第二章 用卡诺图化简逻辑函数
03第二章-2 卡诺图化简逻辑函数
m0 与 m1 、 m2 逻辑相邻。
三变量卡诺图
四变量卡诺图
圆柱面
m0 与 m1 m2 m4 m1 与 m0 m3 m5
球面
均为逻辑相邻 均为逻辑相邻
m0 与 m1 m2 m4 m8 均为逻辑相邻 m1 与 m0 m3 m5 m9 均为逻辑相邻
(1) 在卡诺图构成过程中,变量的 取值按格雷码的顺序排列。 二变量卡诺图
格雷码:相邻两个代码之间只有一位发生变化
B0 A
1
0 m0 m1
1 m2 m3
平面表格
(2) 卡诺图两侧标注的数值代表 的二进制数对应的十进制数即为 格中对应的最小项编号。 (3) 几何位置相邻的最小项也是 逻辑相邻项。 (4) 卡诺图是上下、左右闭合的 图形。
二、用卡诺图表示逻辑函数
由于任何一个逻辑函数都能表示为若干最小 项之和的形式,所以自然也就可以用卡诺图表示 逻辑函数了。 1、逻辑函数→卡诺图 (1) 最小项法 ① 将逻辑函数化为最小项表达式; ② 在卡诺图上与这些最小项对应的位 置上填入1,在其余位置填入0或不填。 这样就得到了表示该逻辑函数的卡诺图。
例1:
Y = ABC + ABC ′ + AB′ = AB(C + C ′) + AB′ = AB + AB′ = A
例2
ABC + A′ + B′ + C ′ ′ = ABC + ( ABC ) = 1 A′BC ′ + AC ′ + B′C ′
例3
= A′BC ′ + ( A + B′)C ′ ′ = A′BC ′ + ( A′B ) C ′ = C ′
逻辑函数的卡诺图化简
逻辑函数的卡诺图化简默认分类2009-11-21 13:33:47 阅读74 评论0 字号:大中小逻辑函数有四种表示方法,分别是真值表、逻辑函数式、逻辑图和卡诺图。
前三种方法在1.3.4中已经讲过,此处首先介绍逻辑函数的第四种表示方法-卡诺图表示法。
1.5.1 用卡诺图表示逻辑函数1.表示最小项的卡诺图(1)相邻最小项若两个最小项只有一个变量为互反变量,其余变量均相同,则这样的两个最小项为逻辑相邻,并把它们称为相邻最小项,简称相邻项。
例如三变量最小项ABC和AB,其中的C和为互反变量,其余变量AB都相同,故它们是相邻最小项。
显然两个相邻最小项相加可以合并为一项,消去互反变量,如。
(2)最小项的卡诺图将n 变量的2n 个最小项用2n 个小方格表示,并且使相邻最小项在几何位置上也相邻且循环相邻,这样排列得到的方格图称为n 变量最小项卡诺图,简称为变量卡诺图。
二变量、三变量、四变量的卡诺图如图1-17所示。
图1-17变量卡诺图注意:卡诺图一般画成正方形或矩形,卡诺图中小方格数应为2n 个;变量取值的顺序按照格雷码排列。
几何相邻的三种情况:①相接——紧挨着,如m5和m7、m8和m12等;②相对——任意一行或一列的两头(即循环相邻性,也称滚转相邻性)如m4和m6、m8和m10 、m3和m11等;相重——对折起来位置相重合,如五变量卡诺图中m19和m23、m25和m29等,显然相对属于相重的特例。
2.逻辑函数的卡诺图上面讲的是空白卡诺图,任何逻辑函数都可以填到与之相对应的卡诺图中,称为逻辑函数的卡诺图。
对于确定的逻辑函数的卡诺图和真值表一样都是唯一的。
(1)由真值表填卡诺图由于卡诺图与真值表一一对应,即真值表的某一行对应着卡诺图的某一个小方格。
因此如果真值表中的某一行函数值为“1”,卡诺图中对应的小方格填“1”;如果真值表的某一行函数值为0”,卡诺图中对应的小方格填“0”。
即可以得到逻辑函数的卡诺图。
【例1-18】已知逻辑函数,画出表示该函数的卡诺图解:逻辑函数的真值表如表1-14所示。
用卡诺图化简逻辑函数
用卡诺图化简逻辑函数
在填好卡诺图后,首先,圈相邻的最小项,只能两项、四项和八项一圈,要保证圈的项最多,且每个圈中包含有未圈过的项;然后,提取每个圈中各项的公因子作为一个乘积项,这就是每个圈中最小项的化简结果,两个相邻最小项合并可消去一个变量,四个相邻最小项合并可消去二个变量,而八个相邻最小项合并,则可消去三个变量;最后,将各个圈中化简的乘积项加起来就得到了最简的与或式。
图1、图2、图3分别画出了两个相邻最小项、四个相邻最小项和八个相邻最小项合并为一项的例子。
[例1] 利用卡诺图化简Y = B CD + B C+A C D + A B C 解:(1) 画出函数Y的卡诺图。
B CD包含了两个最小项Y
11 = A B CD和Y
3
= A B CD。
B C包含了四个最小项Y
14 = ABC D,Y
12
= AB C D,Y
5
=A B C D,Y
4
=A B C
D。
A C D包含了两个最小项Y
5 =A B C D,Y
1
= A B C D。
A B C包含了两个最小项Y
11 = A B CD,Y
10
= A B C D。
(2) 合并最小项
把可以合并的相邻最小项用环分别圈起来,如图4所示。
(3) 根据圈定的各个环,写出的与或式就是最简与或式。
Y = A B D + A B C + B C
可是,用卡诺图合并最小项,实质上就是反复运用AB + A B来合并相邻最小项,从而去多余因子,得到最简的与或式。
数字电路 第二章 逻辑代数与逻辑函数化简
= A+ B+ A+ C
或与式转换为与或非式
F = (A + B)(A + C)
= A+ B+ A+ C
= AB + AC
§2.4.3 逻辑函数的代数法化简
化简的意义:将逻辑函数化成尽可能简单的形式,以减少逻辑门 化简的意义:将逻辑函数化成尽可能简单的形式,
电路的个数,简化电路并提高电路的稳定性。 电路的个数,简化电路并提高电路的稳定性。
A + AB = A + B
E = A+ B+ C+ BCD+ BC = A + B + C+ C(BD+ BE) = AB + C+ BE+ BD
§2.5.1 逻辑函数的最小项表达式 公式化简法评价:
优点:变量个数不受限制。 缺点:目前尚无一套完整的方法,结果是否最简有时不 易判断。
卡诺图是按一定规则画出来的方框图,是逻辑 函数的图解化简法,同时它也是表示逻辑函数 的一种方法。 利用卡诺图可以直观而方便地化简逻辑函数。 它克服了公式化简法对最终化简结果难以确定 等缺点。
__
__________ __________ _
A + B + C+⋯ = ABC⋯
逻辑代数的基本定律: 逻辑代数的基本定律: P21,熟记 ,
§2.3.2 逻辑代数的基本规则
代入规则
AB = A + B
____
A ↔F = AC
反演规则
____
⇒ ACB = AC + B
F = AC+ BCD+ 0
用卡诺图化简逻辑函数
1.4 用卡诺图化简逻辑函数本次重点内容1、卡诺图的画法与性质2、用卡诺图化简函数 教学过程 应用卡诺图化简 一、卡诺图逻辑函数可以用卡诺图表示。
所谓卡诺图,就是逻辑函数的一种图形表示。
对n 个变量的卡诺图来说,有2n 个小方格组成,每一小方格代表一个最小项。
在卡诺图中,几何位置相邻(包括边缘、四角)的小方格在逻辑上也是相邻的。
二、最小项的定义及基本性质: 1、最小项的定义在n 个变量的逻辑函数中,如乘积项中包含了全部变量,并且每个变量在该乘积项中或以原变量或以反变量的形式但只出现一次,则该乘积项就定义为该逻辑函数的最小项。
通常用m 表示最小项,其下标为最小项的编号。
编号的方法是:最小项的原变量取1,反变量取0,则最小项取值为一组二进制数,其对应的十进制数便为该最小项的编号。
如最小项C B A 对应的变量取值为000,它对应十进制数为0。
因此,最小项C B A 的编号为m 0,如最小项C B A 的编号为m 4,其余最小项的编号以此类推。
2、最小项的基本性质:(1)对于任意一个最小项,只有一组变量取值使它的值为1,而其余各种变量取值均使它的值为0。
(2)不同的最小项,使它的值为1的那组变量取值也不同。
(3)对于变量的任一组取值,全体最小项的和为1。
图1.4.1分别为二变量、三变量和四变量卡诺图。
在卡诺图的行和列分别标出变量及其状态。
变量状态的次序是00,01,11,10,而不是二进制递增的次序00,01,10,11。
这样排列是为了使任意两个相邻最小项之间只有一个变量改变(即满足相邻性)。
小方格也可用二进制数对应于十进制数编号,如图中的四变量卡诺图,也就是变量的最小项可用m 0, m 1,m 2,……来编号。
1010001111001A BCAB CD B A 0001111000011110m m m m m mmmm m m m 012300112233m m m m m m m m m m m m m m m m 456789101112131415图1.4.1 卡诺图二、应用卡诺图表示逻辑函数应用卡诺图化简逻辑函数时,先将逻辑式中的最小项(或逻辑状态表中取值为1的最小项)分别用1填入相应的小方格内,其它的则填0或空着不填。
逻辑函数的卡诺图法化简
精品课件
26
输入变量ABC取值为001、010、100时,
逻辑函数Y有确定的值,根据题意,有任一命令(正 转、反转和停止)时为1,否则为0。
反变 函换 数为
CD BD
CD
AB
00 01 11 10
Y AB AC BD CD AB
00 1
0
1
1
01 1
0
0
1
11 0
0
0
0
10 0
0
1
1
AC
精品课件
13
4、卡诺图的性质
(1)任何两个(21个)标1的相邻最小项,可以合并为一项, 并消去一个变量(消去互为反变量的因子,保留公因子)。
AB C
但是,若 F= ABCD+ABC+BC+ABC ,显然,该函数式
难于找到相邻项。
精品课件
1
2.4.2 逻辑函数的标准式——最小项表达 式
问题的提出:逻辑函数 F= ABC+ABC ,之所以易于看出它们 的乘积项是逻辑相邻项,是因为它们的每一个乘积项中都包 含了所有的变量。而F= ABCD+ABC+BC+ABC,每个乘积项没有 包含所有的变量,所以逻辑相邻关系不直观。于是引入了最 小项的概念。
15
AB CD
00 01 11 10
00 0
1
1
0
01 1 0 0 1
11 1
0
0
1 AD
10 0 1 1 0
BD
AB CD
00 01 11 10
00 1
0
0
1
01 0
1
1
0
11 0
卡诺图法化简
计算机科学与技术学院
A
0
0 0 0
B
0
0 1 1
C
0
1 0 1
F
1 0 0 1
A
1
1 1 1
B
0
0 1 1
C
0
1 0 1
F
1 0 1
0
由表可知:
F ( A, B, C )
m0+m3+m4+m6
m(0,3,4,6)
16
计算机科学与技术学院
A
0 0 0 0
B
0 0 1 1
C
0 1 0 1
11
)最大项之积的标准形式
计算机科学与技术学院
由最大项的逻辑与的形式所构成的逻辑函数表达式称之 为逻辑函数的最大项之积的标准形式。如:
F ( A, B, C ) ( A B C )( A B C )( A B C ) =M1M3M4
又记为:F ( A, B, C ) 是一个三变量逻辑函数,其变量按(A,B,C) 排列,函数本身由3个最大项构成。上述表达式 即为逻辑函数的最大项之积的标准形式。
AB
AB
AB
AB
对于n个变量的全部最小项共有2n个。
5
计算机科学与技术学院
例如,在三变量的逻辑函数F(A、B、C)中,它们 组成的八个乘积项 即 ABC 、 ABC 、 ABC 、 ABC 、 ABC 、 ABC 、 ABC 、 ABC 都符合最小项的定义。因 此,我们把这八个与项称为三变量逻辑函数F(A、 B、C)的最小项。
基本表达式形式不是唯一的 例如
F ( A, B) A AB
卡诺图化简法
ABC ABC A BC
m3 m2 m1
m(1、 2、 3)
例2
L( ABC ) ( AB AB C ) AB
AB AB C AB
AB AB C AB ( AB AB) C AB ABC ABC AB(C C) ABC ABC ABC ABC
⒈用摩根定律去掉非号(多个变量上)直至只在一个变量上有非号为止
⒉用分配律去除括号,直至得到一个与或表达式
⒊配项得到最小项表达式
习 例1
题
A B A BC
的最小项
求函数F(A、B、C) 表达式 解:F(A、B、C)
A B A BC
A B A BC
AB(C C) A BC
如:
m0 m2 m4 m6 m8 m10 m12 m14 D
2.用卡诺图化简逻辑函数的方法和步骤
设已得到逻辑函数的卡诺图
1) 将相邻的值为“1”的小方块画成若干个包围圈
ⅰ)每个包围圈中必须含有2n个小方块 (n=0,1,2, …)
画 圈 原 则
ⅱ)小方块可重复被包围,但每个包围圈中必须含有其他 包围圈没有的新小方块 ⅲ)不能漏掉任何值为1的小方块 ⅳ) 包围圈所含的小方块数目要尽可能多 ⅳ) 包围圈数目要尽可能少,画包围圈的顺序由大→小
10 1
01 11 10
1 1 1 1 1 1 1 1 1
B
1 1 1
D
3.具有无关项的逻辑函数的卡诺图化简
无关项的定义
在真值表内对应于变量的某些取值下,函数的值可以是任意的,或者 这些变量的取值根本不会出现,这些变量取值所对应的最小项称为无 关项或任意项。
逻辑函数的卡诺图化简法2
逻辑函数的卡诺图化简法211.6 逻辑函数的卡诺图化简法2【预习】第三册课本第26⾄28页内容.【预习⽬标】了解逻辑函数的卡诺图的概念,了解卡诺图作图的作图⽅法及注意点. 【导引】1.卡诺图:卡诺图是根据最⼩项真值表按相邻原则(⼏何位置上相邻的⼩⽅格只有⼀个因⼦互为反变量,⽽且⽔平、垂直⽅向的两端也如此)排列⽽成的⽅格图,即每⼀个⼩⽅格表⽰⼀个最⼩项.对于含有两个逻辑变量(记为A,B )的逻辑函数,⽤00表⽰B A ?,01表⽰B A ?,10表⽰B A ?,11表⽰B A ?,其卡诺图的形式如下:将逻辑函数表⽰成最⼩项表达式后,只要在出现的最⼩项对应的⽅格内填上1,其余的填上0即可.对于含有三个逻辑变量(记为A,B,C )的逻辑函数,可以仿照两个变量的符号表⽰⽅法,得到其卡诺图形式如下:将逻辑函数表⽰成最⼩项表达式后,只要在出现的最⼩项对应的⽅格内填上1,其余的填上0即可.对于含有四个逻辑变量(记为A,B,C,D )的逻辑函数,仿照上⾯的⽅法可以得到其卡诺图形式如下:将逻辑函数表⽰成最⼩项表达式后,只要在出现的最⼩项对应的⽅格内填上1,其余的填上0即可.【试试看】1.卡诺图的每⼀个⼩⽅格对应着函数的() A .最⼤项B .最⼩项C .最简函数项D .输⼊项2.变量为A 、B 、C 的逻辑函数其最⼩项有个,对应的卡诺图⼩⽅格有个.【本课⽬标】了解卡诺图的概念,能根据给定的逻辑函数,画出其对应的卡诺图. 【重点】卡诺图的概念,给定逻辑函数,画出其对应的卡诺图. 【难点】由逻辑函数画卡诺图. 【导学】任务1:学会画出逻辑函数对应的卡诺图.【例1】例1 画出逻辑函数()C B A C B A BC A C AB ABC C B A f ++++=,,对应的卡诺图.【试⾦⽯】画出逻辑函数()C AB C B A BC A ABC C B A f +++=,,对应的卡诺图.【例2】画出逻辑函数()C A C B ABC C B A f ++=,,对应的卡诺图.【试⾦⽯】画出逻辑函数()C B A C B A A C B A f ++=,,对应的卡诺图.【检测】画出逻辑函数(),,f A B C AB BC AB =++对应的卡诺图.【导练】⼀、选择题1.关于作卡诺图说法错误的是()A.卡诺图是根据最⼩项真值表按相邻原则排列⽽成的⽅格图B.根据变量数的不同,卡诺图可画成2⾏2列、2⾏4列、4⾏4列的形式C.三个变量的卡诺图第⼀⾏的4个取值依次为 00、01、10、11D.卡诺图中每⼀个⼩⽅格表⽰⼀个最⼩项2. 逻辑函数C B A C B A C AB Y ++=的卡诺图为()A. B.C. D.3.最⼩项D C AB 的逻辑相邻项为()A. D C B AB. ABCDC. D ABCD. D C B A ⼆、填空题4.将逻辑函数C B A B A Y +=展开为最⼩项表达式为.5.将逻辑函数()C B A Y +=展开为最⼩项表达式为.三、解答题6. 画出逻辑函数()CD B A D C B A CD B A D C AB D C B A f +++=,,,对应的卡诺图.7. 画出逻辑函数()C B C B C A C A C B A f +++=,,对应的卡诺图.。
用卡诺图化简逻辑函数
1.4 用卡诺图化简逻辑函数本次重点内容1、卡诺图的画法与性质2、用卡诺图化简函数 教学过程 应用卡诺图化简 一、卡诺图逻辑函数可以用卡诺图表示。
所谓卡诺图,就是逻辑函数的一种图形表示。
对n 个变量的卡诺图来说,有2n 个小方格组成,每一小方格代表一个最小项。
在卡诺图中,几何位置相邻(包括边缘、四角)的小方格在逻辑上也是相邻的。
二、最小项的定义及基本性质: 1、最小项的定义在n 个变量的逻辑函数中,如乘积项中包含了全部变量,并且每个变量在该乘积项中或以原变量或以反变量的形式但只出现一次,则该乘积项就定义为该逻辑函数的最小项。
通常用m 表示最小项,其下标为最小项的编号。
编号的方法是:最小项的原变量取1,反变量取0,则最小项取值为一组二进制数,其对应的十进制数便为该最小项的编号。
如最小项C B A 对应的变量取值为000,它对应十进制数为0。
因此,最小项C B A 的编号为m 0,如最小项C B A 的编号为m 4,其余最小项的编号以此类推。
2、最小项的基本性质:(1)对于任意一个最小项,只有一组变量取值使它的值为1,而其余各种变量取值均使它的值为0。
(2)不同的最小项,使它的值为1的那组变量取值也不同。
(3)对于变量的任一组取值,全体最小项的和为1。
图1.4.1分别为二变量、三变量和四变量卡诺图。
在卡诺图的行和列分别标出变量及其状态。
变量状态的次序是00,01,11,10,而不是二进制递增的次序00,01,10,11。
这样排列是为了使任意两个相邻最小项之间只有一个变量改变(即满足相邻性)。
小方格也可用二进制数对应于十进制数编号,如图中的四变量卡诺图,也就是变量的最小项可用m0, m1,m2,……来编号。
01 0100011110 01ABCABCDBA0001111000011110m m m mm m m mm mm m01230112233mmmmmmmmmmmmmmmm456789101112131415图1.4.1 卡诺图二、应用卡诺图表示逻辑函数应用卡诺图化简逻辑函数时,先将逻辑式中的最小项(或逻辑状态表中取值为1的最小项)分别用1填入相应的小方格内,其它的则填0或空着不填。
逻辑函数的卡诺图化简法
逻辑函数的卡诺图化简法逻辑函数的卡诺图化简法由前面的学习得知,利用代数法可以使逻辑函数变成较简单的形式。
但要求熟练掌握逻辑代数的基本定律,而且需要一些技巧,特别是经化简后得到的逻辑表达式是否是最简式较难确定。
运用卡诺图法可以较简便的方法得到最简表达式。
但首先需要了解最小项的概念。
一、最小项的定义及其性质1.最小项的基本概念由A、B、C三个逻辑变量构成的许多乘积项中有八个被称为A、B、C的最小项的乘积项,它们的特点是1. 每项都只有三个因子2. 每个变量都是它的一个因子3. 每一变量或以原变量(A、B、C)的形式出现,或以反(非)变量(A、B、C)的形式出现,各出现一次一般情况下,对n个变量来说,最小项共有2n个,如n =3时,最小项有23=8个2.最小项的性质为了分析最小项的性质,以下列出3个变量的所有最小项的真值表。
由此可见,最小项具有下列性质:(1)对于任意一个最小项,只有一组变量取值使得它的值为1,而在变量取其他各组值时,这个最小项的值都是0。
(2)不同的最小项,使它的值为1的那一组变量取值也不同。
(3)对于变量的任一组取值,任意两个最小项的乘积为0。
(4)对于变量的任一组取值,全体最小项之和为1。
3.最小项的编号最小项通常用mi表示,下标i即最小项编号,用十进制数表示。
以ABC为例,因为它和011相对应,所以就称ABC是和变量取值011相对应的最小项,而011相当于十进制中的3,所以把ABC记为m3按此原则,3个变量的最小项二、逻辑函数的最小项表达式利用逻辑代数的基本公式,可以把任一个逻辑函数化成一种典型的表达式,这种典型的表达式是一组最小项之和,称为最小项表达式。
下面举例说明把逻辑表达式展开为最小项表达式的方法。
例如,要将化成最小项表达式,这时可利用的基本运算关系,将逻辑函数中的每一项都化成包含所有变量A、B、C的项,然后再用最小项下标编号来代表最小项,即又如,要将化成最小项表达式,可经下列几步:(1)多次利用摩根定律去掉非号,直至最后得到一个只在单个变量上有非号的表达式;(2)利用分配律除去括号,直至得到一个与或表达式;(3)在以上第5个等式中,有一项AB不是最小项(缺少变量C),可用乘此项,正如第6个等式所示。
逻辑函数的化简方法
一、公式法化简:是利用逻辑代数的基本公式,对函数进行消项、消因子。
常用方法有:①并项法利用公式AB+AB’=A 将两个与项合并为一个,消去其中的一个变量。
②吸收法利用公式A+AB=A 吸收多余的与项。
③消因子法利用公式A+A’B=A+B 消去与项多余的因子④消项法利用公式AB+A’C=AB+A’C+BC 进行配项,以消去更多的与项。
⑤配项法利用公式A+A=A,A+A’=1配项,简化表达式。
二、卡诺图化简法逻辑函数的卡诺图表示法将n变量的全部最小项各用一个小方块表示,并使具有逻辑相邻性的最小项在几何位置上相邻排列,得到的图形叫做n变量最小项的卡诺图。
逻辑相邻项:仅有一个变量不同其余变量均相同的两个最小项,称为逻辑相邻项。
1.表示最小项的卡诺图将逻辑变量分成两组,分别在两个方向用循环码形式排列出各组变量的所有取值组合,构成一个有2n个方格的图形,每一个方格对应变量的一个取值组合。
具有逻辑相邻性的最小项在位置上也相邻地排列。
用卡诺图表示逻辑函数:方法一:1、把已知逻辑函数式化为最小项之和形式。
2、将函数式中包含的最小项在卡诺图对应的方格中填1,其余方格中填0。
方法二:根据函数式直接填卡诺图。
用卡诺图化简逻辑函数:化简依据:逻辑相邻性的最小项可以合并,并消去因子。
化简规则:能够合并在一起的最小项是2n个。
如何最简:圈数越少越简;圈内的最小项越多越简。
注意:卡诺图中所有的1 都必须圈到,不能合并的1 单独画圈。
说明,一逻辑函数的化简结果可能不唯一。
合并最小项的原则:1)任何两个相邻最小项,可以合并为一项,并消去一个变量。
2)任何4个相邻的最小项,可以合并为一项,并消去2个变量。
3)任何8个相邻最小项,可以合并为一项,并消去3个变量。
卡诺图化简法的步骤:画出函数的卡诺图;画圈(先圈孤立1格;再圈只有一个方向的最小项(1格)组合);画圈的原则:合并个数为2n;圈尽可能大(乘积项中含因子数最少);圈尽可能少(乘积项个数最少);每个圈中至少有一个最小项仅被圈过一次,以免出现多余项。
代数法化简逻辑函数
2.1 逻辑代数
例1:证明 AB AB A AB B AB
证明: AB AB AB AA AB BB A A B B A B
A AB B AB A AB B AB
A AB B AB
(2)用与非门实现L。
应将表达式转换成与非—与非表达式:
L AB BC AC
L AB BC AC
AB BC AC
AB BC AC
(3)用非门、或非门实现L。
L AB BC AC
ABBC AC
ABBC AC
2.1 逻辑代数
例7化简: L AB BC BC AB
2.1 逻辑代数
例3化简: L AB AC BC CB BD DB ADE(F G) L ABC BC CB BD DB ADE(F G) (利用摩根律 )
A BC CB BD DB ADE(F G)(利用 AAB AB )
A BC CB BD DB (利用A+AB=A)
第二章 逻辑代数
2.1 逻辑代数 2.2 逻辑函数的卡诺图化简法
2.1 逻辑代数
二.基本定律和恒等式
1.பைடு நூலகம்基本公式 (公理)
与运算: 0۰0=0 或运算: 0+0=0
0۰1=0 0+1=1
1۰0=0 1+0=1
非运算: 0 1 1 0
2. 定律
常量与变量 运算律:
互补律:
重叠律: A+A=A
A۰ A=A
双重否定律: A A
1۰1=1 1+1=1
2.1 逻辑代数
结合律 (A+B)+C=A+(B+C) ; (AB)·C=A·(BC)
数字逻辑课后答案第二章
第二章 组合逻辑1. 分析图中所示的逻辑电路,写出表达式并进行化简2. 分析以下图所示逻辑电路,其中S3、S 二、S 一、S0为操纵输入端,列出真值表,说明 F 与 A 、B 的关系。
F1=BF = AB + B = ABA F = AB BABC CABC = AB + AC + BC + BC = AB + BC + BC1S B BS A ++F2=F=F 1F 2=3. 分析以下图所示逻辑电路,列出真值表,说明其逻辑功能。
解: F1==真值表如下:当B ≠C 时, F1=A 当B=C=1时, F1=A 当B=C=0时, F1=032S B A ABS +1S B BS A ++CB BC A C AB C B A +++ABC C B A ABC C B A C B A +⊕=++)(A B C F 0 0 00 0 10 1 00 1 11 0 01 0 11 1 01 1 100000111裁判裁决电路,A 为主裁判,在A 同意的前提下,只要有一名副裁判(B ,C )同意,成绩就有效。
F2=真值表如下:当A 、B 、C 三个变量中有两个及两个以上同时为“1”时,F2 = 1 。
4.图所示为数据总线上的一种判零电路,写出F 的逻辑表达式,说明该电路的逻辑功能。
解:F=只有当变量A0~A15全为0时,F = 1;不然,F = 0。
因此,电路的功能是判定变量是不是全数为逻辑“0”。
5. 分析以下图所示逻辑电路,列出真值表,说明其逻辑功能解: 真值表如下:因此,这是一个四选一的选择器。
AC BC AB C A C B B A ++=++A B C F 0 0 00 0 10 1 00 1 11 0 01 0 11 1 01 1 1000011111514131211109876543210A A A A A A A A A A A A A A A A +++301201101001X A A X A A X A A X A A F +++=6. 以下图所示为两种十进制数代码转换器,输入为余三码,输出什么缘故代码?解:这是一个余三码 至8421 BCD 码转换的电路7. 以下图是一个受 M 操纵的4位二进制码和格雷码的彼此转换电路。
电子技术(数电部分-第2章 逻辑代数和逻辑函数
A B C ( A B) ( A C )
证明: 右边 =(A+B)(A+C)
A B C ( A B) ( A C )
; 分配律 ; 结合律 , AA=A ; 结合律
=AA+AB+AC+BC =A +A(B+C)+BC =A(1+B+C)+BC =A • 1+BC =A+BC
33 MHz
• 以三变量的逻辑函数为例分析最小项表示及特点
变量 赋值 为1时 用该 变量 表示; 赋0时 用该 变量 的反 来表 示。
33 MHz
最小项
使最小项为1的变量取值 A B C
对应的十 进制数
编号 m0 m1 m2 m3 m4 m5 m6 m7
ABC ABC A BC A BC AB C AB C ABC ABC
例1: F1 A B C D 0
F1 A B C D 0
注意 括号
注意括号
F1 ( A B) (C D) 1
F1 AC BC AD BD
与或式
33 MHz
例2: F2 A B C D E
F2 A B C D E
“+” 换成 “· ”,0 换成 1,1 换成 0,
则得到一个新的逻辑式 Y´,
则 Y´ 叫做 Y 的对偶式
A AB A
33 MHz
Y AB CD
对偶式
A( A B) A
Y ( A B)(C D)
2.2 逻辑函数的变换和化简
2.2.1 逻辑函数表示方法:四种,并可相互转换 真值表:将逻辑函数输入变量取值的不同组合 与所对应的输出变量值用列表的方式 一一对应列出的表格。 四 种 表 示 方 法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ABCD + ABCD = ABD ABCD + ABCD = ABD ABD + ABD = AD ABD + ABD = AD
10 m8 m9 m11 m13 AD + AD = D
1
电子工程学院
合并最小项的规则
根据最小项的性质(具有逻辑相邻性的两个最小项之 和可以合并为一项,并消去一对因子)可知,具有相 邻性的最小项可以合并,并消去不同的因子。
逻辑函数中的约束项、任意项和无关项
1. 约束项
在有些逻辑函数中,输入变量的取值受到某种约束,
例:A、B、C表示一台电动机的正转、反转、停止命令,A=1表示正转, B=1表示反转,C=1表示停止。逻辑函数可以写为
Y1 A= BC (正转),Y2 A= BC (反转),Y3 ABC (停止)
显然该例中不允许两个或两个以上的变量同时为1,即不允许出现000、
00
01
00 1 1
11 10 11
D 01 0 1 1 1 11 0 1 1 1
C 01 0 1 1 1 11 0 1 1 1
10 1 1 1 1
10 1 1 1 1
F = B+C+D
14
F = BCD
F = B+C+D
电子工程学院
卡诺图化简法举例5
化简逻辑函数 F = AD + BCD + AC + BC + BD
位置的小格是 01 8 9 11 10 + 01 14 15 13 12
相邻的,可以 合并。
11
24 25 27 26
11 30 31 29 28
10 16 17 19 18 10 22 23 21 20
17
C=0
电子工程学院C=1
多变量卡诺图及其化简
例:化简逻辑函数F(A,B,C,D,E) = ∑m(4,5,6,7,13,15,20,21,22,23,25,27,29,31)
ABD 01
(2) 画包围圈合并最小 BC
11
项,得到最简与-或
111 11
CD
表达式
10
1
1
ABCD
F = ABCD + ABD + ABD + BC + CD
10
电子工程学院
卡诺图化简法举例2
化简 F(A,B,C,D)=Σm(3,4,5,7,9,13,14,15)为最简与或式
解:
CD AB
00
01 8 9 11 10 14 15 13 12
11 24 25 27 26 30 31 29 28
10 16 17 19 18 22 23 21 20
两个图只在C DE
DE
值上有差别, AB 00 01 11 10 AB 10 11 01 00
因此处于对应 00 0 1 3 2
00 6 7 5 4
2、用卡诺图化简逻辑函数
(1)化简的依据
用卡诺图化简逻辑函数的基本原理:把卡诺图上表征相邻最 小项的相邻小方格“圈”在一起进行合并,达到用一个简单 “与”项代替若干最小项的目的。
CD 00 01 11 10
AB
00 m0 m1 m3 m2
01 m4 m5 m7 m6
11 m12 m13 m15 m14
C=0
DE AB 00 01 11 10
00
01
11
25 27
10
C=1
DE AB 10 11 01 00
00 6 7 5 4
+ 01
15 13
ABE 11
31 29
10 22 23 21 20
化简得: F = BC + CE + ABE
18
CE BC
电子工程学院
多变量卡诺图及其化简
例:化简逻辑函数F(A,B,C,D,E) =∑m(4,5,6,7,13,15,20,21,22,23,25,27,29,31)
+ ABCD + ABCD + ABCD = 0
00 0 1 x 0
解:
=Y AD + AD
01 0 x 1 0
AD
11 x 0 x x
10 1 x 0 x
25
电子工程学院
具有无关项的逻辑函数及其化简
无关项在化简逻辑函数中的应用
例2: Y ( A, B,C, D) = ∑ m(2, 4,6,8)
约束条项 : m5 + m10 + m11 + m12 + m13 + m14 + m15 = 0
含在其它主要项圈中,则这个主要
项就是多余项(冗余项),应去掉。 11 m12 m13 m15 m14
(5) 所有的1方格均被圈用。
10 m8 m9 m11 m13
最大项的合并规则与此类似,圈0格,合并0格。
7
电子工程学院
2、用卡诺图化简逻辑函数
作出所要化简函数的卡诺图,最小项对应的方格填1,其它 格填0或不填。
② 因为这时Y1=1还是Y1=0都是允许的,所以既可以把最小项ABC写 入Y1式中,也可以不写入。
因此,我们把ABC称为逻辑函数Y1的任意项。同理, ABC 也是逻 辑函数Y1的任意项。
21
电子工程学院
具有无关项的逻辑函数及其化简
约束项可以写进函数式中,也可以不写进去(因为约束项等于0)
( ) 例:= Y1 ABC + ABC + ABC + ABC + ABC + ABC
( ) ( ) 化简得,F =BC + BD + AC + AD = A + B C + D
圈1:
BC
CD AB
00
01
11
10
00 1 1 0 1
01 0 0 0 0
AC 11 1 1 0 1 BD 10 1 1 0 1
圈0:
ABCD 00
C+D
01 11
10
00 1 1 0 1
01 0 0 0 0 A + B
圈出没有相邻项的孤立1格。
找出只有一种圈法的1格,从它出发把相邻的1格用最大的圈 圈起来构成合并项。
圈的格数必须为2i个。
8
电子工程学院
2、用卡诺图化简逻辑函数
余下的1格均有两种或两种以上的圈法,选择其中的一种将 余下的1格无遗漏地圈起来,而且总圈数最少。
按取同去异原则, 每个圈写出一个乘积项。
最后将全部积项求和,即得最简与或表达式。
01
11
10
00
1
ACD
ABC 01 1
11
?
11
1 1 1 ABC
ACD
10
1
F = ACD + ABC + ACD + ABC
11
电子工程学院
卡诺图化简法举例3
化简逻辑函数 F(A,B,C,D)=Σm(2,3,4,6,10,11,12,13,15)
BC
解:
CD AB
00
01
11
10
00
11
ABD 01 1
画包围圈时应遵循的原则
(1) 圈内的1方格数一定是2i个(i为整数),且包围圈必须呈方形或矩形。
(2) 应使圈尽可能大,以便消去尽可能多的变量。
(3) 合并的圈数应尽可能少,以减少
乘积项。
CD 00 01 11 10
AB
(4) 任何1方格可以多次被圈用。但 00 m0 m1 m3 m2
若某一个主要项中所有的1格都包 01 m4 m5 m7 m6
例如,下图给出了2、3变量卡诺图上两个相邻最小项合并 的典型情况。
3
电子工程学院
合并最小项的规则
(2) 四个小方格组成一个大方格、或组成一行(列)、或 处于相邻两行(列)的两端、或处于四角时,所代表的 最小项可以合并,合并后可消去两个变量。
例如,下图给出了3变量卡诺图上四个相邻最小项合并的 典型情况。
CDE
CE BC
000 001 011 010 110 111 101 100 AB
00 0 0 0 0 1 1 1 1
01 0 0 0 0 0 1 1 0
ABE 11 0 1 1 0 0 1 1 0
10 0 0 0 0 1 1 1 1
化简得: F = BC + CE + ABE
19
电子工程学院
具有无关项的逻辑函数及其化简
括号内的每一项 都可写可不写
任意项可以写进函数式中,也可以不写进去(因为任意项=1时, 函数值是1还是0都可)
( ) 例: Y1 = ABC + ABC + ABC
括号内的每一项都可写可不写
22
电子工程学院
具有无关项的逻辑函数及其化简
填真值表时约束项对应的输出可 以填0也可以填1,用×表示(因为 使约束项等于1的取值不可能出
1
ABC 11 1 1 1
ACD
10
11
F = ABC + ACD + ABD + BC
12
电子工程学院
卡诺图化简法举例3
化简逻辑函数 F(A,B,C,D)=Σm(2,3,4,6,10,11,12,13,15)
解:
最简式不唯一,但最 简式中的项数和每一 项的因子数是固定的
BC
CD AB
00
01
11
注意: 所有的1格都应至少 每个圈中,至少要包含一个不被其 被圈一次,不能有遗漏 它圈覆盖的1格,否则会出现多余项