2014年虎跳中学中考数学模拟试题 (4)

合集下载

广元市虎跳中学2014届九年级上第一次诊断性考试数学试题

广元市虎跳中学2014届九年级上第一次诊断性考试数学试题

(2)
12 ( 3)
0

(
1 2
)
1

|
2
3|
17、解方程 (1) 3x2 1 6x (公式法)
(2) 3x x 1 2 x 1
(3) x2 2x
(4) y 2 4 y 10
(配方法)
四、解答题(每小题 7 分,共 21分)
18、已知当 a= 3 +1时
15、观察下列各式:
1 1 2 1 , 2 ..请你将发现的规律用含自然数 n(n≥1)
33
44
55
的等式表示出来__________________________
三、计算和解方程(每小题 5 分,共 30分)
16、计算
(1) ① ( 8 2 6) 2 2 3
20 题图
五、列方程解应用题。(每小题 8 分,共 24分)
21、某市 A 企业为节约用水,自建污水净化站,3 月份净化污水 3000 t,5月份 增加到 3630 t,求这两个月净化污水的量平均每月增长率
22.有一个面积为 150平方米的长方形的鸡场,鸡场的一边靠墙(墙长 18米), 墙的对面有一个 2 米宽的门,另三边用竹篱笆围成,篱笆总长 33米,求鸡场的 长和宽各位多少米?
C.没有实数根
D.无法确定是否有实数根
6、关于 x 的一元二次方程 m 1 x 2m 1x m2 1 0的一个根为 0,则 m
2
的值是 ( )

A. m 1
B. m 1
C . m 1 或-1
D.
m
1 2
7.7
7、三角形两边的长分别是 4 和 6,第三边的长是一元二次方程 x2 16x 60 0

2014中考数学模拟试题含答案(精选5套)

2014中考数学模拟试题含答案(精选5套)

2014年中考数学模拟试卷(一)数 学(全卷满分120分,考试时间120分钟)注意事项:1. 本试卷分选择题和非选择题两部分. 在本试题卷上作答无效..........;2. 答题前,请认真阅读答题.......卷.上的注意事项......;3. 考试结束后,将本试卷和答题.......卷一并交回..... 一、选择题(本大题满分36分,每小题3分. 在下列各题的四个备选答案中,只有一个是正确的,请在答题卷上把你认为正确的答案的字母代号按要求用2B 铅笔涂黑) 1. 2 sin 60°的值等于 A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有A. 5个B. 4个C. 3个D. 2个3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是 A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结 合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有 A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为 A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=1圆弧 角 扇形 菱形 等腰梯形A. B. C. D.(第9题图)(第7题图)9. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC = A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是A. x 2 + 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4, ∠BED = 120°,则图中阴影部分的面积之和为 A. 3 B. 23 C.23 D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿 CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时 到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,请将答案填在答题卷上,在试卷上答题无效) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 . 17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形 ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把 △ABC 经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对 应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的 斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直 到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成 的图形的面积为 . 三、解答题(本大题8题,共66分,解答需写出必要的步骤和过程. 请将答案写在答题卷上,在试卷上答题无效)(第11题图)(第12题图) (第17题图)(第18题图)19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22n m m -.20. (本小题满分6分)21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动. 23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角 为30°. 小宁在山脚的平地F 处测量这棵树的高,点 C 到测角仪EF 的水平距离CF = 1米,从E 处测得树 顶部A 的仰角为45°,树底部B 的仰角为20°,求树 AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.3121--+x x ≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第21题图)(第23题图)(第24题图)°25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元. (1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3. (1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出 所有点P 的坐标;若不存在,请说明理由.2013年初三适应性检测参考答案与评分意见一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S△ABC,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C.二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x2400-x %)201(2400 = 8;(第26题图)17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分= nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分 = 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a为整数,∴a = 78,79,80∴共有3种方案. ………………6分设购买课桌凳总费用为y元,则y = 180a + 220(200 - a)=-40a + 44000. …………… 7分∵-40<0,y随a的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分即总费用最低的方案是:购买A型80套,购买B型120套. ………………10分2014年中考数学模拟试题(二)一、选择题1、数2-中最大的数是()A 、1- BC 、0D 、2 2、9的立方根是()A 、3±B 、3 C、 D3、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=()A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是() A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是()A 、0a b +>B 、0a b ->C 、0ab >D 、0a b> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=() A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是() A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有()A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>则一定成立的是()A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( ) A 、5 B 、2.4 C 、2.5 D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷=13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B的俯角20α=︒,则飞机A 到控制点B 的距离约为 。

2014年虎跳中学中考数学模拟试题 (2)

2014年虎跳中学中考数学模拟试题 (2)

2014年初中学业水平考试模拟数学试卷(时间:120分钟,满分:120分)一、选择题(8×3分=24分)1、由四舍五入法得到的近似数8.02×104,下列说法正确的是()A.精确到十分位,有3个有效数字B.精确到个位,有2个有效数字C.精确到百位,有3个有效数字D.精确到千位,有4个有效数字2、有理数a、b在数轴上的位置如图所示,则ba+的值是()A.大于0 B.小于0C.小于a D.大于b3、如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是()A B C D4、将一副三角板如图放置,使点A在DE上,BC∥DE,则∠AFC的度数为()A.45°B.50°C.60°D.75°5、“红灯停,绿灯行”是我们在日常生活中必须遵守的交通规则,这样才能保交通顺畅和行人安全。

小刚每天从家骑自行车上学都经过三个路口,且每个路只安装了红灯和绿灯,假如每个路口红灯和绿灯亮的时间相同,那么小刚从家时出发去学校,他遇到两次红灯的概率是()A、18B、38C、58D、786、一次函数axy+=1与bkxy+=2的图象如图所示,则下列结论:①0<k,②0>a,③当3<x时,21yy<中正确的个数是()A、0B、1C、2D、37、如图,两条宽度均为40m的公路相交成α角,那么这两条公路在相交处的公共部分(图中阴影部分)的路面面积是()A、αsin1600(m2) B、αcos1600(m2) C、1600sinα(m2) D、1600cosα(m2)(第2题)-1(6题图) (7题图)8、如图所示的运算程序中,若开始输入的x 值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2010次输出的结果为( )(A )6 (B )3(C )200623 (D )10033231003⨯+二、填空题(8×3分=24分)9、-2014的倒数的相反数是______________.10、在“百度”搜索引擎中输入“姚明”,能搜索到与之相关的网页约27000000个, 将这个数用科学记数法表示为______________个。

2014年第四次中考模拟数学试卷(含答案)

2014年第四次中考模拟数学试卷(含答案)

2014年第四次中考模拟数学试卷(含答案)(时间:120分钟,满分:150分)一、选择题(下列各题的备选答案中,只有一个是正确,每小题3分,共24分) 1.方程x x 32=的根是( )A.3=xB.0=xC.0321==x x ,D.3021==x x , 2.下列运算中,正确的个数有( ) ①422853x x x =+ ②242241)21(n m n m =-③16)41(2=-- ④628=- A.1 B.2 C.3 D.43.一组数据3,4,x ,6,7的平均数是5,则这组数据的中位数和方差分别是( ) A.4和2 B.5和2 C.5和4 D.4和44.图1所示的物体的左视图(从左面看到的视图)是( )A B C D(图1) 5.直线x y 2=与x 轴正半轴的夹角为α,那么下列结论正确的是( ) A.2tan =α B.21tan =α C.2sin =α D.2cos =α 6.小英家的玻璃镜子被打碎了,她拿了如图(网格中的每个小正方形的边长为1)的一块碎片到玻璃店,配置成形状、大小与原来一致的镜面,则这个镜面的半径是( )(第6题) (第7题)A.2B.5C.2D.37.为了增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都是a ,则阴影部分的面积为( ) A.22a B. 23a C.24a D.25a8.如图,正方形ABCD 的边长为3cm ,一个边长为1cm 的小正方形沿着正方形ABCD 的边AB →BC →CD →DA →AB 连续地翻转,那么这个小正方形第一次回到起始位置时,它的方向是( )(第16题)三、解答题(每小题8分,共16分)17.先化简,再求值:)1()11(2+÷---+x x x xx ,其中160tan +︒=x18. 如图,在边长为1的小正方形组成的网格中,△ABC和△DEF的顶点都在格点上,P1,P2,P3,P4,P5是△DEF边上的5个格点,请按要求完成下列各题:(1)试证明三角形△ABC为直角三角形;(2)判断△ABC和△DEF是否相似,并说明理由;(3)画一个三角形,使它的三个顶点为P1,P2,P3,P4,P5中的3个格点并且与△ABC相似(要求:不写作法与证明).(第18题)四、解答题(19题8分,20题10分,共18分)19.第三届亚洲沙滩运动会服务中心要在某校选拔一名志愿者.经笔试、面试,结果小明和小颖并列第一.评委会决定通过抓球来确定人选.抓球规则如下:在不透明的布袋里装有除颜色之外均相同的2个红球和1个绿球,小明先取出一个球,记住颜色后放回,然后小颖再取出一个球.若取出的球都是红球,则小明胜出;若取出的球是一红一绿,则小颖胜出.你认为这个规则对双方公平吗?请用列表法或画树状图的方法进行分析.20.某区对参加2010年中考的5000名初中毕业生进行了一次视力抽样调查,绘制出频分布表和频数分布直方图的一部分,请根据图表信息回答下列问题:(1)在频数分布表中,a的值为__________,b的值为__________,并将频数分布直方图补充完整;(2)甲同学说“我的视力情况是此次抽样调查所得数据的中位数”,问甲同学的视力情况应在什么范围内?(3)若视力在4.9以上(含4.9)均属正常,则视力正常的人数占被统计人数的百分比是__________,并根据上述信息估计全区初中毕业生中视力正常的学生有多少人?五、解答题(每小题10分,共20分)21.如图,在一次测量活动中,小华站在离旗杆底部(B 处)6 米的D 处,仰望旗杆顶端A ,测得仰角为60 °,眼睛离地面的距离ED 为 1.5 米.试帮助小华求出旗杆AB 的高度.( 结果精确到0.1 米,3 )732.1(第21题)22.如图,在平面直角坐标系中,一次函数b ax y +=(0≠a )与反比例函数)0(≠=k xky 相交于A 、D 两点,其中D 点的纵坐标为-4,直线b ax y +=与y 轴相交于B 点,作AC ⊥y 轴于点C ,已知tan ∠ABO=21,OB=OC=2.(1)求A 点的坐标及反比例函数的解析式;(2)求直线AB 的解析式;(第22题)(3)连接OA 、OD ,求△AOD 的面积.六、解答题(第23题10分,24题12分,共22分)23.如图,AB 为⊙O 的直径,弦CD ⊥AB ,垂足为点E ,CF ⊥AF ,且CF=CE.(1)求证:CF 是⊙O 的切线;(2)若sin ∠BAC=52,求ABCCBD S S △△的值. (第23题)设一周的销售利润为在商家购进该商品的七、(12分)25.如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD ⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由;(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.①求证:BD⊥CF;②当AB=4,AD=2时,求线段BG的长.八、(14分)26.如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C.已知实数m、n(m<n)分别是方程x2﹣2x﹣3=0的两根. (1)求抛物线的解析式;(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD、BD.①当△OPC为等腰三角形时,求点P的坐标;②求△BOD 面积的最大值,并写出此时点D的坐标.参考答案二、9.x ≥1,且x ≠2. 10.10或54 11.142+-=x x y 12.55° 13.x >-2 14.150° 15.3 16.625 三、17.解:原式=1111111)1)(1((222+⨯-+-+=+⨯--+-+x x x x x x x x x x x =11-x当13160tan +=+︒=x 时,原式=331-131=+.20.解:(1)a=60,b=0.05;图“略”(2)甲同学的视力情况范围:4.6≤x ≤4.9; (3)视力正常的人数占被统计人数的百分比是:2001060+×100%=35% 全区初中毕业生中视力正常的学生约有:5000×35%=1750(人)。

2014年中考数学模拟考试题 参考答案及解析

2014年中考数学模拟考试题 参考答案及解析

2014年中考数学模拟考试题 参考答案及解析一、选择题:1、C2、D3、B4、A5、C6、B7、C8、C9、C 10、C 二、填空题:11、x=3; 12、k>-2; 13、25; 14、25 三、解答题15、(1)233+ (2) 原式211x x +== 16、解:由题意得:232a a +≥- ∴2a ≤17、解:由题意得:∠PBH=60°,∠APB=45°. ∵山坡的坡度i (即tan ∠ABC )为1:3 ∴tan ∠ABC=13,∠ABC=30° , ∴∠APB=90°. 在Rt △PHB 中,PB=PBHPH∠sin =203,在Rt △PBA 中,AB=PB=203≈34.6. 答:A 、B 两点间的距离约34.6米.18、(1)把C (1,3)代入y = kx得k =3 设斜边AB 上的高为CD ,则sin ∠BAC =CD AC =35∵C (1,3) ∴CD=3,∴AC=5(2)分两种情况,①当点B 在点A 右侧时,如图1有: AD=52-32=4,AO=4-1=3 ∵△ACD ∽ABC ∴AC 2=AD·AB ∴AB=AC 2AD =254∴OB=AB -AO=254-3=134O xyB A CD 图1此时B 点坐标为(134,0)②当点B 在点A 左侧时,如图2 此时AO=4+1=5 OB= AB -AO=254-5=54此时B 点坐标为(- 54,0)所以点B 的坐标为(134,0)或(- 54,0).19、解:(1) 坐标1232131 1 (1, 2)( 1, 3) (1,21) ( 1 ,31) 2 (2, 1) ( 2, 3)( 2 ,21)( 2 ,31)3(3, 1) ( 3, 2 ) ( 3 ,21)( 3 ,31)21(21,1) (21,2) (21,3) (21 ,31) 31 (31,1) (31,2) (31,3) (31 ,21)(2)当1=x 时2=y ,∴点(1,21),(1,31)在△AOB 内部, 当2=x 时1=y ,∴点(2,21),(2,31)在△AOB 内部,当3=x 时0=y ,∴则上述点都不在△AOB 内部,当21=x 时25=y ,则点(21,1)(21,2),(21,31)在△AOB 内部, 当31=x 时,38=y 则点(31,1)(31,2), (31,21)在△AOB 内点, ∴点P 在△AOB 的内部概率()101=202P =内部xyB ACDO图220、解:(1)过A 作DC 的垂线AM 交DC 于M , 则AM =BC =2. 又tan ∠ADC =2,所以212DM ==.因为MC =AB =1,所以DC =DM+MC =2,即DC =BC . (2)等腰直角三角形.证明:∵DE =DF ,∠EDC =∠FBC ,DC =BC . ∴△DEC ≌△BFC (5分)∴CE =CF ,∠ECD =∠BCF . ∴∠ECF =∠BCF+∠BCE =∠ECD+∠BCE =∠BCD =90° 即△ECF 是等腰直角三角形.(3)设BE =k ,则CE =CF =2k , ∴22EF k =. ∵∠BEC =135°,又∠CEF =45°,∴∠BEF =90°. ∴22(22)3BF k k k =+= ∴1sin 33BFE k k ∠==. B 卷21、8 ; 22、a+b ; 23、 124,1x x =-=-; 24、31nn + ; 25、1或4 26、解:(1)由P =-1100(x -60)2+41知,每年只需从100万元中拿出60万元投资,即可获得最大利润41万元,则不进行开发的5年的最大利润P 1=41×5=205(万元) (2)若实施规划,在前2年中,当x=50时,每年最大利润为: P= 1100-(50-60)2+41=40万元,前2年的利润为:40×2=80万元,扣除修路后的纯利润为:80-50×2=-20万元.设在公路通车后的3年中,每年用x 万元投资本地销售,而用剩下的(100-x )万元投资外地销售,则其总利润W=[-1100(x -60)2+41+(- x 2+x +160]×3=-3(x-30)2+3195当x=30时,W 的最大值为3195万元, ∴5年的最大利润为3195-20=3175(万元)(3)规划后5年总利润为3175万元,不实施规划方案仅为205万元,故具有很大的实施价值.27、解:(1)60,60;(2)∵CM ∥BP ,∴∠BPM+∠M=180°,∠PCM=∠BPC=60. ∴∠M=180°-∠BPM=180-(∠APC+∠BPC )=180°-120°=60°. ∴∠M=∠BPC=60°.(3)∵△ACM ≌△BCP ,∴CM=CP ,AM=BP . 又∠M=60°,∴△PCM 为等边三角形. ∴CM=CP=PM=1+2=3. 作PH ⊥CM 于H.在Rt △PMH 中,∠MPH=30°.∴PH=332. ∴S 梯形PBCM =11315()(23)332224PB CM PH +⨯=+⨯=. 28、解:(1)∵抛物线y=ax 2+bx+3(a≠0)经过A (3,0),B (4,1)两点,∴933016431a b a b ++=⎧⎨++=⎩解得:1252a b ==-∴y=21x 2﹣25x+3; ∴点C 的坐标为:(0,3);(2)①当△PAB 是以AB 为直角边的直角三角形,且∠PAB=90°,直线PA 与y 轴交于点D 过B 作BM ⊥x 轴交x 轴于点M ,如图(1-1)∵A (3,0),B (4,1), ∴AM=BM=1, ∴∠BAM=45°, ∴∠DAO=45°,∴AO=DO , ∵A 点坐标为(3,0), ∴D 点的坐标为:(0,3), ∴直线AD 解析式为:y=kx+b ,将A ,D 分别代入得: ∴0=3k+b ,b=3, ∴k=﹣1, ∴y=﹣x+3, ∴y=21x 2﹣25x+3=﹣x+3, ∴x 2﹣3x=0, 解得:x=0或3, ∴y=3或0(0不合题意舍去), ∴P 点坐标为(0,3),②当△PAB 是以AB 为直角边的直角三角形,且∠PBA=90°,直线PB 与y 轴交于点D , 过B 分别作BE ⊥x 轴,BF ⊥y 轴,分别交x 轴、y 轴于点E 、F ,如图(1-2) 由(1)得,FB=4,∠FBA=45°, ∴∠DBF=45°,∴DF=4, ∴D 点坐标为:(0,5),B 点坐标为:(4,1),∴直线BD 解析式为:y=kx+b ,将B ,D 分别代入得: ∴1=4k+b ,b=5, ∴k=﹣1, ∴y=﹣x+5, ∴y=21x 2﹣25x+3=﹣x+5, ∴x 2﹣3x ﹣4=0, 解得:x 1=﹣1,x 2=4, ∴y 1=6,y 2=1, ∴P 点坐标为(﹣1,6),其中(4,1)不合题意,舍去。

虎跳中学中考模拟试题

虎跳中学中考模拟试题

2014虎跳中学中考数学模拟考试题(全卷满分120分,考试时间100分钟)一、选择题(本大题满分42分,每小题3分)在下列各题的四个备选答案中,有且只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求...用2B 铅笔涂黑. 1.-3的倒数是A .3B .-3 31.c D.31- 2.下列计算中,正确的是( )A . 632a a a ÷=B . 236(2)8a a -=-C . ()22ab ab = D .3a =3.下列左图是由5个相同大小的正方体搭成的几何体,则它的俯视图是( )4.今年我国参加高考人数约为10200000,将10200000用科学记数法表示为( ) A .710.210⨯ B .71.0210⨯ C .70.10210⨯ D .710210⨯ 5.下列数据3,2,3,4,5,2,2的中位数是( ) A .5 B .4 C .3 D .2 6.函数11-=x y 中, 自变量x 的取值范围是 A .1=x B.1≥x C.1-≤x D.1≠x7.如图1,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32o,那么∠2的度数是( )C.68oD.60o图38.在正方形网格中,△ABC 位置如图2所示,则sin ∠ABC 的值为( ) B.23 C.22 D.129.如图3,在□ABCD 中,E 为AD 的三等分点,AD AE 32=,连接BE ,交AC 于点F ,AC =12,则AF 为( ) (A )4(B )4.8 (C )5.2(D )6第3题图A .B .C . A B C 图210.不等式组211420x x ->⎧⎨-⎩,≤的解在数轴上表示为( )11.已知x =1是方程x 2+bx +b -3=0的一个根,那么方程的另一个根为A. -2B. -1C. 1D. 2 12.一次函数y=3x+2的图象不经过A. 第一象阴B. 第二象限C. 第三象限D. 第四象限 13.如图,△ABC 是⊙O 的内接正三角形,点P 是优弧上一点,则sin ∠APB 的值是A .21 B.23 C.22 D.3第13题图 14.如图,△ABC 是面积为18cm 的等边三角形,被一平行于BC 的矩形所截,AB 被截成三等分,则图中阴影部分的面积为A .4cm 2B .6cm 2C .8 cm 2D .10 cm 2二、填空题(本大题满分16分,每小题4分)15.因式分解:322363a a b ab -+ = .16.已知反比例函数5m y x-=的图象在第二、四象限,则m 取值范围是__________17.如图,有一圆心角为120 o、半径长为6cm 的扇形,若将OA 、OB 重合后围成一圆锥侧面,那么圆锥的高是第17题图 第18题图18.如图,将矩形ABCD 沿EF 、EC 折叠,点B 恰好落在EA 上, 已知CD=4,BC=2,BE=1,则EF 的长为 .三、解答题(本大题满分62分)19.((本题满分10分))(1)计算:、︒-+-60cos 2921(2)化简:2111a a a -++。

虎跳中学中考模拟试题

虎跳中学中考模拟试题

(时间:100分钟 满分:110分)一、选择题(本大题满分42分,每小题3分) 1. 在0,-2,1,12这四个数中,最小的数是( )A. 0B. -2C. 1D. 122.计算()32a ,正确结果是( )A. 5aB.6aC.8aD.9a 3.数据26000用科学记数法表示为2.6×10n ,则n 的值是( ) A. 2 B. 3 C. 4 D. 5 4.在平面直角坐标系中,点A (2-,4)所在的象限是( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 5. 如图1,这是由5个大小相同的小正方体摆成的立体图形,它的俯视图...是6.当x=-2时,代数式x +1的值是( ) A. -1B. -3C. 1D. 37.如图2所示,∠1+∠2=180°,∠3=100°,则∠4等于()ABCD图1A .70° B.80° C.90° D.100° 8.下列各点中,在函数xy 2=图象上的点是( )A .(2,4)B .(-1,2)C .(-2,-1)D .(21-,1-)9.不等式组11x x ≤⎧⎨>-⎩的解集是( ) A. x >-1 B. x ≤1 C. x <-1 D. -1<x ≤1 10.要使式子1-x 在实数范围内有意义,则x 的取值范围是( ) A 、x ≥1 B 、x <1 C 、x ≤1 D 、x ≠111.图3是小敏同学6次数学测验的成绩统计表,则该同学6次成绩的中位数是( )A. 60分B. 70分C.75分D. 80分分数 测验1 测验2 测验3 测验4 测验5 测验6 图4c 58° ba72°50°caα图212.已知图4中的两个三角形全等,则∠α的度数是( )A .72°B .60°C .58°D .50°13.在Rt ABC ∆中, 90=∠C ,如果2=AB ,1=BC ,那么B sin 的值是( ) A.21 B.23 C.33 D.314.如图5,⊙B 的半径为4cm , 60=∠MBN ,点A 、C 分别是射线BM 、BN 上的动点,且直线BN AC ⊥.当AC 平移到与⊙B 相切时,AB 的长度是( )A.cm 8B.cm 6C.cm 4D.cm 2BCAMN图5二、填空题(本大题满分12分,每小题3分) 15.分解因式: x 2y ﹣2y 2x+y 3= .16.用火柴棒按如图6所示的方式摆图形,按照这样的规律继续摆下去,第4个图需要 根火柴棒,第n 个图形需要 根火柴棒(用含n 的代数式表示)17.方程02=-x x 的解是 .18. 如图7, AB 是⊙O 的直径,点C 在⊙O 上,∠BAC =30°,点P 在线段OB 上运动.设∠ACP =x ,则x 的取值范围是 . 三、解答题(本大题满分56分) 19.(满分8分,每小题4分) (1)计算:sin30°+(﹣1)0+()﹣2﹣.(2)化简:(a +1)(a -1)-a (a -1).……(1)(2)(3)图6图7AB O Cx P20.(满分8分)今年春节期间,三亚南山文化苑和亚龙湾森林公园接待游客日均量共5万人次,共收取门票850万元,收费如下表所示:问:三亚南山文化苑和亚龙湾森林公园接待游客日均量各多少万人?21.(满分8分)如图8,在正方形网格中,△ABC(1)将△ABC向右平移5个单位长度,画出平移后的△A1B1C1 ;(2)画出△ABC关于x轴对称的△A2B2C2 ;(3)将△ABC绕原点O 旋转180°,画出旋转后的△A3B3C3 ;(4)在△A1B1C1 、△A2B2C2 、△A3B3C3中△________与△________成轴对称;△________与△________成中心对称.22.(满分8分)现在“校园手机”越来越受到社会的关注,为此某校九(1)班随机调查了本校若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下统计图.(1)求这次调查的家长人数,并补全图①;(3分) (2)求图②中表示家长“赞成”的圆心角的度数;(2分)(3)从这次接受调查的家长来看,若该校的家长为2500名,则有多少名家长持反对态度?(3分)23、如图9,四边形ABCD 是正方形,ECF △是等腰直角三角形,其中CE CF =, G 是CD 与EF 的交点.(1)求证:BCF DCE △≌△; (2)求证:DE BF =., DE BF ⊥ (3)若5BC =,3CF =,90BFC ∠=,求:DG GC 的值.A D图924、如图10,已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C(1)求抛物线的函数解析式.(2)设点D在抛物线上,点E在抛物线的对称轴上,且以AO为边的四边形AODE是平行四边形,求点D的坐标.(3)P是抛物线上第一象限内的动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P,M,A为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.图10参考答案一.选择题BBCBA ADCDA CDBA 二、填空题15.y (x ﹣y )2 16.21,5n+1 17.01=x , 12=x 18.30°≤x ≤90° 三、解答题19.(1)解:原式=+1+4﹣=5. (2) 化简:原式=a 2-1-a 2+a=a -120. 解:设三亚南山文化苑接待游客日均量为x 万人,亚龙湾森林公园接待游客日均量y 万人,根据题意得,解得:答:三亚南山文化苑接待游客日均量为3.5万人,亚龙湾森林公园接待游客日均量1.5万人.21.(1)△111C B A 如图所示 (2)△222C B A 如图所示(3)△333C B A 如图所示 (4)△222C B A 、△333C B A ;△111C B A 、△333C B Ax+y=5 128x+188y=850x=3.5 y =1.522.解:(1)∵由条形统计图,无所谓的家长有120人,根据扇形统计图,无所谓的家长占20%,∴家长总人数为120÷20%=600人。

2014数学模拟试题

2014数学模拟试题

12014年中考数学模拟试题亲爱的同学,相信你已学到了不少数学知识,掌握了基本的数学思想方法,能够解决许多数 学问题,本试卷将给你一个展示的机会•请别急,放松些,认真审题,从容作答,你一定会取得前 所未有的好成绩.(本试卷满分150分,考试时间为120分钟)1A . a-bB . a bC .- a- b 9.如图,N AOB =90Z B=30° ,△ AOB 绕点O 顺时针旋转: 则旋转角〉的大小可以是( A . 30° B . 45°C .角度得到的.若点 A 在AB 上, ).60° D . 90°6.如果点P (m , -2m )在第四象限,那么 m 的取值范围是( ).第12题图14.如图,圆锥的底面半径为 6cm ,高为8cm ,那么这个圆锥的侧面积是、选择题(共 10小题,每小题 A 卷(满分100分)4分,计40分•每小题只有一个选项是符合题意的)11 •的倒数是( ).21 1 A. 2B . -2C .D -222. 1978年,我国国内生产总值是 3 645亿元,2009年升至249 530亿元.将249 530亿元用科学记 数表示为().A . 24.953 1013 元B . 24.953 1012 元x-10 12y-174-2 z• • •(第9题图)y 的对应值,可判断该二次函数的图象与x 轴( ).13C . 2.4953 10 元 14D . 2.4953 10 元3.图中圆与圆之间不同的位置关系有( ).(第3题图)A .只有一个交点B .有两个交点,且它们分别在y 轴两侧C .有两个交点,且它们均在y 轴同侧 D .无交点二、填空题(共 8小题,每小题4分,计32分) 11. 函数y = J 】—1中,自变量x 的取值范围是_ 12. 如图的围棋盘放在某个平面直角坐标系内,白棋②(-6,-8),那么黑棋①的坐标应该是 ___________13. 如图是一个被等分成 6个扇形可自由转动的转盘,转动转盘,当转盘停止后,指针指向红色区域的概率是 _______________ .的坐标为(-7,-4),白棋④的坐标为4.王老师为了了解本班学生课业负担情况, 在班中随机调查了10名学生,他们每人上周平均每天完成家庭作业所用的时间分别是(单位:小时) :1.5, 2, 2, 2, 2.5, 2.5 , 2.5, 2.5, 3, 3.5 .则这10 个数据的平均数和众数分别是( ).A . 2.4, 2.5B . 2.4, 2C . 2.5 , 2.5D . 2.5, 25. 若正比例函数的图象经过点(-1 , 2),则这个图象必经过点(). A . (1, 2) B . ( -1 , -2 ) C . (2, -1 ) D . (1, -2 )C .m :: 07.若用半径为9,圆心角为120°的扇形围成一个圆锥的侧面 (接缝忽略不计),则这个圆锥的底面半径是( ).A . 1.5B . 2C . 3D . 612015.用同样规格的黑白两种颜色的正方形瓷砖按下图方式铺地板,按此规律,第 瓷砖 _____________ 块.6个图形中需要黑色).D .- a + b△ AOB 可以看作是由题号-一--二二三A 卷合计B 卷 合计AB 卷 总分得分10 .根据下表中的二次函数 y二ax2bx c 的自变量x 与函数第13题图 第14题图2______ cm .的结果是(直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米? 16•如图所示的抛物线是二次函数y = -x2 ax a2 -4的图象,那么a的值是 ______________ .17.学习小组5位同学参加初中毕业生实验操作考试(满分20分)的平均成绩是16分•其中三位男生考试成绩的方差为 6 (分2),两位女生的成绩分别为17分,15分•则这个学习小组5位同学考试成绩的方差为 ______________ 分2•21.(本小题满分10分)设有关于x的一元二次方程x2+2 •... a x+ b =0(a> o.)(1)a、b满足什么关系时,方程有实根;(2)若a是从1、2、3三个数中任取一个数,b是从2、3两个数中任取的一个数,求上述方程有实根的概率。

2014年中考数学全真模拟试题含答案

2014年中考数学全真模拟试题含答案

2014年中考数学模拟试题(本试卷分A 卷(100分)、B 卷(60分),满分160分,考试时间120分钟)A 卷(共100分)一、选择题(每小题3分,36分) 1、﹣6的相反数为( ) A :6 B :61C :-61D :-62、下列计算正确的是( )A :a 2+a 4=a 6B : 2a+3b=5abC :(a 2)3=a6D :a 6÷a 3=a 23、已知反比例函数的图象经过点(1,﹣2),则k 的值为( )A :2B : -21 C :1D :-2 4、下列图形中,既是轴对称图形又是中心对称图形的有( )A :4个B :3个C :2个D :1个 5、如图,a ∥b ,∠1=65°,∠2=140°,则∠3=( )A :100°B :105°C :110°D :115°6、一组数据4,3,6,9,6,5的中位数和众数分别是( )A :5和5.5B :5.5和6C :5和6D :6和67、函数的图象在( )A :第一象限B :第一、三象限C :第二象限D :第二、四象限 8、如图,AB 是⊙O 的直径,弦CD ⊥AB ,∠CDB=30°,CD=,则阴影部分图形的面积为( )A :4πB :2πC :πD :32π 9、甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千 米,设甲车的速度为x 千米/小时,依据题意列方程正确的是( ) A :x 30=1540-x B :x 40=1530-x C :x30=1540+x D :x 40=1530+x 10、如图,在矩形ABCD 中,AB=10,BC=5,点E 、F 分别在AB 、CD 上,将矩形ABCD 沿EF 折叠,使点A 、D 分别落在矩形ABCD 外部的点A 1、D 1处,则阴影部分图形的周长为( )A :15B :20C :25D :3011、如图所示,△ABC 的顶点是正方形网格的格点,则sinA 的值为( ) A :21B :55C :1010D :55212、如图,正△ABC 的边长为3cm ,动点P 从点A 出发,以每秒1cm 的速度,沿A →B →C的方向运动,到达点C 时停止,设运动时间为x (秒),y=PC 2,则y 关于x 的函数的图象大致为( )A :B :C :D :二、填空题(本大题共4小题,每小题5分,共20分) 13.若m 2-n 2=6,且m -n=2,则m +n= ▲ . 14.函数2x 1y x 1+=-中自变量x 的取值范围是 ▲ . 15.一组数据3,4,6,8,x 的中位数是x ,且x 是满足不等式组x 305x>0-≥⎧⎨-⎩的整数,则这组数据的平均数是 ▲ .16.已知菱形ABCD 的两条对角线分别为6和8,M 、N 分别是边BC 、CD 的中点,P 是对角线BD 上一点,则PM+PN 的最小值= ▲ .三、解答题(本大题共5小题,共44分) 17.计算:()()1201302sin 60534015131π-⎛⎫+---+-+ ⎪-⎝⎭.18.已知,如图,△ABC 和△ECD 都是等腰直角三角形,∠ACD=∠DCE=90°,D 为AB 边上一点.求证:BD=AE .19.随着车辆的增加,交通违规的现象越来越严重,交警对某雷达测速区检测到的一组汽车的时速数据进行整理,得到其频数及频率如表(未完成):数据段 频数 频率 30~40 10 0.05 40~50 36 50~60 0.39 60~70 70~80 20 0.10 总计2001注:30~40为时速大于等于30千米而小于40千米,其他类同 (1)请你把表中的数据填写完整; (2)补全频数分布直方图;(3)如果汽车时速不低于60千米即为违章,则违章车辆共有多少辆?20.如图,某校综合实践活动小组的同学欲测量公园内一棵树DE 的高度,他们在这棵树的正前方一座楼亭前的台阶上A 点处测得树顶端D 的仰角为30°,朝着这棵树的方向走到台阶下的点C 处,测得树顶端D 的仰角为60°.已知A 点的高度AB 为3米,台阶AC 的坡度为13:(即AB :BC=13:),且B 、C 、E 三点在同一条直线上.请根据以上条件求出树DE 的高度(侧倾器的高度忽略不计).21.某地区为了进一步缓解交通拥堵问题,决定修建一条长为6千米的公路.如果平均每天的修建费y(万元)与修建天数x(天)之间在30≤x≤120,具有一次函数的关系,如下表所示.x 50 60 90 120y 40 38 32 26(1)求y关于x的函数解析式;(2)后来在修建的过程中计划发生改变,政府决定多修2千米,因此在没有增减建设力量的情况下,修完这条路比计划晚了15天,求原计划每天的修建费.B卷(共60分)四、填空题(本大题共4小题,每小题6分,共24分)22.在△ABC中,已知∠C=90°,7sinA sinB5+=,则sinA sinB-=▲.23.如图,正六边形硬纸片ABCDEF在桌面上由图1的起始位置沿直线l不滑行地翻滚一周后到图2位置,若正六边形的边长为2cm,则正六边形的中心O运动的路程为▲cm.24.如图,已知直线l:y3x=,过点M(2,0)作x轴的垂线交直线l于点N,过点N 作直线l的垂线交x轴于点M1;过点M1作x轴的垂线交直线l于N1,过点N1作直线l的垂线交x轴于点M2,…;按此作法继续下去,则点M10的坐标为▲.25.在平面直角坐标系xOy 中,以原点O 为圆心的圆过点A (13,0),直线y kx 3k 4=-+与⊙O 交于B 、C 两点,则弦BC 的长的最小值为 ▲ . 五、解答题(本大题共3小题,每小题12分,共36分)26.如图,AB 是半圆O 的直径,点P 在BA 的延长线上,PD 切⊙O 于点C ,BD ⊥PD ,垂足为D ,连接BC .(1)求证:BC 平分∠PDB ; (2)求证:BC 2=AB•BD ;(3)若PA=6,PC=62,求BD 的长.27.如图,在等边△ABC 中,AB=3,D 、E 分别是AB 、AC 上的点,且DE ∥BC ,将△ADE 沿DE 翻折,与梯形BCED 重叠的部分记作图形L . (1)求△ABC 的面积;(2)设AD=x ,图形L 的面积为y ,求y 关于x 的函数解析式;(3)已知图形L 的顶点均在⊙O 上,当图形L 的面积最大时,求⊙O 的面积.28.已知二次函数2y ax bx c =++(a >0)的图象与x 轴交于A (x 1,0)、B (x 2,0)(x 1<x 2)两点,与y 轴交于点C ,x 1,x 2是方程2x 4x 50+-=的两根.(1)若抛物线的顶点为D,求S△ABC:S△ACD的值;(2)若∠ADC=90°,求二次函数的解析式.2014年中考数学模拟试题答案一、A CDCBB ADCDBC13. 314.1x2≥-且x≠115. 516. 517. 解:原式=3317 5311222-+-⨯-+=。

虎跳中学中考模拟试题

虎跳中学中考模拟试题

虎跳中学2014年中考模拟试卷 数学科试题(考试时间:100分钟 满分120分)一、选择题(本大题满分42分,每小题3分)在下列各题的四个备选答案中,有且只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求用2B 铅笔涂黑. 1. —3的绝对值是A. —3B. 13-C. 13 D .32. 若代数式 x ﹢2的值为—3,则 x 等于A. 1 B . —1 C . —5 D. 5 3. 下列计算正确的是 A. 523a a a =+B. a a a =÷45C. 44a a a =⋅ D .632)(ab ab =4. 某中学九年级(1)班同学举行“奥运在我心中”演讲比赛.第三小组的六名同学成绩如下(单位:分): 9.1, 9.3, 9.5, 9.2, 9.4, 9.2.则这组数据的众数是A .9.1 B. 9.2C. 9.3D. 9.55. 图1是由四个小正方体叠成的一个立体图形,那么它的俯视图为6. 下列各数中,与1+2的积为有理数的是A . 2-1B . 2+1 C. -1-2 D. 2 7. 一次函数y =3x ﹢2的图像不经过A . 第一象限B . 第二象限C. 第三象限D. 第四象限 8. 如图2,A 、B 、C 均在⊙O 上,∠ABO =55O,则∠BCA=A. 35oB. 45oC. 50oD. 70o9. 已知三角形两边的长分别是4和10,则此三角形第三边的长可能是 A. 5 B. 6 C. 11 D. 16B .CD .C 图210. 某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x 台机器,则可列方程为A.60045050x x =+ B. 60045050x x =- C. 60045050x x =+ D. 60045050x x=-11. 甲、乙、丙三个同学排成一排拍照,则甲排在中间的概率是 A .16B .14C .13D .1212. 如图3,直线m n ∥,︒∠1=55,︒∠2=45,则∠3的度数为A .80︒B .90︒C .100︒D .110︒13. 如图,E 是□ABCD 的边AD 的中点,CE 与BA 的延长线交于点F ,若∠FCD =∠D ,则下列结论不成立...的是 A .AD =CF B .BF =CF C .AF =CD D .DE =EF14. 如图5,已知矩形ABCD 沿着直线BD 折叠,使点C 落在C ′处,交AD 于E ,AD =8,AB =4,则DE 的长为 A. 3 B. 4 C. 5 D. 6 二、填空题(本大题满分16分,每小题4分) 15. 分解因式:a 3 —a =________________. 16. 在反比例函数1my x-=的图象的每一条曲线上,y 都随x 的增大而减小,则m 的取值范围是__________.17. 如图6,等腰梯形ABCD 中,AD ∥BC ,AB ∥DE ,BC=8,AB =5 ,AD =5,则△CDE 的周长是_______.AP D 图760°AEBCD图6ABCDEC ′图53mn 21m ∥,∠1=55,∠2=45,∠380︒F D ECBA图3图418. 如图7,等边△ABC 的边长为3,点P 为BC 上一点,且BP =1,点D 为AC 上一点,若∠APD =60°,则CD 的长为 . 三、解答题(本大题满分62分) 19.(满分10分)计算: (1-2|+113-⎛⎫⎪⎝⎭+ (-1)2011. (2)2(3)2a a a ++-()20.(满分8分)海南省历史悠久,人杰地灵,史称琼崖,为了了解学生对家乡历史文化名人的知晓情况,某校对部分的学生进行了随机抽样调查,并将调查结果绘制成如图所示的统计图(部分).根据统计图中的信息,回答下列问题. (1)补充条形统计图完整;(2)在扇形统计图中,“了解很少”所在扇形的圆心角是_________度; (3)若全校共有学生2400人,那么该校约有多少名学生“基本了解”海南省的历史文化名人?21. (满分9分)如图8,在Rt △ABC 中,∠ACB=90°,已知CD ⊥AB ,BC=1. (1)如果∠BCD=30°,求AC ;(2)如果tan ∠BCD=31,求CD.22.(满分8分) 受气候等因素的影响,今年某些农产品的价格有所上涨. 李大叔在承包的10亩地里所种植的甲、乙两种蔬菜共获利13800元.其中甲种蔬菜每亩获利1200元,乙种蔬菜每亩获利1500元.则甲、乙两种蔬菜各种植了多少亩?23.(满分13分)如图9,在正方形ABCD 中,E 是CD 上一点,DF ⊥BE 交BE 的延长线于点G ,交BC 的延长线于点F .﹪不了解 了解很少 了解程度很了解基本了解 ACB D图8(1)求证:△BCE ≌△DCF . (2)若∠DBE =∠CBE ,求证BD =BF . (3)在(2)的条件下,求CE :ED 的值. 24. (满分14分)如图10,在平面直角坐标系中,二次函数2=++y x bx c 的图象与x 轴交于A 、B 两点,B 点的坐标为(3,0),与y 轴交于(03)C -,点,点P 是直线BC 下方抛物线上的动点.(1)求这个二次函数表达式;(2)连接PO ,PC ,并将△POC 沿y 轴对折, 得到四边形POP C ',那么是否存在点P ,使 四边形POP C '为菱形?若存在,求出此时点 P 的坐标;若不存在,请说明理由;(3)当点P 运动到什么位置时,四边形ABPC的面积最大?求出此时P 点的坐标和四边形ABPC 的最大面积.参考答案:一、DCBBB ADACC CCBC二、15. a (a ﹢1)(a ﹣1) 16. 1m < 17. 15 18.32三、19.(1)解:原式=3+2+3-1 (2)解:原式=22692a a a a +++- =7 =89a + 20.解:(1)5÷10﹪=50,50﹣25﹣5﹣5=15(人),作图(略).(2)180(3)(人)720515255152400=+++⨯∴“基本了解”的学生720人.21.解:(1)∵CD ⊥AB ∴ ∠BDC =90°∵∠DCB =30° ∴∠B =60° 在Rt △ACB 中,∠ACB =90° ∴tan60°=BCAC……………………………4分 ∴AC =3…………………5分 (2)在Rt △BDC 中, tan ∠BCD =31=CD BD 设BD =k ,则CD =k 3如图10ACBD图9A BC D EFG由勾股定理得:()22213=+k k ………………………6分解得:1010101021-==k k ,(不合题意,舍去) ∴1010=k …………………8分 ∴CD =10103 .………………………9分 22. 解:设甲、乙两种蔬菜的种植面积分别为x 、y 亩,依题意可得:⎩⎨⎧=+=+138001*********y x y x 解这个方程组得⎩⎨⎧==64y x 答:(略) 23解:(1)证明∵四边形ABCD 是正方形,∴BC =DC ,∠BCE =∠DCF =90o ,………………(2分) ∴∠CBE ﹢∠BEC =90o ,又∵BG ⊥DF , ∴∠CBE ﹢∠F =90o ∴∠BEC =∠F , ∴△BCE ≌△DCF ……………………(4分) (2)证明:∵BG ⊥DF∴∠BGD =∠BGF ……………………(6分) 又∵BG=BG ,∠DBG ∠FBG , ∴△DBG ≌△FBG ,∴BD=BF ; ……………………(8分) (3)解:延长AD 、BG 交于点H .∵BD=BF ,BG ⊥DF ……………(10分) ∴∠DBG ∠FBG ,∵AD ∥BC ,∴∠H =∠FBG , ∴∠DB H =∠H ,∴DB=DH , ∵AH ∥BC ,∴△BCE ~△HDE ,……………(12分) ∴CE :DE =BC :DH ,∴CE :DE =BC :DB . ∵四边形ABCD 是正方形, ∴BC :BD=2:1. ∴CE :DE=2:1, ∴CE :DE 的值为22.……………(13分) ABCD E FGH24. 解:(1)将B 、C 两点的坐标代入2=++y x bx c 得3=9=3b c c +-⎧⎨-⎩,解得=2=3b c -⎧⎨-⎩.所以二次函数的表达式为:2=23y x x --.……………(4分) (2)假设抛物线上存在点P ,使得四边形POP C '为菱形.设P 点坐标为(x ,223x x --) ……………(5分) 连接PP '交CO 于点E . ∵四边形POP C '为菱形, ∴ PC=PO ;PE ⊥CO .∴OE=EC=32,∴P 点的纵坐标为32-,……………(7分)即223x x --=32-,解得12x x .即存在这样的点,此时P ,32-)……………(9分)3)过点P 作y 轴的平行线与BC 交于点Q ,与OB 交于点F ,设P (x ,223x x --). ……………(10分) 由223x x --=0得点A 坐标为(-1,0).又已知点B 和点C 的坐标, 从而直线BC 的解析式为y=x -3. Q 点的坐标为(x ,x -3),则AB=4,CO=3,BO=3,PQ=23x x -+. ∴S 四边形ABPC =S △ABC + S △BPQ + S △CPQ =12AB·CO +12PQ·BF +12PQ·FO =12AB·CO +12PQ·(BF +FO ) =12AB·CO +12PQ·BO=12×4×3+12(23x x -+)×3 =239622x x -++=23375()228x --+ . .……………(13分)当x=32时,四边形ABPC 的面积最大.此时P 点的坐标为(32,154-),四边形ABPC 的最大面积为758. ……………(14分)。

2014年虎跳中学中考数学模拟试题 (7)

2014年虎跳中学中考数学模拟试题 (7)

1201421d b ac233-22-18-2)A B C D 、、()、、(2014年初中学业水平考试模拟数学试卷一、选择题(每小题3分,共24分) 题号 1 2 3 4 5 6 7 8 答案1.-2014的绝对值是( )A 、 -2014B 、±2014C 、2014D 、2.“一方有难,八方支援”,2013年4月20日四川省芦山县遭遇强烈地震灾害,我县某校师生共同为地震灾区捐款135000元用于灾后重建,把135000元用科学记数法表示为( )A 、1.35×10 6B 、13.5×105C 、1.35×105D 13.5×104 3.下列各式化简结果为无理数的是( )4.为了调查某班学生每天使用零花钱的情况,小张随机调查了15名同学,结果如下表:每天使用零花钱(单位:元)0 1 3 4 5 人数13542A 、众数是5元B 、平均数是2.5元C 、极差是4元D 、中位数是3元 5、在6张完全相同的卡片上分别画上线段、等边三角形、平行四边形、直角梯形、矩形、圆,在看不见图形的情况下随机摸出1张,这张卡片上的图形既是中心对称图形又是轴对称图形的概率是( )A .16B .13C .12D .236. 如图,直线a 、b 、c 、d ,已知c ⊥a,c ⊥b, 直线b 、c 、d 交于一点,若∠1=500,则∠2等于( ) A 、600 B 、500 C 、400 D 、3007、对于任意实数k ,关于x 的方程x 2-2(k+1)x-k 2+2k-1=0的根的情况为( )A 、有两个不相等的实数根B 、没有实数根C 、有两个相等的实数根D 、无法确定8、如图,直线1:1+=x y l 与直线2121:2+=x y l 相交于点)0,1(-P .直线1l 与y轴交于点A .一动点C 从点A 出发,先沿平行于x 轴的方向运动,到达直线2l 上的点1B 处后,改为垂直于x 轴的方向运动,到达直线1l 上的点1A 处后,再沿平行于x 轴的方向运动,到达直线2l 上的点2B 处后,又改为垂直于x 轴的方向运|a 1|70b -++=001|1-2|-2sin 45( 3.14)32π+-++第11题BCDOA第12题EDCBA第16题G 动,到达直线1l 上的点2A 处后,仍沿平行于x 轴的方向运动,…… 照此规律运动,动点C 依次经过点1B ,1A ,2B ,2A ,3B ,3A ,…,2014B ,2014A ,…则当动点C 到达2014A 处时,运动的总路径的长为( ) A .22014 B .222015- C .122013+ D .122014-二、填空题 (每小题3分,共24分) 9、因式分解:x 3y -xy 3= 。

2014年虎跳中学中考数学模拟试题 (15)

2014年虎跳中学中考数学模拟试题 (15)

2014年初中学业水平考试模拟数学试卷温馨提示:1.本试卷满分120分,考试时间120分钟.本试卷共三道大题,25个小题.一、填空题(本大题共8个小题,请将答案填在答题卡的答案栏内,每小题3分,共24分)1.-2014-=.2.永州市2011年财政总收入增长31.7%,完成70.5亿元,请将70.5亿用科学计数法表示为:.3.布袋里有3个白球和2个红球,从布袋里取一次球,则取出红球的概率是。

4.如图,平行直线AB、CD被直线EF所截,∠1=60°,则∠3的同旁内角为.5.若正比例函数y kx=的图象经过点(-1,2),则k的值为.6.如图,四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件可以是(第四题图)(第六题图)7.观察下列一组数:1,1,2,3,5,8,13,21,34…则紧跟34后面的两个数分别为、。

8.根据指令[s,A](s≥0,0°<A<360°),机器人在平面上能完成下列动作:先原地逆时针旋转角度A,再朝其面对的方向沿直线行走距离s,现机器人在直角坐标系的坐标原点,且面对x轴正方向.(1)若给机器人下了一个指令[3,90°],则机器人应移动到点;(2)请你给机器人下一个指令,使其移动到点(6,-6).二、选择题(本大题共8个小题,每小题只有一个正确选项,请将正确选项填涂到答题卡上.每小题3分,共24分)9.在下列图形中,为中心对称图形的是()A等边三角形;B平行四边形;C正五边形;D等腰三角形。

10.如图是由棱长为1的正方体搭成的积木三视图,则图中棱长为1的正方体的个数是().主视图 左视图 俯视图 A 4 B 5 C 6 D 811.某校八年级一班随机抽取6名同学的一次地生模拟测试成绩如下:90,75,90,86,86,90.数据中的众数和中位数分别是:A. 90,88B. 86,90C. 86,75D. 90,9012.在△ABC 中,∠C =90°,sinA =35,则tanB = ( ) A .43 B .34 C .35 D .4513.不等式组⎩⎨⎧≤-<+5121x x x 的解集是:A. 5≤xB. 52≤<-xC.52≤<xD. 2<x14.下列计算正确的是:A.422a a a =+B.()a a a a a a +=÷++223C.1046a a a =⋅ D .()633a a =15.二次函数2y ax bx c =++的图象如图所示,则下列关系式不正确的是( )第15题图 第16题图 A 、a <0 B 、abc >0 C 、c b a ++>0 D 、ac b 42->0 16.反比例函数(0)ky k x=>的部分图如图所示,A 、B 是图象上两点,AC ⊥x 轴于点C ,BD ⊥x 轴于点D ,若△AOC 的面积为S 1,△BOD 的面积为S 2,则S 1和S 2的大小关系为( )A .S 1>S 2B .S 1=S 2C .S 1<S 2D .无法确定三、解答题(本大题共9个小题,共72分,解答题要求写出证明步骤或解答过程) 17.(本小题6分)计算:20+()()()121213201-++--316⨯-.18.(本小题6分)解方程:12121=-+--xx x .19.(本小题6分)先化简,再求值:22211(-)+-xy x y x y x y ÷-,其中1,-1x y =.20.(本小题8分)十八大代表年龄结构比较合理、学历层次较高。

2014中考数学模拟试卷(附详细答案)(3份)

2014中考数学模拟试卷(附详细答案)(3份)

2014年中考数学模拟试卷三(时间120分钟,满分120分)一、选择题(每小题3分,共36分)1.从不同方向看一只茶壶,你认为是俯视图的是()2.下列等式一定成立的是( )A .a 2+a 3=a 5B .(a +b )2=a 2+b 2C .(2ab 2)3=6a 3b 6D .(x -a )(x -b )=x 2-(a +b )x +ab 3.下列图形中,既是轴对称图形,又是中心对称图形的是()4.如果不等式组⎩⎪⎨⎪⎧ x +9<5x -1,x >m +1①②的解集是x >2,则m 的取值范围是( ) A .m <1 B .m ≥1 C .m ≤1 D .m >15.已知三角形的两边长是方程x 2-5x +6=0的两个根,则该三角形的周长L 的取值范围是( )A .1<L <5B .2<L <6C .5<L <9D .6<L <106.反比例函数y =2x的两个点为(x 1,y 1),(x 2,y 2),且x 1>x 2,则下式关系成立的是( )A .y 1>y 2B .y 1<y 2C .y 1=y 2D .不能确定7.在△ABC 中,AB >AC ,点D ,E 分别是边AB ,AC 的中点,点F 在BC 边上,连接DE ,DF ,EF .则添加下列哪一个条件后,仍无法判定△BFD 与△EDF 全等的是( )A .EF ∥AB B .BF =CFC .∠A =∠DFED .∠B =∠DEF8.经过某十字路口的汽车,它可能继续直行,也可能向左或向右转.若这三种可能性大小相同,则两辆汽车经过该十字路口全部继续直行的概率为( )A .13B .23C .19D .129.函数y =ax +1与y =ax 2+bx +1(a ≠0)的图象可能是()10.某剧场为希望工程义演的文艺表演有60元和100元两种票价,某团体需购买140张,其中票价为100元的票数不少于票价为60元的票数的两倍,则购买这两种票最少共需要( )A .12 120元B .12 140元C .12 160元D .12 200元11.如图,直角三角板ABC 的斜边AB =12 cm ,∠A =30°,将三角板ABC 绕C 顺时针旋转90°至三角板A ′B ′C ′的位置后,再沿CB 方向向左平移,使点B ′落在原三角板ABC 的斜边AB 上,则三角板A ′B ′C ′平移的距离为( )A.6 cm B.4 cmC.(6-23)cm D.(43-6)cm12.如图,△ABC中,∠ACB=90°,AC>BC,分别以△ABC的边AB,BC,CA为一边向△ABC外作正方形ABDE,BCMN,CAFG,连接EF,GM,ND,设△AEF,△BND,△CGM的面积分别为S1,S2,S3,则下列结论正确的是( )A.S1=S2=S3 B.S1=S2<S3C.S1=S3<S2 D.S2=S3<S1二、填空题(每小题4分,共20分)13.因式分解:x3-9x=__________.14.如图,AB为⊙O的直径,点C,D在⊙O上.若∠AOD=30°,则∠BCD的度数是__________.(第14题图)15.甲、乙两盏路灯底部间的距离是30米,一天晚上,当小华走到距路灯乙底部5米处时,发现自己的身影顶部正好接触路灯乙的底部.已知小华的身高为1.5米,那么路灯甲的高为__________米(如图).(第15题图)16.如图,在△ABC中,AB=BC,将△ABC绕点B顺时针旋转α度,得到△A1BC1,A1B 交AC于点E,A1C1分别交AC,BC于点D,F,下列结论:①∠CDF=α,②A1E=CF,③DF=FC,④AD=CE,⑤A1F=CE.(第16题图)其中正确的是__________(写出正确结论的序号). 17.如图①,将一个量角器与一张等腰直角三角形(△ABC )纸片放置成轴对称图形,∠ACB =90°,CD ⊥AB ,垂足为D ,半圆(量角器)的圆心与点D 重合,测得CE =5 cm ,将量角器沿DC 方向平移 2 cm ,半圆(量角器)恰与△ABC 的边AC ,BC 相切,如图②,则AB 的长为__________cm.(精确到0.1 cm)图① 图②三、解答题(共64分)18.(6分)计算:12-⎝ ⎛⎭⎪⎫-12-1-tan 60°+3-8+|3-2|.19.(7分)如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.(1)表中第8行的最后一个数是__________,它是自然数__________的平方,第8行共有__________个数;(2)用含n 的代数式表示:第n 行的第一个数是__________,最后一个数是__________,第n 行共有__________个数;(3)求第n 行各数之和.20.(7分)为了鼓励城区居民节约用水,某市规定用水收费标准如下:每户每月的用水量不超过20度时(1度=1米3),水费为a元/度;超过20度时,不超过部分仍为a元/度,超过部分为b元/度.已知某用户4月份用水15度,交水费22.5元,5月份用水30度,交水费50元.(1)求a,b的值;(2)若估计该用户6月份的水费支出不少于60元,但不超过90元,求该用户6月份的用水量x的取值范围.21.(7分)据媒体报道:某市4月份空气质量优良,高居全国榜首,青春中学九年级课外兴趣小组据此提出了“今年究竟能有多少天空气质量达到优良”的问题,他们根据国家环保总局所公布的空气质量级别表(见表1)以及市环保监测站提供的资料,从中随机抽取了今年1~4月份中30天空气综合污染指数,统计数据如下:空气污染指数0~50 51~100101~150151~200201~250251~300大于300空气质量级别Ⅰ级(优)Ⅱ级(良)Ⅲ1(轻微污染)Ⅲ2(轻度污染)Ⅳ1(中度污染)Ⅳ2(中度重污染)Ⅴ(重度污染)30,32,40,42,45,45,77,83,85,87,90,113,127,153,167,38,45,48,53,57,64,66,77,92,98,130,184,201,235,243.请根据空气质量级别表和抽查的空气综合污染指数,解答以下问题:(1)30(2)(3)请根据抽样数据,估计该市今年(按360天计算)空气质量是优良(包括Ⅰ、Ⅱ级)的天数.22.(8分)如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 分别交AC ,BC 于点D ,E ,点F 在AC 的延长线上,且∠CBF =12∠CA B .(1)求证:直线BF 是⊙O 的切线;(2)若AB =5,sin∠CBF =55,求BC 和BF 的长.23.(9分)如图1,小红家的阳台上放置了一个晒衣架.如图2是晒衣架的侧面示意图,立杆AB ,CD 相交于点O ,B ,D 两点立于地面,经测量:AB =CD =136 cm ,OA =OC =51 cm ,OE =OF =34 cm ,现将晒衣架完全稳固张开,此时扣链EF 成一条线段,EF =32 cm.图1 图2(1)求证:AC ∥BD ;(2)求扣链EF 与立杆AB 的夹角∠OEF 的度数(精确到0.1°,可使用科学计算器); (3)小红的连衣裙穿在衣架后的总长度达到122 cm ,问挂在晒衣架后是否会拖落到地面?请通过计算说明理由.24.(10分)如图,在平面直角坐标系中,已知A,B,C三点的坐标分别为A(-2,0),B(6,0),C(0,3).(1)求经过A,B,C三点的抛物线的解析式;(2)过C点作CD平行于x轴交抛物线于点D,写出D点的坐标,并求AD,BC的交点E 的坐标;(3)若抛物线的顶点为P,连接PC,PD,判断四边形CEDP的形状,并说明理由.25.(10分)已知:在如图1所示的锐角△ABC中,CH⊥AB于点H,点B关于直线CH的对称点为D,AC边上一点E满足∠EDA=∠A,直线DE交直线CH于点F.图1(1)求证:BF∥AC;(2)若AC边的中点为M,求证:DF=2EM;(3)当AB=BC时(如图2),在未添加辅助线和其他字母的条件下,找出图2中所有与BE 相等的线段,并证明你的结论.图2参考答案一、1.A 俯视图是从上面看到的平面图形,也是在水平投影面上的正投影.易判断选A.2.D 3.B4.C 由①得x >2,由②得x >m +1. ∵其解集是x >2,∴m +1≤2,∴m ≤1. 5.D 6.D7.C DE 是△ABC 的中位线,DE ∥BC ,所以∠EDF =∠BFD .又DF =FD ,所以两三角形已具备了一边一角对应相等的条件.添加A 中条件EF ∥AB ,可利用ASA 证全等;添加B 中条件BF =CF ,可利用SAS 证全等;添加C 中条件,不能证明全等;添加D 中条件∠B =∠DEF ,可利用AAS 证明全等.8.C9.C 当a >0时,直线从左向右是上升的,抛物线开口向上,B ,D 是错的;函数y =ax +1与y =ax 2+bx +1(a ≠0)的图象必过(0,1),A 是错的,所以C 是正确的,故选C.10.C11.C 如图,三角板A ′B ′C ′平移的距离为B ′B ″.∵AB =12 cm ,∠A =30°,∴BC =B ″C ″=6 cm ,利用三角函数可求出BC ″=2 3 cm ,所以B ′B ″=(6-23)cm.12.A 如下图,由全等可证EQ =BC =BN =CM ,AC =DG =FA =CG ,∴S 1=12FA ·EQ ,S 2=12BN ·DG ,S 3=12MC ·CG ,∴S 1=S 2=S 3.二、13.x (x -3)(x +3) x 3-9x =x (x 2-9)=x (x -3)(x +3).14.105° ∵∠AOD =30°,∴DAB 的度数为210°,∠BCD =105°.15.9 设路灯高为x 米,由相似得1.5x =530,解得x =9,所以路灯甲的高为9米.16.①②⑤ 17.24.5三、18.解:原式=23+2-3-2+2-3=2.19.解:(1)64 8 15 (2)(n -1)2+1 n 22n -1(3)方法一:第2行各数之和等于3×3;第3行各数之和等于5×7;第4行各数之和等于7×13;类似地,第n 行各数之和等于(2n -1)(n 2-n +1)=2n 3-3n 2+3n -1.方法二:第n 行各数分别为(n -1)2+1,(n -1)2+2,(n -1)2+3,…,(n -1)2+2n -1,共有2n -1个数,它们的和等于(2n -1)(n 2-n +1)=2n 3-3n 2+3n -1. 20.解:(1)a =22.5÷15=1.5;b =(50-20×1.5)÷(30-20)=2;(2)根据题意,得60≤20×1.5+2(x -20)≤90,35≤x ≤50. 所以该用户6月份的用水量x 的取值范围是35≤x ≤50. 21.解:(1)30 (2)中位数是80(3)∵360×9+1230=252,∴空气质量优良(包括Ⅰ、Ⅱ级)的天数是252天. 22.(1)证明:如图,连接AE .∵AB 是⊙O 的直径,∴∠AEB =90°.∴∠1+∠2=90°.∵AB =AC ,∴∠1=12∠CAB .∵∠CBF =12∠CAB ,∴∠1=∠CBF .∴∠CBF +∠2=90°,即∠ABF =90°.∵AB 是⊙O 的直径,∴直线BF 是⊙O 的切线. (2)解:如图,过点C 作CG ⊥AB 于点G ,∵sin ∠CBF =55,∠1=∠CBF ,∴sin ∠1=55.∵∠AEB =90°,AB =5,∴BE =AB ·sin∠1= 5.∵AB =AC ,∠AEB =90°,∴BC =2BE =2 5.在Rt △ABE 中,由勾股定理得AE =AB 2-BE 2=25,∴sin ∠2=255,cos ∠2=55.在Rt △CBG 中,可求得GC =4,GB =2,∴AG =3. ∵GC ∥BF ,∴△AGC ∽△ABF . ∴GC BF =AG AB .∴BF =GC ·AB AG =203. 故BC 和BF 的长分别为25,203.23.(1)证法一:∵AB ,CD 相交于点O ,∴∠AOC =∠BOD .∵OA =OC ,∴∠OAC =∠OCA =12(180°-∠AOC ).同理可证:∠OBD =∠ODB =12(180°-∠BOD ),∴∠OAC =∠OBD ,∴AC ∥BD .证法二:∵AB =CD =136 cm ,OA =OC =51 cm ,∴OB =OD =85 cm ,∴OA OB =OC OD =35.又∵∠AOC =∠BOD ,∴△AOC ∽△BOD ,∴∠OAC =∠OBD .∴AC ∥BD .(2)解:在△OEF 中,OE =OF =34 cm ,EF =32 cm , 作OM ⊥EF 于点M ,则EM =16 cm ,∴cos ∠OEF =EM OE =1634=817≈0.471,用科学计算器求得∠OEF ≈61.9°.(3)解法一:小红的连衣裙会拖落到地面.在Rt △OEM 中,OM =OE 2-EM 2=342-162=30(cm); 过点A 作AH ⊥BD 于点H ,同(1)可证:EF ∥BD , ∴∠ABH =∠OEM ,则Rt △OEM ∽Rt △ABH , ∴OE AB =OM AH ,AH =OM ·AB OE =30×13634=120(cm). ∴小红的连衣裙挂在衣架后总长度122 cm >晒衣架高度AH =120 cm.解法二:小红的连衣裙会拖落到地面.同(1)可证:EF ∥BD ,∴∠ABD =∠OEF =61.9°.过点A 作AH ⊥BD 于点H ,在Rt △ABH 中,sin ∠ABD =AHAB,AH =AB ×sin∠ABD =136×sin 61.9°=136×0.882≈120.0 cm.∴小红的连衣裙挂在衣架后总长度122 cm >晒衣架高度AH =120 cm.24.解:(1)由于抛物线经过点C (0,3),可设抛物线的解析式为y =ax 2+bx +3(a ≠0),则⎩⎪⎨⎪⎧4a -2b +3=0,36a +6b +3=0.解得⎩⎪⎨⎪⎧a =-14,b =1,故抛物线的解析式为y =-14x 2+x +3.(2)点D 的坐标为(4,3),直线AD 的解析式为y =12x +1,直线BC 的解析式为y =-12x+3,由⎩⎪⎨⎪⎧y =12x +1,y =-12x +3,得交点E 的坐标为(2,2).(3)四边形CEDP 为菱形.理由:连接PE 交CD 于F ,如图.∵P 点的坐标为(2,4),又∵E (2,2),C (0,3),D (4,3),∴PC =DE =5,PD =CE = 5.∴PC =DE =PD =CE .故四边形CEDP 是菱形.25.(1)证明:如图1.图1∵点B 关于直线CH 的对称点为D ,CH ⊥AB 于点H ,直线DE 交直线CH 于点F ,∴BF =DF ,DH =BH .∴∠1=∠2.又∵∠EDA =∠A ,∠EDA =∠1,∴∠A =∠2.∴BF ∥AC .(2)证明:取FD 的中点N ,连接HM ,HN .图2∵H 是BD 的中点,N 是FD 的中点,∴HN ∥BF .由(1)得BF ∥AC ,∴HN ∥AC ,即HN ∥EM .∵在Rt △ACH 中,∠AHC =90°,AC 边的中点为M ,∴HM =12AC =AM .∴∠A =∠3.∴∠EDA =∠3.∴NE ∥HM . ∴四边形ENHM 是平行四边形.∴HN =EM .∵在Rt △DFH 中,∠DHF =90°,DF 的中点为N ,∴HN =12DF ,即DF =2HN .∴DF =2EM . (3)解:当AB =BC 时,在未添加辅助线和其他字母的条件下,原题图2中所有与BE 相等的线段是EF 和CE .图3证明:连接CD.(如图3)∵点B关于直线CH的对称点为D,CH⊥AB于点H,∴BC=CD,∠ABC=∠5.∵AB=BC,∴∠ABC=180°-2∠A,AB=CD.①∵∠EDA=∠A,∴∠6=180°-2∠A,AE=DE.②∴∠ABC=∠6=∠5.∵∠BDE是△ADE的外角,∴∠BDE=∠A+∠6.∵∠BDE=∠4+∠5,∴∠A=∠4.③由①,②,③得△ABE≌△DCE.∴BE=CE.由(1)中BF=DF得∠CFE=∠BFC.由(1)中所得BF∥AC可得∠BFC=∠ECF.∴∠CFE=∠ECF.∴EF=CE.∴BE=EF.∴BE=EF=CE.。

虎跳中学中考模拟试题

虎跳中学中考模拟试题

虎跳中学2014年初三年级学业水平考试数学模拟试卷时间:100分钟 满分:120分姓名 班级 座号一、选择题(本大题满分42分,每小题3分) 1.21-的绝对值是( ) 11A. B.2 C. D.222- -2.我国第一艘航母“辽宁舰”最大排水量为67 500吨,用科学记数法表示这个数字是( )A.6.75×103 吨B.67.5×103吨C.6.75×104 吨D.6.75×105吨 3.16的平方根是( )A.4B.±4C.8 D .±84.如图,直线l ∥m ,将含有45°角的三角板ABC 的直角顶点C 放在直线m 上,若∠1=25°,则∠2的度数为( )A. 30°B.25°C. 20°D.35° 5.下列等式成立的是( )A.a 2×a 5=a 10=+C.(-a 3)6=a 18a =6.分式方程12x 1x 1=-+的解是( ) A.1 B.-1 C. 无解 D. 3 7 .袋中有4个红球,x 个黄球,从中任摸一个恰为黄球的概率为43,则x 为( ) A .9 B .12 C .10 D .168.如图是一个正方体被截去一角后得到的几何体,它的俯视图是( )9. 关于x 的一元二次方程mx 2-3x-4=4x+3有实数根,则m 的取值范围是( ). A .m >-47 B .m ≤-47且m ≠0 C .m ≥-47 D .m ≥-47且m ≠010. 若A 为锐角,且sinA=54,则tanA 的值为( ) A.43 B. 34 C. 53 D.35 11.如图,在Rt △ABC 中,∠BAC=90°,D 、E 分别是AB 、BC 的中点,F 在CA 的延长线上,∠FDA=∠B ,AC=6,AB=8,则四边形AEDF 的周长为( )A.22B.20C.18D.1612.如图,已知AB 、CD 是⊙O 的两条直径,∠ABC=28°,那么∠BAD=( ) A.28° B.42° C.56° D.84°第11题 第12题 第13题 第14题 13、如图,小伟设计两个直角三角形来测量河宽DE ,他量得AD=20m ,BD=15m ,CE=45m ,则河宽DE 为( )A 、50mB 、40mC 、60mD 、80m14.如图,过x 轴正半轴上的任意一点P ,作y 轴的平行线,分别与反比例函数64y y x x=-=和的图象交于A 、B 两点.若点C 是y 轴上任意一点,连接AC 、BC ,则△ABC的面积为( )A.3B.4C.5D.10 二、填空题(本大题满分16分,每小题4分)15.分解因式:a 3-ab 2=________. 16.13-=_________.17.若二次根式2x -4有意义,则x 的取值范围是 。

虎跳中学年中考模拟试题

虎跳中学年中考模拟试题

虎跳中学2014年初中毕业生学业模拟考试数 学 科 试 题(全卷满分120分,考试时间100分钟)一、选择题(本大题满分42分,每小题3分)在下列各题的四个备选答案中,有且只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求...用2B 铅笔涂黑. 1.3-的绝对值是A .3B .3-C .13D .13-2.下列运算正确的是A .a 4•a 2=a 6B .22532a b a b -=C .325()a a -=D .2336(3)9ab a b = 3.当2x =-时,代数式x 2+1的值是A .3B .-3C .5D .5-4.在下面的四个几何体中,它们各自的左视图与主视图不相同的是( )5.一个三角形的两边长分别为3cm 和7cm ,则此三角形的第三边的长可能是 A .3cm B .4cm C .7cm D .11cm6.据中国之声《新闻纵横》2014年4月17日报道,澳大利亚海事安全局根据当地时间16日获得的最新消息,已经对搜索MH370的范围进行了修正,目前划定的搜索区域约为55151平方公里,用科学计数法表示55151为A .5.5151x104B .55.151x103C .551.51x102D .0.55151x105 7.计算:)21(22xxx -÷-的正确结果为 .A.xB.x1 C.-x 1 D. -xx 2-8.一次函数12+=x y 的图像经过A. 第二、三、四象限B. 第一、三、四象限C. 第一、二、四象限D. 第一、二、三象限9.不等式组⎩⎨⎧<>-31x x 的解集是 A. 1>x B. 31<<x C. 1->x D. 3<x正方体 长方体 圆柱 圆锥 A B C D10.下列图形中,既是轴对称图形又是中心对称图形的是这些运动员跳高成绩的中位数和众数分别是A .1.70,1.65B . 1.65,1.70C .1.70,1.70D .3,5 12..如图3,已知21∠=∠,那么添加下列一个条件后,仍无法..判定ABC ∆∽ADE ∆的是图4 13.如图4,⊙B 的半径为4cm , 60=∠MBN ,点A 、C 分别是射线BM、BN 上的动点,且直线BN AC ⊥.当AC 平移到与⊙B 相切时,AB 的长度是A. cm 2B. cm 4C. cm 6D. cm 814.如图5,将□ABCD 折叠,使顶点D 恰落在AB 边上的点M 处,折痕为AN ,那么对于结论 ①MN ∥BC ,②MN AM =,下列说法正确的是A. ①②都错B. ①②都对C. ①对②错D. ①错②对二、填空题(本大题满分16分,每小题4分) 15.分解因式:a 2b -4b=_________.16.某工厂计划a 天生产60件产品,则平均每天生产该产品__________件.17.如图6,在平行四边形ABCD 中,AB = 6cm ,∠BCD 的平分线交AD 于点E ,则线段DE 的长度是____ cm .18.如图7,将半径为4cm 的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长度为ABCD MN 图5ABCED图6图7_________cm .三、解答题(本大题满分62分)19.(满分8分) (1114()3--- (2)解方程:0111=--x20.(满分10分)在当地农业技术部门指导下,小明家增加种植菠萝的投资,使今年的菠萝喜获丰收. 下面是小明爸爸、妈妈的一段对话.请用学过的知识帮助小明算出他们家今年菠萝的收入。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年初中学业水平考试模拟数学试卷
提示:1、本试卷包括试题卷和答题卡,考生作答时选择题和非选择题均须作答在答题卡上,本试题上作答无效,考生在答题卡中注意事项的要求答题。

2、考试结束后,将本试卷和答题卡一并交回。

3、本试题满分120分,考试时间120分钟,本试卷共三道大题,25个小题。

一、填空题(本题8个小题,请将答案填在答案栏内,每小题3分,共计24分)
1、-(-2013)=。

2、2010年5月1日上海世博会开馆当天接待游客就达204000人次,开馆情况很好,请将204000用科学记数法表示为
3、如图,在△ABC中,DE∥BC,∠A=55°,∠ABC=60°则∠AED= 度。

4、永州市江永县的上江圩是世界上独一无二的“女书”文字的发源地,千百年来,女书只在女性之间以“母女相授”的方式流传,一位不识女书文字的游管慕名来到江永县的上江圩参观,当地女书传人给出一个女书方字“舟”,并告诉游客这是汉字“开心快乐”中的一个字,让他猜这是其中的哪个字,请问这位游客能猜中的概率是。

5、如图,要使△ADB∽△ABC,还需增添的条件是(写出一个即可)。

6、方程x2=x解是。

7、如图,在⊙O中,∠AC B﹦30°,则∠AO B﹦。

8、如果关于x的一元二次方程x2-6x+c=0没有实数根,那么C的取值范围为。

二选择题(本题共8个小题,每小题3分,共24分)
9、不等式组:的解集在数轴上表示正确的是()
A、B、
C、D、
10、下列计算正确的是()
A、a6÷a2=a3
B、a2+a3=a5
C、(a2)3=a6
D、(a+b)2=a2+b2
11、如图这是一个正面为黑,反面为白的未拼定的拼木盘,给出如下面四志正面为黑,反面为白的拼木,现欲拼满木盘并使其颜色一致,请问应选择的拼木是()
12、函数y=ax+1与y=ax2 +bx+1(a≠0)图象可能是()
B
C
A
B C
D
C
第3题第5题第7题
A B C D
13、“五一”节,爸爸开车带李明回家看望爷爷,一路上,李明发现在经过A 、B 、C 、D 每一个村庄前的500米处均立有右图所示的交通告 示牌,现给出这四个路段爸爸开车的速度与离开告示牌的距离之间的函数关系图像,则其中表示爸爸违章路段图像是( )
14、下列说法正确的是( )
A 、方差反映了一组数据的分散或波动的程度。

B 、数据1、5、3、7、10的中位数是3
C 、任何一组数据的平均数和众数都不会相等。

D 、明天我市一定下雨是必然事件。

15、由二次函数y=-x 2+2x 可知( )
A 其图像的开口向上
B 其图像的对称轴为x=1
C 其最大值为-1
D 其图像的顶点坐标为(-1,1) 16、将一个正整数n 输入一台机器内会产生出n(n+1)/2的个位数字,若给该机器输入初始数a ,将所产生的第一个数字记为a1,再将a 所产生的第二个数字记为a2…依次类推,现输入a =2,则a 2013是( ) A 、2 B 、3 C 、6 D 、1 三、解答题(本大题共9个小题,72分) 17、(本小题6分)计算: 2tan60°﹣(π﹣1)°﹣12﹣(2
1
)-2
18、(本小题6分)先化简再求值
)1
1
1(212--⨯--a a a 其中a=1
19、(本小题6分)如图所示是一个直四棱柱及正视图和俯视图(等腰梯形)。

根据图中所给数据可求得俯视图(等腰梯形)的高为 。

20
(本小题8分)学生的学习清真如何是每位老师非常关注的问题,为此,我市某校老师对该校部分学生的学习兴趣进行了一次抽样调查(把学生学习兴趣分为三个层次,A
层次:很感兴趣,B 层次:较感兴趣,C 层次:不感兴趣,并将调查结果绘制成图①和图②的统计图(不完整),请你根据图中提供的信息,解答下列问题。

(1)此次抽样调查中共调查了 名学生。

(2)将图①补充完整。

(3)求出图②中以层次所在扇形的圆心角的度数。

(4)根据抽样调查结果,请你估计该校2000名学生中大约有多少名学生对学习感兴趣(包括A 层次和B 层次)
5 2
10
5
8
2
8
10
3 2 3
正视图 左视图 府视图
21(本小题8分)如图在梯形ABCD中,AD∥BC,AB=AD=DC。

(1)求证:BD平分∠ABC
(2)若BC=2AB,求∠C的度数。

22(本小题8分)我市某县为创建省级文明卫生城市计划将城市道路两旁的人行道进行改造,经调查可知,若该工程由甲工程队单独来做恰好可在夫定时间内完成,若该工程由乙工程队单独完成,则该所需要的天数是规定时间的2倍,若甲乙两工程队合做6天后,余下工程由甲工程队单独来做还需3天才能完成。

(1)问该县要求完成这项工程规定时间是多少天?
(2)已知甲工程队一天需要付给工资5万元,乙工程队做一天需付给工资3万元,现该工程由甲、乙两个工程队合做来完成,该县准备了工程工资款63万元,请问该县准备好的工程工资款是否够用?23、(本小题10分)如图在△ABC中,AB=BC=2,
以AB为直径的⊙O分别交BC、AC于点D、E,
且点D为BC的中点。

(1)求证:△ABC为等边三角形。

(2)求DE的长
(3)在线段AB的延行线上是否存在一点P,使△PBD≌△AED,若存在,请求出PB的长,若不存在,请证明理由
24(本小题10分)已知二次函数的图像与X轴有且只有一个交点A(-2,0)与Y轴的交点为B(0,4),且其对称轴与Y轴平行。

(1)求该二次函数的解析式,并在所给坐标中画出这个二次函数的大致图像。

(2)在该二次函数位于A、B两点之间的图像上取一点M,过点M分别作X轴、Y轴的垂线,垂足分别为点C、D,求矩形MCOD的周长的最大值,并求使矩形MCOD的周长最小时的点M的坐标。

25(本小题10分)如图,在矩形ABCD中,AB=3,AD=10,将∠MPN的顶点P在矩形ABCD的边AD上滑动,在滑动过程中,始终保持∠MPN =90°,射线PN经过点C,射线PM交直线AB于点E,交直线BC于点F。

(1)求证:△AEP∽△DPC
(2)在点P的运动过程中,点
E与点B能重合吗?如果
能重合,求DP的长。

(3)是否存在这样的点P使△DPC
的面积等于△AEP面积的4倍?若存
在,求出AP的长,若不存在,请证明理由。

C
B
C
P
M。

相关文档
最新文档