(完整版)高中物理模型及方法

合集下载

高中物理48个解题模型高考物理题型全归纳

高中物理48个解题模型高考物理题型全归纳

⾼中物理48个解题模型⾼考物理题型全归纳最后两个⽉,快速掌握⾼考物理150道易错题+30个常考物理模型,⼀定拿⾼分!不看太可惜!历年⾼考物理解题经典模型,⽼师都没讲得这么全!常考物理模型及易错题常考物理模型及隐含条件30条1.绳:只能拉,不能压,即受到拉⼒时F≠0,受压时F=0.2.杆:既能拉也能压,即受到拉⼒.压⼒时,有F≠0.3.绳刚要断:此时绳的拉⼒已经达到最⼤值,即F=Fmax.4.光滑:意味着⽆摩擦⼒.5.长导线:意味着长度L可看成⽆穷⼤.6.⾜够⼤的平板:意味着平板的⾯积S可看成⽆穷⼤.7.轻杆.轻绳.轻滑轮:意味着质量m=0.8.物体刚要离开地⾯.物体刚要飞离轨道等物体和接触⾯之间作⽤⼒:FN=0.9.绳恰好被拉直,此时绳中拉⼒:F=0.10.物体开始运动.⾃由释放:表⽰初速度为0.11.锤打桩⽆反弹:碰撞后,锤与桩有共同速度.12.理想变压器:⽆功率损耗的变压器.13.细杆:体积为零,仅有长度.14.质点:具有质量,但可忽略其⼤⼩.形状和内部结构⽽视为⼏何点的物体.15.点电荷:在研究带电体间的相互作⽤时,如果带电体的⼤⼩⽐它们之间的距离⼩得多,即可认为分布在带电体上的电荷是集中在⼀点上的.16.基本粒⼦如电⼦.质⼦.离⼦等是不考虑重⼒的粒⼦,⽽带电的质点.液滴.⼩球等(除说明不考虑重⼒外)则要考虑重⼒.17.“轻绳.弹簧.轻杆”模型:注意三种模型的异同点,常考查直线与圆周运动中三种模型的动⼒学问题和功能问题.18.“挂件”模型:考查物体的平衡问题.死结与活结问题,常采⽤正交分解法,图解法,三⾓形法则和极值法解题.19.“追碰”模型:考查运动规律.碰撞规律.临界问题.常通过数学法(函数极值法.图像法等)和物理⽅法(参照物变换法.守恒法)等解题.20.“⽪带”模型:注意摩擦⼒的⼤⼩和⽅向.常考查⽜顿运动定律.功能关系及摩擦⽣热等问题.21.“平抛”模型:物体做平抛运动(或类平抛运动),考查运动的合成与分解.⽜顿运动定律.动能定理等知识.22.“⾏星”模型:万有引⼒提供向⼼⼒.注意相关物理量.功能问题.数理问题(圆⼼.半径.临界问题).23.“⼈船”模型:不仅是动量守恒问题中典型的物理模型,也是最重要的⼒学综合模型之⼀.通过类⽐和等效⽅法,可以使许多动量守恒问题的分析思路和解答步骤变得简捷.24.“⼦弹打⽊块”模型:⼦弹和⽊块组成的系统动量守恒,机械能不守恒.系统损失的机械能等于阻⼒乘以相对位移.25.“限流与分压器”模型:电路设计中经常遇到.考查串.并联电路规律及闭合电路的欧姆定律.电能.电功率以及实际应⽤等.26.“电路的动态变化”模型:考查闭合电路的欧姆定律.27.“回旋加速器”模型:考查带电粒⼦在磁场中运动的典型模型.注意加速电场的平⾏极板接的是交变电压,且它的周期和粒⼦的运动周期相同.28.电磁场中的“单杆”模型:导体棒主要是以棒⽣电或电⽣棒的内容出现,从组合情况来看有棒与电阻.棒与电容.棒与电感.棒与弹簧等.导体棒所在的导轨有平⾯导轨.竖直导轨等.29.电磁场中的“双电源”模型:考查⼒学中的三⼤定律.闭合电路的欧姆定律.电磁感应定律等知识.30.“远距离输电变压器”模型:注意变压器的三个制约问题.⾼中物理模型有哪些⒈"质⼼"模型:质⼼(多种体育运动).集中典型运动规律.⼒能⾓度.⒉"绳件.弹簧.杆件"三件模型:三件的异同点,直线与圆周运动中的动⼒学问题和功能问题.⒊"挂件"模型:平衡问题.死结与活结问题,采⽤正交分解法,图解法,三⾓形法则和极值法.⒋"追碰"模型:运动规律.碰撞规律.临界问题.数学法(函数极值法.图像法等)和物理⽅法(参照物变换法.守恒法)等.⒌"运动关联"模型:⼀物体运动的同时性.独⽴性.等效性.多物体参与的独⽴性和时空联系.⒍"⽪带"模型:摩擦⼒.⽜顿运动定律.功能及摩擦⽣热等问题.⒎"斜⾯"模型:运动规律.三⼤定律.数理问题.⒏"平抛"模型:运动的合成与分解.⽜顿运动定律.动能定理(类平抛运动).⒐"⾏星"模型:向⼼⼒(各种⼒).相关物理量.功能问题.数理问题(圆⼼.半径.临界问题).⒑"全过程"模型:匀变速运动的整体性.保守⼒与耗散⼒.动量守恒定律.动能定理.全过程整体法.⒒"⼈船"模型:动量守恒定律.能量守恒定律.数理问题.⒓"⼦弹打⽊块"模型:三⼤定律.摩擦⽣热.临界问题.数理问题.⒔"爆炸"模型:动量守恒定律.能量守恒定律.⒕"单摆"模型:简谐运动.圆周运动中的⼒和能问题.对称法.图象法.⒖"限流与分压器"模型:电路设计.串并联电路规律及闭合电路的欧姆定律.电能.电功率.实际应⽤.⒗"电路的动态变化"模型:闭合电路的欧姆定律.判断⽅法和变压器的三个制约问题.⒘"磁流发电机"模型:平衡与偏转.⼒和能问题.⒙"回旋加速器"模型:加速模型(⼒能规律).回旋模型(圆周运动).数理问题.⒚"对称"模型:简谐运动(波动).电场.磁场.光学问题中的对称性.多解性.对称性.⒛电磁场中的单杆模型:棒与电阻.棒与电容.棒与电感.棒与弹簧组合.平⾯导轨.竖直导轨等,处理⾓度为⼒电⾓度.电学⾓度.⼒能⾓度.21.电磁场中的"双电源"模型:顺接与反接.⼒学中的三⼤定律.闭合电路的欧姆定律.电磁感应定律.22.交流电有效值相关模型:图像法.焦⽿定律.闭合电路的欧姆定律.能量问题.23."能级"模型:能级图.跃迁规律.光电效应等光的本质综合问题.24.远距离输电升压降压的变压器模型.。

高中物理典型物理模型及方法

高中物理典型物理模型及方法

0 Ft t 或s高中典型物理模型及方法(精华)◆10.单摆模型:T=2πg l / (类单摆)利用单摆测重力加速度◆11.波动模型:特点:传播的是振动形式和能量,介质中各质点只在平衡位置附近振动并不随波迁移。

①各质点都作受迫振动,②起振方向与振源的起振方向相同, ③离源近的点先振动,④没波传播方向上两点的起振时间差=波在这段距离内传播的时间 ⑤波源振几个周期波就向外传几个波长。

⑥波从一种介质传播到另一种介质,频率不改变, 波速v=s/t=λ/T=λf波速与振动速度的区别 波动与振动的区别:波的传播方向⇔质点的振动方向(同侧法) 知波速和波形画经过Δt 后的波形(特殊点画法和去整留零法)◆12.图象模形:识图方法: 一轴、二线、三斜率、四面积、五截距、六交点 明确:点、线、面积、斜率、截距、交点的含义 中学物理中重要的图象⑴运动学中的s-t 图、v-t 图、振动图象x-t 图以及波动图象y-x 图等。

⑵电学中的电场线分布图、磁感线分布图、等势面分布图、交流电图象、电磁振荡i-t 图等。

⑶实验中的图象:如验证牛顿第二定律时要用到a-F 图象、F-1/m 图象;用“伏安法 ”测电阻时要画I-U 图象;测电源电动势和内电阻时要画U-I 图;用单摆测重力加速度时要画的图等。

⑷在各类习题中出现的图象:如力学中的F-t 图、电磁振荡中的q-t 图、电学中的P-R 图、电磁感应中的Φ-t 图、E-t 图等。

●知识分类举要力的瞬时性(产生a )F=ma 、⇒运动状态发生变化⇒牛顿第二定律1.力的三种效应:时间积累效应(冲量)I=Ft 、⇒动量发生变化⇒动量定理空间积累效应(做功)w=Fs ⇒动能发生变化⇒动能定理3.功与能观点:求功方法 单位:J ev=1.9×10-19J 度=kwh=3.6×106J 1u=931.5Mev⊙力学: ①W = Fs cos θ (适用于恒力功的计算)①理解正功、零功、负功②功是能量转化的量度 ②W= P ·t (⇒p=tw =t FS =Fv) 功率:P = W t(在t 时间内力对物体做功的平均功率) P = F v(F 为牵引力,不是合外力;V 为即时速度时,P 为即时功率.V 为平均速度时,P 为平均功率.P 一定时,F 与V 成正比)动能: E K =m2p mv 2122= 重力势能E p = mgh (凡是势能与零势能面的选择有关)③动能定理:外力对物体所做的总功等于物体动能的变化(增量)公式: W 合= W 合=W 1+ W 2+…+W n = ∆E k = E k2 一E k1 = 12122212mV mV - ⑴W 合为外力所做功的代数和.(W 可以不同的性质力做功)⑵外力既可以有几个外力同时作用,也可以是各外力先后作用或在不同过程中作用: ⑶既为物体所受合外力的功。

高中物理力学模型及方法1

高中物理力学模型及方法1

╰α高中物理力学模型及方法1.连接体模型是指运动中几个物体叠放在一起、或并排在一起、或用细绳、细杆联系在一起的物体组。

解决这类问题的基本方法是整体法和隔离法。

整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。

2斜面模型(搞清物体对斜面压力为零的临界条件)斜面固定:物体在斜面上情况由倾角和摩擦因素决定μ=tgθ物体沿斜面匀速下滑或静止μ> tgθ物体静止于斜面μ< tgθ物体沿斜面加速下滑a=g(sinθ一μcosθ)3.轻绳、杆模型绳只能受拉力,杆能沿杆方向的拉、压、横向及任意方向的力。

杆对球的作用力由运动情况决定只有θ=arctg(ga)时才沿杆方向最高点时杆对球的作用力;最低点时的速度?,杆的拉力?若小球带电呢?假设单B下摆,最低点的速度⇐mgR=221BmvV B=R2g整体下摆2mgR=mg2R+'2B'2Amv21mv21+'A'BV2V=⇒'AV=gR53;'A'BV2V==gR256> V B=R2g所以AB杆对B做正功,AB杆对A做负功若V0<gR,运动情况为先平抛,绳拉直沿绳方向的速度消失即是有能量损失,绳拉紧后沿圆周下落机械能守恒。

而不能够整个过程用机械能守恒。

Em,L·m2m1FBAF1 F2 B A FFm求水平初速及最低点时绳的拉力?换为绳时:先自由落体,在绳瞬间拉紧(沿绳方向的速度消失)有能量损失(即v1突然消失),再v2下摆机械能守恒例:摆球的质量为m,从偏离水平方向30°的位置由静释放,设绳子为理想轻绳,求:小球运动到最低点A时绳子受到的拉力是多少?4.超重失重模型系统的重心在竖直方向上有向上或向下的加速度(或此方向的分量a y)向上超重(加速向上或减速向下)F=m(g+a);向下失重(加速向下或减速上升)F=m(g-a)难点:一个物体的运动导致系统重心的运动1到2到3过程中(1、3除外)超重状态绳剪断后台称示数系统重心向下加速斜面对地面的压力?地面对斜面摩擦力?导致系统重心如何运动?铁木球的运动用同体积的水去补充5.碰撞模型:特点,①动量守恒;②碰后的动能不可能比碰前大;③对追及碰撞,碰后后面物体的速度不可能大于前面物体的速度。

高中物理经典解题模型归纳!帮你飞速解题(附含详细解析)!

高中物理经典解题模型归纳!帮你飞速解题(附含详细解析)!

⾼中物理经典解题模型归纳!帮你飞速解题(附含详细解析)!⾼中物理10个经典模型:1、'运动关联'模型:⼀物体运动的同时性.独⽴性.等效性.多物体参与的独⽴性和时空联系.2、'⼈船'模型:动量守恒定律.能量守恒定律.数理问题.3、'⼦弹打⽊块'模型:三⼤定律.摩擦⽣热.临界问题.数理问题.4、'爆炸'模型:动量守恒定律.能量守恒定律.5、'单摆'模型:简谐运动.圆周运动中的⼒和能问题.对称法.图象法.6、电磁场中的'双电源'模型:顺接与反接.⼒学中的三⼤定律.闭合电路的欧姆定律.电磁感应定律.7、交流电有效值相关模型:图像法.焦⽿定律.闭合电路的欧姆定律.能量问题.8、'平抛'模型:运动的合成与分解.⽜顿运动定律.动能定理(类平抛运动).9、'⾏星'模型:向⼼⼒(各种⼒).相关物理量.功能问题.数理问题(圆⼼.半径.临界问题).10、'全过程'模型:匀变速运动的整体性.保守⼒与耗散⼒.动量守恒定律.动能定理.全过程整体法.⾼中物理4种基本模型:题型1:直线运动问题题型概述:直线运动问题是⾼考的热点,可以单独考查,也可以与其他知识综合考查。

单独考查若出现在选择题中,则重在考查基本概念,且常与图像结合;在计算题中常出现在第⼀个⼩题,难度为中等,常见形式为单体多过程问题和追及相遇问题.匀速直线运动模型:匀速直线运动也是⼀种理想化的物理过程,物体或质点在过程中,速度保持均匀不变,这也是⼀种理想化。

匀速直线运动过程分为不受任何⼒的和受平衡⼒的两种情况。

匀变速直线运动模型:这个运动过程虽然速度是均匀地变化的,但是加速度是不变的,根据⽜顿第⼆定律,质量,合外⼒,加速度三个物理量都保持不变。

变化的是时间,位移,速度,动能等物理量。

物体的质量与合外⼒都是恒定不变的。

加速度保持不变的过程也是⼀种理想过程,因为还有更⼀般的运动过程存在即变加速运动过程。

(完整版)高中物理二级结论模型归纳

(完整版)高中物理二级结论模型归纳

先想前提,后记结论力学 一.静力学:1.几个力平衡,则一个力是与其它力合力 平衡的力。

2.两个力的合力:F +F ≥F ≥F -F 。

三个大小相等的力平衡,力之间的夹大小合大小角为120度。

3.物体沿斜面匀速下滑,则μ=tanα。

4.两个一起运动的物体“刚好脱离”时:貌合神离,弹力为零。

此时速度 加速度相等,此后不等。

二.运动学:1.在描述运动时,在纯运动学问题中,可以任意选取参照物;在处理动力学问题时,只能以地为参照物。

2.匀变速直线运动:用平均速度思考匀变速直线运动问题,总是带来方便:=V ==-V 2/t 221V V +TS S 221+3.匀变速直线运动:当时间等分时:S n -Sn-1=aT .2位移中点的即时速度:V s/2= ,V s/2>V t/222221V V +纸带点迹求速度加速度:V t/2=, a=, a=T S S 212+212TSS -21)1(T n S S n--4.自由落体:V t (m/s): 10 20 30 40 50 = gtH 总(m ):5 20 45 80 125 = gt 2/2H 分(m):5 15 25 35 45 = gt 22/2 – gt 12 /2g=10m/s 25.上抛运动:对称性:t 上= t 下 V 上= -V下6.相对运动:相同的分速度不产生相对位移。

7.“刹车陷阱”:给出的时间大于滑行时间,则不能用公式算。

先求滑行时间,确定了滑行时间小于给出的时间时,用V 2=2aS 求滑行距离。

8."S=3t+2t 2”:a=4m/s 2,V 0=3m/s 。

(s = v 0t+ at 2/2)9.绳端物体速度分解:对地速度是合速度,分解为沿绳的分速度合垂直绳的分速度。

三.运动定律:1.水平面上滑行:a=-µg2.系统法:动力-阻力=m总g绳牵连系统3.沿光滑斜面下滑:a=gSinα时间相等: 450时时间最短: 无极值:4.一起加速运动的物体:N=F,(N为物体间相互作用力),与有无摩212mmm+擦(μ相同)无关,平面斜面竖直都一样。

高中物理48个解题模型归纳

高中物理48个解题模型归纳

高中物理 48 个解题模型归纳物理作为一门理工科的学科,它的逻辑思维性有多强就不言而喻了。

为了能帮助大家更好的去理解物理知识点,今天给大家带来了高考中最常见的模型及知识点。

1 高中物理常见模型有什幺1 高中物理知识点总结 1、’皮带’模型:摩擦力,牛顿运动定律,功能及摩擦生热等问题.2、’斜面’模型:运动规律,三大定律,数理问题.3、’运动关联’模型:一物体运动的同时性,独立性,等效性,多物体参与的独立性和时空联系.4、’人船’模型:动量守恒定律,能量守恒定律,数理问题.5、’子弹打木块’模型:三大定律,摩擦生热,临界问题,数理问题.6、’爆炸’模型:动量守恒定律,能量守恒定律.7、’单摆’模型:简谐运动,圆周运动中的力和能问题,对称法,图象法.8、电磁场中的’双电源’模型:顺接与反接,力学中的三大定律,闭合电路的欧姆定律.电磁感应定律.9、交流电有效值相关模型:图像法,焦耳定律,闭合电路的欧姆定律,能量问题.10、’平抛’模型:运动的合成与分解,牛顿运动定律,动能定理(类平抛运动).11、’行星’模型:向心力(各种力),相关物理量,功能问题,数理问题(圆心.半径.临界问题).12、’全过程’模型:匀变速运动的整体性,保守力与耗散力,动量守恒定律.动能定理.全过程整体法.13、’质心’模型:质心(多种体育运动),集中典型运动规律,力能角度.14、’绳件.弹簧.杆件’三件模型:三件的异同点,直线与圆周运动中的动力学问题和功能问题.15、’挂件’模型:平衡问题,死结与活结问题,采用正交分解法,图解法,三角形法则和极值法.16、’追碰’模型:运动规律,碰撞规律,临界问题,数学法(函数极值法.图像法等)和物理方法(参照物变换法.守恒法)等.17.’能级’模型:能级图,跃迁规律,光电效应等光的本质综合问题.18、远距离输电升压降压的变压器模型.19、’限流与分压器’模型:电路设计,串并联电路规律及闭合电路的欧姆定律,电能,电功率,实际应用.20、’电路的动态变化’模型:闭合电路的欧姆定律,判断方法和变压器的三个制约问题.21、’磁流发电机’模型:平衡与偏转,力和能问题.22、’回旋加速器’模型:加速模型(力能规律),回旋模型(圆周运动),数理问题.23、’对称’模型:简谐运动(波动),电场,磁场,光学问题中的对称性,多解性,对称性.24、电磁场中的单杆模型:棒与电阻,棒与电容,棒与电感,棒与弹簧组合,平面导轨,竖直导轨等,处理角度为力电角度,电学角度,力能角度。

高中物理知识归纳:力学模型及方法

高中物理知识归纳:力学模型及方法

高中物理知识归纳:力学模型及方法高中物理知识归纳:力学模型及方法力学是物理学中的一个重要分支,研究物体运动和受力情况。

力学模型及方法是力学研究的基础,对于理解和解决各种物理问题具有重要意义。

本文将归纳总结高中物理中力学模型及方法的相关知识。

一、力学基本概念1. 物体的质量:质量是物体特有的一种属性,表示物体所固有的惯性,通常用符号 m 表示,单位为千克(kg)。

2. 力的概念:力是使物体产生形变、速度改变或状态改变的原因,通常用符号 F 表示,单位为牛顿(N)。

3. 牛顿第一定律(惯性定律):一个物体若不受外力作用,或受到一个力的合力为零,则物体将保持静止或匀速运动。

4. 牛顿第二定律(运动定律):物体的加速度与作用在物体上的合力成正比,与物体的质量成反比,即 F = ma。

二、牛顿定律应用1. 质点的动力学模型:质点是指物体的大小可以忽略不计,只考虑物体的质量和所受力的点。

质点的动力学模型可以用牛顿第二定律描述。

2. 物体的受力分析:通过对物体受力情况的分析,可以找到物体受力的类型和大小,进而得到物体的运动状态。

3. 平衡力的判断:当物体受到的合力为零时,物体处于平衡状态;当物体受到合力不为零时,物体将发生加速度运动。

4. 斜面上的物体运动:利用物体位于斜面上时产生的力分解,将物体沿斜面方向的受力与垂直斜面方向的受力分开,从而求解物体的运动。

5. 牵引力与摩擦力问题:当物体受到一定的牵引力或摩擦力时,需要根据受力情况和物体的质量求解物体的运动状态。

6. 弹簧力的计算:弹簧力是指物体被压缩或拉伸时,弹簧所产生的力。

根据胡克定律,弹簧力与物体的位置成正比。

三、圆周运动及万有引力1. 圆周运动的力学模型:对于作圆周运动的物体,可以使用向心力和惯性力来建立其运动的力学模型。

2. 向心力与角速度关系:向心力是指物体在做圆周运动时所受到的力,它与物体的质量和角速度的平方成正比。

3. 万有引力与行星运动:引力是指物体与物体之间由于质量吸引而产生的力。

高中物理模型清单和126招

高中物理模型清单和126招

高中物理模型清单和126招
传送带模型:摩擦力,牛顿运动定律,功能及摩擦生热等问题。

追及相遇模型:运动规律,临界问题,时间位移关系问题,数学法(函数极值法。

图像法等)
挂件模型:平衡问题,死结与活结问题,采用正交分解法,图解法,三角形法则和极值法。

斜面模型:受力分析,运动规律,牛顿三大定律,数理问题。

“绳子、弹簧、轻杆”三模型:三件的异同点,直线与圆周运动中的动力学问题和功能问题。

行星模型:向心力(各种力),相关物理量,功能问题,数理问题(圆心。

半径。

临界问题)。

抛体模型:运动的合成与分解,牛顿运动定律,动能定理(类平抛运动)。

“回旋加速器”模型:加速模型(力能规律),回旋模型(圆周运动),数理问题。

“磁流发电机”模型:平衡与偏转,力和能问题。

“电路的动态变化”模型:闭合电路的欧姆定律,判断方法和变压器的三个制约问题。

“限流与分压器”模型:电路设计,串并联电路规律及闭合电路的欧姆定律,电能,电功率,实际应用。

电磁场中的单杆模型:棒与电阻,棒与电容,棒与电感,棒与弹簧组合,平面导轨,竖直导轨等,处理角度为力电角度,电学角度,力能角度。

交流电有效值相关模型:图像法,焦耳定律,闭合电路的欧姆定律,能量问题。

“对称”模型:简谐运动(波动),电场,磁场,光学问题中的对称性,多解性,对称性。

“单摆”模型:简谐运动,圆周运动中的力和能问题,对称法,图象法。

“爆炸”模型:动量守恒定律,能量守恒定律。

“能级”模型:能级图,跃迁规律,光电效应等光的本质综合问题。

高中物理典型物理模型及方法详解

高中物理典型物理模型及方法详解

高中典型物理模型及方法(精华)◆1.连接体模型:是指运动中几个物体或叠放在一起、或并排挤放在一起、或用细绳、细杆联系在一起的物体组。

解决这类问题的基本方法是整体法和隔离法。

整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。

连接体的圆周运动:两球有相同的角速度;两球构成的系统机械能守恒(单个球机械能不守恒)与运动方向和有无摩擦(μ相同)无关,及与两物体放置的方式都无关。

平面、斜面、竖直都一样。

只要两物体保持相对静止 记住:N= 211212m F m F m m ++ (N 为两物体间相互作用力),一起加速运动的物体的分子m 1F 2和m 2F 1两项的规律并能应用⇒F 212m m m N +=讨论:①F 1≠0;F 2=0 122F=(m +m )a N=m aN=212m F m m +② F 1≠0;F 2≠0 N= 211212m F m m m F ++ (20F =就是上面的情况)F=211221m m g)(m m g)(m m ++F=122112m (m )m (m gsin )m mg θ++F=A B B 12m (m )m F m m g ++F 1>F 2 m 1>m 2 N 1<N 2(为什么)m 2m 1 Fm 1 m 2N 5对6=F Mm (m 为第6个以后的质量) 第12对13的作用力 N 12对13=F nm12)m -(n◆2.水流星模型(竖直平面内的圆周运动——是典型的变速圆周运动)研究物体通过最高点和最低点的情况,并且经常出现临界状态。

(圆周运动实例) ①火车转弯 ②汽车过拱桥、凹桥 3③飞机做俯冲运动时,飞行员对座位的压力。

④物体在水平面内的圆周运动(汽车在水平公路转弯,水平转盘上的物体,绳拴着的物体在光滑水平面上绕绳的一端旋转)和物体在竖直平面内的圆周运动(翻滚过山车、水流星、杂技节目中的飞车走壁等)。

高中物理48个解题模型 高考物理经典题型归纳

高中物理48个解题模型 高考物理经典题型归纳

高中物理48个解题模型高考物理经典题型归纳
学好高中物理可以多积累些做题解题的经典模型。

下文小编给大家整理了高中物理最常用的几种解题模型,供参考!
 高中物理解题常用经典模型1、&#39;皮带&#39;模型:摩擦力,牛顿运动定律,功能及摩擦生热等问题.
 2、&#39;斜面&#39;模型:运动规律,三大定律,数理问题.
 3、&#39;运动关联&#39;模型:一物体运动的同时性,独立性,等效性,多物体参与的独立性和时空联系.
 4、&#39;人船&#39;模型:动量守恒定律,能量守恒定律,数理问题.
 5、&#39;子弹打木块&#39;模型:三大定律,摩擦生热,临界问题,数理问题.
 6、&#39;爆炸&#39;模型:动量守恒定律,能量守恒定律.
 7、&#39;单摆&#39;模型:简谐运动,圆周运动中的力和能问题,对称法,图象法.
 8.电磁场中的&#39;双电源&#39;模型:顺接与反接,力学中的三大定律,闭合电路的欧姆定律.电磁感应定律.
 9.交流电有效值相关模型:图像法,焦耳定律,闭合电路的欧姆定律,能量问题.
 10、&#39;平抛&#39;模型:运动的合成与分解,牛顿运动定律,动能定理(类平抛运动).
 11、&#39;行星&#39;模型:向心力(各种力),相关物理量,功能问题,数理问题(圆心.半径.临界问题).。

高中物理典型物理模型与方法

高中物理典型物理模型与方法

高中典型物理模型及方法(精华)◆ 1.连接体模型:是指运动中几个物体或叠放在一起、或并排挤放在一起、或用细绳、细杆联系在一起的物体组。

解决这类问题的基本方法是整体法和隔离法。

整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程 隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等 )时,把某物体从连 接体中隔离出来进行分析的方法。

连接体的圆周运动:两球有相同的角速度;两球构成的系统机械能守恒(单个球机械能不守恒) 与运动方向和有无摩擦(μ相同)无关,及与两物体放置的方式都无关。

平面、斜面、竖直都一样。

只要两物体保持相对静止m1 记住:N= m 2F 1 m 1F 2 (N 为两物体间相互作用力), m 1 m 2 m2一起加速运动的物体的分子 2 1 m 2 FN m 1F 2和mF 两项的规律并能应用m 2 m 1 讨论:①F 1≠0;F 2=0FF=(m 1+m 2)am1 m2 N=m 2am 2 FN= m 1 m 2②F 1≠0;F 2≠0 F= m 1(m 2g)m 2(m 1g)m 1 m 2 m 2F 1 m 1F2m 1(m 2g)m 2(m 1gsin ) N=F= m 1 m 2 m 1 m 2(F 20就是上面的情m A(m B g) m B FF= m 1 m 2况)F1>F2 m1>m2 N1<N2(为什么)N5对6=m F (m 为第6个以后的质量) 第12对13的作用力N 12对13=(n-12)mF M nm◆2.水流星模型(竖直平面内的圆周运动—— 是典型的变速圆周运动)研究物体通过最高点和最低点的情况,并且经常出现临界状态。

(圆周运动实例)①火车转弯②汽车过拱桥、凹桥3③飞机做俯冲运动时,飞行员对座位的压力。

④物体在水平面内的圆周运动(汽车在水平公路转弯,水平转盘上的物体,绳拴着的物体在光滑水平面上绕绳的一端旋转)和物体在竖直平面内的圆周运动(翻滚过山车、水流星、杂技节目中的飞车走壁等)。

2024届新课标高中物理模型与方法-常见的电路模型(解析版)

2024届新课标高中物理模型与方法-常见的电路模型(解析版)

2024版新课标高中物理模型与方法常见的电路模型目录一.电路动态分析模型1二.含容电路模型6三.关于U I ,ΔU ΔI的物理意义模型11四.电源的输出功率随外电阻变化的讨论及电源的等效思想22五.电路故障的分析模型30一.电路动态分析模型1.电路的动态分析问题:是指由于断开或闭合开关、滑动变阻器滑片的滑动等造成电路结构发生了变化,某处电路变化又引起其他电路的一系列变化;对它们的分析要熟练掌握闭合电路欧姆定律,部分电路欧姆定律,串、并联电路中电压和电流的关系.2.电路动态分析的三种常用方法(1)程序法【需要记住的几个结论】:①当外电路的任何一个电阻增大(或减小)时,整个电路的总电阻一定增大(或减小)。

②若电键的通断使串联的用电器增多时,总电阻增大;若电键的通断使并联的用电器增多时,总电阻减小③用电器断路相当于该处电阻增大至无穷大,用电器短路相当于该处电阻减小至零。

(2)“串反并同”结论法①所谓“串反”,即某一电阻增大时,与它串联或间接串联的电阻中的电流、两端电压、电功率都将减小,反之则增大。

②所谓“并同”,即某一电阻增大时,与它并联或间接并联的电阻中的电流、两端电压、电功率都将增大,反之则减小。

即:U 串↓I 串↓P 串↓ ←R ↑→U 并↑I 并↑P 并↑【注意】此时电源要有内阻或有等效内阻,“串反并同”的规律仅作为一种解题技巧供参考。

(3)极限法因变阻器滑片滑动引起电路变化的问题,可将变阻器的滑片分别滑至两个极端,让电阻最大或为零再讨论。

3.电路动态变化的常见类型:①滑动变阻器滑片移动引起的动态变化:限流接法时注意哪部分是有效电阻,分压接法两部分电阻一增一减,双臂环路接法有最值;②半导体传感器引起的动态变化:热敏电阻、光敏电阻、压敏电阻等随温度、光强、压力的增大阻值减小;③开关的通断引起的动态变化:开关视为电阻,接通时其阻值为零,断开时其阻值为无穷大,所以,由通而断阻值变大,由断而通阻值变小。

(完整版)高中物理动量知识模型归纳

(完整版)高中物理动量知识模型归纳

nt d f高中物理动量知识归纳1.连接体模型 是指运动中几个物体叠放在一起、或并排在一起、或用细绳、细杆联系在一起的物体组。

解决这类问题的基本方法是整体法和隔离法。

整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛顿第二定律列方程隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。

2斜面模型 (搞清物体对斜面压力为零的临界条件)斜面固定:物体在斜面上情况由倾角和摩擦因素决定=tan 物体沿斜面匀速下滑或静止 > tan 物体静止于斜面μθμθ< tan 物体沿斜面加速下滑a=g(sin 一cos )μθθμθ3.轻绳、杆模型杆对球的作用力由运动情况决定只有=arctg()时才沿杆方向θga 最高点时杆对球的作用力;最低点时的速度?,杆的拉力?若小球带电呢?假设单B 下摆,最低点的速度V B =R 2g mgR=⇐221Bmvtgo F整体下摆2mgR=mg+2R '2B '2A mv 21mv 21+ = ; => V B ='A'B V 2V =⇒'A V gR 53'A'B V 2V =gR 256R 2g 所以AB 杆对B 做正功,AB 杆对A 做负功若 V 0< ,运动情况为先平抛,绳拉直沿绳方向的速度消失gR 即是有能量损失,绳拉紧后沿圆周下落机械能守恒。

而不能够整个过程用机械能守恒。

求水平初速及最低点时绳的拉力?换为绳时:先自由落体,在绳瞬间拉紧(沿绳方向的速度消失)有能量损失(即v 1突然消失),再v 2下摆机械能守恒例:摆球的质量为m ,从偏离水平方向30°的位置由静释放,设绳子为理想轻绳,求:小球运动到最低点A 时绳子受到的拉力是多少?4.超重失重模型系统的重心在竖直方向上有向上或向下的加速度(或此方向的分量a y )向上超重(加速向上或减速向下)F=m(g+a);向下失重(加速向下或减速上升)F=m(g-a)难点:一个物体的运动导致系统重心的运动1到2到3过程中 (1、3除外)超重状态绳剪断后台称示数系统重心向下加速斜面对地面的压力? 地面对斜面摩擦力? 导致系统重心如何运动?铁木球的运动用同体积的水去补充5.碰撞模型:特点,①动量守恒;②碰后的动能不可能比碰前大;③对追及碰撞,碰后后面物体的速度不可能大于前面物体的速度。

高中物理知识归纳-力学模型及方法

高中物理知识归纳-力学模型及方法

╰α高中物理知识归纳----------------------------力学模型及方法1.连接体模型是指运动中几个物体叠放在一起、或并排在一起、或用细绳、细杆联系在一起的物体组。

解决这类问题的基本方法是整体法和隔离法。

整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。

2斜面模型(搞清物体对斜面压力为零的临界条件)斜面固定:物体在斜面上情况由倾角和摩擦因素决定μ=tgθ物体沿斜面匀速下滑或静止μ> tgθ物体静止于斜面μ< tgθ物体沿斜面加速下滑a=g(sinθ一μcosθ)3.轻绳、杆模型杆对球的作用力由运动情况决定只有θ=arctg(g a)时才沿杆方向最高点时杆对球的作用力;最低点时的速度?,杆的拉力?若小球带电呢?假设单B下摆,最低点的速度V B=R2g⇐mgR=221BmvF整体下摆2mgR=mg2R +'2B '2A mv21mv 21+ 'A 'B V 2V = ⇒ 'A V =gR 53 ; 'A 'BV 2V ==gR 256> V B =R 2g 所以AB 杆对B 做正功,AB 杆对A 做负功 若 V 0<gR ,运动情况为先平抛,绳拉直沿绳方向的速度消失即是有能量损失,绳拉紧后沿圆周下落机械能守恒。

而不能够整个过程用机械能守恒。

求水平初速及最低点时绳的拉力?换为绳时:先自由落体,在绳瞬间拉紧(沿绳方向的速度消失)有能量损失(即v 1突然消失),再v 2下摆机械能守恒例:摆球的质量为m ,从偏离水平方向30°的位置由静释放,设绳子为理想轻绳,求:小球运动到最低点A 时绳子受到的拉力是多少?4.超重失重模型 系统的重心在竖直方向上有向上或向下的加速度(或此方向的分量a y )向上超重(加速向上或减速向下)F=m(g+a);向下失重(加速向下或减速上升)F=m(g-a)难点:一个物体的运动导致系统重心的运动1到2到3过程中 (1、3除外)超重状态 绳剪断后台称示数 系统重心向下加速 斜面对地面的压力? 地面对斜面摩擦力? 导致系统重心如何运动? 铁木球的运动用同体积的水去补充5.碰撞模型:特点,①动量守恒;②碰后的动能不可能比碰前大;③对追及碰撞,碰后后面物体的速度不可能大于前面物体的速度。

(完整版)高中物理模型及方法

(完整版)高中物理模型及方法

◆1. 连接体模型:是指运动中几个物体或叠放在一起、或并排挤放在一起、或用细绳、细杆联系在一起的物体组。

解决这类问题的基本方法是整体法和隔离法。

整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。

N5对6=m F(m为第6个以后的质量)第12对13的作用力N 12对13= (n -12)m FM nm◆2. 水流星模型(竖直平面内的圆周运动——是典型的变速圆周运动)研究物体通过最高点和最低点的情况,并且经常出现临界状态。

(圆周运动实例)①火车转弯②汽车过拱桥、凹桥 3 ③飞机做俯冲运动时,飞行员对座位的压力。

④物体在水平面内的圆周运动(汽车在水平公路转弯,水平转盘上的物体,绳拴着的物体在光滑水平面上绕绳的一端旋转)和物体在竖直平面内的圆周运动(翻滚过山车、水流星、杂技节目中的飞车走壁等)。

⑤万有引力——卫星的运动、库仑力——电子绕核旋转、洛仑兹力——带电粒子在匀强磁场中的偏转、重力与弹力的合力——锥摆、(关健要搞清楚向心力怎样提供的)(1)火车转弯:设火车弯道处内外轨高度差为h,内外轨间距L,转弯半径R。

由于外轨略高于内轨,使得火车所受重力和支持力的合力F合提供向心力。

2由F合mgtan mgsin mg h m v0得v0 Rgh(v0 为转弯时规定速度)v0 gtan R 合L R LT 2- T 1=6mg (g 可看为等效加速度 )1 2v 2② 半圆:过程 mgR=21 mv 2 最低点 T-mg=m v R绳上拉力 T=3mg ; 过低点的速度为小球在与悬点等高处静止释放运动到最低点,最低点时的向心加速度 ③与竖直方向成 角下摆时 ,过低点的速度为 V 低 = 2gR (1 cos ),此时绳子拉力 T=mg (3-2cos )3)有支承 的小球,在竖直平面作圆周运动过最高点情况:当小球运动到最高点时 ,速度 v gR 时,受到杆的作用力 但 N mg ,(力的大小用有向线段 长短表示) 当小球运动到最高点时 ,速度 vgR 时,杆对小球无作用力 当小球运动到最高点时 ,速度 v > gR 时,小球受到杆的拉力( 是内外轨对火车都无摩擦力的临界条件 ) ①当火车行驶速率 V 等于 V 0时,F 合=F 向,内外轨道对轮缘都没有侧压力v 2 ②当火车行驶 V 大于 V 0时,F 合<F 向,外轨道对轮缘有侧压力, F 合+N=m v R③当火车行驶速率 V 小于V 0时,F 合>F 向,内轨道对轮缘有侧压力, F 合-N'= m v RR即当火车转弯时行驶速率不等于 V 0时,其向心力的变化可由内外轨道对轮缘侧压力自行调节,但调节程度 不宜过大,以免损坏轨道。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

◆1.连接体模型:是指运动中几个物体或叠放在一起、或并排挤放在一起、或用细绳、细杆联系在一起的物体组。

解决这类问题的基本方法是整体法和隔离法。

整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。

连接体的圆周运动:两球有相同的角速度;两球构成的系统机械能守恒(单个球机械能不守恒) 与运动方向和有无摩擦(μ相同)无关,及与两物体放置的方式都无关。

平面、斜面、竖直都一样。

只要两物体保持相对静止 记住:N= 211212m F m F m m ++ (N 为两物体间相互作用力),一起加速运动的物体的分子m 1F 2和m 2F 1两项的规律并能应用⇒F 212m m m N+=讨论:①F 1≠0;F 2=0 122F=(m +m )a N=m aN=212m F m m +② F 1≠0;F 2≠0 N=211212m F m m m F ++(20F =就是上面的情况)F=211221m m g)(m m g)(m m ++F=122112m (m )m (m gsin )m m g θ++F=A B B 12m (m )m F m m g ++F 1>F 2 m 1>m 2 N 1<N 2(为什么)N 5对6=F Mm (m 为第6个以后的质量) 第12对13的作用力 N 12对13=F nm12)m -(n◆2.水流星模型(竖直平面内的圆周运动——是典型的变速圆周运动)研究物体通过最高点和最低点的情况,并且经常出现临界状态。

(圆周运动实例) ①火车转弯 ②汽车过拱桥、凹桥3③飞机做俯冲运动时,飞行员对座位的压力。

④物体在水平面内的圆周运动(汽车在水平公路转弯,水平转盘上的物体,绳拴着的物体在光滑水平面上绕绳的一端旋转)和物体在竖直平面内的圆周运动(翻滚过山车、水流星、杂技节目中的飞车走壁等)。

⑤万有引力——卫星的运动、库仑力——电子绕核旋转、洛仑兹力——带电粒子在匀强磁场中的偏转、重力与弹力的合力——锥摆、(关健要搞清楚向心力怎样提供的)(1)火车转弯:设火车弯道处内外轨高度差为h ,内外轨间距L ,转弯半径R 。

由于外轨略高于内轨,使得火车所受重力和支持力的合力F 合提供向心力。

为转弯时规定速度)(得由合0020sin tan v LRgh v R v m L hmg mg mg F ===≈=θθR g v ⨯=θtan 0m 2m 1 Fm 1 m 2(是内外轨对火车都无摩擦力的临界条件)①当火车行驶速率V 等于V 0时,F 合=F 向,内外轨道对轮缘都没有侧压力 ②当火车行驶V 大于V 0时,F 合<F 向,外轨道对轮缘有侧压力,F 合+N=R2mv③当火车行驶速率V 小于V 0时,F 合>F 向,内轨道对轮缘有侧压力,F 合-N'=R2mv即当火车转弯时行驶速率不等于V 0时,其向心力的变化可由内外轨道对轮缘侧压力自行调节,但调节程度不宜过大,以免损坏轨道。

火车提速靠增大轨道半径或倾角来实现 (2)无支承的小球,在竖直平面内作圆周运动过最高点情况:受力:由mg+T=mv 2/L 知,小球速度越小,绳拉力或环压力T 越小,但T 的最小值只能为零,此时小球以重力提供作向心力.结论:通过最高点时绳子(或轨道)对小球没有力的作用(可理解为恰好通过或恰好通不过的条件),此时只有重力提供作向心力. 注意讨论:绳系小球从最高点抛出做圆周还是平抛运动。

能过最高点条件:V ≥V 临(当V ≥V 临时,绳、轨道对球分别产生拉力、压力) 不能过最高点条件:V<V 临(实际上球还未到最高点就脱离了轨道) 讨论:① 恰能通过最高点时:mg=Rm2临v ,临界速度V 临=gR ;可认为距此点2R h = (或距圆的最低点)25R h =处落下的物体。

☆此时最低点需要的速度为V 低临=gR 5 ☆最低点拉力大于最高点拉力ΔF=6mg② 最高点状态: mg+T 1=L2m高v (临界条件T 1=0, 临界速度V 临=gR , V ≥V 临才能通过)最低点状态: T 2- mg = L2m低v 高到低过程机械能守恒:mg2L m m 221221+=高低v v T 2- T 1=6mg (g 可看为等效加速度) ② 半圆:过程mgR=221mv最低点T-mg=R2v m⇒绳上拉力T=3mg ; 过低点的速度为V 低 =gR 2小球在与悬点等高处静止释放运动到最低点,最低点时的向心加速度a=2g ③与竖直方向成θ角下摆时,过低点的速度为V 低 =)cos 1(2θ-gR ,此时绳子拉力T=mg(3-2cos θ)(3)有支承的小球,在竖直平面作圆周运动过最高点情况:①临界条件:杆和环对小球有支持力的作用知)(由RU m N mg 2=- 当V=0时,N=mg (可理解为小球恰好转过或恰好转不过最高点) 圆心。

增大而增大,方向指向随即拉力向下时,当④时,当③增大而减小,且向上且随时,支持力当②v N gR v N gR v N mg v N gR v )(000>==>><<作用时,小球受到杆的拉力>,速度当小球运动到最高点时时,杆对小球无作用力,速度当小球运动到最高点时长短表示)(力的大小用有向线段,但(支持)时,受到杆的作用力,速度当小球运动到最高点时N gR v N gR v mg N N gR v 0==<<╰α恰好过最高点时,此时从高到低过程 mg2R=221mv低点:T-mg=mv 2/R ⇒ T=5mg ;恰好过最高点时,此时最低点速度:V 低 =gR 2注意物理圆与几何圆的最高点、最低点的区别:(以上规律适用于物理圆,但最高点,最低点, g 都应看成等效的情况)2.解决匀速圆周运动问题的一般方法(1)明确研究对象,必要时将它从转动系统中隔离出来。

(2)找出物体圆周运动的轨道平面,从中找出圆心和半径。

(3)分析物体受力情况,千万别臆想出一个向心力来。

(4)建立直角坐标系(以指向圆心方向为x 轴正方向)将力正交分解。

(5)⎪⎩⎪⎨⎧=∑===∑02222y x F R Tm R m R v m F )(建立方程组πω3.离心运动在向心力公式F n =mv 2/R 中,F n 是物体所受合外力所能提供的向心力,mv 2/R 是物体作圆周运动所需要的向心力。

当提供的向心力等于所需要的向心力时,物体将作圆周运动;若提供的向心力消失或小于所需要的向心力时,物体将做逐渐远离圆心的运动,即离心运动。

其中提供的向心力消失时,物体将沿切线飞去,离圆心越来越远;提供的向心力小于所需要的向心力时,物体不会沿切线飞去,但沿切线和圆周之间的某条曲线运动,逐渐远离圆心。

◆3斜面模型(搞清物体对斜面压力为零的临界条件) 斜面固定:物体在斜面上情况由倾角和摩擦因素决定μ=tg θ物体沿斜面匀速下滑或静止 μ> tg θ物体静止于斜面 μ< tg θ物体沿斜面加速下滑a=g(sin θ一μcos θ)◆4.轻绳、杆模型绳只能受拉力,杆能沿杆方向的拉、压、横向及任意方向的力。

╰α如图:杆对球的作用力由运动情况决定只有θ=arctg(ga )时才沿杆方向最高点时杆对球的作用力;最低点时的速度?,杆的拉力? 若小球带电呢?假设单B 下摆,最低点的速度V B =R 2g ⇐mgR=221Bmv 整体下摆2mgR=mg2R +'2B '2A mv 21mv 21+ 'A 'B V 2V = ⇒ 'A V =gR 53 ; 'A 'B V 2V ==gR 256> V B =R 2g所以AB 杆对B 做正功,AB 杆对A 做负功◆ 5.通过轻绳连接的物体①在沿绳连接方向(可直可曲),具有共同的v 和a 。

特别注意:两物体不在沿绳连接方向运动时,先应把两物体的v 和a 在沿绳方向分解,求出两物体的v 和a 的关系式,②被拉直瞬间,沿绳方向的速度突然消失,此瞬间过程存在能量的损失。

讨论:若作圆周运动最高点速度 V 0<gR ,运动情况为先平抛,绳拉直时沿绳方向的速度消失即是有能量损失,绳拉紧后沿圆周下落机械能守恒。

而不能够整个过程用机械能守恒。

求水平初速及最低点时绳的拉力?换为绳时:先自由落体,在绳瞬间拉紧(沿绳方向的速度消失)有能量损失(即v 1突然消失),再v 2下摆机械能守恒例:摆球的质量为m ,从偏离水平方向30°的位置由静释放,设绳子为理想轻绳,求:小球运动到最低点A 时绳子受到的拉力是多少?◆5.超重失重模型 系统的重心在竖直方向上有向上或向下的加速度(或此方向的分量a y )向上超重(加速向上或减速向下)F=m(g+a);向下失重(加速向下或减速上升)F=m(g-a)难点:一个物体的运动导致系统重心的运动1到2到3过程中 (1、3除外)超重状态 Em L ·Fm S 1S 20 Ft t 或s绳剪断后台称示数 铁木球的运动 系统重心向下加速 用同体积的水去补充 斜面对地面的压力? 地面对斜面摩擦力? 导致系统重心如何运动?◆6.碰撞模型:两个相当重要典型的物理模型,后面的动量守恒中专题讲解◆7.子弹打击木块模型: ◆8.人船模型:一个原来处于静止状态的系统,在系统内发生相对运动的过程中,在此方向遵从①动量守恒方程:mv=MV ;ms=MS ;②位移关系方程 s+S=d⇒s=d Mm M+ M/m=L m /L M 载人气球原静止于高h 的高空,气球质量为M,人的质量为m.若人沿绳梯滑至地面,则绳梯至少为多长?◆9.弹簧振子模型:F=-Kx (X 、F 、a 、v 、A 、T 、f 、E K 、E P 等量的变化规律)水平型或竖直型 ◆10.单摆模型:T=2πg l / (类单摆)利用单摆测重力加速度◆11.波动模型:特点:传播的是振动形式和能量,介质中各质点只在平衡位置附近振动并不随波迁移。

①各质点都作受迫振动,②起振方向与振源的起振方向相同, ③离源近的点先振动,④没波传播方向上两点的起振时间差=波在这段距离内传播的时间 ⑤波源振几个周期波就向外传几个波长。

⑥波从一种介质传播到另一种介质,频率不改变, 波速v=s/t=λ/T=λf波速与振动速度的区别 波动与振动的区别:波的传播方向⇔质点的振动方向(同侧法) 知波速和波形画经过Δt 后的波形(特殊点画法和去整留零法)◆12.图象模形:识图方法: 一轴、二线、三斜率、四面积、五截距、六交点 明确:点、线、面积、斜率、截距、交点的含义 中学物理中重要的图象⑴运动学中的s-t 图、v-t 图、振动图象x-t 图以及波动图象y-x 图等。

相关文档
最新文档