光电检测-报告

合集下载

光电特性综合实验报告

光电特性综合实验报告
光输出功率与注入电流的关系曲线,即 P-I 曲线。LED 输出光功率包括之流输出功 率和脉冲输出功率。真实曲线应在实验前读出环境条件下的光功率,绘图时用实验数据 减去这一初始偏差。 4. LED 的光谱特性
基本思路是通过单色仪分光(步进电机控制),将连续光谱变成近似单色光,通过 探测器及相应的放大、A/D 转换、采集电路,在计算机上得到光谱曲线。
0.009
2
1.67
0.021
0.02
3
1.69
0.032
0.031
4
1.71
0.045
0.044
5
1.73
0.058
0.057
6
1.75
0.071
0.07
7
1.76
0.085
0.084
η = P/I������V������
0.0055 0.0060 0.0061 0.0064 0.0066 0.0067 0.0068
实验装置:
LED 电学特性测试仪 三波长光功率计
实验内容:
1. 测试 LED 发光原理及伏安特性 待测白光 LED 插入转台上插孔,LED 电源接测试盒正向输出端,旋钮逆时针至最大。
接通电源,调节旋钮,记录正向电流和电压表的数据。取值开始密集,之后加大步距。 复原旋钮,关电源,反向接 LED,操作同上。
43°
0.025
0.024
2.4
40°
0.028
0.027
2.7
37°
0.025
0.024
2.4
31°
0.021
0.02
2
30°
0.018
0.017
1.7
28°

光电检测实验报告

光电检测实验报告

光电检测实验报告光电检测试验报告重庆理工大学光电信息学院实验一光敏电阻特性实验实验原理:利用具有光电导效应的半导体材料制成的光敏传感器叫光敏电阻。

光敏电阻采用梳状结构是由于在间距很近的电阻之间有可能采用大的灵敏面积,提高灵敏度。

内光电效应发生时,光敏电阻电导率的改变量为: ????p?e??p??n?e??n ,e为电荷电量,?p为空穴浓度的改变量,?n为电子浓度的改变量,?表示迁移率。

当两端加上电压U后,光电流为:Iph?A????U d式中A为与电流垂直的外表,d为电极间的间距。

在一定的光照度下,??为恒定的值,因而光电流和电压成线性关系。

光敏电阻的伏安特性如图1-2所示,不同的光照度可以得到不同的伏安特性,说明电阻值随光照度发生变化。

光照度不变的情况下,电压越高,光电流也越大,光敏电阻的工作电压和电流都不能超过规定的最高额定值。

图1-2光敏电阻的伏安特性曲线图1-3 光敏电阻的光照特性曲线实验仪器:稳压电源、光敏电阻、负载电阻〔选配单元〕、电压表、各种光源、遮光罩、激光器、光照度计〔做光照特性测试,由用户自备或选配〕实验步骤:1. 测试光敏电阻的暗电阻、亮电阻、光电阻观察光敏电阻的结构,用遮光罩将光敏电阻完全掩盖,用万用表欧姆档测得的电阻值为暗电阻R暗,移开遮光罩,在环境光照下测得的光敏电阻的阻值为亮电阻R亮,暗电阻与亮电阻之差为光电阻,光电阻越大,那么灵敏度越高。

在光电器件模板的试件插座上接入另一光敏电阻,试作性能比拟分析。

2. 光敏电阻的暗电流、亮电流、光电流按照图1-5接线,分别在暗光及有光源照射下测出输出电压暗和U亮,电流L暗=U暗/R,亮电流L亮=U亮/R,亮电流与暗电流之差称为光电流,光电流越大那么灵敏度越高。

3. 光敏电阻的伏安特性测试按照上图接线,电源可从直流稳压电源+2~+12V间选用,每次在一定的光照条件下,测出当加在光敏电阻上电压为+2V;+4V;+6V;+8V;+10V;+12V时电阻R两端的电压UR,和电流数据,同时算出此时光敏电阻的阻值,并填入以下表格,根据实验数据画出光敏电阻的伏安特性曲线。

光电检测实验报告光电二极管

光电检测实验报告光电二极管

光电检测实验报告光电二极管实验名称:光电检测实验实验目的:1.了解光电二极管的基本原理和工作原理;2.掌握光电二极管的基本特性和性能参数;3.学习使用光电二极管进行光电检测实验。

实验设备:1.光电二极管;2.光源;3.数字万用表。

实验原理:光电二极管是一种将光信号转换成电信号的光电器件。

它是由P型半导体和N型半导体构成的二极管,光照射在PN结处时,光子能量被吸收,激发了电子-空穴对的产生,从而形成漂移电流,这个电流被称为光电流。

实验步骤:1.将光电二极管连接到数字万用表的电流测量档位上,确保电路接线正确;2.打开光源,调整光源距离光电二极管的位置,使其照射光强适中;3.使用数字万用表测量并记录光电二极管的光电流;4.调整光源的亮度,观察光电流的变化;5.分别在不同光照强度条件下,测量光电二极管的电流值;6.将实验数据整理并分析。

实验结果:在实验过程中,我们测量并记录了不同光照强度下光电二极管的电流值。

实验结果显示,光电二极管的光电流与光照强度呈线性关系。

随着光照强度的增加,光电流也随之增加。

在光照强度较弱的条件下,光电流较小;而在光照强度较强的条件下,光电流较大。

实验分析:通过实验结果可以看出,光电二极管的工作原理是光照射到PN结处,激发了电子-空穴对的生成。

光照强度越大,激发的电子-空穴对数量越多,产生的光电流也越大。

因此,光电二极管可以用来检测光的亮度和强度。

实验中我们还发现,在光照强度较弱的条件下,光电流的变化不太敏感。

而在光照强度较强的条件下,光电流的变化更为明显。

这是由于光电二极管的饱和现象导致的。

当光照强度较强时,光电二极管已经饱和,其光电流不再呈线性增加。

实验总结:通过本次光电检测实验,我们对光电二极管的原理和工作原理有了更深入的理解。

光电二极管可用于测量光的强度和亮度,并且其光电流与光照强度呈线性关系。

然而在光照强度较强的条件下,光电流的变化不再呈线性增加,而是受到饱和现象的影响。

光电传感器实验报告(文档4篇)

光电传感器实验报告(文档4篇)

光电传感器实验报告(文档4篇)以下是网友分享的关于光电传感器实验报告的资料4篇,希望对您有所帮助,就爱阅读感谢您的支持。

光电传感器实验报告第一篇实验报告2――光电传感器测距功能测试1.实验目的:了解光电传感器测距的特性曲线;掌握LEGO基本模型的搭建;熟练掌握ROBOLAB软件;2.实验要求:能够用LEGO积木搭建小车模式,并在车头安置光电传感器。

能在光电传感器紧贴红板,以垂直红板的方向作匀速直线倒车运动过程中进行光强值采集,绘制出时间-光强曲线,然后推导出位移-光强曲线及方程。

3.程序设计:编写程序流程图并写出程序,如下所示:ROBOLAB程序设计:4.实验步骤:1) 搭建小车模型,参考附录步骤或自行设计(创新可加分)。

2) 用ROBOLAB编写上述程序。

3) 将小车与电脑用USB数据线连接,并打开NXT的电源。

点击ROBOLAB 的RUN按钮,传送程序。

4) 取一红颜色的纸板(或其他红板)竖直摆放,并在桌面平面与纸板垂直方向放置直尺,用于记录小车行走的位移。

5) 将小车的光电传感器紧贴红板放置,用电脑或NXT的红色按钮启动小车,进行光强信号的采样。

从直尺上读取小车的位移。

6) 待小车发出音乐后,点击ROBOLAB的数据采集按钮,进行数据采集,将数据放入红色容器。

共进行四次数据采集。

7) 点击ROBOLAB的计算按钮,分别对四次采集的数据进行同时显示、平均线及拟和线处理。

8) 利用数据处理结果及图表,得出时间同光强的对应关系。

再利用小车位移同时间的关系(近似为匀速直线运动),推导出小车位移同光强的关系表达式。

5.调试与分析a) 采样次数设为24,采样间隔为0.05s,共运行1.2s。

采得数据如下所示。

b) 在ROBOLAB的数据计算工具中得到平均后的光电传感器特性曲线,如图所示:c) 对上述平均值曲线进行线性拟合,得到的光强与时间的线性拟合函数:d) 取四次实验小车位移的平均值,根据时间与光强的拟合函数求取距离与光强的拟合函数:由上图可得光强与时间的关系为:y=-25.261858×t+56.524457 ; 量取位移为4.5cm,用时1.2s,得:x=3.75×t ;光强与位移的关系为:y= -6.73649547×x+56.524457 ;e) 通过观测上图及导出的光强位移函数可知,光电传感器在短距离里内对位移信号有着良好的线性关系,可以利用光强值进行位移控制。

光电二三极管特性测试实验报告

光电二三极管特性测试实验报告

光敏二极管特性测试实验一、实验目的1.学习光电器件的光电特性、伏安特性的测试方法;2.掌握光电器件的工作原理、适用范围和应用基础。

二、实验内容1、光电二极管暗电流测试实验2、光电二极管光电流测试实验3、光电二极管伏安特性测试实验4、光电二极管光电特性测试实验5、光电二极管时间特性测试实验6、光电二极管光谱特性测试实验7、光电三极管光电流测试实验8、光电三极管伏安特性测试实验9、光电三极管光电特性测试实验10、光电三极管时间特性测试实验11、光电三极管光谱特性测试实验三、实验仪器1、光电二三极管综合实验仪 1个2、光通路组件 1套3、光照度计 1个4、电源线 1根5、2#迭插头对(红色,50cm) 10根6、2#迭插头对(黑色,50cm) 10根7、三相电源线 1根8、实验指导书 1本四、实验原理1、概述随着光电子技术的发发展,光电检测在灵敏度、光谱响应范围及频率我等技术方面要求越来越高,为此,近年来出现了许多性能优良的光伏检测器,如硅锗光电二极管、PIN光电二极管和雪崩光电二极管(APD)等。

光敏晶体管通常指光电二极管和光电三极管,通常又称光敏二极管和三敏三极管。

光敏二极管的种类很多,就材料来分,有锗、硅制作的光敏二极管,也有III-V族化合物及其他化合物制作的二极管。

从结构我来分,有PN结、PIN结、异质结、肖特基势垒及点接触型等。

从对光的响应来分,有用于紫外光、红外光等种类。

不同种类的光敏二极管,具胡不同的光电特性和检测性能。

例如,锗光敏二极管与硅光敏二极管相比,它在红外光区域有很大的灵敏度,如图所示。

这是由于锗材料的禁带宽度较硅小,它的本征吸收限处于红外区域,因此在近红外光区域应用;再一方面,锗光敏二极管有较大的电流输出,但它比硅光敏二极管有较大的反向暗电流,因此,它的噪声较大。

又如,PIN型或雪崩型光敏二极管与扩散型PN结光敏二极管相比具有很短的时间响应。

因此,在使用光敏二极管进要了解其类型及性能是非常重要的。

光电探测实验报告

光电探测实验报告

实验一光敏电阻特性实验实验原理:光敏电阻又称为光导管,是一种均质的半导体光电器件,其结构如图(1)所示。

由于半导体在光照的作用下, 电导率的变化只限于表面薄层,因此将掺杂的半导体薄膜沉积在绝缘体表面就制成为了光敏电阻,不同材料制成的光敏电阻具有不同的光谱特性。

光敏电阻采用梳状结构是由于在间距很近的电阻之间有可能采用大的灵敏面积,提高灵敏度。

实验所需部件:稳压电源、光敏电阻、负载电阻(选配单元)、电压表、各种光源、遮光罩、激光器、光照度计(由用户选配)实验步骤:1、测试光敏电阻的暗电阻、亮电阻、光电阻观察光敏电阻的结构 ,用遮光罩将光敏电阻彻底掩盖,用万用表测得的电阻值为暗电阻R 暗,移开遮光罩,在环境光照下测得的光敏电阻的阻值为亮电阻,暗电阻与亮电阻之差为光电阻,光电阻越大,则灵敏度越高。

在光电器件模板的试件插座上接入另一光敏电阻,试作性能比较分析。

2、光敏电阻的暗电流、亮电流、光电流按照图(3)接线,电源可从+2~+8V 间选用,分别在暗光和正常环境光照下测出输出电压V 暗和 V 亮则暗电流 L 暗=V 暗/R L,亮电流 L 亮=V 亮/R L,亮电流与暗电流之差称为光电流,光电流越大则灵敏度越高。

分别测出两种光敏电阻的亮电流,并做性能比较。

图(2)几种光敏电阻的光谱特性3、伏安特性:光敏电阻两端所加的电压与光电流之间的关系。

按照图(3)分别测得偏压为 2V、4V、6V、8V、10V、12V 时的光电流,并尝试高照射光源的光强,测得给定偏压时光强度的提高与光电流增大的情况。

将所测得的结果填入表格并作出 V/I 曲线。

偏压 2V 4V 6V 8V 10V 12V光电阻 I光电阻 II注意事项:实验时请注意不要超过光电阻的最大耗散功率P MAX, P MAX=LV。

光源照射时灯胆及灯杯温度均很高,请勿用手触摸,以免烫伤。

实验时各种不同波长的光源的获取也可以采用在仪器上的光源灯泡前加装各色滤色片的办法,同时也须考虑到环境光照的影响。

实验一光电探测原理实验

实验一光电探测原理实验

福建师范大学物理与光电信息科技学院光电检测技术实验-实验一1 实验一光电探测原理实验一、内容简介光电探测原理实验箱,是本公司为适合光电子、信息工程、物理等专业教学内容的需要,最新推出的光电类教学实验装置。

本实验箱从了解和熟悉光电二极管和光电池的角度出发,讨论关于光电二极管和光电池的主要技术问题,主要知识点包括:光照度及其测量基本知识;光电池的结构、工作原理和光照特性及其应用;光电二极管的结构、工作原理和光照特性及其应用等。

本实验系统注重理论与实践的紧密结合,突出实用性,可作为光测控技术、光电子技术、光电子仪器仪表及精密仪器等专业本科生和研究生课堂实验与研究。

二、实验箱说明实验箱配备有0~12V 可调的直流电压源,可为光电二极管提供可以调节的偏置电压。

本实验箱还配有照度计、电压表和电流表,各表头显示单元和各种调节单元都放在面板上,而光源、照度计探头、硅光电池和硅光电二极管等不需要经常移动的器件都在实验箱里面固定,所有引出线都通过连线连接到面板上,学生做实验时只需要简单连线即可,连线、调节、观察和记录都很方便。

实验箱还配备10K 粗调电位器RP1和47K 多圈精密细调电位器RP2,可供学生配合其它元件自己动手搭建实验之用,提高学生动手动脑能力。

面板操作示意图:实验(一)光照度测试一、实验目的1、了解光照度基本知识;2、了解光照度测量基本原理;3、学会光照度的测量方法。

二、实验内容对光照度进行测量,观察现象。

三、预备知识1、光照度基本知识光照度是光度计量的主要参数之一,而光度计量是光学计量最基本的部分。

光度量是限于人眼能够见到的一部分辐射量,是通过人眼的视觉效果去衡量的,人眼的视觉效果对各种波长是不同的,通常用V(λ)表示,定义为人眼视觉函数或光谱光视效率。

因此,光照度不是一个纯粹的物理量,而是一个与人眼视觉有关的生理、心理物理量。

光照度是单位面积上接收的光通量,因而可以导出:由一个发光强度I的点光源,在相距L 处的平面上产生的光照度与这个光源的发光强度成正比,与距离的平方成反比,即:2EI/L式中:E——光照度,单位为Lx;I——光源发光强度,单位为cd;L——距离,单位为m。

光电检测系统课程设计报告

光电检测系统课程设计报告

********光电系统设计与检测说明书电子照片(证件照)题目红外遥控设计系(部) ******专业(班级) ******姓名****学号20100411**指导教师******起止日期13年6月 3日6月15日长沙学院课程设计鉴定表10级光电检测课程设计任务书系(部):电子与通信工程系专业:光电指导教师: 刘莉孙利平谭志光谢志宇 2013-6-8摘要:很多电器都采用红外遥控,那么红外遥控的工作原理是什么呢?本文将介绍其原理和设计方法。

红外线遥控就是利用波长为0.76~1.5μm之间的近红外线来传送控制信号的。

常用的红外遥控系统一般分发射和接收两个部分。

红外遥控常用的载波频率为38kHz,这是由发射端所使用的455kHz晶振来决定的,在发射端要对晶振进行整数分频,分频系数一般取12,所以455kHz÷12≈37.9 kHz≈38kHz。

也有一些遥控系统采用36kHz、40kHz、56kHz等,一般由发射端晶振的振荡频率来决定。

接收端的输出状态大致可分为脉冲、电平、自锁、互锁、数据五种形式。

关键词:80c51单片机、红外发光二极管、晶振目录1、绪论 (7)2、红外遥控器 (8)2.1、基本原理及应用 (8)2.2、红外遥控发射部分 (9)2.3、红外遥控接收部分 (11)2.4、系统设计 (12)3、设计思路 (13)4、设计成果展示 (14)5、总结 (15)6、参考文献: (15)附录1: (16)1、绪论人的眼睛能看到的可见光按波长从长到短排列,依次为红、橙、黄、绿、青、蓝、紫。

其中红光的波长范围为0.62~0.76μm;紫光的波长范围为0.38~0.46μm。

比紫光波长还短的光叫紫外线,比红光波长还长的光叫红外线。

红外线遥控就是利用波长为0.76~1.5μm 之间的近红外线来传送控制信号的。

发射部分的主要元件为红外发光二极管。

它实际上是一只特殊的发光二极管,由于其内部材料不同于普通发光二极管,因而在其两端施加一定电压时,它便发出的是红外线而不是可见光。

光电检测实验报告光电二极管

光电检测实验报告光电二极管

光电检测实验报告光电二极管
与实验报告有关
一、实验目的
本实验旨在探究光电二极管的基本特性,了解不同参数对光电二极管
的作用原理。

二、实验原理
光电二极管是一种特殊的半导体器件,由一个P半导体和一个N半导
体组成。

其结构类似于普通的二极管,它是由一块金属片和一块硅片组成的。

金属片在表面覆盖着一层半导体材料层,而硅片则覆盖着一层P沟槽,形成一个PN结构,这就是光电二极管的基本结构。

当光电二极管接受到
外部光照时,在P层和N层之间就会产生电子-空穴对,并促使电子向N
层移动,从而在P层和N层之间构成一个电流,也就是由光引起的电流。

三、实验设备
1、光源:LED灯泡;
2、示波器:用于测量光电二极管的输出电流与电压;
3、电源:用于给光电二极管提供电势;
4、电阻:用于限制光电二极管的输出电流;
5、光电二极管:本次实验使用的是JH-PJN22;
6、多用表:用于测量电流、电压。

四、实验步骤
1、用多用表测量光电二极管JH-PJN22的参数,测量其正向电压和正向电流与LED照射强度的关系;
2、设置由电源、电阻和光电二极管组成的电路,并使用示波器测量输出电流和电压;。

光电检测实验报告

光电检测实验报告

实验三十光纤位移传感器(半圆分部)的特性实验一、实验目的:了解光纤位移传感器的工作原理和性能。

二、基本原理:本实验采用的是导光型多模光纤,它由两束光纤组成半圆分布的Y型传感探头,一束光纤端部与光源相接用来传递发射光,另一束端部与光电转换器相接用来传递接收光,两光纤束混合后的端部是工作端亦即探头,当它与被测体相距X时由光源发出的光通过一束光纤射出后,经被测体反射由另一束光纤接收,通过光电转换器转换成电压,该电压的大小与间距X有关,因此可用于测量位移。

三、需用器件与单元:光纤传感器、光纤传感器实验模板、数显单元、测微头、直流电源±15V、铁测片。

四、实验步骤:1、根据图9-1安装光纤位移传感器,二束光纤分别插入实验板上光电变换座内,其内部装有发光管D及光电转换管T。

2、将光纤实验模板输出端V0与数显单元相连,见图9-2。

3、在测微头顶端装上铁质圆片,作为反射面,调节测微头使探头与反射面轻微接触,数显表置20V档。

4、实验模板接入±15V电源,合上主控箱电源开关,调节RW2使数显表显示为零。

5、旋转测微头,使被测体离开探头,每隔0.1mm读出数显表显示值,将其填入9-1。

注:电压变化范围从0→最大→最小必须记录完整。

表9-1:光纤位移传感器输出电压与位移数据如下表所示:通过上述的表格可以找出在X=6.5或者6.6mm时输出电压才达到最大值为6.78或者6.79V,但当继续寻找最小值的时候并没有找到,输出电压随着位移的增大逐渐的减小,但是减小的幅度会渐渐的趋于平衡,在达到测微头最大量程时还在继续的减小,因此并没有找到最小的记录。

并认为X=4mm时为最小的0。

6、根据表9-1数据,作出光纤位移传感器的位移特性图,并加以分析、计算出前坡和后坡的灵敏度及两坡段的非线性误差。

答:利用excel对数据进行分析得光纤位移传感器的位移特性图如下所示:通过光纤位移传感器的位移特性图可知:其图形被分为前坡和后坡两部分,在前坡输出电压随着位移的增大而增大并且达到最大值,并且前坡的增大的幅度比较大,在后坡输出电压随着位移的增大不再增大而是相应的减小,减小的幅度较小,并逐渐的趋于稳定。

光电传感器检测技术调研报告

光电传感器检测技术调研报告

光电传感器检测技术调研报告——在“超越杯”产品中的应用一、光电传感器的定义光电传感器是采用光电元件作为检测元件的传感器。

它首先把被测量的变化转换成光信号的变化,然后借助光电元件进一步将光信号转换成电信号。

光电传感器一般由光源、光学通路和光电元件三部分组成。

二、光电传感器的概述光电检测方法具有精度高、反应快、非接触等优点,而且可测参数多,传感器的结构简单,形式灵活多样,因此,光电式传感器在检测和控制中应用非常广泛。

光电传感器是各种光电检测系统中实现光电转换的关键元件,它是把光信号(红外、可见及紫外光辐射)转变成为电信号的器件。

光电式传感器是以光电器件作为转换元件的传感器。

它可用于检测直接引起光量变化的非电量,如光强、光照度、辐射测温、气体成分分析等;也可用来检测能转换成光量变化的其他非电量,如零件直径、表面粗糙度、应变、位移、振动、速度、加速度,以及物体的形状、工作状态的识别等。

光电式传感器具有非接触、响应快、性能可靠等特点,因此在工业自动化装置和机器人中获得广泛应用。

近年来,新的光电器件不断涌现,特别是CCD图像传感器的诞生,为光电传感器的进一步应用开创了新的一页。

三、光电传感器的原理由光通量对光电元件的作用原理不同所制成的光学测控系统是多种多样的,按光电元件(光学测控系统)输出量性质可分二类,即模拟式光电传感器和脉冲(开关)式光电传感器.模拟式光电传感器是将被测量转换成连续变化的光电流,它与被测量间呈单值关系.模拟式光电传感器按被测量(检测目标物体)方法可分为透射(吸收)式,漫反射式,遮光式(光束阻档)三大类.所谓透射式是指被测物体放在光路中,恒光源发出的光能量穿过被测物,部份被吸收后,透射光投射到光电元件上;所谓漫反射式是指恒光源发出的光投射到被测物上,再从被测物体表面反射后投射到光电元件上;所谓遮光式是指当光源发出的光通量经被测物光遮其中一部份,使投射刭光电元件上的光通量改变,改变的程度与被测物体在光路位置有关.光敏二极管是最常见的光传感器。

光电探测实验报告总结(3篇)

光电探测实验报告总结(3篇)

第1篇一、实验目的本次实验旨在通过实际操作,了解光电探测的基本原理和实验方法,掌握光电探测器的性能测试技术,并分析光电探测在现实应用中的重要性。

实验过程中,我们对光电探测器的响应特性、灵敏度、探测范围等关键参数进行了测试和分析。

二、实验原理光电探测器是一种将光信号转换为电信号的装置,广泛应用于光电通信、光电成像、环境监测等领域。

实验中,我们主要研究了光电二极管(Photodiode)的工作原理和特性。

光电二极管是一种半导体器件,当光照射到其PN结上时,会产生光生电子-空穴对,从而产生电流。

三、实验仪器与材料1. 光电二极管2. 光源(激光笔、LED灯等)3. 光电探测器测试仪4. 示波器5. 数字多用表6. 光纤连接器7. 光学平台8. 环境温度计四、实验步骤1. 光电二极管性能测试(1)将光电二极管与光源、测试仪连接,确保连接牢固。

(2)调整光源强度,观察光电探测器输出电流的变化,记录不同光照强度下的电流值。

(3)测试光电二极管在不同波长下的光谱响应特性,记录不同波长下的电流值。

2. 光电探测器灵敏度测试(1)调整环境温度,观察光电探测器输出电流的变化,记录不同温度下的电流值。

(2)改变光源距离,观察光电探测器输出电流的变化,记录不同距离下的电流值。

3. 光电探测器探测范围测试(1)在固定光源强度下,调整探测器与光源的距离,观察输出电流的变化,记录探测范围。

(2)在固定探测器与光源的距离下,调整光源强度,观察输出电流的变化,记录探测范围。

五、实验结果与分析1. 光电二极管性能测试实验结果表明,随着光照强度的增加,光电二极管输出电流逐渐增大。

在相同光照强度下,不同波长的光对光电二极管输出的电流影响不同,表明光电二极管具有光谱选择性。

2. 光电探测器灵敏度测试实验结果显示,随着环境温度的升高,光电二极管输出电流逐渐增大,表明光电探测器对温度具有一定的敏感性。

同时,在光源距离变化时,光电探测器输出电流也相应变化,说明光电探测器的探测范围与光源距离有关。

检测技术光电实验报告

检测技术光电实验报告

一、实验目的1. 理解光电效应的基本原理及其在光电检测中的应用。

2. 掌握光电检测器的工作原理和特性。

3. 通过实验验证光电检测技术在信号检测中的应用效果。

4. 学习如何设计和搭建光电检测系统。

二、实验原理光电效应是指当光子照射到物质表面时,能够将物质中的电子激发出来,形成光电子。

光电检测技术就是利用这一效应,将光信号转换为电信号,实现对光、电场、磁场等信号的检测。

本实验采用光电二极管作为光电检测器,其基本工作原理是:当光照射到光电二极管上时,光电二极管内的电子会被激发出来,形成光电流。

光电流的大小与入射光的强度成正比。

三、实验器材1. 光电二极管2. 光源(如激光笔)3. 数字多用表4. 光电检测电路板5. 连接线6. 实验台四、实验步骤1. 搭建光电检测电路:按照实验指导书的要求,将光电二极管、光源、数字多用表和电路板连接好,确保电路连接正确无误。

2. 调整光源强度:使用激光笔照射光电二极管,调整光源的强度,观察数字多用表上光电流的变化。

3. 测量光电二极管的响应度:记录不同光照强度下,光电二极管的光电流值,并计算光电二极管的响应度。

4. 研究光电二极管的暗电流:关闭光源,观察数字多用表上光电流的变化,记录暗电流值。

5. 分析光电检测系统的性能:通过实验数据,分析光电检测系统的性能,包括响应度、暗电流等参数。

五、实验结果与分析1. 光电二极管的响应度:实验结果显示,光电二极管的响应度随光照强度的增加而增加,与理论相符。

2. 光电二极管的暗电流:实验结果显示,在无光照条件下,光电二极管存在一定的暗电流,这可能是由于电路中的热噪声等原因造成的。

3. 光电检测系统的性能:根据实验数据,可以计算出光电检测系统的性能参数,如响应度、暗电流等,并与理论值进行比较,分析实验误差。

六、实验总结1. 通过本次实验,我们掌握了光电效应的基本原理及其在光电检测中的应用。

2. 我们了解了光电二极管的工作原理和特性,并学会了如何设计和搭建光电检测系统。

APQP光电行业样品检测报告样板

APQP光电行业样品检测报告样板
样品检测报告
项目名称
型号规格
检测单位
工程部
检测时间
检测项目
标准要求
检测结果
检测方法
输出功率是否正常
套件是否有破裂
不能有破裂
无破裂
目测,显微镜
LED灯珠是否有色差
色温一制
无色差
目测
PCB板是否有破裂
通电测试
无断裂
直流Байду номын сангаас流
所有配件是否符合要求
BOM表清单
BOM002219
符合所有要求
卡尺,积分球,万用表,直流电流,
光通量
40lm±10%
43lm
积分球
检测结论:
合格( ) 不合格( )
检测员: 批准:
备注:
主要技术参数及性能指标要求:
①输入DC5V,3.7V 900mA聚合物锂电池、3节7#AAA
②40lm/0.5W 2835-0.2W CRI>82、智能、感应灵敏、均匀、无眩光
③三挡开关控制灯具,开,关,智能三挡;开关拨动至左边,表示开始常亮、中间表示常暗、右边智能。人来即亮,感应距离3-5m、感应角度75-120°范围之内,有人在的范围会保持常亮。当人离开时,20s后自动灭。随着光线的明暗自动亮灭。
④安装方式:3M胶、磁铁、螺丝
外观、结构、尺寸要求:
鼠标状、PC料+乳白扩散、产品尺寸:L*W*H
包装、运输、环境等方面要求:
小白盒,牛皮纸盒包装,3pcs/套,40套/装箱,海运,环境不能燥湿。

光电探测器特性测量实验报告

光电探测器特性测量实验报告

实验1 光电探测器光谱响应特性实验实验目的1. 加深对光谱响应概念的理解;2. 掌握光谱响应的测试方法;3. 熟悉热释电探测器和硅光电二极管的使用。

实验内容1. 用热释电探测器测量钨丝灯的光谱特性曲线;2. 用比较法测量硅光电二极管的光谱响应曲线。

实验原理光谱响应度是光电探测器对单色入射辐射的响应能力。

电压光谱响应度()v R λ定义为在波长为λ的单位入射辐射功率的照射下,光电探测器输出的信号电压,用公式表示,则为()()()v V R P λλλ=(1-1) 而光电探测器在波长为λ的单位入射辐射功率的作用下,其所输出的光电流叫做探测器的电流光谱响应度,用下式表示()()()i I R P λλλ=(1-2) 式中,()P λ为波长为λ时的入射光功率;()V λ为光电探测器在入射光功率()P λ作用下的输出信号电压;()I λ则为输出用电流表示的输出信号电流。

为简写起见,()v R λ和()i R λ均可以用()R λ表示。

但在具体计算时应区分()v R λ和()i R λ,显然,二者具有不同的单位。

通常,测量光电探测器的光谱响应多用单色仪对辐射源的辐射功率进行分光来得到不同波长的单色辐射,然后测量在各种波长的辐射照射下光电探测器输出的电信号()V λ。

然而由于实际光源的辐射功率是波长的函数,因此在相对测量中要确定单色辐射功率()P λ需要利用参考探测器(基准探测器)。

即使用一个光谱响应度为()f R λ的探测器为基准,用同一波长的单色辐射分别照射待测探测器和基准探测器。

由参考探测器的电信号输出(例如为电压信号)()f V λ可得单色辐射功率()=()()f P V R λλλ,再通过(1-1)式计算即可得到待测探测器的光谱响应度。

本实验采用单色仪对钨丝灯辐射进行分光,得到单色光功率()P λ ,这里用响应度和波长无关的热释电探测器作参考探测器,测得()P λ入射时的输出电压为()f V λ。

光电探测_电路实验报告

光电探测_电路实验报告

一、实验目的1. 了解光电探测的基本原理和电路组成。

2. 掌握光电探测器电路的设计方法和实验技能。

3. 熟悉光电探测器的性能测试方法,并分析实验结果。

二、实验原理光电探测器是将光信号转换为电信号的器件,其基本原理是光电效应。

当光照射到光电探测器上时,会产生光生电子,从而在探测器两端产生电信号。

本实验主要研究光电二极管和光敏电阻两种光电探测器。

三、实验仪器与设备1. 光源:LED灯、激光器等。

2. 光电探测器:光电二极管、光敏电阻等。

3. 放大器:低频放大器、高频放大器等。

4. 测量仪器:示波器、万用表、信号发生器等。

5. 实验电路板:包含光电探测器、放大器、电源等组件。

四、实验内容及步骤1. 光电二极管特性测试(1)搭建实验电路,将光电二极管与低频放大器相连,并接入电源。

(2)调整光源,使光照射到光电二极管上。

(3)使用示波器观察光电二极管输出信号的波形和幅度。

(4)改变光源强度,观察光电二极管输出信号的变化,分析光电二极管的响应特性。

2. 光敏电阻特性测试(1)搭建实验电路,将光敏电阻与低频放大器相连,并接入电源。

(2)调整光源,使光照射到光敏电阻上。

(3)使用示波器观察光敏电阻输出信号的波形和幅度。

(4)改变光源强度,观察光敏电阻输出信号的变化,分析光敏电阻的响应特性。

3. 光电探测器电路设计(1)根据实验要求,设计光电探测器电路,包括光电探测器、放大器、滤波器等组件。

(2)搭建实验电路,并接入电源。

(3)调整电路参数,使光电探测器电路满足实验要求。

4. 光电探测器电路性能测试(1)使用示波器观察光电探测器电路输出信号的波形和幅度。

(2)调整光源强度,观察光电探测器电路输出信号的变化,分析电路性能。

五、实验结果与分析1. 光电二极管特性测试结果(1)光电二极管输出信号随光源强度增加而增强,符合光电效应原理。

(2)光电二极管输出信号具有较好的线性关系,适合用于光电检测。

2. 光敏电阻特性测试结果(1)光敏电阻输出信号随光源强度增加而减小,符合光敏电阻特性。

CCD光电测量实验报告

CCD光电测量实验报告

重庆大学学生实验报告实验课程名称电子信息综合实验开课实验室重庆大学物理实验教学中心学院物理年级 2012 专业班电子信息01 组内成员姓名张益达组长张益达设计日期:2015年10月20日起2015年12月8日止开课时间 2015 至 2016 学年第 1 学期物理学院学院制目录一、实验目的 (1)二、实验原理: (1)D的原理、种类、特点、发展、应用 (1)1.1 CCD简介 (1)1.2 CCD 工作原理 (1)1.3 CCD 的种类 (6)1.4 CCD 的发展 (7)1.5 CCD 的主要应用 (9)1.6 TCD1206UD 的工作原理 (10)2. FPGA的特点、应用、设计流程 (12)2.1 FPGA 简介 (12)2.2 FPGA 的主要应用 (12)2.3 FPGA 的设计流程 (13)三、设计要求 (14)1.电路设计 (14)D驱动信号 (14)四、实现过程 (15)1.设计方案: (15)1.1电源部分设计 (15)1.2 CCD 驱动电路的设计 (16)2.设计过程 (16)2.1电源部分 (16)2.2 CCD驱动电路部分设计 (17)2.3 整体电路设计 (18)2.4 PCB板的制作 (18)2.5印制电路的焊接 (19)3.测试:调试中出现的问题和解决方法 (19)3.1调试过程 (19)3.2 测试结果 (21)3.3 实验设计修正 (23)五、结果和分析 (24)1.实验收获 (24)2.设计的建议 (24)参考文献 (26)组内成员评分 (27)CCD光电测量综合设计一、实验目的本次电子信息综合实验的目的,是完成一个CCD光电测量系统。

CCD(Charge Coupled Devices)是20世纪70年代发展起来的新型半导体器件。

CCD器件是一种新型光电转换器件,它以电荷作为信号,其基本功能是电荷信号的产生、存储、传输与检测。

它主要由光敏单元、输入结构和输出结果等组成。

光电检测实验报告

光电检测实验报告

实验三十光纤位移传感器(半圆分部)的特性实验一、实验目的:了解光纤位移传感器的工作原理和性能。

二、基本原理:本实验采用的是导光型多模光纤,它由两束光纤组成半圆分布的Y型传感探头,一束光纤端部与光源相接用来传递发射光,另一束端部与光电转换器相接用来传递接收光,两光纤束混合后的端部是工作端亦即探头,当它与被测体相距X时由光源发出的光通过一束光纤射出后,经被测体反射由另一束光纤接收,通过光电转换器转换成电压,该电压的大小与间距X有关,因此可用于测量位移。

三、需用器件与单元:光纤传感器、光纤传感器实验模板、数显单元、测微头、直流电源±15V、铁测片。

四、实验步骤:1、根据图9-1安装光纤位移传感器,二束光纤分别插入实验板上光电变换座内,其内部装有发光管D及光电转换管T。

2、将光纤实验模板输出端V0与数显单元相连,见图9-2。

3、在测微头顶端装上铁质圆片,作为反射面,调节测微头使探头与反射面轻微接触,数显表置20V档。

4、实验模板接入±15V电源,合上主控箱电源开关,调节RW2使数显表显示为零。

5、旋转测微头,使被测体离开探头,每隔0.1mm读出数显表显示值,将其填入9-1。

注:电压变化范围从0→最大→最小必须记录完整。

表9-1:光纤位移传感器输出电压与位移数据如下表所示:通过上述的表格可以找出在X=6.5或者6.6mm时输出电压才达到最大值为6.78或者6.79V,但当继续寻找最小值的时候并没有找到,输出电压随着位移的增大逐渐的减小,但是减小的幅度会渐渐的趋于平衡,在达到测微头最大量程时还在继续的减小,因此并没有找到最小的记录。

并认为X=4mm时为最小的0。

6、根据表9-1数据,作出光纤位移传感器的位移特性图,并加以分析、计算出前坡和后坡的灵敏度及两坡段的非线性误差。

答:利用excel对数据进行分析得光纤位移传感器的位移特性图如下所示:通过光纤位移传感器的位移特性图可知:其图形被分为前坡和后坡两部分,在前坡输出电压随着位移的增大而增大并且达到最大值,并且前坡的增大的幅度比较大,在后坡输出电压随着位移的增大不再增大而是相应的减小,减小的幅度较小,并逐渐的趋于稳定。

光电检测实验报告

光电检测实验报告

光电检测实验报告光电检测实验报告引言:光电检测是一种常见的实验方法,通过光电效应原理,将光信号转化为电信号进行测量和分析。

本次实验旨在通过搭建光电检测系统,探索光电效应在不同条件下的特性,并研究其在实际应用中的潜力。

一、实验装置的搭建实验装置由光源、光电探测器和信号处理器组成。

光源可以选择激光器、LED 等,而光电探测器则包括光电二极管、光电倍增管等。

信号处理器用于放大和转换光电信号,常见的有放大器、滤波器等。

二、光电效应的研究光电效应是指当光照射到物质表面时,光子能量被物质吸收,从而产生电子的现象。

实验中,我们通过改变光源的强度和波长,以及调整光电探测器的位置和方向,研究光电效应的特性。

1. 光源强度对光电效应的影响在实验中,我们使用不同强度的光源照射光电探测器,记录下光电流的变化情况。

实验结果显示,光源强度越大,光电流也越大,这表明光电效应与光源的强度呈正相关关系。

2. 光源波长对光电效应的影响我们使用不同波长的光源照射光电探测器,观察光电流的变化。

实验结果显示,不同波长的光源对光电效应的影响不同。

在可见光范围内,短波长的光源产生的光电流较大,而长波长的光源产生的光电流较小。

这说明光电效应与光源的波长呈负相关关系。

三、光电检测在实际应用中的潜力光电检测技术在许多领域中有着广泛的应用,如光电传感器、光电测距仪等。

以下是一些实际应用案例:1. 光电传感器在自动化生产中的应用光电传感器可以通过光电效应检测物体的存在与否,广泛应用于自动化生产线上。

例如,在汽车制造过程中,光电传感器可以检测零件的位置和质量,实现自动化装配和质量控制。

2. 光电测距仪在测量领域中的应用光电测距仪利用光电效应测量物体与测距仪之间的距离。

它可以应用于建筑测量、地质勘探等领域。

例如,在建筑测量中,光电测距仪可以快速、准确地测量建筑物的高度和距离,提高测量效率。

结论:通过本次实验,我们搭建了光电检测系统,并研究了光电效应在不同条件下的特性。

课程设计 光电脉搏检测电路设计报告

课程设计 光电脉搏检测电路设计报告

光电脉搏检测电路设计报告脉搏波的概述1.脉搏波的定义脉搏波是以心脏搏动为动力源, 通过血管系的传导而产生的容积变化和振动现象。

当心脏收缩时, 有相当数量的血液进入原已充满血液的主动脉内, 使得该处的弹性管壁被撑开,此时心脏推动血液所作的功转化为血管的弹性势能; 心脏停止收缩时, 扩张了的那部分血管也跟着收缩, 驱使血液向前流动, 结果又使前面血管的管壁跟着扩张, 如此类推。

这种过程和波动在弹性介质中的传播有些类似, 因此称为脉搏波(pulse wave) 。

2.脉搏信息血液在人体内循环流动过程中, 经历过心脏的舒张、内脏流量的涨落、血管各端点的阻滞、血管内波的折一反射以及血管壁的黏弹等过程。

脉搏波不仅受到心脏状况的影响, 同时要受到内环境调控功能器官(脏器) 状态所需血液参数以及系统状态参数等的影响。

所以脉搏波所呈现出的形态、强度、速率和节律等方面的综合信息富含有关心脏、内外循环和神经等系统的动态信息, 很大程度上反映出人体心血管系统中许多生理病理的血流特征。

3.脉搏测量的意义脉搏是临床检查和生理研究中常见的生理现象, 包含了反映心脏和血管状态的重要生理信息。

人体内各器官的健康状态、病变等信息将以某种方式显现在脉搏中即在脉象中。

人体脉象中富含有关心脏、内外循环和神经等系统的动态信息。

通过对脉搏波检测得到的脉波图含有出许多有诊断价值的信息, 可以用来预测人体某些器脏结构和功能的变换趋势, 如:血管几何形态和力学性质的变异会引起脉搏波波形和波速等性质的改变, 而脉搏的病理生理性改变常引发各种心血管事件, 脉搏生理性能的改变可以先于疾病临床症状出现, 通过对脉搏的检测可以对如高血压和糖尿病等引起的血管病变进行评估。

同时脉搏测量还为血压测量, 血流测量及其他某些生理检测技术提供了一种生理参考信号。

设计目的与意义❖目的应用光电式传感器、放大滤波电路组成的脉搏测量电路通过示波器显示人体指端动脉脉搏信息❖意义通过观测到的脉搏的次数、跳动的波形为临床提供部分诊断价值的信息, 为人体某些器脏结构和功能的变换趋势提供生理参考信号系统设计1.测量信号的特征❖人体信息本身具有不稳定性、非线性和概率特性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要设计了一种应用于微光夜视仪检测设备中低噪声的光电检测系统,分析了电路中产生的主要噪声,并提出了抑制方法。

系统采用光敏二极管作为光电检测器件,并利用单片机实现了光照度的实时显示与超差报警以及与上位机的通信。

关键词:单片机;光电检测电路;光电二极管AbstractAlownoiselightmonitoringsystemisdesignedforanightvisiontestingequipment.Weanalyzethenoisesexistingincircuitandstudyhowtocheckthem.Inthemonitoringsystem,photodiodeisusedasphotoelectricdetector,andamicrocontrollerisappliedtorealizethereal-timedisplayofillumination,alarmandcommunicationwiththehostcomputer.Keywords:microcontroller;photoelectricdetectioncircuit;photodiode.0 引言夜视技术在军事、工业、农业、科学研究、医药卫生等领域有着广泛的应用,特别是在军事方面的需求是夜视技术发展的原动力。

在现代战争中,为了提升战争的突然性以及扩大战争的时间范围和空间范围,需要部队在星光或月光等微弱光照度情况下对战场进行侦查和监控,这就必须依靠夜视技术,所以,微光夜视仪设备的可靠性将直接影响到军队的战斗力。

要确保每一个装备的夜视仪都是合格的,就对检测设备的技术指标提出了很高的要求。

为模拟实际中的夜天光环境,在微光夜视仪检测设备中的光源要求色温为2856K,光照度的变化不超过±10%。

光应力源是否符合要求直接决定了整套系统工作的稳定性及判断结果的准确度,所以,为了保证检测设备的检测精度以及检测结果的准确性,要求对光源的照度变化进行实时监测。

当光源变化超出规定范围时,能够及时报警,提示进行设备维修或光源的更换。

1系统设计与工作原理系统主要包括:光电检测电路、光照度显示模块、超差报警模块、串口通信模块。

具体原理是通过光电检测电路将采集到的外界自然光转换为相应的直流电压信号,再通过ADC将电压信号转换为数字信号送入单片机,单片机将数据进行补偿算法获得精确的实际采样值,控制数码管显示实时光照度,一旦光照度不符合设计指标,则通过报警灯及蜂鸣器进行报警,同时,通过RS232串口与上位机进行通信。

系统原理框图如图1所示。

图1 光应力源监测系统原理框图2光电检测电路光电检测电路是通过将照射于光电探测器上的光通量转化为相应的光电流,再经过电流放大、电压转换等后续电路进一步优化有用信号,最终实现光信号获取的一种方法。

这种电路已被广泛用于军事、农业、民用等诸多领域在光电系统中,光电检测电路把接收到的光信号转换成电信号,并对电信号进行放大,再与后面的检测和运算系统对接。

光电检测电路在整个光电系统中是非常重要的,它的性能好坏直接决定了整个系统的性能好坏。

2.1光电检测电路的设计由于本电路中采用的光电探测器的输出信号为电流信号,所以,先要经过前置放大电路将接收到的光信号转换为电流信号再转换为电压信号,但由于光电探测器的输出电流信号比较微弱,所以,在经过前置放大电路后,还需要对电压信号进一步放大到便于下一步微处理器处理的范围。

但在测量信号得到放大的同时噪声也被放大,所以,为了测量的精准性,必须使用滤波电路限制噪声的频率范围,将大部分噪声滤除掉。

检测电路由前置放大电路、滤波电路和二级放大电路组成,光电检测电路结构框图如图2所示。

设计光电检测电路有3个规则:一是降低电路噪声,提高输出信噪比;二是为避免出现频率失真,要保证电路通频带的范围足够宽;三是为保证输出信号功率大,后续电路的输入阻抗要与检测电路匹配。

光电检测器件采用普通PN结硅光电二极管。

因为光电二极管本身具有优越的光电线性特性和频率特性好、较小的暗电流、良好的稳定性,光电二极管的工作模式又可以分为两类:1)光导模式,在光电二极管两端加反向偏置电压;2)光伏模式,在光电二极管两端不加电压直接与负载相连。

前一种模式的时间常数较小,造成这样结果的主要原因是外加反向偏置电压可以减小结电容,因此,可以用在脉冲和高频调制光的探测上。

光导模式的主要缺点就是暗电流的干扰比较大。

与此相反,后一种模式中的暗电流影响非常小,所以电路噪声小,在恒定和低速调制微弱光的测量上有着更大的优势。

PN结光电二极管比PIN结光电二极管的输出电流大。

PIN结光电二极管更适合在反向偏压下工作。

前置放大器采用集成运算放大器。

光电二极管与集成运放的连接方法属于电流放大型,光电二极管和运算放大器的两个输入端同极性相连,电阻R1作为反馈电阻。

图3中,由于在光电二极管两端没有加反向偏置电压,所以暗电流非常小,这就减小了输出噪声。

输出电压:1SC so R I U =式中:I s c ———光电二极管产生的光电流。

2.2 电路噪声的估计与降低方法图3所示电路中,所产生的噪声主要包括光电二极管的散粒噪声,光电二极管内阻所产生的热噪声,反馈电阻R1产生的热噪声以及运算放大器所产生的噪声。

设Ins 为光电二极管的散粒电流,sc I 为光电二极管的光电流,Δf 为电路的通频带。

则:sc 2ns I 2I e =△ƒ设nd I 为光电二极管内阻所产生的的热噪声电流,Rd为光电二极管的内阻,则:d R f k ∆=4I 2nd设nf U 为反馈电阻R1产生的热噪声电压,则:14fR KT U nf ∆=设n E ,n I 分别为放大器的等效输入噪声电压和等效输入噪声电流,则光电检测电路的输出总电压为:nf dn n nd ns sc O U R R E I I I I U +++++=1)( 输出电压1R I U sc so =,所以输出噪声电压为:nf d n n nd ns so o no U R R E I I I U U U ++++=-=1)( 光电检测电路的输出信噪比SNR为: f sc d sc n sc n d sc sc no so R I f KT R I E I I R I f I f e U U ∆+++∆+∆=22221从上述公式可以看出,电路的信噪比与很多因素有关。

电路的光电流sc I 越大,则信噪比越大,所以,应该选择灵敏性高的光电二极管以提高信噪比。

通频带Δf 越小,则输出信噪比越大,所以,应该在后级电路使用滤波电路以限制通频带,但通频带又不能过于狭窄,以免输出信号产生频率失真。

集成运放的等效输入噪声电压En和等效输入噪声电流In越小,则输出信噪比越大,所以,应该选择噪声小的低噪声高精度集成运放,可以有效地减小噪声提高信噪比。

另外电路的工作环境温度T 越小,输出信噪比越大。

所以,要尽可能使检测电路在较低的温度环境下工作。

在实际应用中,可以在前置放大电路后面连接低通滤波器以过滤高频噪声,因为噪声以高频为主,所以,低通滤波器可以有效地提高输出信噪比二阶低通滤波器电路如图4所示。

传递函数为2s s up(s)up(s))()(12i(s)o(s)u RC)(RC ]A -[31A )1(U U (s)A ++=+==+S i S U U R R其中 12up R R 1(s)A += 令cR f j S πω21,0==,得电压放大倍数())A -3j )(-(1A U A up 2up o u oo i f f f f U +==2.3 改进型的光电检测电路为了降低噪声带宽,可以采用改进型光电检测电路,如图5所示。

运算放大器A1和A2构成的复合放大器对测量信号的频带没有影响,却可以降低噪声的带宽。

图3中的增益响应特性取决于由R3,R4,C8构成的内反馈。

在通过直流电流时,由于C8的电容特性,反馈断开。

这时电路的增益为A1·A2(A1,A2分别是A1,A2的开环增益)。

通过设置R3R4可以限制电路噪声的带宽。

此增益曲线共有两次下降,一次是因为放大器的开环增益极点而导致的,另一次是因为R3和C8组成的积分器响应极点。

当频率继续增大时,通过设置R3R4<<1,那么复合放大器总的开环增益A1R3R4<<A1,这样就可以缩小复合放大器的频响范围。

从而使噪声的频带变小,而信号频带基本不受影响。

如果R2比较大,则容易产生直流误差,所以电路中加入R5进行补偿。

C10的作用是消除R5的杂散噪声。

C7是消振电容,它的加入减小了噪声的带宽。

3 光照度显示与超差报警模块3.1 硬件设计此模块接收到前置光电检测电路直流电压信号后进行AD 转换,其中的ADC 选用单片机ATmega16集成的10位ADC,监测精度为1210=11024≈0.1%,可以充分满足我们的技术指标要求。

转换后的数据经单片机ATmega16进行补偿运算,再经过实验确定恢复实测光照度数据,由单片机控制数码管进行显示,当光照度变化超出技术指标要求时,单片机控制报警灯与蜂鸣器报警。

同时,通过串口将监测到的光照度数据与报警信息通过RS232串口发送到电脑的上位机上。

模块框图如图6所示。

3.2单片机软件设计本系统单片机程序设计主要包括以下几点:uintmega16_ad():AVR单片机根据接收到的直流电压信号进行AD转换,将接收到的模拟信号转换成数字信号;uintmega16_ad_average():为减小误差将连续几次测量的数据进行平均后再作为最终数据输出;voidshow(ucharj,uchark):数码管显示子程序,将光照度数据在数码管上进行显示;voidalert(uintp):报警子程序,当光照度数据超出正常范围时,由单片机控制报警灯闪亮,同时蜂鸣器响起;voiduart_init(uintbaud):串口通信初始化子程序;voiduart_send(uchardata):串口发送数据到主机。

在程序中,接收到的模拟量是光电检测电路输出的直流电压信号,此信号因为光电二极管的线性特性,应与监测的光照度成正比,通过调节光源的输入电流大小,可以调节光照度,使用照度计记录不同输出电压时的光照度,利用在实验中测量得到的数据可以得出比例常数,实验数据见表1。

通过表1可以得出,光照度与输出直流电压信号的比例常数约为171.2,可以在单片机中通过编程将监测信号还原成实际环境中的光照度。

4系统测试记录通过串口可以将监测系统监测到的光照度信息、报警信息与设定报警上下限,输入计算机,存储进数据库进行记录和查询,记录结果如图7所示。

通过现场测量与高精度的照度计的测量结果进行比较,误差在±2LUX以内,同时报警功能工作正常,系统符合设计指标。

相关文档
最新文档