欧拉公式的证明(整理)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

欧拉公式的证明

著名的欧拉公式e^(iθ)=cosθ+isinθ是人们公认的优美公式。原因是指数函数和三角函数在实数域中几乎没有什么联系,而在复数域中却发现了他们可以相互转化,并被一个非常简单的关系式联系在一起。特别是当θ=π时,欧拉公式便写成了e^(iπ)+1=0,就这个等式将数中最富有特色的五个数0,1,i , e , π ,绝妙地联系在一起

方法一:用幂级数展开形式证明,但这只是形式证明(严格的说,在实函数域带着i只是形式上的)

再抄一遍:设z = x+iy 这样 e^z = e^(x+iy)=e^x*e^(iy),就是e^z/e^x = e^(iy)

用牛顿幂级数展开式

e^x = 1+x+x^2/2!+x^3/3!+.....+x^n/n!+......

把 e^(iy) 展开,就得到

e^z/e^x = e^(iy)

=1+iy-y^2/2!-iy^3/3!+y^4/4!+iy^5/5!-y^6/6!-.....

=(1-y^2/2!+y^4/4!-y^6/6!+.....)

+i(y-y^3/3!+y^5/5!-....)

由于 cosy = 1-y^2/2!+y^4/4!-y^6/6!+.....,

siny = y-y^3/3!+y^5/5!-....

所以 e^(x+iy)=e^x*e^(iy)=e^x*(cosy+isiny)

即 e^(iy) = (cosy+isiny)

方法二:见复变函数第2章,在整个负数域内重新定义了sinz cosz而后根据关系推导出了欧拉公式。着个才是根基。由来缘于此。

方法一是不严格的。

再请看这2个积分

∫sqrt(x^2-1)dx=x*sqrt(x^2-1)/2-ln(2*sqrt(x^2-1)+2x)/2

∫sqrt(1-x^2)dx=arcsin(x)/2+x*sqrt(1-x^2)/2;

上式左边相当于下式左边乘以i

于是上式右边相当于下式右边乘以i

然后化简就得到欧拉公式

这个证明方法不太严密

但很有启发性

历史上先是有人用上述方法得到了对数函数和反三角函数的关系

然后被欧拉看到了,才得到了欧拉公式

设a t θ ЄR,ρЄR+,a^(it)Єz有:

a^(it)=ρ(cosθ+isinθ) 1

因共轭解适合方程,用-i替换i有:

a^(-it)=ρ(cosθ-isinθ) 2

由1,2得ρ=1,点P[a^(it)]在单位圆上,a^(it)可表达为:

a^(it)=cosθ+isinθ 3

设t=u(θ),对3微商有:

[a^(it)]*(lna)*u'(θ)*i=-sinθ+icosθ 整理有:

[a^(it)]*(lna)*u'(θ)*i=(cosθ+isinθ)(cosπ/2+isinπ/2)约去a^(it)有: u'(θ)=logae 4

4取积分有:

T=(logae)*θ+Ψ 5

θ→0时,t=limt=Ψ,带入3有:

a^(iΨ)=1 即:

Ψ=0 6

6代入5有:

T=(logae)*θ 7

7代入3有:

[a^(logae)]^(iθ)=cosθ+isinθ 化简得欧拉公式:

e^(iθ)=cosθ+isinθ

(后两者才是真正让我震惊的!!!!)

相关文档
最新文档