111sec tan .1cos 2222cos dx dx xdx x C x x===++⎰⎰⎰ ★17cos 2cos sin x dx x x -⎰ 思路:不难,关键知道“22cos 2cos sin (cos sin )(cos sin )x x x x x x x =-=+-”;解:cos 2(cos sin )sin cos .cos sin x dx x x dx x x C x x=+=-+-⎰⎰ ★1822cos 2cos sin x dx x x ⋅⎰ 思路:同上题方法,应用“22cos 2cos sin x x x =-”,分项积分;解:22222222cos 2cos sin 11cos sin cos sin sin cos x x x dx dx dx x x x x x x x-==-⋅⋅⎰⎰⎰⎰★★19dx ⎰思路:注意到被积函数==,应用公式5即可;解:22arcsin .dx x C ==+⎰ ★★2021cos 1cos 2x dx x ++⎰思路:注意到被积函数 22221cos 1cos 11sec 1cos 2222cos x x x x x++==++,则积分易得; 解:221cos 11tan sec .1cos 2222x x x dx xdx dx C x ++=+=++⎰⎰⎰ ★2、设()arccos xf x dx x C =+⎰,求()f x ;知识点:考查不定积分原函数与被积函数的关系;思路分析:直接利用不定积分的性质1:[()]()d f x dx f x dx =⎰即可; 解:等式两边对x 求导数得:★3、设()f x 的导函数为sin x ,求()f x 的原函数全体;知识点:仍为考查不定积分原函数与被积函数的关系;思路分析:连续两次求不定积分即可;解:由题意可知,1()sin cos f x xdx x C ==-+⎰所以()f x 的原函数全体为:112cos sin x C dx x C x C -+=-++⎰();★4、证明函数21,2x x e e shx 和x e chx 都是s x e chx hx -的原函数 知识点:考查原函数不定积分与被积函数的关系;思路分析:只需验证即可;解:2x x e e chx shx =-,而22[][][]x x x x d d d e e shx e chx e dx dx dx ===1()2 ★5、一曲线通过点2(,3)e ,且在任意点处的切线的斜率都等于该点的横坐标的倒数,求此曲线的方程; 知识点:属于第12章最简单的一阶线性微分方程的初值问题,实质仍为考查原函数不定积分与被积函数的关系; 思路分析:求得曲线方程的一般式,然后将点的坐标带入方程确定具体的方程即可;解:设曲线方程为()y f x =,由题意可知:1[()]d f x dx x =,()ln ||f x x C ∴=+; 又点2(,3)e 在曲线上,适合方程,有23ln(),1e C C =+∴=,所以曲线的方程为()ln || 1.f x x =+★★6、一物体由静止开始运动,经t 秒后的速度是23(/)t m s ,问:(1) 在3秒后物体离开出发点的距离是多少(2) 物体走完360米需要多少时间知识点:属于最简单的一阶线性微分方程的初值问题,实质仍为考查原函数不定积分与被积函数的关系; 思路分析:求得物体的位移方程的一般式,然后将条件带入方程即可;解:设物体的位移方程为:()y f t =,则由速度和位移的关系可得:23[()]3()f t t f t t C =⇒=+d dt, 又因为物体是由静止开始运动的,3(0)0,0,()f C f t t ∴=∴=∴=;1 3秒后物体离开出发点的距离为:3(3)327f ==米;2令3360t t =⇒=秒;习题4-2★1、填空是下列等式成立;知识点:练习简单的凑微分; 思路分析:根据微分运算凑齐系数即可;解:234111(1)(73);(2)(1);(3)(32);7212dx d x xdx d x x dx d x =-=--=-2、求下列不定积分;知识点:凑微分第一换元积分法的练习;思路分析:审题看看是否需要凑微分;直白的讲,凑微分其实就是看看积分表达式中,有没有成块的形式作为一个整体变量,这种能够马上观察出来的功夫来自对微积分基本公式的熟练掌握;此外第二类换元法中的倒代换法对特定的题目也非常有效,这在课外例题中专门介绍★13t e dt ⎰思路:凑微分;解:33311(3)33t t t e dt e d t e C ==+⎰⎰ ★23(35)x dx -⎰思路:凑微分; 解:33411(35)(35)(35)(35)520x dx x x x C -=---=--+⎰⎰d ★3132dx x -⎰思路:凑微分;解:1111(32)ln |32|.322322dx d x x C x x =--=--+--⎰⎰ ★4⎰ 思路:凑微分;解:1233111(53)(53)(53)(53).332x x d x x C -=--=---=--+⎰ ★5(sin )xb ax e dx -⎰思路:凑微分;解:11(sin )sin ()()cos x x x b b b x ax e dx axd ax b e d ax be C a b a-=-=--+⎰⎰⎰★★6思路:如果你能看到td =,凑出d 易解;解:2C ==+⎰ ★7102tan sec x xdx ⎰思路:凑微分;解:10210111tan sec tan (tan )tan .11x xdx xd x x C ==+⎰⎰ ★★8ln ln ln dx x x x ⎰思路:连续三次应用公式3凑微分即可;解:(ln ||)(ln |ln |)ln |ln ln |ln ln ln ln ln ln ln ln dx d x d x x C x x x x x x ===+⎰⎰⎰★★9tan ⎰思路:是什么,是什么呢就是这有一定难度解:ln ||C ==-+⎰⎰ ★★10sin cos dx x x ⎰思路:凑微分;解:方法一:倍角公式sin 22sin cos x x x =;方法二:将被积函数凑出tan x 的函数和tan x 的导数;方法三: 三角公式22sin cos 1x x +=,然后凑微分;★★11x x dx e e -+⎰思路:凑微分:222111()x x x x x x x x dx e dx de de e e e e e -===++++;解:22arctan 11()x x x x x x x dx e dx de e C e e e e -===++++⎰⎰⎰ ★122cos()x x dx ⎰思路:凑微分;解:222211cos()cos sin 22x x dx x dx x C ==+⎰⎰ ★★13思路:22==凑微分易解; 解:1222211(23)(23)66x d x C -=-=---=⎰ ★★142cos ()sin()t t dt ωω⎰思路:凑微分;解:22211cos ()sin()cos ()sin()cos ()cos()t t dt t t d t t d t ωωωωωωωωω==-⎰⎰⎰★★153431x dx x -⎰ 思路:凑微分;解:33444444433431313(1)ln |1|.44441111x x dx dx dx d x x C x x x x===--=--+----⎰⎰⎰⎰ ★163sin cos x dx x ⎰思路:凑微分;解:332sin 111cos .2cos cos cos x dx d x C x x x =-=+⎰⎰ ★★179思路:经过两步凑微分即可;解:9101010111010C ===+⎰ ★★18思路:分项后分别凑微分即可;解:=-⎰ ★★19 221dx x -⎰ 思路:裂项分项后分别凑微分即可;解:21212dx dx x ==-⎰⎰⎰ ★202(45)xdx x -⎰思路:分项后分别凑微分即可;解:22214541114(45)(45)5(45)2545(45)xdx x dx d x x x x x --=-=------⎰⎰⎰()() ★212100(1)x dx x -⎰思路:分项后分别凑微分即可;解:222100100100100100(11)(1)(1)1(2)(1)(1)(1)(1)(1)x dx x dx x x dx x x x x x -+--==++-----⎰⎰⎰ ★★2281xdx x -⎰思路:裂项分项后分别凑微分即可;解:28444444111111()()241(1)(1)1111xdx xdx xdx dx x x x x x x x ==-=---+-+-+⎰⎰⎰⎰ ★233cos xdx ⎰思路:凑微分;cos sin xdx d x =;解:3222cos cos cos cos sin (1sin )sin xdx x xdx xd x x d x =⋅==-⎰⎰⎰⎰★★242cos ()t dt ωϕ+⎰思路:降幂后分项凑微分; 解:21cos 2()11cos ()cos 2()2()224t t dt dt dt t d t ωϕωϕωϕωϕω+++==+++⎰⎰⎰⎰★★★25sin 2cos3x xdx ⎰思路:积化和差后分项凑微分;解:111sin 2cos3(sin 5sin )sin 55sin 2102x xdx x x dx xd x xdx =-=-⎰⎰⎰⎰ ★★★26sin5sin 7x xdx ⎰思路:积化和差后分项凑微分;解:111sin 5sin 7(cos 2cos12)cos 22cos12(12)2424x xdx x x dx xd x xd x =-=-⎰⎰⎰⎰ ★★★273tansec x xdx ⎰思路:凑微分tan sec sec x xdx d x =;解:3222tan sec tan tan sec tan sec (sec 1)sec x xdx x x xdx xd x x d x =⋅==-⎰⎰⎰⎰★★28arccos x思路:(arccos )d x =-;解:arccos arccos arccos 1010arccos .ln10x xxd x C =-=-+⎰★★29思路:(arcsin )d x =;解:2arcsin 1arcsin (arcsin )d x C x x ==-+⎰★★★★30思路:==;解:==⎰★★★★31ln tan cos sin xdx x x ⎰思路:被积函数中间变量为tan x ,故须在微分中凑出tan x ,即被积函数中凑出2sec x , 解:2ln tan ln tan ln tan tan ln tan (ln tan )cos sin tan cos tan x x xdx dx d x xd x x x x x x===⎰⎰⎰⎰ ★★★★3221ln (ln )xdx x x +⎰思路:(ln )(1ln )d x x x dx =+ 解:221ln 11(ln )ln (ln )(ln )x dx d x x C x x x x x x +==-+⎰⎰ ★★★★331x dxe -⎰解:方法一:思路:将被积函数的分子分母同时除以 x e ,则凑微分易得; 方法二: 思路:分项后凑微分 方法三:思路: 将被积函数的分子分母同时乘以 x e ,裂项后凑微分;★★★★346(4)dx x x +⎰解:方法一:思路:分项后凑积分;方法二:思路:利用第二类换元法的倒代换; 令1x t =,则21dx dt t=-; ★★★★3582(1)dxx x -⎰解:方法一: 思路:分项后凑积分;方法二: 思路: 利用第二类换元法的倒代换; 令1x t=,则21dx dt t =-; 6426422753751111(1)()(1)()211111111111111111ln ||ln ||75321753321t t t dt dt t t t dt dt t t t t x t t t t C C t x x x x x =-+++-=-+++---+---=-----+=-----+++⎰⎰⎰⎰3、求下列不定积分;知识点:真正的换元,主要是三角换元第二种换元积分法的练习;思路分析:题目特征是----被积函数中有二次根式,如何化无理式为有理式三角函数中,下列二恒等式起到了重要的作用;为保证替换函数的单调性,通常将交的范围加以限制,以确保函数单调;不妨将角的范围统统限制在锐角范围内,得出新变量的表达式,再形式化地换回原变量即可;★★★1⎰ 思路:令sin ,2x t t π=<,先进行三角换元,分项后,再用三角函数的升降幂公式;解:令sin ,2x t t π=<,则cos dx tdt =;tan arcsin .2t t C x C =-+=+或arcsin x C =+ 万能公式sin 1cos tan 21cos sin tt tt t-==+,又sin t x =时,cos t★★★2⎰思路:令3sec ,(0,)2x t t π=∈,三角换元;解:令3sec ,(0,)2x t t π=∈,则3sec tan dx t tdt =;3sec x x =时,3cos ,sin tan x x x x===★★★3思路:令tan ,2x t t π=<,三角换元;解:令tan ,2x t t π=<,则2sec dx tdt =;★★★4思路:令a tan ,2x t t π=<,三角换元;解:令tan ,2x a t t π=<,则2a sec dx tdt =;★★★★52思路:先令2u x =,进行第一次换元;然后令tan ,2u t t π=<,进行第二次换元;解:2224112x x x +=+⎰,令2u x =得:212=,令tan ,2u t t π=<,则2sec du tdt =, 与课本后答案不同★★★6思路:三角换元,关键配方要正确;解:22549(2)x x x --=-+,令23sin ,2x t t π+=<,则3cos dx tdt =;★★4、求一个函数()f x ,满足'()f x =,且(0)1f =;思路:,由条件(0)1f =确定出常数C 的值即可;解:1(1).1x C x=+=+⎰⎰令()f x C =+,又(0)1f =,可知1C =-,★★★5、设tan ,n n I xdx =⎰,求证:1-21tan 1n n n I x I n -=--,并求5tan xdx ⎰; 思路:由目标式子可以看出应将被积函数tan n x 分开成22tan tan n x x -,进而写成:22222tan (sec 1)tan sec tan n n n x x x x x ----=-,分项积分即可;证明:222222tan (tan sec tan )tan sec tan n n n n n n I xdx x x x dx x xdx xdx ----==-=-⎰⎰⎰⎰ 习题4-3 1、求下列不定积分:知识点:基本的分部积分法的练习;思路分析:严格按照“‘反、对、幂、三、指’顺序,越靠后的越优先纳入到微分号下凑微分;”的原则进行分部积分的练习;★1arcsin xdx ⎰思路:被积函数的形式看作0arcsin x x ,按照“反、对、幂、三、指”顺序,幂函数0x 优先纳入到微分号下,凑微分后仍为dx ;解:21arcsin arcsin arcsin (1)2xdx x x x x x =-=+-⎰⎰ ★★22ln(1)x dx +⎰思路:同上题;解:22222222ln(1)ln(1)ln(1)11x x x dx x x x dx x x dx x x+=+-=+-++⎰⎰⎰ ★3arctan xdx ⎰思路:同上题;解:222(1)arctan arctan arctan 121dx d x xdx x x x x x x x+=-=-++⎰⎰⎰1★★42sin 2xx e dx -⎰ 思路:严格按照“反、对、幂、三、指”顺序凑微分即可; 解:22221111sin sin ()sin cos 22222222xx x x x x x x e dx d e e e dx ----=-=-+⎰⎰⎰ ★★52arctan x xdx ⎰思路:严格按照“反、对、幂、三、指”顺序凑微分即可;解:32332111arctan arctan ()arctan 3331x x xdx xd x x x dx x ==-+⎰⎰⎰ ★6cos 2xx dx ⎰ 思路:严格按照“反、对、幂、三、指”顺序凑微分即可;解:cos 2sin 2sin 2sin 2sin 4sin 2222222xx x x x x xx dx xd x dx x d==-=-⎰⎰⎰⎰ ★★72tan x xdx ⎰思路:严格按照“反、对、幂、三、指”顺序凑微分即可;解:2222tan (sec 1)(sec )sec x xdx x x dx x x x dx x xdx x x =-=-=-⎰⎰⎰⎰⎰d★★82ln xdx ⎰思路:严格按照“反、对、幂、三、指”顺序凑微分即可;解:222211ln ln 2ln ln 2ln ln 2ln 2xdx x x x x dx x x xdx x x x x x dx x x=-⋅⋅=-=-+⋅⎰⎰⎰⎰★★9ln(1)x x dx -⎰思路:严格按照“反、对、幂、三、指”顺序凑微分即可;解:22211ln(1)ln(1)ln(1)2221x x x x dx x d x x dx x -=-=---⎰⎰⎰★★1022ln xdx x ⎰思路:严格按照“反、对、幂、三、指”顺序凑微分即可;解:222222ln 11111ln ln ()ln 2ln ln 2x x dx xd x x dx x dx x x x x x x x=-=-+⋅=-+⎰⎰⎰⎰★★11cosln xdx ⎰思路:严格按照“反、对、幂、三、指”顺序凑微分即可;解:1cosln cosln sin ln cosln sin ln xdx x x x x dx x x xdx x =+⋅=+⎰⎰⎰ ★★122ln x dx x ⎰思路:详见第10 小题解答中间,解答略;★★13ln (1)nx xdxn ≠-⎰思路:严格按照“反、对、幂、三、指”顺序凑微分即可;解:111111ln ln ln 111n nn n x x xdx xdx x x dx n n n x+++==-⋅+++⎰⎰⎰ ★★142xx e dx -⎰思路:严格按照“反、对、幂、三、指”顺序凑微分即可;解:222222x x x x x x x e dx x e e xdx x e xe e dx ------=-+=--+⎰⎰⎰★★1532(ln )x x dx ⎰思路:严格按照“反、对、幂、三、指”顺序凑微分即可; 解:32244241111(ln )(ln )()(ln )2ln 444x x dx x d x x x x x dx x==-⋅⋅⎰⎰⎰ ★★16ln ln xdx x ⎰思路: 将积分表达式ln ln xdx x写成ln ln (ln )xd x ,将ln x 看作一个整体变量积分即可; 解:ln ln 111ln ln (ln )ln ln ln ln ln ln ln ln x dx xd x x x x dx x x dx x x x x==-⋅⋅=-⎰⎰⎰⎰ ★★★ 17sin cos x x xdx ⎰思路:严格按照“反、对、幂、三、指”顺序凑微分即可; 解:11111sin cos sin 2(cos 2)cos 2cos 222244x x xdx x xdx xd x x x xdx ==-=-+⎰⎰⎰⎰★★1822cos 2x x dx ⎰思路:先将2cos 2x 降幂得1cos 2x+,然后分项积分;第二个积分严格按照“反、对、幂、三、指”顺序凑微分即可;解:2222221111cos (cos )cos 22222xx dx x x x dx x dx x xdx =+=+⎰⎰⎰⎰ ★★192(1)sin 2xxdx -⎰思路:分项后对第一个积分分部积分;解:22211(1)sin 2sin 2sin 2(cos 2)cos 222x xdx x xdx xdx x d x x -=-=-+⎰⎰⎰⎰★★★20⎰思路:首先换元,后分部积分;解:令t =,则32,3,x t dx t dt ==★★★212(arcsin )x dx ⎰思路:严格按照“反、对、幂、三、指”顺序凑微分即可; 解:22(arcsin )(arcsin )x dx x x x =-⎰⎰222(arcsin )2(arcsin )2(arcsin )2.x x x x x x dx x x x x C =+-=+-=+-+⎰★★★222sin x e xdx ⎰思路:严格按照“反、对、幂、三、指”顺序凑微分即可; 解:方法一: 方法二:★★★23思路:严格按照“反、对、幂、三、指”顺序凑微分即可;解:ln(1))1x d x x =++-+⎰⎰令t=则2,dx tdt =所以原积分)4arctan x C=+-++;★★★24ln(1)x x e dx e +⎰思路:严格按照“反、对、幂、三、指”顺序凑微分即可;解:ln(1)ln(1)()ln(1)1x x x x x x xx xe e dx e d e e e e dx e e---+=+-=-+++⎰⎰⎰ 注:该题中11x dx e +⎰的其他计算方法可参照习题4-2,233; ★★★251ln 1xx dx x +-⎰思路:严格按照“反、对、幂、三、指”顺序凑微分即可; 解:2222111111111lnln ()ln 1122121(1)x x x x x xx dx d x x x dx x x x x x +++--++==-⋅---+-⎰⎰⎰ 注: 该题也可以化为 1ln[ln(1)ln(1)]1xx dx x x x dx x+=+---⎰⎰再利用分部积分法计算; ★★★26sin 2cos dxx x ⎰思路:将被积表达式sin 2cos dxx x 写成22sec tan 2sin 2sin 2sin cos dx xdx d x x x x x ==,然后分部积分即可; 解:22sec tan sin 2cos 2sin 2sin 2sin cos dx dx xdx d xx x xx x x ===⎰⎰⎰⎰2、 用列表法求下列不定积分;知识点:仍是分部积分法的练习;思路分析:审题看看是否需要分项,是否需要分部积分,是否需要凑微分;按照各种方法完成;我们仍然用一般方法解出,不用列表法;★13xxedx ⎰思路:严格按照“反、对、幂、三、指”顺序凑微分即可;解:33333331111111()3().3333933x x x x x x xxe dx xd e xe e dx xe e d x x e C ==-=-=-+⎰⎰⎰⎰ ★2(1)xx e dx +⎰思路:严格按照“反、对、幂、三、指”顺序凑微分即可;解:(1)(1)(1)x x x x x x e dx x de x e e dx xe C +=+=+-=+⎰⎰⎰;★32cos xxdx ⎰思路:严格按照“反、对、幂、三、指”顺序凑微分即可;解:2222cos sin sin 2sin sin 2cos x xdx x d x x x x xdx x x xd x ==-=+⎰⎰⎰⎰★42(1)x xe dx -+⎰思路:分项后分部积分即可;解:222(1)()x x x x x x e dx x e dx e dx x d e e dx -----+=+=-+⎰⎰⎰⎰⎰★5ln(1)x x dx +⎰思路:严格按照“反、对、幂、三、指”顺序凑微分即可;解:222111ln(1)ln(1)()ln(1)-2221x x x dx x d x x x dx x +=+=++⎰⎰⎰★6cos xe xdx -⎰思路:严格按照“反、对、幂、三、指”顺序凑微分即可; 解:cos cos ()cos sin xx x x exdx xd e e x e xdx ----=-=--⎰⎰⎰★3、已知sin xx是()f x 的原函数,求()xf x dx '⎰; 知识点:考察原函数的定义及分部积分法的练习;思路分析:积分 ()xf x dx '⎰中出现了()f x ',应马上知道积分应使用分部积分, 条件告诉你sin xx是()f x 的原函数,应该知道sin ().xf x dx C x=+⎰解:()()()()xf x dx x f x xf x f x dx '=-⎰⎰⎰d()=又2sin cos sin cos sin (),(),();x x x x x x xf x dx C f x xf x x x x --=+∴=∴=⎰★★4、已知()xe f x x=,求()xf x dx ''⎰;知识点:仍然是分部积分法的练习;思路分析:积分()xf x dx ''⎰中出现了(f x '',应马上知道积分应使用分部积分; 解:()(())()()()().xf x dx xd f x xf x f x dx xf x f x C ''''''==-=-+⎰⎰⎰又22(1)(1)(,(),();x x x x x e xe e e x e x f x f x xf x x x x x---''∴=∴)=== ★★★★5、设n I =sin n dx x ⎰,(2)n ≥;证明:211cos 21sin 1n n n x n I I n x n ---=-⋅+--; 知识点:仍然是分部积分法的练习; 思路分析:要证明的目标表达式中出现了n I ,1cos sin n x x -和2n I - 提示我们如何在被积函数的表达式1sin n x中变出1cos sin n xx- 和21sinn x- 呢这里涉及到三角函数中1的变形应用,初等数学中有过专门的介绍,这里1可变为22sin cos x x +;证明:22sin cos x x +1=2222222221222-1sin cos cos sin cos 1sin sin sin sin sin sin cos cos sin sin sin cos sin sin sin cos sin sin sin sin cos sin n n n n n n n n n n n n n n n n n n dx x x x x x I dx dx dx dx dx x xx x x x x x dx I d x I x x x x x n x x x x dx I x x x I x -----+∴===+=+=+=+-⋅-=-⋅+=+⎰⎰⎰⎰⎰⎰⎰⎰⎰22222212222112.1cos cos 1sin sin sin sin cos cos (2)sin sin 1cos 21sin 1n n n n n n n n n n n n n n n n n x x x n dx I I n dx I x x x x x I nI nI I nI n I x xx n I I n x n --------------++=+++=++-+=+---∴=-⋅+--⎰⎰★★★★6、设f x ()为单调连续函数,f x -1()为其反函数,且()()f x dx F x C =+⎰ ,求:1fx x -⎰()d ;知识点:本题考察了一对互为反函数的函数间的关系,还有就是分部积分法的练习; 思路分析:要明白1(())x f f x -=这一恒等式,在分部积分过程中适时替换;解:f x x x f x x f x ⎰⎰-1-1-1()d =()-d(())又1(())x f f x -=又()()f x dx F x C =+⎰习题4-41、 求下列不定积分知识点:有理函数积分法的练习;思路分析:被积函数为有理函数的形式时,要区分被积函数为有理真分式还是有理假分式,若是假分式,通常将被积函数分解为一个整式加上一个真分式的形式,然后再具体问题具体分析;★133x dx x +⎰思路:被积函数为假分式,先将被积函数分解为一个整式加上一个真分式的形式,然后分项积分; 解:3327272739333x x x x x x x +-==-+-+++2 ★★★2 5438x x dx x x +--⎰思路:被积函数为假分式,先将被积函数分解为一个整式加上一个真分式的形式,然后分项积分; 解:545342323338()()()881,x x x x x x x x x x x x x x x x x x x x +--+-+-++-+-==+++---22而3(1)(1),xx x x x -=+-令23811x x A B C x x x x x +-=++-+-,等式右边通分后比较两边分子x 的同次项的系数得:118A B C C B A ++=⎧⎪-=⎨⎪=⎩解此方程组得:843A B C =⎧⎪=-⎨⎪=-⎩★★★3331dx x +⎰思路:将被积函数裂项后分项积分; 解:321(1)(1)x x x x +=+-+,令323111A Bx Cx x x x +=+++-+等式右边通分后比较两边分子x 的同次项的系数得:⎧⎪⎨⎪⎩A+B=0B+C-A=0A+C=3解此方程组得:112A B C =⎧⎪=-⎨⎪=⎩★★★431(1)x dx x +-⎰思路:将被积函数裂项后分项积分; 解:令32311(1)(1)(1)x A B Cx x x x +=++----,等式右边通分后比较两边分子x 的同次项的系数得:0,21,1A B A A B C =-=-+=,解此方程组得:0,1,2A B C ===;★★★5332(1)x dx x x ++⎰思路:将被积函数裂项后分项积分; 解:3333232(1)(1)(1)x x x x x x +=++++,令32321(1)(1)(1)A B C Dx x x x x x =+++++++等式右边通分后比较两边分子x 的同次项的系数得:0320302A B A B C A B C D A +=⎧⎪++=⎪⎨+++=⎪⎪=⎩解此方程组得:2222A B C D =⎧⎪=-⎪⎨=-⎪⎪=-⎩;★★★62(2)(3)xdxx x ++⎰思路:将被积函数裂项后分项积分; 解:22222222(2)(3)(2)(3)(2)(3)(2)(3)x x x x x x x x x x x +-+==-++++++++ 2212(3)(2)(3)x x x =-+++;令22223(2)(3)(3)A B Cx x x x x =+++++++,等式右边通分后比较两边分子x 的同次项的系数得:06509622A B A B C A B C +=⎧⎪++=⎨⎪++=⎩解此方程组得:2222222223(2)(3)(3)2A B x x x x x C =⎧⎪=-∴=--⎨+++++⎪=-⎩★★★7331xdx x -⎰思路:将被积函数裂项后分项积分;解:332333(1)3331111x x x x x x x -+==+--++- 令323111A Bx C x x x x +=+--++,等式右边通分后比较两边分子x 的同次项的系数得: 003AB A BC A C +=⎧⎪-+=⎨⎪-=⎩ 解此方程组得:112A B C =⎧⎪=-⎨⎪=-⎩而222222131313(21)(21)(21)2222222111111x x x x x x x x x x x x x x x x +++++==+=+++++++++++++ ★★★82221(1)x x dx x --+⎰思路:将被积函数裂项后分项积分;解:22222222112(1)1(1)(1)x x x x x x x --=--+++++又由分部积分法可知:222212(1)11dx x dx x x x =++++⎰⎰★★★9(1)(2)(3)xdxx x x +++⎰思路:将被积函数裂项后分项积分; 解:3313(1)(2)(3)(1)(2)(3)(1)(2)(1)(2)(3)x x x x x x x x x x x x x +-==-+++++++++++令3(1)(2)(3)123A B Cx x x x x x =++++++++,等式右边通分后比较两边分子x 的同次项的系数得:054306323A B C A B C A B C ++=⎧⎪++=⎨⎪++=⎩解之得:333233223(1)(2)(3)12332A B x x x x x x C ⎧=⎪⎪=-∴=-+⎨++++++⎪⎪=⎩而111(1)(2)12x x x x =-++++★★★10221(1)(1)x dx x x ++-⎰思路:将被积函数裂项后分项积分; 解:22222112121(1)(1)(1)(1)(1)(1)x x x x x x x x x +-+==+++-+-+- 令22211(1)(1)(1)A B Cx x x x x =++-++-+,等式右边通分后比较两边分子x 的同次项的系数得:0,20,2A B A C A B C +=+=--=;解之得:11,,122A B C ==-=-;★★★1121(1)dx x x +⎰思路:将被积函数裂项后分项积分; 解:令221(1)1A Bx Cx x x x +=+++,等式右边通分后比较两边分子x 的同次项的系数得: 001A B C A +=⎧⎪=⎨⎪=⎩解之得:221111(1)10A xB x x x xC =⎧⎪=-∴=-⎨++⎪=⎩★★★1222()(1)dxx x x ++⎰思路:将被积函数裂项后分项积分; 解:22211()(1)(1)(1)x x x x x x =++++令22211()(1)1A B Cx Dx x x x x x +=++++++,等式右边通分后比较两边分子x 的同次项的系数得: 0,0,0,1A B C A C D A B D A ++=++=++==,解之得:★★★★★1341dx x +⎰思路:将被积函数裂项后分项积分;解:4221(1)(1)x x x +=+-++令411x =++,等式右边通分后比较两边分子x 的同次项的系数得:0001A C B D A C B D +=⎧+-+=++-=⎪⎪+=⎩解之得:412412A B C D ⎧=-⎪⎪⎪=⎪⎪⎨⎪=⎪⎪⎪=⎪⎩注:由导数的性质可证21)1)arctan1x ++-=-本题的另一种解法:注:由导数的性质可证22arctan21xπ=+-; ★★★★★142222(1)x dx x x --++⎰思路:将被积函数裂项后分项积分; 解:222222211(1)(1)x x x x x x x x --++-+=-++++ 又22223112122(1)11x dxdx x x x x x x +=+++++++⎰⎰ 注:本题再推到过程中用到如下性质:本性质可由分部积分法导出;若记22()n ndxI x a =+⎰,其中n 为正整数,0a ≠,则必有:122211[(23)]2(1)()n n n xI n I a n x a --=+--+; 2、 求下列不定积分知识点:三角有理函数积分和简单的无理函数积分法的练习;思路分析:求这两种积分的基本思路都是通过适当的变换化为有理函数积分去完成;★★123sin dxx+⎰思路:分子分母同除以x 2sin 变为2csc x 后凑微分;解:2222()csc cot 63sin 3csc 13cot 4d x dx xdx d x x x x ==-=-+++⎰⎰⎰⎰★★23cos dxx+⎰思路:万能代换解:令tan 2xt =,则22212cos ,;11t dt x dx t t -==++ 注:另一种解法是:★★32sin dxx+⎰思路:万能代换 解:令tan2x t =,则2222sin ,;11t dt x dx t t ==++ ★★41tan dx x+⎰思路:利用变换tan t x =万能代换也可,但较繁 解:令tan t x =,则2arctan ,;1dtx t dx t ==+ ★★51sin cos dxx x++⎰思路:万能代换解:令tan 2xt =,则2222212sin ,cos ,;111t t dt x x dx t t t -===+++ ★★652sin cos dxx x+-⎰思路:万能代换解:令tan 2xt =,则2222212sin ,cos ,;111t t dt x x dx t t t -===+++而22133221(33dt C t t ===++++⎰ ★★★★7(54sin )cos dxx x+⎰思路一:万能代换解:令tan 2xt =,则2222212sin ,cos ,;111t t dt x x dx t t t -===+++ 而22244(585)(1)(585)(1)(1)t t t t t t t =++-++-+,令22411(585)(1)(1)585At B C Dt t t t t t t t +=++-+++-+++,等式右边通分后比较两边分子t 的同次项的系数得:55013301330554A C DBCD A C D B C D ++=⎧⎪++=⎪⎨-+-=⎪⎪+-=⎩解之得:116,;916C D ⎧⎧=⎪⎪⎪⎪⎨⎨⎪⎪=-⎪⎪⎩⎩5A=27B=8 2222221191110891161161458585851191110871()(54sin )cos 161161458585851191110871(54sin )cos 161161458585851ln 16t t t t t t t dx t dt x x t t t t t t dx t dt dt dt dt x x t t t t t t t +=⋅-⋅+⋅-⋅-++++++∴=-⋅+⋅-⋅-⋅+-++++++∴=-+--+-+++++=--⎰⎰⎰⎰⎰22917541ln 1ln(585)arctan()1642435tan 419172ln tan 1ln tan 1ln(5tan 8tan 5)arctan()162162422243t t t t C x x x x x C +++-++-++=--++-++-+思路二:利用代换sin t x = 解:令sin t x x π=,<2,则dxx ==令21(54)(1)5411A B Ct t t t t =+++-+-+,等式右边通分后比较两边分子t 的同次项的系数得:44090551A B C B C A B C ++=⎧⎪+=⎨⎪-+-=⎩解之得:216911161111118(54)(1)9541812112A B t t t t t C ⎧=⎪⎪⎪=∴=⋅+⋅-⋅⎨+-+-+⎪⎪=-⎪⎩注:比较上述两解法可以看出应用万能代换对某些题目可能并不简单★★★★81sin (1cos )sin xdx x x++⎰思路:将被积函数分项得,对两个不定积分分别利用代换cos t x =和万能代换 解:1sin 11(1cos )sin (1cos )sin 1cos x x x x x x+=++++对积分1(1cos)sin dx x x+⎰,令cos ,(0,)t x x π=∈,则dx x == 令22111(1)(1)(1)A B Ct t t t t =++-++-+,等式右边通分后比较两边分子t 的同次项的系数得:0201A B A C A B C +=⎧⎪+=⎨⎪--=⎩解之得:221411111111441412(1)(1)(1)12A B t t t t t C ⎧=⎪⎪⎪=-∴=⋅-⋅-⋅⎨-++-+⎪⎪=-⎪⎩对积分11cos dx x+⎰,令22212tan ,os ,211x t dt t c x dx t t -===++★★9思路:变无理式为有理式,变量替换t =解:令t =则 321,3;x t dx t dt +==★★103思路:变无理式为有理式,变量替换t =;解:令2,2;t x t dx tdt ===★★11思路:变无理式为有理式,变量替换t =解:令21,2;t x t dx tdt =+==222122222(2)1111124444ln 11)1t t t t t tdt dt dt t dtt t t t tdt dt dt t t t C x Ct---∴====-+++++=-+=-+++=-++⎰⎰⎰⎰⎰⎰⎰★★★12思路:变无理式为有理式,变量替换t =; 解:令87,8;t x t dx t dt ===★★★133思路:变无理式为有理式,三角换元; 解:令2tan ,,sec .2x t t dx tdt π=<=则★★★14 思路,三角换元;解:令sin ,;2x a t t π=<则cos dx a tdt =;注: 另一种解法,分项后凑微分;★★★15思路:换元;解:令11x t x +=-,则22.(1)dx dt x -=- 总习题四★1、设()f x 的一个原函数是2x e -,则()().f x =A 2x e -B -22x e -C -42x e -D 42x e - 知识点:原函数的定义考察; 思路分析:略; 解:B;★2、设()arcsin xf x dx x C =+⎰,则()dxf x =⎰; 知识点:原函数的定义性质考察;思路分析:对条件两边求导数后解出()f x 后代入到要求的表达式中,积分即可; 解:对式子()arcsin xf x dx x C =+⎰两边求导数得:★★3、设222(1)ln 2x f x x -=-,且(())ln f x x ϕ=,求()x dx ϕ⎰;知识点:函数的定义考察;思路分析:求出()f x 后解得()x ϕ,积分即可; 解:22222111()1(1)ln ln ,()ln ,(())ln ,1()1211x x t x f x f t f x t x x x ϕϕϕ-+++-==∴=∴=-----又()11(())ln ,,()()11x x f x x x x x x ϕϕϕϕ++=∴∴=--=;★★★4、设F()x 为()f x 的原函数,当>0x 时,有2()F()sin 2f x x x =,且(0)1F =, ()0F x ≥试求()f x ;知识点:原函数的定义性质考察;思路分析:注意到()()dF x f x dx =,先求出()F x ,再求()f x 即可; 解:22()()sin 2()()sin 2f x F x x f x F x dx xdx =∴=⎰⎰;即2221()()sin 2,(())sin 2,2F x dF x xdx F x xdx =∴=⎰⎰⎰ 又21(0)1,1;(())sin 41;(0.)4F C F x x x x =∴=∴=-+>又()0,()F x F x >∴=又22()()sin 2,()f x F x x f x =∴=5、求下列不定积分; 知识点:求不定积分的综合考察; 思路分析:具体问题具体分析;★★1⎰思路:变无理式为有理式,变量替换t =解:令t =则222,,55t tx dx dt -==- ★21)x >⎰思路:变无理式为有理式,变量替换sec x t =; 解:令sec ,02x t t π=<<,则sec tan dx t tdt =;★★★32394x xx x dx -⎰思路:将被积函数2394x x x x - 变为2222()33221[()]1()33x xx xx x --=后换元或凑微分;解:令2()3x t =,则22()ln 33x dt dx =;★★4266(0)x dx a a x >-⎰思路:凑微分;解:23336666632111133()x dx dx dx t x a xa x a x ===---⎰⎰⎰,令, ★★5思路:将被积函数进行配方后换元或先凑微分再换元; 解:方法一:(1dx x =+⎰令11sec ,0,222x tt π+=<<,则1sec tan ;2dx ttdt = 方法二:22(1dxx ==+⎰⎰令2t=∴=再令tan ,2t z z π=<,则2sec ,dtzdz =★★★610(2)dxx x +⎰思路:倒代换解:令1x t =,,则21,dx dt t =-★★★★77cos 3sin 5cos 2sin x xdx x x -+⎰思路:大凡被积函数的分子分母皆为同一个角的正余弦函数的线性组合的形式的积分,一般思路是将被积函数的分子写成分母和分母的导数的线性组合的形式,然后分项分别积分即可;解:7cos 3sin 5cos 2sin (5cos 2sin )x x x x x x '-=+++★★★★8 (1sin )1cos x e x dx x ++⎰思路:分项积分后对前一积分采用分部积分,后一积分不动;解:2(1sin )sin ()(tan )1cos 1cos 1cos 22cos 2x x x xx e x e e xe xdx dx e dx x x x x +=+=++++⎰⎰⎰ ★★★★6、求不定积分:23()()()[]()()f x f x f x dx f x f x ''-''⎰知识点:分部积分法考察兼顾凑微分的灵活性;思路分析:分项后,第二个积分显然可凑现成的微分,分部积分第二个积分,第一个积分不动,合并同种积分,出现循环后解出加一个任意常数即可;解:2233()()()()()()[]()()()()f x f x f x f x f x f x dx dx dx f x f x f x f x ''''-=-''''⎰⎰⎰ 而22223333()()()()()()()()()()()()()f x f x f x f x f x dx df x f x f x d f x f x f x f x '''''==-''''⎰⎰⎰ ★★★★7、设tan (1)n n I xdx n =>⎰,,求证:121tan 1n n n I x I n --=--,,并求5tan xdx ⎰; 知识点:分部积分法考察,三角恒等式的应用,凑微分等;思路分析:由要证明的目标式子可知,应将tan n x 分解成22tan tan n x x -,进而写成22tan (sec 1)n x x --,分部积分后即可得到2n I -;证明:2222tan tan tan tan (sec 1)n n n n I xdx x xdx x x dx --===-⎰⎰⎰22121tan tan tan tan 1n n n n xd x xdx x I n ----=-=--⎰⎰; ★★★8、().B = 思路:化无理式为有理式,三交换元; 解:11x x +=-令sin ,2x t t π=<,则cos dx tdt =;★★★9、设不定积分1(1)xxdx x xe +=+⎰1I ,若x u xe =,则有()D ; 思路:x u xe =,提示我们将被积函数的分子分母同乘以x e 后再积分;解:1(1)(1)(1)x x x xx e x dx dx x xe e x xe ++==++⎰⎰1I 又()(1);x x x du e xe dx e x dx =+=+2,(1)duI u u ∴==+⎰1I 选()D ;10、求下列不定积分:知识点:求无理函数的不定积分的综合考察; 思路分析:基本思路——将被积函数化为有理式;★★★★1、思路:先进行倒代换,在进行三角换元 ; 解:令1x t =,则21dx dt t=-; 令2tan ,02tu u π=<<,则22sec dtudu =;★★★2、.思路:进行三角换元,化无理式为有理式; 解:令sec ,02x t t π=<<,则sec tan ,dx t tdt =注: 11(arccos )(arcsin )xx''=-★★★3、.思路:进行三角换元,化无理式为有理式; 解:令sin ,02x t t π=<<,则cos dx tdt =;★★★★★4、思路:进行三角换元,化无理式为有理式; 解:令sin ,02x t t π=<<,则cos dxtdt =;★★★5、思路:进行三角换元,化无理式为有理式; 解:令2sin ,02x t t π=<<,则2cos dx tdt =;11、求下列不定积分:知识点:较复杂的分部积分法的考察;思路分析:基本思路——严格按照“反、对、幂、三、指”顺序凑微分;★★★1、ln(x dx +⎰思路:分部积分;解:ln(ln(x dx x x dx +=+-+⎰★★2、2ln(1)x dx +⎰思路:分部积分;解:222222222(1)2ln(1)ln(1)ln(1)11x x x dx x x dx x x dx x x +-+=+-=+-++⎰⎰⎰ 2221ln(1)22ln(1)22arctan 1x x dx dx x x x x C x=+-+=+-+++⎰⎰; ★★★★3、4tan sec x x xdx ⎰思路:分部积分; 解:4343tan sec sec sec sec sec (sec x x xdx x xd x x x x x ==-⎰⎰⎰★★★4、22arctan 1x xdx x +⎰思路:分项后分部积分;解:22222111arctan arctan arctan arctan 111x x xdx xdx xdx xdx x x x +-==-+++⎰⎰⎰⎰ ★★★★5、23ln(1)x dx x +⎰思路:分部积分后 倒代换;解:22222232ln(1)111ln(1)()ln(1)22221x x dx x d x x x xdx xx ---+=+-=-+++⎰⎰⎰ 对于积分2(1)dx x x +⎰应用倒代换,令1x t =,则21dx dt t =-, ★★★6、1cos xdx x +⎰思路:将被积函数变形后分部积分; 解:2221sec sec tan 1cos 222222cos 2xx x x x x dx dx x dx x d xd x x====+⎰⎰⎰⎰⎰ 11cos tanln tan ln 1cos 222x x xx C x x C +=++=+++; ★★★12、求不定积分:,n x n I x e dx n =⎰为自然数;知识点:较复杂的分部积分法的考察;思路分析:基本思路——严格按照“反、对、幂、三、指”顺序凑微分,推一个递推关系式; 解:1x I xe x C =-+★★★13、求不定积分:2(23)cos 2.x x xdx -+⎰知识点:较复杂的分部积分法的考察;思路分析:基本思路——严格按照“反、对、幂、三、指”顺序凑微分,分项后分别积分; 解:22(23)cos2cos22cos23cos2x x xdx x xdx x xdx xdx -+=-+⎰⎰⎰⎰14、求下列不定积分:知识点:求解较复杂的有理函数和无理函数的不定积分; 思路分析:基本思路——有理式分项、无理式化为有理式;★★★★1、118432x dxx x ++⎰思路:将被积函数化为一个整式加上一个真分式的形式,然后积分;。
不定积分59例
不定积分59例1、⎰⎰+-=++-==+--C x C x dx x x dx 11)2(11)2(222、⎰⎰+=++-==+--C x C x dx x xdx 21)21(11)21(213、⎰+-=⎪⎪⎭⎫⎝⎛+--C x x dx x x arctan 3arcsin 5131522 4、()()()C x e e x dx dx e dx x e xxx x +-=-=⎪⎭⎫ ⎝⎛-⎰⎰⎰ln 21ln 2121ππππ5、()⎰⎰⎰++-=-=-C x x xdx x xdx dx x x x csc cot cot csc csc cot csc csc 26、⎰⎰⎰⎰++-=+=+=C x x xdx xdx dx xx x x x x dx tan cot sec csc cos sin cos sin cos sin 222222227、()⎰⎰+--=-=C x x dx x dx x cot 1csc cot 228、⎰⎰⎰++-=⎪⎭⎫ ⎝⎛++-=++-=+C x x x dx x x dx x x dx x x arctan 3111111113222424 9、()C x udu u x x xd xdx +-===⎰⎰⎰)5cos(51sin 51555sin 515sin 10、()()()()⎰⎰+--=+-+⋅-=---=-+C x C x x d x dx x 81777211612117121)21(212121 11、()C a x a a x a x d a x a dx +⎪⎭⎫ ⎝⎛=+=+⎰⎰arctan 11122212、()()Ca x a x a x d xa dx +⎪⎭⎫⎝⎛=-=-⎰⎰arcsin 1222()()⎰⎰=-n n n n dx x f ndx x x f 11 13、()()()()C x C x x d x dx x x +--=+-+⋅-=---=-+⎰⎰3211212122131111211121114、()C e x d e dx e x x x x +-=--=---⎰⎰333323131 15、⎰⎰⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-=+⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-=x d dx x C x x d x dx x x 111sin 11cos 1cos 12216、⎰⎰⎪⎪⎭⎫ ⎝⎛=+==x d dx x Cx x d x dx xx 21sin 2cos 2cos 17、⎰⎰⎰+=+-=-==C x C x x xd dx x x xdx sec ln cos ln cos cos cos sin tan 18、⎰⎰⎰+-=+===C x C x x xd dx x x xdx cos ln sin ln sin sin sin cos cot 19、()()()⎰⎰⎰++=++=++=C x x x x x x d dx x x x x x xdx tan sec ln tan sec tan sec tan sec tan sec sec sec 20、()()()⎰⎰⎰+-=--=--=C x x xx x x d dx x x x x x xdx cot csc ln cot csc cot csc cot csc cot csc csc csc21、()⎰⎰+==C x xxd dx x x ln ln ln ln ln 1 22、()()()⎰⎰++=++=+C x x x d x x dx 1tan ln 1tan 1tan tan 1cos 2 23、()()⎰⎰++=++=+C e ee d dx e e xx x x x 1ln 111 24、()()⎰⎰++-=+-+=+C e x ee e e dx x x x x x 1ln 111 25、()⎰⎰+=+=+C e e de dx e e x x xxx arctan 112226、()C e x d e dx e xx x x x +-=+--=++-+-+-⎰⎰212212121127、⎰⎰⎰⎰⎪⎭⎫⎝⎛++---=⎪⎭⎫ ⎝⎛+--=-a x a x d a x a x d a dx a x a x a ax dx )()(21112122 C ax a x a ++-=ln 2128、dx x x dx x x x dx x x x ⎰⎰⎰⎪⎭⎫ ⎝⎛++-=+--+=+--2222213113112 ()()C x x x xdx x x d x +-+-=+-++-=⎰⎰arctan 31ln 211311212222 29、()()⎰⎰⎰⎰+--+-+-=+---=+--413525221526222152422222x dxx x x x d dx x x x dx x x x ()C x x x +--+-=21arctan 2352ln 21230、()C x x x xd x dx x xdx +-=⋅-=-=⎰⎰⎰2sin 412122cos 21212122cos 1sin 2 31、()⎰⎰+--=+=C x x dx x x xdx x 2cos 418cos 1612sin 8sin 213cos 5sin32、⎰⎰⎰⎰+====C x x xd x x x d x xdx dx x x sin ln ln sin ln sin ln sin ln sin sin sin ln sin cos sin ln cot 33、C x x xx d xdx dx x x x dx +-=+=-=+⎰⎰⎰⎰cos 1tan cos cos sec cos sin 1sin 1222 34、()⎰⎰⎰⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=+=+44csc 214sin 2sin cos πππx d x x dx x x dx C x x +⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+=4cot 4csc ln 21ππ 35、dx x a ⎰-22解法一:令)cos (sin t a t a x 或=,则tdt a dx t a x a cos ,cos 22==-原式=()⎰⎰⎰⎰⎪⎭⎫⎝⎛+=+=⋅t td dt a dt t a tdt a t a 22cos 21222cos 1cos cos 22C ax a a x a a x a C t a t a +-⋅⋅⋅+=++=22222224arcsin 22sin 42 C x a x a x a +-+=22221arcsin 21解法二:三角形上面是圆顶的面积很容易求,地下的三角形加上上面的扇形。
不定积分100题
不定积分100题(附答案)容易题1—60,中等题61—105,难题106—122. 1.设⎰-=1tan cos 2x x dxI , 则=I ( ). (C).;)1(tan 221C x +-2.设⎰-=12x xdx I ,则=I ( )。
(D).C x+-1arcsin. 3.设⎰=x dxI sin ,则=I ( ). (B).C x c x +-tan csc ln4.设⎰=axdx I 2 ,则=I ( )。
(A).C ax+2; 5.设⎰++=dx e e I xx 113,则=I ( ). (B).C x e e x x ++-2216.设⎰=xdx I tan ,则( ). (D).C x +-sin ln . 7.设⎰=xdx I ln 则( )。
(D).C x x x I +-=ln 8.设⎰=xdx I arctan , 则=I ( ). (B).C x x x ++-1ln arctan 29.设 ⎰=xdx x I cos sin ,则( ). (A).C x I +-=2cos 4110.设⎰+=21x dx I , 则=I ( ). (B)C x x +++21ln11.设211)(xx f -=,则的一个原函数=)(x F ( )。
(A).x x -+11ln 21 12.设)(x f 为可导函数,则( )。
(C).⎰=')())((x f dx x f13.设⎰=xdx I arcsin ,则( ). (C).C x x x +-+21arcsin14.=+⎰x x dx sin 2)2sin(( ) (B )c x x ++|2tan |ln 412tan 812 15.=-⎰)4(x x dx ( ) (C )c x+2arcsin2 16.=-⎰dx x x 21ln ( ) (B )c xx+-ln17.设x xsin 为)(x f 的一个原函数,且0≠a ,则⎰dx a ax f )(=( ) (A )xa ax 3sin19.欲使⎰⎰=dx x f dx x f )()(λλ,对常数λ有何限制?( ) 0≠λ。
不定积分练习题 带答案
不定积分练习题带答案题目一计算以下不定积分:$$ \\int (3x^2 - 4x + 2)dx $$解答:首先,根据不定积分的性质,我们可以将不定积分的运算符号移到每个项上,然后分别对每个项进行积分。
$$ \\int (3x^2 - 4x + 2)dx = \\int 3x^2dx - \\int 4xdx +\\int 2dx $$对每个项分别进行积分运算:$$ \\int 3x^2dx = \\frac{3}{3}x^3 + C_1 = x^3 + C_1 $$$$ \\int 4xdx = 4 \\cdot \\frac{1}{2}x^2 + C_2 = 2x^2 + C_2 $$$$ \\int 2dx = 2x + C_3 $$将每个项的积分结果相加,得到最终的答案:$$ \\int (3x^2 - 4x + 2)dx = x^3 + 2x^2 + 2x + C $$这里的C是常数,表示积分常数,它可以任意取值。
题目二计算以下不定积分:$$ \\int \\frac{1}{x}dx $$解答:对于这个不定积分,我们可以使用换元积分法来计算。
令$ u = \ln|x| $,则 $ du = \frac{1}{x}dx $。
将 $ u = \ln|x| $ 代入原积分,得到:$$ \\int \\frac{1}{x}dx = \\int du = u + C = \\ln|x| + C $$这里的C是常数,表示积分常数,它可以任意取值。
题目三计算以下不定积分:$$ \\int e^x dx $$解答:这个不定积分是一个基本的指数函数积分。
根据指数函数的性质,对于任意实数 $ a $,有 $ \int e^{ax} dx =\frac{1}{a}e^{ax} + C $。
将原积分与上述性质进行对比,可以看出 a=1,所以:$$ \\int e^x dx = \\frac{1}{1} e^x + C = e^x + C $$这里的C是常数,表示积分常数,它可以任意取值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不定积分典型例题一、直接积分法直接积分法是利用基本积分公式和不定积分性质求不定积分的方法,解题时往往需对被积函数进行简单恒等变形,使之逐项能用基本积分公式. 例1、求 dx x x x ∫−)11(2解 原式= C x x dx x x ++=−∫−41474543474)(例2、求 dx e e x x ∫++113解 原式= C x e e dx e e x xx x ++−=+−∫2221)1( 例3、求 dx xx ∫22cos sin 1解 原式 ∫∫∫+=+=dx x dx x dx x x x x 222222sin 1cos 1cos sin cos sin C x x +−=cot tan 例4、 ∫dx x2cos 2 解 原式= C x x dx x ++=+∫2sin 2cos 1 例5、 dx xx ∫+221 解 原式∫∫+−=+−+=dx x dx x x )111(111222C x x +−=arctan 注:本题所用“加1减1”方法是求积分时常用的恒等变形技巧.二、第一类换元积分法(凑微分法)C x G Cu G duu g dxx x g dx x f ux ++====∫∫∫=)]([)()()(')]([)()(ϕϕϕϕ还原求出令凑成在上述过程中,关键的一步是从被积函数)(x f 中选取适当的部分作为)('x ϕ,与dx 一起凑成 )(x ϕ的微分 du x d =)(ϕ且 ∫du u g )(易求.例1、求 ∫dx xxcos tan 解 原式= ∫∫−=x x xd dx x x x cos cos cos cos cos sin C xx d x +=−=−∫cos 2cos )(cos 23 例2、求 ∫−dx xx x 2arcsin解 原式)()(1arcsin 211arcsin 2x d x x dx xxx ∫∫−=⋅−=C x x d x +==∫2)(arcsin )(arcsin arcsin 2注)(21x d dx x= 例3、求 ∫−−dx xx 2491解 原式∫∫−−+−=−)49()49(81)2(3)2(21221222x d x x x dC x x x x x d +−+=−+−=∫222494132arcsin 214941)32(1)32(21例4、求 ∫+⋅+dx xx x 2211tan解 原式= C x x d x ++−=++∫|1cos |ln 11tan 222例5、求 dx x x x ∫−−12解 原式= ∫∫∫−+=−−−+dx x x dx x dx x x x x x 1)1()1(22222 C x x x d x x +−+=−−+=∫2323223)1(313)1(1213例6、求 ∫+dx xtan 11解 原式= ∫∫+−+=+dx xx xx dx x x x sin cos sin cos 1(21cos sin cos C x x x x x d x x x +++=⎥⎦⎤⎢⎣⎡+++=∫|)sin cos |ln (21)sin (cos sin cos 121 例7、求 ∫−+−dx xxx 11ln 112 解 原式=C xx x x d x x +−+=−+−+∫11ln 41)11(ln 11ln 212 例8、求 ∫+dx e x11解 原式= ∫∫∫+−=+−+dx e e dx dx e e e x x x xx 111 C e x e d edx xx x++−=++−=∫∫)1ln()1(11例9、求 ∫−+dx e e xx 1解 原式= C e e d e dx e e x x x x x +=+=+∫∫arctan )()(11122 例10、求 ∫+dx xxsin 1sin解 原式= ∫∫∫−−=+−dx xxdx dx x 2cos sin 1)sin 111( dx xxdx x x ∫∫+−=22cos sin cos 1C x x x ++−=sec tan 例11、求 ∫−xx dxln 32解 原式 )(ln )ln 32(21x d x −∫−=C x x d x +−+−⋅−=−−−=∫−2121)ln 32(121131)ln 32()31()ln 32( C x +−−=ln 3232例 12、求 ∫+dx xb x a 2222cos sin 1解 原式= ∫∫+=+)tan ()tan (111)(tan tan 12222x badx ba ab x d xa b C x baab +=)tan arctan(1 例13、求 ∫++dx x x 1164解 原式=∫∫∫+++−=+++−dx x x dx x x x dx x x x x 232322226224)(1)(1)(11 C x x dx x dx x ++=+++=∫∫33232arctan 31arctan )(113111 例14、求 ∫+dx x x )1(18解 原式=∫∫∫+−=+−+dx x x dx x dx x x x x 8788811)1(1C x x ++−=)1ln(81||ln 8例15、求 ∫+−−dx x x x 54232解 原式= dx x x x x x x d ∫∫+−++−+−541454)54(23222∫+−−++−=1)2()2(4|54|ln 2322x x d x x C x x x +−++−=)2arctan(4|54|ln 232 注 由于分子比分母低一次,故可先将分子凑成分母的导数,把积分化为形如 ∫++dx cbx ax 21的积分(将分母配方,再凑微分). 例16、已知 2ln )1(222−=−x x x f ,且 x x f ln )]([=ϕ,求 ∫dx x )(ϕ.解 因为 1111ln )1(222−−+−=−x x x f ,故 11ln )(−+=x x x f ,又因为x x x x f ln 1)(1)(ln)]([=−+=ϕϕϕ,得x x x =−+1)(1)(ϕϕ,解出11)(−+=x x x ϕ,从而C x x dx x dx x x dx x +−+=−+=−+=∫∫∫|1|ln 2)121(11)(ϕ 例17、求 ∫dx x4cos 1解 原式C x x x d x x xd ++=+==∫∫322tan 31tan tan )tan 1(tan sec例18、求 ∫++dx x x x2)ln (2ln 1 解 原式=C x x x x x x d +=+∫)2ln arctan(21)ln (2)ln (2三、第二类换元法设 )(t x ϕ=单调可导,且0)('≠t ϕ,已知 C t F dt t t f +=∫)()(')]([ϕϕ,则C x F Ct F dt t t f dxx f x t t x ++==−===∫∫−)]([)()(')]([)(1)()(1ϕϕϕϕϕ还原令选取代换 )(t x ϕ=的关键是使无理式的积分化为有理式的积分(消去根号),同时使 dt t t f ∫)(')]([ϕϕ易于计算.例1、求 ∫−+221)1(xx xdx解 令 tdt dx t x cos ,sin ==原式=∫∫−−=+t td t t tdt t 22cos 2cos cos )1(sin cos sin t d tt cos )cos 21cos 21(221∫++−−= C xx C t t +−−−+−=+−+−=221212ln 221cos 2cos 2ln 221例2、求 ∫+241xxdx解 令 tdt dx t x 2sec ,tan ==原式=t d t t t d ttt tdt t t tdt sin )sin (sin sin sin sin 1sin cos sec tan sec 24424342∫∫∫∫−−−=−==⋅ C xx x x C t t ++++−=++−=)1(3)1(sin 1sin 13123323 例3、求 dx x x ∫−229解 令 t x sec 3=,则 tdt t dx tan sec 3⋅=原式= ∫∫∫−==⋅⋅dt t t dt tttdt t t t )cos (sec sec tan tan sec 3sec 9tan 3221sin |tan sec |ln C t t t +−+=12222ln C xa x a a x a x +−−−+=C xa x a x x +−−−+=2222ln 例4、求 ∫+dx x x )2(17解 令 t x 1=,则dt tdx 21−=,原式∫∫∫++−=+−=−+=)21(21114121)1(21777627t d t dt t t dt t ttC x x C t +++−=++−=||ln 21|2|ln 141|21|ln 14177 注 设n m ,分别为被积函数的分子,分母关于x 的最高次数,当1>−m n 时,可用倒代换求积分.例5、求 dx x xx ∫−+1122解 令t x 1=,dt tdx 21−=原式 ∫∫−+−=−−+=dt t t dt t t t t 222211)1(11111∫∫−−+−−=22212)1(11t t d dt tC xx x C t t +−−=+−+−=1arcsin 11arcsin 22例6、求 dx xx x∫−432解 原式 ∫∫∫−⋅=−=⋅−===dt t t t dt t t dt t t t t tx dt t dx 11211212541051411386121211令∫∫−++=⋅−+−=5554510)111(51211112dt t t dt t t t C t t t +−++=|1|ln 51251210125510 C x x x +−++=1ln 5125125612512565例7、求 ∫+xedx 1解 令t e x =+1,12−=t e x ,dt t tdx 122−=原式= C t t dt t dt t t t ++−=−=−⋅∫∫11ln 11212122C e e x x +++−+=1111ln例8、求 ∫+dx xx xln 1ln解 令x t ln 1+=原式∫∫−=+=dt tt x d x x 1ln ln 1lnC x x C t t dt tt ++−=+−=−=∫ln 1)2(ln 32232)1(2123例9、求 dx x x ∫++−+1111 解 令 tdt dx t x t x 2,1,12=−==+因为原式dx xx x x dx x x x ∫∫+−+=+−+=12||ln 2122而 ∫∫∫−+=−=+dt t t dt t dx x x 111(2121222 C x x x C t t t +++−+++=++−+=1111ln 1211ln2原式=C x x x x x +++−+−+−+1111ln214||ln 2=C x x x +++++−11ln 414四、分部积分法分部积分公式为 ∫∫−=vdx u uv dx uv ''使用该公式的关键在于 ',v u 的选取,可参见本节答疑解惑4. 例1、求 ∫dx e x x 3解 原式=x x x x x x de x e x e x de x e x de x ∫∫∫+−=−=63323233 C e xe e x e x x x x x +−+−=66323 例2、求 ∫dx xx 2cos 22 解 原式∫∫+=+=xdx x x dx x x cos 2161)cos 1(21232 ∫∫−+=+=xdx x x x x x d x x sin sin 2161sin 21612323 ∫∫−++=++=xdx x x x x x x xd x x x cos cos sin 2161cos sin 21612323 C x x x x x x +−++=sin cos sin 216123 例3、求 ∫dx e x 3解 原式C e te e t det dt e t t t t tttx dtt dx ++−==∫∫==66333222332令C eex ex xxx++−=333663332例4、求 ∫dx x )cos(ln解 原式 ∫+=dx x x x )sin(ln )cos(ln∫−+=dx x x x x x )cos(ln )sin(ln )cos(ln移项,整理得原式C x x x++=)]sin(ln )[cos(ln 2注 应用一次分部积分法后,等式右端循环地出现了我们所要求出的积分式,移项即得解,类似地能出现循环现象的例题是求如下不定积分:∫∫xdx e xdx e xx ββααsin cos 或例5、求 ∫++dx x x )1ln(2解 原式 dx x x x x x ∫+−++=221)1ln(C x x x x ++−++=221)1ln(例6、求 ∫dx xx23ln解 原式= ∫∫−−=−=1(ln 3ln )1(ln 233xxd x x x xdC x x x x x x x x xd xx x x +−−−−=⎥⎦⎤⎢⎣⎡+−−=∫6ln 6ln 3ln )1(ln 2ln 3ln 2323 例7、推导 ∫+dx a x n)(122的递推公式 解 令 ∫+=dx a x I nn )(122∫++−+++=dx a x a a x n a x x I n n n 12222222)(2)(∫++−++=dx a x na nI a x x n n n 122222)(122)(122222)(+−++=n n nI na nI a x x ⎥⎦⎤⎢⎣⎡−++=+n nn I n a x xna I )12()(212221 ⎥⎦⎤⎢⎣⎡−++−=−−11222)32()()1(21n n n I n a x xa n I 例8、推导 ∫=xdx I n n tan 的递推公式.解 ∫⋅=−xdx x I n n 22tan tan ∫−⋅=−dx x x n )1(sec tan 22∫∫−−−⋅=xdx xdx x n n 222tan sec tan 2122tan 11)(tan tan −−−−−−=−=∫n n n n I x n I x xd 注 应用分部积分法可以建立与正整数n 有关的一些不定积分的递推公式. 例9、已知)(x f 的一个原函数是 2x e −,求 ∫dx x xf )(' 解 原式C e x xf dx x f x xf x xdf x +−=−==−∫∫2)()()()( 例10、求 ∫+dx x x x )1ln(arctan 2解 因为 ∫+dx x x )1ln(2∫++=)1()1ln(2122x d x C x x x +−++=22221)1ln()1(21 所以 原式= ∫⎥⎦⎤⎢⎣⎡−++22221)1ln()1(21arctan x x x xd[]∫⎥⎦⎤⎢⎣⎡+−+−−++=2222221)1ln(21arctan )1ln()1(21x x x x x x x []C x x xx x x x +++−−−++=23)1ln(23)1ln()1(arctan 212222 注 本题是三类函数相乘的形式,这类问题大多采用本题的方法.例11、求 ∫+dx x xe x)1(2arctan 解 令 tdt dx t x 2sec ,tan ==原式dt e t t dt tte t t t ∫∫=⋅=cos sin sec sec tan 42 C t t e dt te t t+−==∫)2cos 2(sin 1012sin 21C x x x e x ++−+=)1(5)1(22arctan 例12、求 xdx x x arctan 122∫+ 解 原式= xdx x arctan )111(2∫+−∫∫+−=xdx x dx x arctan 11arctan 2 C x x x x +−+−=22)(arctan 21)1ln(21arctan例13、求 ∫−+⋅dx x x x x 22211arcsin 解 令 tdt dx t x t x cos ,arcsin ,sin ===,原式 ∫∫∫+=⋅+=tdt dt t ttdt tt t t 222sin cos cos sin )sin 1(2221cot cot 21)cot (t tdt t t t t td ∫∫++−=+−= C t t t t +++−=221|sin |ln cosC x x x x x +++−−=22)(arcsin 21||ln arcsin 1注 直接积分法、换元法、分部积分法是求不定积分最重要的方法,主要用到了“拆、凑、换、分”的技巧,同时应注意这些方法的综合运用. 五、有理函数的积分有理函数的积分总可化为整式和如下四种类型的积分: (1) C a x A dx ax A+−=−∫||ln (2) )1()(11)(1≠+−−−=−−∫n C a x n A dx a x A n n (3) ∫=∫∫+⎥⎦⎤⎢⎣⎡−++=+++−n upx ap q nna u dup q p x dxdx q px x dx )(44)2()(2224422222=令=令 (4) ∫∫++−+++−−=+++−n n n q px x dxp a q px x n dx q px x dx a x )()2()(1)1(21)()(2122,其中 042<−q p .这就是说有理函数积分,从理论上讲,可先化假分式为整式与真分式之和,再将真分式化为若干部分分式之和,然后逐项积分,但这样做有时非常复杂,因此我们最好先分析被积函数的特点,寻求更合适,更简捷的方法也是很必要的. 例1、求 ∫+−322x x dx解 原式= C x x x d x dx +−=−+−=+−∫∫21arctan 21)1(2)1(2)1(22例2、求 ∫++++dx x x x x 4545242 解 原式= ∫∫++++++dx x x xdx x x x )4)(1(5)4)(1(422222 2222222)4111(65arctan )4)(1(251dx x x x x x dx x dx ∫∫∫+−++=++++= C x x x ++++=41ln 65arctan 22 本题若用待定系数法,较麻烦一些,也可获得同样的结果.事实上,设 41454522242+++++=++++x DCx x B Ax x x x x ,通分后应有 )1)(()4)((45222+++++=++x D Cx x B Ax x x比较等式两端x 的同次幂的系数,得0=+C A ,0=+D B ,54=+C A ,44=+D B 由此, 1,35,1,35−=−===D C B A故原式= dx x x x x ∫⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+−−+++4135113522C x x x ++++=arctan 41ln 6522 例3、求 ∫−13x xdx解 设11123++++−=−x x C Bx x A x x ,通分后应有)1)(()1(2−++++=x C Bx x x A x 比较等式两端x 的同次幂的系数,得0 ,1 ,0=−=+−=+C A C B A B A ,由此,31,31,31=−==C B A故原式= dx x x x x ∫⎥⎦⎤⎢⎣⎡++−−−)1(31)1(312∫∫∫+++++++−−=43)21()21(211126113122x x d dx x x x x dx C x x x x +++++−=312arctan 311)1(ln 6122例4、求 ∫−)1(42x x dx解 原式= dx x x dx x x dx x x x x ∫∫∫+−−−=−−+)1)(1(1)1(1)1()1(22224222 dx x x dx x x ∫∫++−−−+=)1111(21)111(2222 ∫∫+−−+−=dx x dx x x 22112111211 C x x x x +−−++−=arctan 2111ln411 注:本题若用待定系数法,应当将被积函数分解为)1)(1)(1(1)1(12242x x x x x x ++−=−22111x F Ex x D x C x B x A +++++−++= 然后再确定系数,显然这样做比较麻烦,也可获同样结果,此处从略.例5、求 ∫++dx x x dxx 334811 解 令u x =4,则dx x du 34=,于是,原式∫∫+−++=++=du u u du u u u )24111(41234122 )|2|ln 4|1|ln (41C u u u ++−++=C x x x ++−++=)2ln()1ln(414444例6、求 ∫+dx x x 325)32( 解 令 dt xdx t x t x =−==+4,23,3222,从而, 原式= ∫∫+−=⋅−dt tt t dt t t 961(16144)3(3232 C t t t +−+=296||(ln 1612C x x x ++−+++=)32(29326|32|[ln 1612222 例7、求 ∫++dx x x x 45244解 45)45(145242244+++−+=++x x x x x x 设 4145)45(222211242+++++=+++−x B x A x B x A x x x ,通分后应有)1)(()4)(()45(2222112+++++=+−x B x A x B x A x由此, 316,0,31,02211−====B A B A ,故原式= dx x x ∫⎥⎦⎤⎢⎣⎡+−++)4(316)1(31122C xx x +−+=2arctan 38arctan 31例8、求 ∫+210)1(x x dx解 由于2109102101010210)1()1(1)1(1)1(1+−+=+−+=+x x x x x x x x x x 2109109)1()1(1+−+−=x x x x x 原式= dx x x x x x ∫⎥⎦⎤⎢⎣⎡+−+−2109109)1()1(1∫∫++−++−=210101010)1()1(1011)1(101||ln x x d x x d x C x x x ++++−=)1(101)1ln(101||ln 1010C x x x ++++=)1(1011ln 101101010注 对被积函数先做初等变形常常可以使问题得到简化,常见的初等变形有:分子分母同乘一个因子;有理化;加一项或者减一项以及利用三角函数恒等变形等.六、三角函数有理式的积分一般从理论上讲,三角函数有理式的积分 ∫dx x x R )cos ,(sin 可通过万能代换2tan xt =化为代数有理式的积分,但有时较繁,因此我们常采用三角恒等变形,然后再求解. 例1、求 ∫xx dx4cos sin 解 原式= ∫∫∫+=+x x dxdx x x dx x x x x 24422cos sin cos sin cos sin cos sin ∫∫∫++−=x dx dx x x x d xsin cos sin )(cos cos 124 ∫+−=|2tan |ln cos )(cos cos 3123x x x d x C x x x +++=|2tan |ln cos 1cos 313例2、求 ∫+dx x sin 1解 原式= ∫++dx x x x x 2cos 2sin 22cos 2sin 22∫∫+=+=dx xx dx x x )2cos 2(sin )2cos 2(sin2 C x x ++−=2sin 22cos 2例3、求 ∫+−5cos sin 2x x dx解 令2tan x t =,则222212,11cos ,12sin tdtdx t t x t t x +=+−=+=,于是 原式=C x C t t t dt +⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛+=+⎟⎠⎞⎜⎝⎛+=++∫512tan 3arctan 51513arctan 512232 例4、求 ∫+dx xxsin 1sin解 原式= ∫−dx x x x 2cos )sin 1(sin dx x xdx x x ∫∫−−=222cos cos 1cos sin C x x x++−=tan cos 1例5、求 ∫+dx xx xcos sin sin解 原式=dx x x x x dx x x x x x x ∫∫⎟⎠⎞⎜⎝⎛+−+=+−++cos sin cos sin 121cos sin cos sin cos sin 21 C x x x x x x x d x ++−=++−+=∫|)cos sin |ln (21cos sin )cos (sin 2121 例6、求 ∫xdx x cos 5sin解 原式=C x x dx x x +−−=+∫6cos 1214cos 81]6sin 4[sin 21 注 积化和差公式])cos()[cos(21cos cos ])cos()[cos(21sin sin ])sin()[sin(21cos sin x x x x x x x x x x x x βαβαβαβαβαβαβαβαβα−++=⋅+−−=⋅−++=⋅例7、求 ∫+xx dxcos )sin 2(2解 令 dt xdx t x ==cos ,sin于是原式= dt t t t t t t dt∫∫−+−++=−+)1)(2()1()2(31)1)(2(222222C tt t t dt t dt ++−+=++−=∫∫2arctan(23111ln 6123113122 C x x x ++−+=2sin arctan(231sin 1sin 1ln 61注 形如∫dx x x R )cos ,(sin 的有理函数的积分,一般可利用代换 t x=2tan 化为有理函数的积分.(i) 若 )cos ,(sin )cos ,sin (x x R x x R −=−或)cos ,(sin )cos ,(sin x x R x x R −=− 成立,最好利用代换 t x =cos 或对应的 t x =sin .(ii) 若等式 )cos ,(sin )cos ,sin (x x R x x R =−−成立,最好利用代换t x =tan .例8、求 ∫+dx xx x33cos sin sin21 解 令 t x =tan ,则 dt xdx =2sec ,于是原式= ∫∫∫∫+−+−+=+−++−−+=+t dt dt t t t dt t t t t t t dt t t 1311131)1)(1()1()1(31122223 = C t t t t ++−−++−|1|ln 31)312arctan(31)1ln(612 =C x x x x +−+++−31tan 2arctan(31)tan 1(1tan tan ln 6122。