活性氧化铝的改性

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

活性氧化铝的改性

一、前言

氧化铝是一种重要的化工产品,具有高硬度、高强度、耐磨、耐热、耐腐蚀等一系列优异性能。大部分的氧化铝被用于制备原铝,不过由于其优异的性能也广泛用于陶瓷、磨料、医药、吸附剂、催化剂及其载体等领域[1~4]。到目前为止,已知氧化铝有15种以上不同的结构形态(δ-,γ-,κ-,η-,θ-,χ-,ρ-,α-Al2O3等),因其结构形态的不同,氧化铝的宏观结构性质(如密度、孔隙率、孔径分布、比表面积等)也各不相同。

氧化铝按其用途可分为稳定态氧化铝和过渡态氧化铝。稳定态氧化铝指的是刚玉相氧化铝(α-Al2O3),其结构稳定且不含水,是各种形态的氢氧化铝在温度超过1000℃后完全脱水得到的产品[5]。这类氧化铝一般不具有活性。

过渡态氧化铝是由氧化铝前驱体在不同温度下制得的区别于刚玉(α

-Al2O3)的所有晶相的总称,按生成温度可分为低温氧化铝和高温氧化铝两大类[6]。

(1)低温氧化铝(又称γ-组):这类氧化铝有ρ-、η-、γ-和χ-Al2O3,是由氢氧化铝在脱水温度不超过600℃时煅烧得到的产品。这类氧化铝分子中存在大量的羟基,可以用化学式Al2O3·nH2O(0

(2)高温氧化铝(又称δ-组):是氢氧化铝在900~1000℃脱水得到的产品。这类包括δ-、θ-、κ-氧化铝。

随着石油化工的发展和催化技术的进步,活性氧化铝越来越受到关注,其中γ-Al2O3由于比表面积大、晶相温度范围广、孔结构可调节、表面又具有酸性等特性,在化工领域被广泛用作催化剂及其载体[7]。重整、汽车尾气净化等高温体系中,Al2O3的微晶或颗粒极易烧结并转变为α-Al2O3,使Al2O3载体比表面积丧失,孔道坍塌,从而导致催化剂活性下降甚至失活[8]。

二、制备方法

目前我国制备活性氧化铝主要工艺是碱式中和法和酸式中和法。碱式中和法的特点是用碱性物质去中和酸性的铝盐溶液,如高温并流成胶法、室温单流成胶法、铝溶胶热油成球法等;酸式中和法,特点是用酸性物质去中和碱性的铝盐溶液,如硝酸法制备γ-Al2O3。由于碱法制备活性氧化铝成本较低,得到的产品相对较纯所以最为常用。除此之外,还有快脱法和醇铝法等制备方法,不同的制备工艺得到的氧化铝载体的物理性能存在较大差异。

2.1 碱式中和法

2.1.1.高温并流成胶法

使铝盐溶液和氨水分别控制一定的流速同时进入中和罐,使生成的氢氧化铝凝胶维持在温度大于70℃,pH大于8.5。待生成足够量的胶体时即可停止中和。胶体经反复过滤、洗涤后,成型、干燥,再经500-600℃焙烧就可得到能供工业使用的γ-Al2O3。这种γ-Al2O3的特点使孔容大,纯度高。

2.1.2.室温单流成胶法

先将一定浓度的铝盐溶液置于中和罐内,再猛烈搅拌的情况下以一定的速度将氨水徐徐注入其中,立即生成了白色絮状的氢氧化铝凝胶,大约在pH=4.5

左右能出现一个“稠点”,此时胶体粘度最大,再继续加入氨水又可变稀,直至胶体的pH≤8为止,视为中和完毕。将胶体过滤,洗涤,烘干和焙烧也可得到以γ-Al2O3为主的活性氧化铝。这样氧化铝孔小,纯度较差。

2.1.

3.铝溶胶热油成球法

此法和上两种方法不同,它用的原料是“铝溶胶”和六次甲基四胺水溶液,它们两者以体积比11相混和后,滴落在90℃左右的热油中,依靠六次甲基四胺在温度的作用下发生水解生成氨气,使混和液凝固成一个个小球,再使小球经过老化处理完全转变成氢氧化铝,水洗去其中的氯离子,烘干,经500℃煅烧后就能得到纯度较高的γ-Al2O3小球供工业使用。这种生产方法可以完全甩去板框压滤,生产效率提高。

2.2 酸式中和法

硝酸法制备γ-Al2O3的过程中,首先使氢氧化铝和氢氧化钠反应生成偏铝酸钠溶液,再加入净水稀释到一定浓度,用硝酸去中和,生成的氢氧化铝凝胶,经反复洗涤、压滤,得到的滤饼干燥、焙烧,就得到了γ-Al2O3。除上述方法之外,还有醇铝法制备活性氧化铝,该法制备得到的氧化铝纯度高,活性好,比表面积大,而且不含电解质,但制备方法相对复杂,且成本较高。上述方法所得到的活性氧化铝产品具有抗破碎强度高,热稳定性好,比表面积适中[3],孔容、孔径分布可调和表面具有酸性等特性,是迄今在工业上最广泛用作催化剂、催化剂载体、吸附剂等的无机材料。不同制备方法,通过改变制备条件、加入改性元素等,可以得到不同物化性质的氢氧化铝,得到晶型、孔结构、表面性能复杂多变的氧化铝,正好适应了千变万化的催化反应过程。

三、活性氧化铝的改性研究

活性氧化铝具有高比表面积和高活性等特性,在工业上被广泛用作催化剂或催化剂载体。然而,但对于汽车尾气催化净化、催化燃烧及甲烷选择性催化氧化等高温反应体系,催化剂床层温度常常高于1000℃,引起氧化铝的比表面下降,活性位减少,甚至转变为热力学稳定的α相,导致催化活性下降甚至失活,因此,

提高A12O3的高温抗烧结和抗相变性能具有重要的理论意义和实际意义。γ

-Al2O3具有“缺陷的尖晶石”结构,其晶胞是由32个氧原子立方紧密堆积而成,其中有8个四面体空隙和16个八面体空隙,也即其中会有阳离子空位。而γ

-Al2O3属于亚稳态结构,随煅烧温度的升高,在晶体结构的转变过程中会发生脱水/脱羟基反应而产生阴离子空位,这些阴离子和阳离子的空位会导致高温煅烧时结构晶相发生变化。因此可通过将外来离子掺入到氧化铝中,占据着尖晶石的阴阳离子空位,从而防止高温煅烧时γ-Al2O3发生晶相变化。为了克服氧化铝的高温烧结以及相变引起的比表面积下降、孔结构破坏等一系列问题,各国学者开展了对氧化铝热稳定性的改性研究,主要采用的方法为:改进制备工艺、添加助剂以及生成新的物质[9]。

3.1 助剂改性

早在1946 年,Francis[40]等人发现,无论是活性氧化铝本身含有其他物质或是有目的的添加其它元素,都可以提高氧化铝的稳定性。之后Levy[10]等尝试用一些金属元素(Li、Na、K、Mg)来对氧化铝进行表面改性,希望能抑制其比表面积的下降,但效果并不明显。

七、八十年代,人们开始广泛用各种金属元素来修饰氧化铝载体,通常采用浸渍法将金属元素添加到氧化铝中。虽然高温下改性后的样品比表面积较未改性样品有一定的改善,但当温度达到1200℃,仍避免不了比表面积的急剧减少。Hindin[11]等人用浸渍法得到金属混合氧化物改性的活性氧化铝,在1200℃下煅烧4h 后,最好样品的比表面积保持在45.9m2·g-1。到了九十年代,更多的用溶胶凝胶法来制备活性氧化铝,比起用浸渍法得到的样品,其稳定性要高很多。Hamano[12]用溶胶凝胶法制得的镧改性活性氧化铝在1200℃煅烧5h后仍具有113 m2·g-1的高比表面积。

总之,在Al2O3结构表面引入某些元素或物质对γ-Al2O3的烧结和相转变具有显著影响。经过多年来的实践经验总结,改善氧化铝热稳定性的添加剂基本分为四大类:即稀土金属氧化物[13-24]、碱土金属氧化物[24-31]、二氧化硅[32-34]和其他氧化物。目前国内外普遍采用稀土La和Ce、碱土金属Ba对氧化铝进行改性,以适应活性氧化铝在高温反应体系中的应用。

3.2 镧改性氧化铝研究

La 是最常用,也是研究最多的改性元素之一。Rossignol[24]等人通过溶胶凝胶法制备得到镧改性氧化铝,1050℃高温煅烧后,样品仍然以δ、θ相为主,比表面积为80m2·g-1;赫崇衡[25]、谢春英[36]等人研究发现,1100℃的高温煅烧32h后,镧改性样品中α相转变被抑制,同时比表面积仍保持98m2·g-1,远大于未改性的样品的17.6m2·g-1。

一种观点认为La 对氧化铝的稳定作用主要是因为它在氧化铝表面形成了钙钛矿型的LaAlO3,这些稳定的化合物首先成核,并通过界面结合方式牢固地锚定在Al2O3晶格的边角上,阻止了烧结和表面扩散,进一步抑制了α相转变。

相关文档
最新文档