与圆有关的轨迹方程的求法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
与圆有关的轨迹方程的求法
若已知动点P 1(α ,β)在曲线C 1:f 1(x,y )=0上移动,动点P (x,y )依动点P 1而动,它满足关系:
⎩
⎨
⎧βα=βα=),()
,(y y x x ① 则关于α 、β反解方程组①,得⎩⎨
⎧=β=α)
,()
,(y x h y x g ②
代入曲线方程f 1(x,y )=0,即可求得动点P 的轨迹方程C :f (x,y )=0.
例1、(求轨迹):已知线段AB 的端点B 的坐标是(4,3),端点A 在圆4)1(2
2
=++y x 上运动,求线段AB 的中点M 的轨迹方程.
【例2】已知点A (3,0),点P 在圆x 2+y 2
=1的上半圆周上,∠AOP 的平分线交P A 于Q ,求点Q 的轨迹方程.
【法一】如图所示,设P (x 0,y 0)(y 0>0),Q (x ,y ). ∵OQ 为∠AOP 的平分线,∴
3
1
||||==OQ OP QA PQ , ∴Q 分P A 的比为
3
1. ∴⎪⎪⎩⎪⎪⎨⎧=-=⎪
⎪⎪⎪⎩
⎪⎪⎪⎪⎨⎧
=+⨯+=+=+⨯+=y y x x y y y x x x 3413443311031)1(433
1131300000
0即
又因
202
y x +
=1,且
y 0>0,∴19
16439162
2
=+
⎪⎭⎫ ⎝⎛
-
y x . ∴Q 的轨迹方程为)0(16
9
)43
(22>=
+-y y x .
例3、已知圆,42
2
=+y
x
过A (4,0)作圆的割线ABC ,则弦BC 中点的轨迹方程为( ) A .4)1(2
2=+-y x B .)10(4)1(22<≤=+-x y x C .4)2(2
2
=+-y x D .)10(4)2(22<≤=+-x y x
变式练习
1:已知定点)0,3(B ,点A 在圆12
2=+y x 上运动,M 是线段AB 上的一点,且
MB AM 3
1
=,则点M 的轨迹方程是
解:设),(),,(11y x A y x M .∵MB AM 31=,∴),3(3
1
),(11y x y y x x --=--,
∴⎪⎪⎩⎪⎪⎨⎧-=--=-y y y x x x 31)3(3111,∴⎪⎪⎩
⎪⎪⎨⎧
=-=y
y x x 3413411.∵点A 在圆122=+y x 上运动,∴12121=+y x ,∴1)34(
)134(22=+-y x ,
即169)43(22=+-y x ,∴点M 的轨迹方程是16
9
)43(22=+-y x . 2:已知定点)0,3(B ,点A 在圆12
2
=+y x 上运动,AOB ∠的平分线交AB 于点M ,则点M 的轨迹方程是 .
解:设),(),,(11y x A y x M .∵OM 是AOB ∠的平分线,∴3
1==OB OA MB AM , ∴MB AM 31=.
由变式1可得点M 的轨迹方程是16
9
)43(22=+-y x .
3:已知直线1+=kx y 与圆42
2
=+y x 相交于A 、B 两点,以OA 、OB 为邻边作平行四边形OAPB ,求点P 的轨迹方程.
解:设),(y x P ,AB 的中点为M .∵OAPB 是平行四边形,∴M 是OP 的中点,∴点M 的坐标为)2
,2(y
x ,且AB OM ⊥.∵直线1+=kx y 经过定点)1,0(C ,∴CM OM ⊥,∴
0)12
(2)2()12,2()2,2(2=-+=-⋅=⋅y y x y x y x CM OM ,化简得1)1(2
2=-+y x .∴点P 的轨
迹方程是1)1(2
2=-+y x .
4、圆9)1()2(2
2=++-y x 的弦长为2,则弦的中点的轨迹方程是
5、已知半径为1的动圆与圆16)7()5(2
2=++-y x 相切,则动圆圆心的轨迹方程是( )
A.25)7()5(22=++-y x B. 17)7()5(22=++-y x 或15)7()5(2
2=++-y x C. 9)7()5(2
2
=++-y x D. 25)7()5(2
2
=++-y x 或9)7()5(2
2
=++-y x
6.已知两定点A(-2,0),B(1,0),如果定点P 满足PA=2PB,则定点P 的轨迹所 包围的面积等于( B )
A B 4 C 8 D 9
7:已知点M 与两个定点)0,0(O ,)0,3(A 的距离的比为2
1
,求点M 的轨迹方程.
8 如图所示,已知圆42
2
=+y x O :与y 轴的正方向交于A 点,点B 在直线2=y 上运动,过B 做圆O 的切线,切点为C ,求ABC ∆垂心H 的轨迹.
分析:按常规求轨迹的方法,设),(y x H ,找y x ,的关系非常难.由于H 点随B ,C 点运动而运动,可考虑H ,B ,C 三点坐标之间的关系.
解:设),(y x H ,),('
'
y x C ,连结AH ,CH , 则BC AH ⊥,AB CH ⊥,BC 是切线BC OC ⊥, 所以AH OC //,OA CH //,OC OA =, 所以四边形AOCH 是菱形.
所以2==OA CH ,得⎪⎩⎪⎨⎧=-=.
,
2''x x y y
又),('
'y x C 满足42
'2'=+y x ,
所以)0(4)2(2
2
≠=-+x y x 即是所求轨迹方程.
说明:题目巧妙运用了三角形垂心的性质及菱形的相关知识.采取代入法求轨迹方程.做
题时应注意分析图形的几何性质,求轨迹时应注意分析与动点相关联的点,如相关联点轨迹方程已知,可考虑代入法.