等差数列及其前n项和(含答案)
第27讲 等差数列及其前n项和 (练)解析版
第27讲 等差数列及其前n 项和【练基础】1.等差数列{a n }中,S n 是它的前n 项和,a 2+a 3=10,S 6=54,则该数列的公差d 为( )A .2B .3C .4D .6【答案】C【解析】根据题意,等差数列{a n }中,设其公差为d ,若a 2+a 3=10,S 6=54,则有a 2+a 3=(a 1+d )+(a 1+2d )=10,S 6=6a 1+15d =54,解得d =4,a 1=-1,故选C.2.已知数列{a n }中a 1=1,a n +1=a n -1,则a 4等于( )A .2B .0C .-1D .-2 【答案】D【解析】因为a 1=1,a n +1=a n -1,所以数列{a n }为等差数列,公差d 为-1,所以a 4=a 1+3d =1-3=-2,故选D.3.设S n 是等差数列{a n }的前n 项和,已知S 7=49,则a 2,a 6的等差中项是( )A.492B .7C .±7D.72 【答案】B【解析】由已知,得S 7=7(a 1+a 7)2=7a 4=49,所以a 4=7.所以a 2,a 6的等差中项为a 2+a 62=a 4=7. 4.已知等差数列{a n }的前n 项和为S n ,若a 1=2,a 8+a 10=28,则S 9=( )A .36B .72C .144D .288 【答案】B【解析】法一:∵a 8+a 10=2a 1+16d =28,a 1=2,∴d =32,∴S 9=9×2+9×82×32=72. 法二:∵a 8+a 10=2a 9=28,∴a 9=14,∴S 9=9(a 1+a 9)2=72. 5.设等差数列{a n }的前n 项和为S n ,若S 5=5S 2+a 4,a 1=1,则a 6=( )A .16B .13C .-9D .37【答案】A 【解析】设等差数列{a n }的公差为d .由S 5=5S 2+a 4,得5a 1+5×(5-1)2d =5(2a 1+d )+(a 1+3d ).将a 1=1代入上式,得d =3.故a 6=a 1+5d =1+15=16.6.设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m 等于( )A .3B .4C .5D .6【答案】C【解析】∵数列{a n }为等差数列,且前n 项和为S n ,∴数列⎩⎨⎧⎭⎬⎫S n n 也为等差数列. ∴S m -1m -1+S m +1m +1=2S m m ,即-2m -1+3m +1=0, 解得m =5,经检验为原方程的解,故选C.7.中国古诗词中,有一道“八子分绵”的数学名题:“九百九十六斤绵,赠分八子做盘缠,次第每人多十七,要将第八数来言”.题意是:把996斤绵分给8个儿子作盘缠,按照年龄从大到小的顺序依次分绵,年龄小的比年龄大的多17斤绵,那么第8个儿子分到的绵是( )A .174斤B .184斤C .191斤D .201斤【答案】B【解析】由题意可知,数列为等差数列,公差为d =17,n =8,S 8=996,以第一个儿子分到的绵数a 1为首项,所以8a 1+8×(8-1)2×17=996,解得a 1=65,所以第8个儿子分到的绵数a 8=a 1+(n -1)·d =65+7×17=184.故选B.8.已知数列{a n }满足a 1=15,且3a n +1=3a n -2.若a k ·a k +1<0,则正整数k =( )A .21B .22C .23D .24 【答案】C【解析】由3a n +1=3a n -2⇒a n +1-a n =-23⇒{a n }是等差数列,则a n =473-23n . ∵a k ·a k +1<0,∴⎝⎛⎭⎫473-23k ⎝⎛⎭⎫453-23k <0,∴452<k <472, 又∵k ∈N *,∴k =23.9.设数列{a n },{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,那么数列{a n +b n }的第37项为( )A .0B .37C .100D .-37 【答案】C【解析】设等差数列{a n },{b n }的公差分别为d 1,d 2,则(a n +1+b n +1)-(a n +b n )=(a n +1-a n )+(b n +1-b n )=d 1+d 2,所以数列{a n +b n }仍然是等差数列,公差为d 1+d 2.又d 1+d 2=(a 2+b 2)-(a 1+b 1)=100-(25+75)=0,所以数列{a n +b n }为常数列,所以a 37+b 37=a 1+b 1=100.10.设数列{a n }是等差数列,且a 2=-6,a 6=6,S n 是数列{a n }的前n 项和,则( )A .S 4<S 3B .S 4=S 3C .S 4>S 1D .S 4=S 1 【答案】B【解析】设{a n }的公差为d ,由a 2=-6,a 6=6,得⎩⎪⎨⎪⎧ a 1+d =-6,a 1+5d =6,解得⎩⎪⎨⎪⎧a 1=-9,d =3.于是,S 1=-9,S 3=3×(-9)+3×22×3=-18,S 4=4×(-9)+4×32×3=-18,所以S 4=S 3,S 4<S 1,故选B. 【练提升】1.已知数列{a n }满足3an +1=9·3an (n ∈N *),且a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)=( ) A .-13B .3C .-3D.13【答案】C【解析】由3an +1=9·3an (n ∈N *),得3an +1=3an +2,所以a n +1=a n +2,所以数列{a n }是等差数列,公差为2.又a 2+a 4+a 6=3a 1+9d =9,所以a 1=-3.所以log 13(a 5+a 7+a 9)=log 13(3a 1+18d )=log 1327=-3.故选C.2.已知等差数列{a n }的公差为-2,前n 项和为S n ,a 3,a 4,a 5为某三角形的三边长,且该三角形有一个内角为120°,若S n ≤S m 对任意的n ∈N *恒成立,则实数m =( )A .7B .6C .5D .4【答案】B 【解析】∵等差数列{a n }的公差为-2,a 3,a 4,a 5为某三角形的三边长,且该三角形有一个内角为120°,∴a 23=a 24+a 25-2a 4·a 5cos 120°, 即(a 4+2)2=a 24+(a 4-2)2+2a 4(a 4-2)×12, 化为a 24-5a 4=0,又a 4≠0,解得a 4=5,∴a 3=7,a 5=3,a 6=1,a 7=-1.∵S n ≤S m 对任意的n ∈N *恒成立,∴实数m =6.故选B.3.已知数列{a n },{b n }都是公差为1的等差数列,其首项分别为a 1,b 1,且a 1+b 1=5,a 1,b 1∈N *.设c n =abn ,则数列{c n }的前100项和等于( )A .4950B .5250C .5350D .10300【答案】C【解析】由题意可知,c n =abn =a 1+(b n -1)×1=a 1+[b 1+(n -1)×1-1]×1=a 1+b 1+n -1-1=n +3,所以数列{c n }是以4为首项,1为公差的等差数列,其前100项和为S 100=12×100×(4+100+3)=5350.故选C. 4.(多选)设d ,S n 分别为等差数列{a n }的公差与前n 项和,若S 10=S 20,则下列论断中正确的有( )A .当n =15时,S n 取最大值B .当n =30时,S n =0C .当d >0时,a 10+a 22>0D .当d <0时,|a 10|>|a 22| 【答案】BC【解析】因为S 10=S 20,所以10a 1+10×92d =20a 1+20×192d ,解得a 1=-292d .因为无法确定a 1和d 的正负性,所以无法确定S n 是否有最大值,故A 错误.S 30=30a 1+30×292d =30×⎝⎛⎭⎫-292d +15×29d =0,故B 正确.a 10+a 22=2a 16=2(a 1+15d )=2⎝⎛⎭⎫-292d +15d =d >0,故C 正确.a 10=a 1+9d =-292d +182d =-112d ,a 22=a 1+21d =-292d +422d =132d ,因为d <0,所以|a 10|=-112d ,|a 22|=-132d ,|a 10|<|a 22|,故D 错误. 5.已知等差数列{a n }的公差d <0,前n 项和为S n ,若S 5=10a 6,则当S n 最大时,n =( )A .8B .9C .7或8D .8或9 【答案】D【解析】解法一:由S 5=10a 6,可得5×(a 1+a 1+4d )2=10(a 1+5d ),解得a 1=-8d ,所以S n =na 1+12n (n -1)d =d 2⎣⎡⎦⎤⎝⎛⎭⎫n -1722-2894.因为d <0,所以当n =8或9时,S n 最大.故选D. 解法二:因为S 5=5×(a 1+a 5)2=5×2a 32=5a 3,所以5a 3=10a 6,所以5(a 1+2d )=10(a 1+5d ),化简可得a 1+8d =0,即a 9=0.因为d <0,所以当n =8或9时,S n 最大.故选D.6.(多选)设{a n }是无穷数列,A n =a n +a n +1(n =1,2,…),则下面给出的四个判断中,正确的有( )A .若{a n }是等差数列,则{A n }是等差数列B .若{A n }是等差数列,则{a n }是等差数列C .若{a n }是等比数列,则{A n }是等比数列D .若{A n }是等差数列,则{a 2n }是等差数列【答案】AD【解析】若{a n }是等差数列,设公差为d ,则A n =a n +a n +1=a 1+(n -1)d +a 1+nd =2a 1+2nd -d ,则A n -A n -1=(2a 1+2nd -d )-[2a 1+2(n -1)d -d ]=2d ,所以{A n }是等差数列,故A 正确;若{A n }是等差数列,设公差为d ,A n -A n -1=a n +a n +1-(a n -1+a n )=a n +1-a n -1=d ,即数列{a n }的偶数项成等差数列,奇数项成等差数列,故B 不正确,D 正确;若{a n }是等比数列,设公比为q ,当q ≠-1时,则A n A n -1=a n +a n +1a n -1+a n =a n -1q +a n q a n -1+a n=q ,当q =-1时,则A n =a n +a n +1=0,故{A n }不是等比数列,故C 不正确.故选A 、D.7.已知数列{a n }的前n 项和为S n ,a n ≠0,a 1=1,且2a n a n +1=4S n -3(n ∈N *).(1)求a 2的值并证明:a n +2-a n =2;(2)求数列{a n }的通项公式.解 (1)令n =1得2a 1a 2=4S 1-3,又a 1=1,∴a 2=12. 2a n a n +1=4S n -3,①2a n +1a n +2=4S n +1-3.②②-①得,2a n +1(a n +2-a n )=4a n +1.∵a n ≠0,∴a n +2-a n =2.(2)由(1)可知:数列a 1,a 3,a 5,…,a 2k -1,…为等差数列,公差为2,首项为1, ∴a 2k -1=1+2(k -1)=2k -1,则当n 为奇数时,a n =n .数列a 2,a 4,a 6,…,a 2k ,…为等差数列,公差为2,首项为12, ∴a 2k =12+2(k -1)=2k -32, 则当n 为偶数时,a n =n -32. 综上所述,a n =⎩⎪⎨⎪⎧n ,n 为奇数,n -32,n 为偶数. 8.已知等差数列的前三项依次为a,4,3a ,前n 项和为S n ,且S k =110.(1)求a 及k 的值;(2)设数列{b n }的通项公式b n =S n n,证明:数列{b n }是等差数列,并求其前n 项和T n . 解:(1)设该等差数列为{a n },则a 1=a ,a 2=4,a 3=3a , 由已知有a +3a =8,得a 1=a =2,公差d =4-2=2,所以S k =ka 1+k (k -1)2·d =2k +k (k -1)2×2=k 2+k , 由S k =110,得k 2+k -110=0,解得k =10或k =-11(舍去),故a =2,k =10.(2)证明:由(1)得S n =n (2+2n )2=n (n +1), 则b n =S n n=n +1, 故b n +1-b n =(n +2)-(n +1)=1,又b 1=1+1=2,所以数列{b n }是首项为2,公差为1的等差数列,所以T n =n (2+n +1)2=n (n +3)2. 9.已知数列{a n }满足,a n +1+a n =4n -3(n ∈N *).(1)若数列{a n }是等差数列,求a 1的值;(2)当a 1=2时,求数列{a n }的前n 项和S n .解 (1)解法一:∵数列{a n }是等差数列,∴a n =a 1+(n -1)d ,a n +1=a 1+nd .由a n +1+a n =4n -3,得a 1+nd +a 1+(n -1)d =4n -3,∴2dn +(2a 1-d )=4n -3,即2d =4,2a 1-d =-3,解得d =2,a 1=-12.解法二:在等差数列{a n }中,由a n +1+a n =4n -3,得a n +2+a n +1=4(n +1)-3=4n +1, ∴2d =a n +2-a n =4n +1-(4n -3)=4,∴d =2.又a 1+a 2=2a 1+d =2a 1+2=1,∴a 1=-12. (2)由题意知,①当n 为奇数时,S n =a 1+a 2+a 3+…+a n=a 1+(a 2+a 3)+(a 4+a 5)+…+(a n -1+a n )=2+4[2+4+…+(n -1)]-3×n -12=2n 2-3n +52. ②当n 为偶数时,S n =a 1+a 2+a 3+…+a n=(a 1+a 2)+(a 3+a 4)+…+(a n -1+a n )=1+9+…+(4n -7)=2n 2-3n 2. 综上,S n =⎩⎨⎧2n 2-3n +52,n 为奇数,2n 2-3n 2,n 为偶数.10.等差数列{a n }中,公差d <0,a 2+a 6=-8,a 3a 5=7.(1)求{a n }的通项公式;(2)记T n 为数列{b n }前n 项的和,其中b n =|a n |,n ∈N *,若T n ≥1 464,求n 的最小值. 解:(1)∵等差数列{a n }中,公差d <0,a 2+a 6=-8, ∴a 2+a 6=a 3+a 5=-8,又∵a 3a 5=7,∴a 3,a 5是一元二次方程x 2+8x +7=0的两个根,且a 3>a 5, 解方程x 2+8x +7=0,得a 3=-1,a 5=-7, ∴⎩⎪⎨⎪⎧a 1+2d =-1,a 1+4d =-7,解得a 1=5,d =-3. ∴a n =5+(n -1)×(-3)=-3n +8.(2)由(1)知{a n }的前n 项和S n =5n +n (n -1)2×(-3)=-32n 2+132n . ∵b n =|a n |,∴b 1=5,b 2=2,b 3=|-1|=1,b 4=|-4|=4, 当n ≥3时,b n =|a n |=3n -8.当n <3时,T 1=5,T 2=7;当n ≥3时,T n =-S n +2S 2=3n 22-13n 2+14. ∵T n ≥1 464,∴T n =3n 22-13n 2+14≥1 464, 即(3n -100)(n +29)≥0,解得n ≥1003, ∴n 的最小值为34.。
2021版新高考数学:等差数列及其前n项和含答案
(对应学生用书第103页)考点1等差数列基本量的运算解决等差数列运算问题的思想方法(1)方程思想:等差数列的基本量为首项a1和公差d,通常利用已知条件及通项公式或前n项和公式列方程(组)求解,等差数列中包含a1,d,n,a n,S n五个量,可“知三求二”.(2)整体思想:当所给条件只有一个时,可将已知和所求都用a1,d表示,寻求两者间的联系,整体代换即可求解.(3)利用性质:运用等差数列性质可以化繁为简、优化解题过程.又零七,借问长儿多少岁,各儿岁数要详推.在这个问题中,记这位公公的第n 个儿子的年龄为a n ,则a 1=( )A .23B .32C .35D .38C [由题意可知年龄构成的数列为等差数列,其公差为-3,则9a 1+9×82×(-3)=207,解得a 1=35,故选C.]确定等差数列的关键是求出两个最基本的量,即首项a 1和公差d .考点2 等差数列的判定与证明等差数列的4个判定方法(1)定义法:证明对任意正整数n 都有a n +1-a n 等于同一个常数. (2)等差中项法:证明对任意正整数n 都有2a n +1=a n +a n +2.2.已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n-1,其中λ为常数.(1)证明:a n+2-a n=λ;(2)是否存在λ,使得{a n}为等差数列?并说明理由.[解](1)证明:由题设知a n a n+1=λS n-1,a n+1a n+2=λS n+1-1,两式相减得a n+1(a n+2-a n)=λa n+1,由于a n+1≠0,所以a n+2-a n=λ.(2)由题设知a1=1,a1a2=λS1-1,可得a2=λ-1.由(1)知,a3=λ+1.令2a2=a1+a3,解得λ=4.故a n+2-a n=4,由此可得{a2n-1}是首项为1,公差为4的等差数列,a2n-1=4n-3;{a2n}是首项为3,公差为4的等差数列,a2n=4n-1.所以a n=2n-1,a n+1-a n=2,因此存在λ=4,使得数列{a n}为等差数列.考点3等差数列的性质及应用B [数列{a n }为等差数列,则a m -1+a m +1=2a m ,则a m -1+a m +1-a 2m -1=0可化为2a m -a 2m -1=0,解得a m =1.又S 2m -1=(2m -1)a m =39,则m =20.故选B.]2.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意的n ∈N *,都有Sn Tn =2n -34n -3,则a2b3+b13+a14b5+b11的值为( ) A .2945 B .1329 C .919 D .1930C [由题意可知b 3+b 13=b 5+b 11=b 1+b 15=2b 8,∴a2b3+b13+a14b5+b11=a2+a142b8=a8b8=S15T15=2×15-34×15-3=2757=919.故选C.] 考点4 等差数列前n 项和的最值问题求等差数列前n 项和S n 最值的2种方法(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解.(2)邻项变号法:①当a 1>0,d <0时,满足⎩⎨⎧am≥0,am +1≤0的项数m 使得S n 取得最大值为S m ; ②当a 1<0,d >0时,满足⎩⎨⎧am≤0,am +1≥0的项数m 使得S n 取得最小值为S m .。
(完整版)等差数列的前n项和练习含答案
课时作业8 等差数列的前n 项和时间:45分钟 满分:100分课堂训练1.已知{a n }为等差数列,a 1=35,d =-2,S n =0,则n 等于( ) A .33 B .34 C .35 D .36【答案】 D【解析】 本题考查等差数列的前n 项和公式.由S n =na 1+n (n -1)2d =35n +n (n -1)2×(-2)=0,可以求出n =36.2.等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则数列前13项的和是( )A .13B .26C .52D .156 【答案】 B【解析】 3(a 3+a 5)+2(a 7+a 10+a 13)=24⇒6a 4+6a 10=24⇒a 4+a 10=4⇒S 13=13(a 1+a 13)2=13(a 4+a 10)2=13×42=26. 3.等差数列的前n 项和为S n ,S 10=20,S 20=50.则S 30=________. 【答案】 90【解析】 等差数列的片断数列和依次成等差数列. ∴S 10,S 20-S 10,S 30-S 20也成等差数列. ∴2(S 20-S 10)=(S 30-S 20)+S 10,解得S 30=90.4.等差数列{a n }的前n 项和为S n ,若S 12=84,S 20=460,求S 28. 【分析】 (1)应用基本量法列出关于a 1和d 的方程组,解出a 1和d ,进而求得S 28;(2)因为数列不是常数列,因此S n 是关于n 的一元二次函数且常数项为零.设S n =an 2+bn ,代入条件S 12=84,S 20=460,可得a 、b ,则可求S 28;(3)由S n =d 2n 2+n (a 1-d 2)得S n n =d 2n +(a 1-d2),故⎩⎨⎧⎭⎬⎫S n n 是一个等差数列,又2×20=12+28,∴2×S 2020=S 1212+S 2828,可求得S 28.【解析】 方法一:设{a n }的公差为d , 则S n =na 1+n (n -1)2d .由已知条件得:⎩⎨⎧12a 1+12×112d =84,20a 1+20×192d =460,整理得⎩⎨⎧2a 1+11d =14,2a 1+19d =46,解得⎩⎨⎧a 1=-15,d =4.所以S n =-15n +n (n -1)2×4=2n 2-17n , 所以S 28=2×282-17×28=1 092.方法二:设数列的前n 项和为S n ,则S n =an 2+bn . 因为S 12=84,S 20=460,所以⎩⎨⎧122a +12b =84,202a +20b =460,整理得⎩⎨⎧12a +b =7,20a +b =23.解之得a =2,b =-17, 所以S n =2n 2-17n ,S 28=1 092. 方法三:∵{a n }为等差数列, 所以S n =na 1+n (n -1)2d ,所以S n n =a 1-d 2+d2n ,所以⎩⎨⎧⎭⎬⎫S n n 是等差数列.因为12,20,28成等差数列, 所以S 1212,S 2020,S 2828成等差数列, 所以2×S 2020=S 1212+S 2828,解得S 28=1 092.【规律方法】 基本量法求出a 1和d 是解决此类问题的基本方法,应熟练掌握.根据等差数列的性质探寻其他解法,可以开阔思路,有时可以简化计算.课后作业一、选择题(每小题5分,共40分)1.已知等差数列{a n }中,a 2=7,a 4=15,则前10项的和S 10等于( )A .100B .210C .380D .400【答案】 B【解析】 d =a 4-a 24-2=15-72=4,则a 1=3,所以S 10=210.2.在等差数列{a n }中,a 2+a 5=19,S 5=40,则a 10=( ) A .27 B .24 C .29 D .48【答案】 C 【解析】由已知⎩⎨⎧2a 1+5d =19,5a 1+10d =40.解得⎩⎨⎧a 1=2,d =3.∴a 10=2+9×3=29.3.数列{a n }的前n 项和为S n =n 2+2n -1,则这个数列一定是( ) A .等差数列 B .非等差数列 C .常数列 D .等差数列或常数列 【答案】 B【解析】 当n ≥2时,a n =S n -S n -1=n 2+2n -1-[(n -1)2+2(n -1)-1]=2n +1,当n =1时a 1=S 1=2.∴a n =⎩⎨⎧2,n =1,2n +1,n ≥2,这不是等差数列.4.设等差数列{a n }的前n 项和为S n .若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( )C .8D .9【答案】 A 【解析】⎩⎨⎧a 1=-11,a 4+a 6=-6,∴⎩⎨⎧a 1=-11,d =2,∴S n =na 1+n (n -1)2d =-11n +n 2-n =n 2-12n . =(n -6)2-36. 即n =6时,S n 最小.5.一个只有有限项的等差数列,它的前5项的和为34,最后5项的和为146,所有项的和为234,则它的第7项等于( )A .22B .21C .19D .18【答案】 D【解析】 ∵a 1+a 2+a 3+a 4+a 5=34, a n +a n -1+a n -2+a n -3+a n -4=146, ∴5(a 1+a n )=180,a 1+a n =36, S n =n (a 1+a n )2=n ×362=234. ∴n =13,S 13=13a 7=234.∴a 7=18.6.一个有11项的等差数列,奇数项之和为30,则它的中间项为( )A .8B .7【答案】 D【解析】 S 奇=6a 1+6×52×2d =30,a 1+5d =5,S 偶=5a 2+5×42×2d =5(a 1+5d )=25,a 中=S 奇-S 偶=30-25=5.7.若两个等差数列{a n }和{b n }的前n 项和分别是S n ,T n ,已知S n T n=7n n +3,则a 5b 5等于( ) A .7 B.23 C.278 D.214【答案】 D【解析】 a 5b 5=2a 52b 5=a 1+a 9b 1+b 9=92(a 1+a 9)92(b 1+b 9)=S 9T 9=214.8.已知数列{a n }中,a 1=-60,a n +1=a n +3,则|a 1|+|a 2|+|a 3|+…+|a 30|等于( )A .445B .765C .1 080D .1 305 【答案】 B【解析】 a n +1-a n =3,∴{a n }为等差数列. ∴a n =-60+(n -1)×3,即a n =3n -63.∴a n =0时,n =21,a n >0时,n >21,a n <0时,n <21. S ′30=|a 1|+|a 2|+|a 3|+…+|a 30|=-a 1-a 2-a 3-…-a 21+a 22+a 23+…+a 30 =-2(a 1+a 2+…+a 21)+S 30 =-2S 21+S 30 =765.二、填空题(每小题10分,共20分)9.设等差数列{a n }的前n 项和为S n ,若a 6=S 3=12,则数列的通项公式a n =________.【答案】 2n【解析】 设等差数列{a n }的公差d ,则⎩⎨⎧a 1+5d =12a 1+d =4,∴⎩⎨⎧a 1=2d =2,∴a n =2n .10.等差数列共有2n +1项,所有奇数项之和为132,所有偶数项之和为120,则n 等于________.【答案】 10【解析】 ∵等差数列共有2n +1项,∴S 奇-S 偶=a n +1=S 2n +12n +1.即132-120=132+1202n +1,求得n =10.【规律方法】 利用了等差数列前n 项和的性质,比较简捷. 三、解答题(每小题20分,共40分.解答应写出必要的文字说明、证明过程或演算步骤)11.在等差数列{a n }中,(1)已知a 6=10,S 5=5,求a 8和S 8; (2)若a 1=1,a n =-512,S n =-1 022,求d .【分析】 在等差数列中,五个重要的量,只要已知三个量,就可求出其他两个量,其中a 1和d 是两个最基本量,利用通项公式和前n 项和公式,先求出a 1和d ,然后再求前n 项和或特别的项.【解析】 (1)∵a 6=10,S 5=5,∴⎩⎨⎧a 1+5d =10,5a 1+10d =5.解方程组,得a 1=-5,d =3, ∴a 8=a 6+2d =10+2×3=16, S 8=8(a 1+a 8)2=44. (2)由S n =n (a 1+a n )2=n (-512+1)2=-1 022, 解得n =4.又由a n =a 1+(n -1)d , 即-512=1+(4-1)d , 解得d =-171.【规律方法】 一般地,等差数列的五个基本量a 1,a n ,d ,n ,S n ,知道其中任意三个量可建立方程组,求出另外两个量,即“知三求二”.我们求解这类问题的通性通法,是先列方程组求出基本量a 1和d ,然后再用公式求出其他的量.12.已知等差数列{a n },且满足a n =40-4n ,求前多少项的和最大,最大值为多少?【解析】 方法一:(二次函数法)∵a n =40-4n ,∴a 1=40-4=36, ∴S n =(a 1+a n )n 2=36+40-4n2·n =-2n 2+38n =-2[n 2-19n +(192)2]+1922=-2(n -192)2+1922.令n -192=0,则n =192=9.5,且n ∈N +, ∴当n =9或n =10时,S n 最大,∴S n 的最大值为S 9=S 10=-2(10-192)2+1922=180. 方法二:(图象法)∵a n =40-4n ,∴a 1=40-4=36, a 2=40-4×2=32,∴d =32-36=-4,S n =na 1+n (n -1)2d =36n +n (n -1)2·(-4)=-2n 2+38n , 点(n ,S n )在二次函数y =-2x 2+38x 的图象上,S n 有最大值,其对称轴为x =-382×(-2)=192=9.5,∴当n =10或9时,S n 最大.∴S n 的最大值为S 9=S 10=-2×102+38×10=180. 方法三:(通项法)∵a n =40-4n ,∴a 1=40-4=36,a 2=40-4×2=32,∴d =32-36=-4<0,数列{a n }为递减数列.令⎩⎨⎧a n ≥0,a n +1≤0,有⎩⎨⎧40-4n ≥0,40-4(n +1)≤0,∴⎩⎨⎧n ≤10,n ≥9,即9≤n ≤10.当n =9或n =10时,S n 最大.∴S n 的最大值为S 9=S 10=a 1+a 102×10=36+02×10=180. 【规律方法】 对于方法一,一定要强调n ∈N +,也就是说用函数式求最值,不能忽略定义域,另外,三种方法中都得出n =9或n =10,需注意a m =0时,S m -1=S m 同为S n 的最值.。
等差数列的前n项和(作业带答案)
等差数列的前n 项和一、选择题(5*6=30)1.已知等差数列{a n }满足a 2+a 4=4,a 3+a 5=10,则它的前10项的和S 10=( )A .138B .135C .95D .232.已知S n 是等差数列{a n }的前n 项和,若a 1+a 12=a 7+6,则S 11=( )A .99B .33C .198D .663.在小于100的自然数中,所有被7除余2的数之和为( )A .765B .665C .763D .6634.现有200根相同的钢管,把它们堆成三角形垛,要使剩余的钢管尽可能少,那么剩余钢管的根数为( )A .9B .10C .19D .295.《张丘建算经》卷上第22题为“今有女善织,日益功疾,初日织五尺,今一月日织九匹三丈.”其意思为:现有一善于织布的女子,从第2天开始,每天比前一天多织相同量的布,第1天织了5尺布,现在一月(按30天计算)共织390尺布.记该女子一月中的第n 天所织布的尺数为a n ,则a 14+a 15+a 16+a 17的值为( )A .55B .52C .39D .266.(多选题)设等差数列{a n }的前n 项和为S n 且满足S 2 019>0,S 2 020<0,对任意正整数n ,都有|a n |≥|a k |,则下列判断正确的是( )A .a 1 010>0B .a 1 011>0C .|a 1 010|>|a 1 011|D .k 的值为1 010二、填空题(2*5=10)7.已知在数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于________.8.若数列{}a n 的前n 项和为S n =n 2-3n +1()n ∈N *,则该数列的通项公式为a n =________.三、解答题(20*3=60)9.已知等差数列{a n }中,a 10=30,a 20=50.(1)求数列的通项公式;(2)若S n =242,求n .10.已知数列{}a n 的前n 项和为S n ,且满足a 1=12,a n =-2S n S n -1(n ≥2).(1)求证:数列⎩⎨⎧⎭⎬⎫1S n 是等差数列; (2)求S n 和a n .11.已知数列{a n }的前n 项和为S n ,数列{a n }为等差数列,a 1=12,d =-2.(1)求S n ,并画出{S n }(1≤n ≤13)的图象;(2)分别求{S n }单调递增、单调递减的n 的取值范围,并求{S n }的最大(或最小)的项;(3){S n }有多少项大于零?等差数列的前n 项和(答案)一、选择题1.已知等差数列{a n }满足a 2+a 4=4,a 3+a 5=10,则它的前10项的和S 10=( )A .138B .135C .95D .23C [∵⎩⎪⎨⎪⎧ a 2+a 4=4,a 3+a 5=10,∴⎩⎪⎨⎪⎧ a 1+2d =2,a 1+3d =5,∴⎩⎪⎨⎪⎧a 1=-4,d =3,∴S 10=10a 1+10×92×d =-40+135=95.]2.已知S n 是等差数列{a n }的前n 项和,若a 1+a 12=a 7+6,则S 11=( )A .99B .33C .198D .66D [因为a 1+a 12=a 7+6,所以a 6=6,则S 11=11(a 1+a 11)2=11a 6=11×6=66,故选D .] 3.在小于100的自然数中,所有被7除余2的数之和为( )A .765B .665C .763D .663B [由题意得,所有被7除余2的数构成以2为首项,公差为7的等差数列,∴2+(n -1)×7<100,∴n <15,∴n =14,S 14=14×2+12×14×13×7=665.]4.现有200根相同的钢管,把它们堆成三角形垛,要使剩余的钢管尽可能少,那么剩余钢管的根数为( )A .9B .10C .19D .29B [钢管排列方式是从上到下各层钢管数组成了一个等差数列,最上面一层钢管数为1,逐层增加1个.∴钢管总数为:1+2+3+…+n =n (n +1)2.当n =19时,S 19=190.当n =20时,S 20=210>200.∴n =19时,剩余钢管根数最少, 为10根.]5.《张丘建算经》卷上第22题为“今有女善织,日益功疾,初日织五尺,今一月日织九匹三丈.”其意思为:现有一善于织布的女子,从第2天开始,每天比前一天多织相同量的布,第1天织了5尺布,现在一月(按30天计算)共织390尺布.记该女子一月中的第n 天所织布的尺数为a n ,则a 14+a 15+a 16+a 17的值为( )A .55B .52C .39D .26B [由题意可得{a n }为等差数列,a 1=5,∴S 30=30×5+30×292d =390,解得d =1629,∴a 14+a 15+a 16+a 17=a 1+13d +a 1+14d +a 1+15d +a 1+16d =4a 1+58d =4×5+58×1629=52.]6.(多选题)设等差数列{a n }的前n 项和为S n 且满足S 2 019>0,S 2 020<0,对任意正整数n ,都有|a n |≥|a k |,则下列判断正确的是( )A .a 1 010>0B .a 1 011>0C .|a 1 010|>|a 1 011|D .k 的值为1 010AD [由等差数列{a n },可得S 2 019=2 019(a 1+a 2 019)2>0,S 2 020=2 020(a 1+a 2 020)2<0, 即:a 1+a 2 019>0,a 1+a 2 020<0,可得:2a 1 010>0,a 1 010+a 1 011<0,∴a 1 010>0,a 1 011<0,∴A 正确B 错误.又等差数列{a n }为递减数列, 且a 1 010+a 1 011<0,∴|a 1 010|<|a 1 011|,∴C 错误.而对任意正整数n ,都有|a n |≥|a k |,则k 的值为1 010.故D 正确.故选AD .]二、填空题7.已知在数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于________.27 [由a 1=1,a n =a n -1+12(n ≥2),可知数列{a n }是首项为1,公差为12的等差数列,故S 9=9a 1+9×(9-1)2×12=9+18=27.] 8.若数列{}a n 的前n 项和为S n =n 2-3n +1()n ∈N *,则该数列的通项公式为a n =________.⎩⎪⎨⎪⎧ -1 ()n =12n -4()n ≥2 [由题意可知,当n =1时,a 1=S 1=12-3×1+1=-1; 当n ≥2时,a n =S n -S n -1=()n 2-3n +1-⎣⎡⎦⎤()n -12-3()n -1+1=2n -4. 又a 1=-1不满足a n =2n -4.因此,a n =⎩⎪⎨⎪⎧ -1()n =1,2n -4()n ≥2.] 三、解答题9.已知等差数列{a n }中,a 10=30,a 20=50.(1)求数列的通项公式;(2)若S n =242,求n .[解] (1)设数列{a n }的首项为a 1,公差为d . 则⎩⎪⎨⎪⎧ a 10=a 1+9d =30,a 20=a 1+19d =50,解得⎩⎪⎨⎪⎧a 1=12,d =2,∴a n =a 1+(n -1)d =12+(n -1)×2=10+2n .(2)由S n =na 1+n (n -1)2d 以及a 1=12,d =2,S n =242,得方程242=12n +n (n -1)2×2,即n 2+11n -242=0,解得n =11或n =-22(舍去).故n =11.10.已知数列{}a n 的前n 项和为S n ,且满足a 1=12,a n =-2S n S n -1(n ≥2).(1)求证:数列⎩⎨⎧⎭⎬⎫1S n 是等差数列; (2)求S n 和a n .[解] (1)证明:当n ≥2时,a n =S n -S n -1=-2S n S n -1,①∵S 1=a 1≠0,由递推关系知S n ≠0(n ∈N *),由①式得1S n -1S n -1=2(n ≥2). ∴⎩⎨⎧⎭⎬⎫1S n 是等差数列,其中首项为1S 1=1a 1=2,公差为2. (2)由(1)知,1S n=2+2(n -1)=2n ,∴S n =12n . 当n ≥2时,a n =S n -S n -1=-12n (n -1), 当n =1时,a 1=S 1=12不适合上式.所以,a n =⎩⎪⎨⎪⎧ 12,n =1,-12n (n -1),n ≥2.11.已知数列{a n }的前n 项和为S n ,数列{a n }为等差数列,a 1=12,d =-2.(1)求S n ,并画出{S n }(1≤n ≤13)的图象;(2)分别求{S n }单调递增、单调递减的n 的取值范围,并求{S n }的最大(或最小)的项;(3){S n }有多少项大于零?[解] (1)S n =na 1+n (n -1)2d =12n +n (n -1)2×(-2)=-n 2+13n .图象如图.(2)S n =-n 2+13n =-⎝ ⎛⎭⎪⎫n -1322+1694,n ∈N *, ∴当n =6或7时,S n 最大;当1≤n ≤6时,{S n }单调递增;当n ≥7时,{S n }单调递减.{S n }有最大值,最大项是S 6,S 7,S 6=S 7=42.(3)由图象得{S n }中有12项大于零.。
高一等差数列及其前n项和知识点+例题+练习 含答案
1.等差数列的定义 一般地,如果一个数列从第二项起,每一项减去它的前一项所得的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母__d __表示.2.等差数列的通项公式如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式是a n =a 1+(n -1)d .3.等差中项如果A =a +b 2,那么A 叫做a 与b 的等差中项. 4.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n .(3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d .(4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.5.等差数列的前n 项和公式设等差数列{a n }的公差为d ,其前n 项和S n =n (a 1+a n )2或S n =na 1+n (n -1)2d . 6.等差数列的前n 项和公式与函数的关系S n =d 2n 2+⎝⎛⎭⎫a 1-d 2n . 数列{a n }是等差数列⇔S n =An 2+Bn (A 、B 为常数).7.等差数列的前n 项和的最值在等差数列{a n }中,a 1>0,d <0,则S n 存在最__大__值;若a 1<0,d >0,则S n 存在最__小__值.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( × )(2)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( √ )(3)等差数列{a n }的单调性是由公差d 决定的.( √ )(4)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( × )(5)数列{a n }满足a n +1-a n =n ,则数列{a n }是等差数列.( × )(6)已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列.( √ )1.设等差数列{a n }的前n 项和为S n .若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n =________________________________________________________________________. 答案 6解析 设等差数列{a n }的公差为d ,∵a 1+a 9=a 4+a 6=-6,且a 1=-11,∴a 9=5,从而d =2.∴S n =-11n +n (n -1)=n 2-12n ,∴当n =6时,S n 取最小值.2.一个首项为23,公差为整数的等差数列,如果前6项均为正数,从第7项起为负数,则它的公差为________.答案 -4解析 a n =23+(n -1)d ,由题意知⎩⎪⎨⎪⎧ a 6>0,a 7<0, 即⎩⎪⎨⎪⎧23+5d >0,23+6d <0,解得-235<d <-236, 又d 为整数,所以d =-4.3.在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11=________.答案 88解析 S 11=11(a 1+a 11)2=11(a 4+a 8)2=88.4.设数列{a n }是等差数列,若a 3+a 4+a 5=12,则a 1+a 2+…+a 7=________.答案 28解析 ∵a 3+a 4+a 5=3a 4=12,∴a 4=4,∴a 1+a 2+…+a 7=7a 4=28.5.(2014·北京)若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大.答案 8解析 因为数列{a n }是等差数列,且a 7+a 8+a 9=3a 8>0,所以a 8>0.又a 7+a 10=a 8+a 9<0,所以a 9<0.故当n =8时,其前n 项和最大.题型一 等差数列基本量的运算例1 (1)在数列{a n }中,若a 1=-2,且对任意的n ∈N *有2a n +1=1+2a n ,则数列{a n }前10项的和为________.(2)已知在等差数列{a n }中,a 2=7,a 4=15,则前10项和S 10=________.答案 (1)52 (2)210 解析 (1)由2a n +1=1+2a n 得a n +1-a n =12, 所以数列{a n }是首项为-2,公差为12的等差数列, 所以S 10=10×(-2)+10×(10-1)2×12=52. (2)因为a 2=7,a 4=15,所以d =4,a 1=3,故S 10=10×3+12×10×9×4=210. 思维升华 (1)等差数列运算问题的一般求法是设出首项a 1和公差d ,然后由通项公式或前n 项和公式转化为方程(组)求解.(2)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了方程的思想.(1)(2015·课标全国Ⅱ改编)设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=________________________________________________________________________.(2)已知等差数列{a n }的前n 项和为S n ,且满足S 33-S 22=1,则数列{a n }的公差是________. 答案 (1)5 (2)2解析 (1)∵{a n }为等差数列,∴a 1+a 5=2a 3,∴a 1+a 3+a 5=3a 3=3,得a 3=1,∴S 5=5(a 1+a 5)2=5a 3=5. (2)∵S n =n (a 1+a n )2,∴S n n =a 1+a n 2,又S 33-S 22=1, 得a 1+a 32-a 1+a 22=1,即a 3-a 2=2, ∴数列{a n }的公差为2.题型二 等差数列的判定与证明例2 已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *). (1)求证:数列{b n }是等差数列;(2)求数列{a n }中的最大项和最小项,并说明理由.(1)证明 因为a n =2-1a n -1(n ≥2,n ∈N *), b n =1a n -1(n ∈N *), 所以b n +1-b n =1a n +1-1-1a n -1=1(2-1a n)-1-1a n -1=a n a n -1-1a n -1=1. 又b 1=1a 1-1=-52. 所以数列{b n }是以-52为首项,1为公差的等差数列. (2)解 由(1)知b n =n -72, 则a n =1+1b n =1+22n -7.设f (x )=1+22x -7, 则f (x )在区间(-∞,72)和(72,+∞)上为减函数. 所以当n =3时,a n 取得最小值-1,当n =4时,a n 取得最大值3.引申探究例2中,若条件变为a 1=35,na n +1=(n +1)a n +n (n +1),探求数列{a n }的通项公式. 解 由已知可得a n +1n +1=a n n+1, 即a n +1n +1-a n n =1,又a 1=35, ∴⎩⎨⎧⎭⎬⎫a n n 是以a 11=35为首项,1为公差的等差数列, ∴a n n =35+(n -1)·1=n -25, ∴a n =n 2-25n . 思维升华 等差数列的四个判定方法(1)定义法:证明对任意正整数n 都有a n +1-a n 等于同一个常数.(2)等差中项法:证明对任意正整数n 都有2a n +1=a n +a n +2后,可递推得出a n +2-a n +1=a n +1-a n =a n -a n -1=a n -1-a n -2=…=a 2-a 1,根据定义得出数列{a n }为等差数列.(3)通项公式法:得出a n =pn +q 后,得a n +1-a n =p 对任意正整数n 恒成立,根据定义判定数列{a n }为等差数列.(4)前n 项和公式法:得出S n =An 2+Bn 后,根据S n ,a n 的关系,得出a n ,再使用定义法证明数列{a n }为等差数列.(1)若{a n }是公差为1的等差数列,则{a 2n -1+2a 2n }是________.①公差为3的等差数列 ②公差为4的等差数列③公差为6的等差数列 ④公差为9的等差数列(2)在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1a n +2(n ∈N *),则该数列的通项为______________. 答案 (1)③ (2)a n =1n解析 (1)∵a 2n -1+2a 2n -(a 2n -3+2a 2n -2)=(a 2n -1-a 2n -3)+2(a 2n -a 2n -2)=2+2×2=6,∴{a 2n -1+2a 2n }是公差为6的等差数列.(2)由已知式2a n +1=1a n +1a n +2可得 1a n +1-1a n =1a n +2-1a n +1,知{1a n }是首项为1a 1=1,公差为1a 2-1a 1=2-1=1的等差数列,所以1a n =n ,即a n =1n . 题型三 等差数列的性质及应用命题点1 等差数列的性质例3 (1)(2015·广东)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________.(2)已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________.答案 (1)10 (2)60解析 (1)因为{a n }是等差数列,所以a 3+a 7=a 4+a 6=a 2+a 8=2a 5,a 3+a 4+a 5+a 6+a 7=5a 5=25,即a 5=5,a 2+a 8=2a 5=10.(2)∵S 10,S 20-S 10,S 30-S 20成等差数列,且S 10=10,S 20=30,S 20-S 10=20,∴S 30-30=10+2×10=30,∴S 30=60.命题点2 等差数列前n 项和的最值例4 在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 取得最大值,并求出它的最大值.解 ∵a 1=20,S 10=S 15,∴10×20+10×92d =15×20+15×142d , ∴d =-53. 方法一 由a n =20+(n -1)×⎝⎛⎭⎫-53 =-53n +653. 得a 13=0.即当n ≤12时,a n >0,当n ≥14时,a n <0.∴当n =12或13时,S n 取得最大值,且最大值为S 12=S 13=12×20+12×112×⎝⎛⎭⎫-53 =130.方法二 S n =20n +n (n -1)2·⎝⎛⎭⎫-53 =-56n 2+1256n =-56⎝⎛⎭⎫n -2522+3 12524. ∵n ∈N *,∴当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130.方法三 由S 10=S 15得a 11+a 12+a 13+a 14+a 15=0.∴5a 13=0,即a 13=0.∴当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130. 引申探究例4中,若条件“a 1=20”改为a 1=-20,其他条件不变,求当n 取何值时,S n 取得最小值,并求出最小值.解 由S 10=S 15,得a 11+a 12+a 13+a 14+a 15=0,∴a 13=0.又a 1=-20,∴a 12<0,a 14>0,∴当n =12或13时,S n 取得最小值,最小值S 12=S 13=13(a 1+a 13)2=-130. 思维升华 (1)等差数列的性质:①项的性质:在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a n m -n=d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差.②和的性质:在等差数列{a n }中,S n 为其前n 项和,则a .S 2n =n (a 1+a 2n )=…=n (a n +a n +1);b .S 2n -1=(2n -1)a n .(2)求等差数列前n 项和S n 最值的两种方法:①函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解.②邻项变号法:a .当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a m ≥0,a m +1≤0的项数m 使得S n 取得最大值S m ; b .当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值S m . (1)等差数列{a n }的前n 项和为S n ,已知a 5+a 7=4,a 6+a 8=-2,则当S n 取最大值时,n 的值是________.(2)设数列{a n }是公差d <0的等差数列,S n 为前n 项和,若S 6=5a 1+10d ,则S n 取最大值时,n 的值为________.(3)已知等差数列{a n }的首项a 1=20,公差d =-2,则前n 项和S n 的最大值为________. 答案 (1)6 (2)5或6 (3)110解析 (1)依题意得2a 6=4,2a 7=-2,a 6=2>0,a 7=-1<0;又数列{a n }是等差数列,因此在该数列中,前6项均为正数,自第7项起以后各项均为负数,于是当S n 取最大值时,n =6.(2)由题意得S 6=6a 1+15d =5a 1+10d ,所以a 6=0,故当n =5或6时,S n 最大.(3)因为等差数列{a n }的首项a 1=20,公差d =-2,代入求和公式得,S n =na 1+n (n -1)2d =20n -n (n -1)2×2 =-n 2+21n =-⎝⎛⎭⎫n -2122+⎝⎛⎭⎫2122, 又因为n ∈N *,所以n =10或n =11时,S n 取得最大值,最大值为110.6.等差数列的前n 项和及其最值典例 (1)在等差数列{a n }中,2(a 1+a 3+a 5)+3(a 7+a 9)=54,则此数列前10项的和S 10=________.(2)在等差数列{a n }中,S 10=100,S 100=10,则S 110=________.(3)等差数列{a n }中,已知a 5>0,a 4+a 7<0,则{a n }的前n 项和S n 的最大值为________. 思维点拨 (1)求等差数列前n 项和,可以通过求解基本量a 1,d ,代入前n 项和公式计算,也可以利用等差数列的性质:a 1+a n =a 2+a n -1=…;(2)求等差数列前n 项和的最值,可以将S n 化为关于n 的二次函数,求二次函数的最值,也可以观察等差数列的符号变化趋势,找最后的非负项或非正项.解析 (1)由题意得a 3+a 8=9,所以S 10=10(a 1+a 10)2=10(a 3+a 8)2=10×92=45. (2)方法一 设数列{a n }的公差为d ,首项为a 1,则⎩⎨⎧ 10a 1+10×92d =100,100a 1+100×992d =10,解得⎩⎨⎧ a 1=1 099100,d =-1150.所以S 110=110a 1+110×1092d =-110. 方法二 因为S 100-S 10=(a 11+a 100)×902=-90, 所以a 11+a 100=-2,所以S 110=(a 1+a 110)×1102=(a 11+a 100)×1102=-110. (3)因为⎩⎪⎨⎪⎧ a 4+a 7=a 5+a 6<0,a 5>0,所以⎩⎪⎨⎪⎧a 5>0,a 6<0,所以S n 的最大值为S 5.答案 (1)45 (2)-110 (3)S 5温馨提醒 (1)利用函数思想求等差数列前n 项和S n 的最值时,要注意到n ∈N *;(2)利用等差数列的性质求S n ,突出了整体思想,减少了运算量.[方法与技巧]1.在解有关等差数列的基本量问题时,可通过列关于a 1,d 的方程组进行求解.2.证明等差数列要用定义;另外还可以用等差中项法,通项公式法,前n 项和公式法判定一个数列是否为等差数列.3.等差数列性质灵活使用,可以大大减少运算量.4.在遇到三个数成等差数列问题时,可设三个数为(1)a ,a +d ,a +2d ;(2)a -d ,a ,a +d ;(3)a -d ,a +d ,a +3d 等,可视具体情况而定.[失误与防范]1.当公差d ≠0时,等差数列的通项公式是n 的一次函数,当公差d =0时,a n 为常数.2.公差不为0的等差数列的前n 项和公式是n 的二次函数,且常数项为0.若某数列的前n 项和公式是常数项不为0的二次函数,则该数列不是等差数列,它从第二项起成等差数列.A 组 专项基础训练(时间:40分钟)1.(2015·课标全国Ⅰ改编)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=________________________________________________________________________. 答案 192解析 ∵公差为1,∴S 8=8a 1+8×(8-1)2×1=8a 1+28,S 4=4a 1+6. ∵S 8=4S 4,∴8a 1+28=4(4a 1+6),解得a 1=12, ∴a 10=a 1+9d =12+9=192. 2.(2015·北京改编)设{a n }是等差数列,下列结论中正确的是________.①若a 1+a 2>0,则a 2+a 3>0;②若a 1+a 3<0,则a 1+a 2<0;③若0<a 1<a 2,则a 2>a 1a 3;④若a 1<0,则(a 2-a 1)(a 2-a 3)>0.答案 ③解析 设等差数列{a n }的公差为d ,若a 1+a 2>0,a 2+a 3=a 1+d +a 2+d =(a 1+a 2)+2d ,由于d 正负不确定,因而a 2+a 3符号不确定,故①错;若a 1+a 3<0,a 1+a 2=a 1+a 3-d =(a 1+a 3)-d ,由于d 正负不确定,因而a 1+a 2符号不确定,故②错;若0<a 1<a 2,可知a 1>0,d >0,a 2>0,a 3>0,所以a 22-a 1a 3=(a 1+d )2-a 1(a 1+2d )=d 2>0,所以a 2>a 1a 3,故③正确;若a 1<0,则(a 2-a 1)·(a 2-a 3)=d ·(-d )=-d 2≤0,故④错.3.设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =________. 答案 5解析 ∵数列{a n }为等差数列,且前n 项和为S n ,∴数列⎩⎨⎧⎭⎬⎫S n n 也为等差数列. ∴S m -1m -1+S m +1m +1=2S m m ,即-2m -1+3m +1=0, 解得m =5,经检验为原方程的解.4.数列{a n }的首项为3,{b n }为等差数列,且b n =a n +1-a n (n ∈N *),若b 3=-2,b 10=12,则a 8=________.答案 3解析 设{b n }的公差为d ,∵b 10-b 3=7d =12-(-2)=14,∴d =2.∵b 3=-2,∴b 1=b 3-2d =-2-4=-6.∴b 1+b 2+…+b 7=7b 1+7×62d =7×(-6)+21×2=0.又b 1+b 2+…+b 7=(a 2-a 1)+(a 3-a 2)+…+(a 8-a 7)=a 8-a 1=a 8-3=0, ∴a 8=3.5.已知数列{a n }满足a n +1=a n -57,且a 1=5,设{a n }的前n 项和为S n ,则使得S n 取得最大值的序号n 的值为________.答案 7或8解析 由题意可知数列{a n }是首项为5,公差为-57的等差数列,所以a n =5-57(n -1)=40-5n 7,该数列前7项是正数项,第8项是0,从第9项开始是负数项,所以S n 取得最大值时,n =7或8.6.已知数列{a n }中,a 1=1且1a n +1=1a n +13(n ∈N *),则a 10=________. 答案 14解析 由已知得1a 10=1a 1+(10-1)×13=1+3=4, 故a 10=14. 7.已知递增的等差数列{a n }满足a 1=1,a 3=a 22-4,则a n =________. 答案 2n -1解析 设等差数列的公差为d ,∵a 3=a 22-4,∴1+2d =(1+d )2-4,解得d 2=4,即d =±2.由于该数列为递增数列,故d =2.∴a n =1+(n -1)×2=2n -1.8.设数列{a n }的通项公式为a n =2n -10(n ∈N *),则|a 1|+|a 2|+…+|a 15|=________. 答案 130解析 由a n =2n -10(n ∈N *)知{a n }是以-8为首项,2为公差的等差数列,又由a n =2n -10≥0得n ≥5,∴n ≤5时,a n ≤0,当n >5时,a n >0,∴|a 1|+|a 2|+…+|a 15|=-(a 1+a 2+a 3+a 4)+(a 5+a 6+…+a 15)=20+110=130.9.在等差数列{a n }中,a 1=1,a 3=-3.(1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-35,求k 的值.解 (1)设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d .由a 1=1,a 3=-3,可得1+2d =-3,解得d =-2.从而a n =1+(n -1)×(-2)=3-2n .(2)由(1)可知a n =3-2n ,所以S n =n [1+(3-2n )]2=2n -n 2.由S k =-35,可得2k -k 2=-35,即k 2-2k -35=0,解得k =7或k =-5.又k ∈N *,故k =7.10.(2015·济南模拟)等差数列{a n }中,设S n 为其前n 项和,且a 1>0,S 3=S 11,则当n 为多少时,S n 最大?解 方法一 由S 3=S 11得3a 1+3×22d =11a 1+11×102d ,则d =-213a 1. 从而S n =d 2n 2+⎝⎛⎭⎫a 1-d 2n =-a 113(n -7)2+4913a 1, 又a 1>0,所以-a 113<0.故当n =7时,S n 最大. 方法二 由于S n =an 2+bn 是关于n 的二次函数,由S 3=S 11,可知S n =an 2+bn 的图象关于n =3+112=7对称.由方法一可知a =-a 113<0,故当n =7时,S n 最大. 方法三 由方法一可知,d =-213a 1.要使S n 最大, 则有⎩⎪⎨⎪⎧ a n ≥0,a n +1≤0,即⎩⎨⎧ a 1+(n -1)⎝⎛⎭⎫-213a 1≥0,a 1+n ⎝⎛⎭⎫-213a 1≤0,解得6.5≤n ≤7.5,故当n =7时,S n 最大.方法四 由S 3=S 11,可得2a 1+13d =0,即(a 1+6d )+(a 1+7d )=0,故a 7+a 8=0,又由a 1>0,S 3=S 11可知d <0,所以a 7>0,a 8<0,所以当n =7时,S n 最大.B 组 专项能力提升(时间:20分钟)11.已知正项等差数列{a n }的前n 项和为S n ,若S 12=24,则a 6·a 7的最大值为________. 答案 4解析 在等差数列{a n }中,∵S 12=6(a 6+a 7)=24,∴a 6+a 7=4,令x >0,y >0,由基本不等式可得x ·y ≤⎝ ⎛⎭⎪⎫x +y 22,当且仅当x =y 时“=”成立.又a 6>0,a 7>0,∴a 6·a 7≤⎝ ⎛⎭⎪⎫a 6+a 722=4,当且仅当a 6=a 7=2时,“=”成立.即a 6·a 7的最大值为4.12.设等差数列{a n }的前n 项和为S n ,若a 1=-3,a k +1=32,S k=-12,则正整数k =________. 答案 13解析 S k +1=S k +a k +1=-12+32=-212, 又S k +1=(k +1)(a 1+a k +1)2=(k +1)⎝⎛⎭⎫-3+322=-212,解得k =13. 13.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意自然数n 都有S n T n =2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4的值为________. 答案1941 解析 ∵{a n },{b n }为等差数列,∴a 9b 5+b 7+a 3b 8+b 4=a 92b 6+a 32b 6=a 9+a 32b 6=a 6b 6. ∵S 11T 11=a 1+a 11b 1+b 11=2a 62b 6=2×11-34×11-3=1941, ∴a 6b 6=1941. 14.已知数列{a n }是首项为a ,公差为1的等差数列,b n =1+a n a n,若对任意的n ∈N *,都有b n ≥b 8成立,则实数a 的取值范围为________.答案 (-8,-7)解析 依题意得b n =1+1a n,对任意的n ∈N *,都有b n ≥b 8,即数列{b n }的最小项是第8项,于是有1a n ≥1a 8.又数列{a n }是公差为1的等差数列,因此有⎩⎪⎨⎪⎧ a 8<0,a 9>0,即⎩⎪⎨⎪⎧a +7<0,a +8>0,由此解得-8<a <-7,即实数a 的取值范围是(-8,-7).15.已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足a 3·a 4=117,a 2+a 5=22.(1)求通项a n ;(2)求S n 的最小值;(3)若数列{b n }是等差数列,且b n =S n n +c,求非零常数c . 解 (1)因为数列{a n }为等差数列,所以a 3+a 4=a 2+a 5=22.又a 3·a 4=117,所以a 3,a 4是方程x 2-22x +117=0的两实根, 又公差d >0,所以a 3<a 4,所以a 3=9,a 4=13,所以⎩⎪⎨⎪⎧ a 1+2d =9,a 1+3d =13,所以⎩⎪⎨⎪⎧ a 1=1,d =4.所以通项a n =4n -3.(2)由(1)知a 1=1,d =4,所以S n =na 1+n (n -1)2×d =2n 2-n =2⎝⎛⎭⎫n -142-18. 所以当n =1时,S n 最小,最小值为S 1=a 1=1.(3)由(2)知S n =2n 2-n ,所以b n =S n n +c =2n 2-n n +c, 所以b 1=11+c ,b 2=62+c ,b 3=153+c. 因为数列{b n }是等差数列,所以2b 2=b 1+b 3,即62+c ×2=11+c +153+c ,所以2c2+c=0,所以c=-1或c=0(舍去),2时,{b n}是等差数列,经验证c=-12故c=-12.。
等差数列及其前n项和(讲义及答案)
n n mn k k +m k +2m等差数列及其前 n 项和(讲义)知识点睛一、数列的概念与简单表示方法 1. 数列的概念按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项.数列的一般形式可以写成a 1 ,a 2 ,a 3 ,…,a n ,…,简记为{a n }. 2. 数列的表示方法(1) 列表法 (2) 图象法 (3) 公式法①通项公式 ②递推公式 3. 数列的性质(1) 递增数列 (2) 递减数列 (3) 常数列 (4) 摆动数列二、 等差数列 1. 等差数列的概念如果一个数列从第 2 项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母 d 表示.(1) 等差中项(2) 等差数列的通项公式: a n = a 1 + (n -1)d .2. 等差数列的性质(1) 通项公式的推广: a = a + (n - m )d (m ,n ∈ N *) . (2) 若{a }是等差数列,且k +l = m + n (k ,l ,m ,n ∈ N *) , 则a k +a l = a m + a n .(3) 若{a }是等差数列,则a , a , a ,… (k ,m ∈ N *) 组成公差为 md 的等差数列.(4) 若{a n }是等差数列,则{λa n + c }也是等差数列.1n n n(5) 若{a },{b }是等差数列,则{p a + qb } (n ∈ N * ) 也是等 nnnn差数列. 三、 等差数列的前 n 项和1. 我们称a 1 + a 2 + a 3 +… + a n 为数列{a n }的前 n 项和,用 S n 表示,即S n = a 1 + a 2 + a 3 +… + a n .等差数列{a n }的前 n 项和公式(1) 已知a , a ,n 时, S = n (a 1 + a n ) .1 n n2(2) 已知a 1 , n ,d 时, S n 推导过程:倒序相加法 2. 等差数列各项和的性质= na 1 + n (n -1) d .2(1) S m , S 2m , S 3m 分别是{a n } 的前 m 项,前 2m 项,前 3m 项的和,则S m , S 2m - S m , S 3m - S 2m 成等差数列.(2) 两个等差数列{a n },{b n }的前 n 项和 S n , T n 之间的关系 为 a n b n = S2n -1 . T 2n -1(3) 数列{a }的前 n 项和S = An 2 + Bn ( A ,B ∈ R ) 是{a }为等差数列的等价条件.(4) 等差数列{a n }前 n 项和的最值:当d > 0 时,{a n }为递增数列,且当a 1 < 0 时,前 n 项和S n 有最小值;当d < 0 时,{a n }为递减数列,且当a 1 > 0 时,前 n 项和S n 有最 大值.2n +1 n n n -1n +1 n n n -1精讲精练1. 下面六个结论中:①数列若用图象表示,从图象看是一系列孤立的点; ②数列的项数是无限的; ③数列的通项公式是唯一的; ④数列不一定有通项公式;⑤数列 1,2,3,…不一定是递增的;⑥数列看作函数,其定义域为正整数集或它的有限子集{1,2,…,n } .其中正确的是( )A .①②④⑥ C .①③④⑤B .①④⑤⑥ D .①②⑥2. 数列-1,7,-13,19,…的通项公式a n = ()A . 2n -1 C . (-1)n 6n - 5B . -6n + 5 D . (-1)n (6n - 5)3. 数列 1,3,6,10,15,…的递推公式是()A. a = a + n ,n ∈ N *B. a = a + n ,n ∈ N *,n ≥ 2C. a = a + n -1,n ∈ N * D. a = a + n -1,n ∈ N *4. 在等差数列{a n } 中, a 1 + a 5 = 10 , a 4 = 7 ,则数列{a n } 的公差是( )A .1B .2C .3D .435. 已知等差数列{a n } 满足a 1 + a 2 + a 3 +…+ a 101 = 0 ,则有()A . a 1 + a 101 > 0 C . a 3 + a 99 = 0B . a 2 + a 100 < 0 D . a 51 = 516.在等差数列{a n } 中,S n 是其前 n 项和,且a 4 = 9 ,a 9 = -6 ,则 S n 取最大值时 n 的值为( ) A .6 或 7B .7 或 8C .5 或 6D .8 或 97.已知等差数列{a n } 的前 n 项和为 S n ,若 2a 6 = a 8 + 6 ,则 S 7 = ( )A .49B .42C .35D .2448.已知一个等差数列共有 10 项,其偶数项之和是 15,奇数项之和是 12.5,则它的首项与公差分别是( ) A .0.5,0.5B .0.5,1C .0.5,2D .1,0.59.设等差数列{a n } 的前 n 项和为 S n ,若 S 3 = 12 , S 6 = 42 ,则 a 10 + a 11 + a 12 =( )A .156B .102C .66D .4810. 设数列{a n } ,{b n } 都是等差数列,若a 1 + b 1 = 7 , a 3 + b 3 = 21,则a 5 + b 5 = .5n n +1 11. 已知正项数列{a n }满足:a 1=1,a 2=2, 2a 2 = a 2 2n -1 (n ∈ N * ,n ≥ 2) ,则通项公式a n = .12. 两个等差数列{a n } 和{b n } 的前 n 项和分别是S n 和T n ,若 S n = 2n + 3 ,则 a 9 = .T n 3n -1 b 9回顾与思考6+ a【参考答案】1.B 2.D 3.B 4.B 5.C 6.A 7.B 8.A9.C 10.35 1112.37507。
等差数列及其前n项和课后作业参考答案
等差数列及其前n项和课后作业参考答案1.B[解析]设等差数列{a n}的公差为d,由题设可得3×(-2)+3×22·d=0,解得d=2,故选B.2.B[解析]根据等差数列的性质可得,等差数列第1,4,7项的和,第2,5,8项的和与第3,6,9项的和成等差数列,所以a3+a6+a9=2×33-39=27,故选B.3.C[解析]S12=(a1+a12)×122=6×(a4+a9)=60,故选C.4.9[解析]根据等差数列的性质可知a3+a4+a5+a6+a7=5a5=45,所以a5=9.5.7[解析]由(a5+a8)-(a3+a6)=39-11=4d=28,得d=7.6.B[解析]由a2+a4+a6=3得a4=1,则a1+a3+a5+a7=4a4=4,故选B.7.A[解析]设等差数列{a n}的公差为 d.可以令i=1,j=2,k=3,l=4,则a i a l-a j a k=a1a4-a2a3=a1(a1+3d)-(a1+d)(a1+2d)=-2d2≤0,S1S4-S2S3=a1(4a1+6d)-(2a1+d)(3a1+3d)=-2a12-3a1d-3d2=-2a1+34d2-158d2≤0,故只有A选项正确.8.B[解析]设等差数列{a n}的公差为d,由题意,得2a1+4d=−14,9a1+36d=−27,解得a1=−11,d=2,则a n=2n-13.令a n=2n-13≤0,a n+1=2(n+1)−13≥0,解得112≤n≤132.因为n∈N*,所以n=6,即当n=6时,S n取得最小值,故选B.9.A[解析]设最上面一节竹子的容积为a1,则依题意可知a1+a2+a3+a4=3,a7+a8+a9=4.根据等差数列的性质可知a1+a2+a3+a4=2(a2+a3)=3,a7+a8+a9=3a8=4,则有a2+a3=32,a8=43,所以a2+a3+a8=32+43=176,故选A.10.A[解析]设等差数列{b n}的公差为d,则由题设可得b n=a n+1-a n=b1+(n-1)d,则a2-a1=b1,a3-a2=b1+d,a4-a3=b1+2d,…,a31-a30=b1+29d,累加得a31-a1=30b1+(1+2+…+29)d=30b1+29×302d,即a31=15(2b1+29d),又b15+b16=2b1+29d=15,所以a31=15(2b1+29d)=15×15=225,故选A.11.-2017[解析]∵S n是等差数列a n的前n项和,是等差数列,设其公差为d.∵S2*******-S2*******=6,∴6d=6,d=1.∵a1=-2017,∴S11=-2017,∴S n n=-2017+(n-1)×1=-2018+n,∴S2017=(-2018+2017)×2017=-2017.12.201732016[解析]由题意可得,当n≥2时,a n+b n=a n-1+b n-1+2,a n-b n=13a n-1-13b n-1=13(a n-1-b n-1),所以数列{a n+b n}是以a1+b1=3为首项,2为公差的等差数列,数列{a n-b n}是以a1-b1=1为首项,13为公比的等比数列,所以(a1008+b1008)(a2017-b2017)=(3+2×1007)×=201732016.13.解:(1)设等差数列a n的公差为d,因为a1+a2=6,a2+a3=10,所以a3-a1=4,所以2d=4,d=2.又a1+a2=a1+a1+d=6,所以a1=2,所以a n=a1+(n-1)d=2n.(2)记b n=a n+a n+1,所以b n=2n+2(n+1)=4n+2,又b n+1-b n=4(n+1)+2-4n-2=4,所以数列b n是首项为6,公差为4的等差数列,其前n项和S n=n(b1+b n)2=n(6+4n+2)2=2n2+4n.14.解:(1)由题意知2S n=1+a n,即4S n=(1+a n)2.当n=1时,可得a1=1.当n≥2时,有4S n-1=(a n-1+1)2,又4S n=(a n+1)2,两式相减得(a n+a n-1)(a n-a n-1-2)=0,∵a n>0,∴a n-a n-1=2,则数列{a n}是以1为首项,2为公差的等差数列,即a n=2n-1.(2)2a n a n+1=2(2n-1)(2n+1)=12n-1-12n+1,∴T n=1-13+13-15+…+12n-1-12n+1=1-12n+1=2n2n+1.。
等差数列及其前n项和知识点讲解+例题讲解(含解析)
等差数列及其前n 项和一、知识梳理1.等差数列的概念(1)如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列.数学语言表达式:a n +1-a n =d (n ∈N *,d 为常数).(2)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A =a +b 2.2.等差数列的通项公式与前n 项和公式(1)若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n =a 1+(n -1)d .(2)前n 项和公式:S n =na 1+n (n -1)d 2=n (a 1+a n )2. 3.等差数列的性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n .(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(4)若S n 为等差数列{a n }的前n 项和,则数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.(5)若S n 为等差数列{a n }的前n 项和,则数列⎩⎨⎧⎭⎬⎫S n n 也为等差数列. 小结:1.已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列,且公差为p .2.在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值.3.等差数列{a n }的单调性:当d >0时,{a n }是递增数列;当d <0时,{a n }是递减数列;当d =0时,{a n }是常数列.4.数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数).二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”)(1)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( )(2)等差数列{a n }的单调性是由公差d 决定的.( )(3)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( )(4)等差数列的前n 项和公式是常数项为0的二次函数.( ) 解析 (3)若公差d =0,则通项公式不是n 的一次函数.(4)若公差d =0,则前n 项和不是二次函数.答案 (1)√ (2)√ (3)× (4)×2.设数列{a n }是等差数列,其前n 项和为S n ,若a 6=2且S 5=30,则S 8等于( )A.31B.32C.33D.34解析 由已知可得⎩⎨⎧a 1+5d =2,5a 1+10d =30, 解得⎩⎪⎨⎪⎧a 1=263,d =-43,∴S 8=8a 1+8×72d =32. 答案 B3.在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=450,则a 2+a 8=________. 解析 由等差数列的性质,得a 3+a 4+a 5+a 6+a 7=5a 5=450,∴a 5=90,∴a 2+a 8=2a 5=180.答案 1804.(2018·全国Ⅰ卷)记S n 为等差数列{a n }的前n 项和.若3S 3=S 2+S 4,a 1=2,则a 5=( )A.-12B.-10C.10D.12解析 设等差数列{a n }的公差为d ,则3(3a 1+3d )=2a 1+d +4a 1+6d ,即d =-32a 1.又a 1=2,∴d =-3,∴a 5=a 1+4d =2+4×(-3)=-10. 答案 B5.(2019·上海黄浦区模拟)已知等差数列{a n }中,a 2=1,前5项和S 5=-15,则数列{a n }的公差为( )A.-3B.-52C.-2D.-4 解析 设等差数列{a n }的首项为a 1,公差为d ,因为⎩⎨⎧a 2=1,S 5=-15,所以⎩⎪⎨⎪⎧a 1+d =1,5a 1+5×42d =-15, 解得d =-4.答案 D6.(2019·苏北四市联考)在等差数列{a n }中,已知a 3+a 8>0,且S 9<0,则S 1,S 2,…,S 9中最小的是______.解析 在等差数列{a n }中,∵a 3+a 8>0,S 9<0,∴a 5+a 6=a 3+a 8>0,S 9=9(a 1+a 9)2=9a 5<0, ∴a 5<0,a 6>0,∴S 1,S 2,…,S 9中最小的是S 5.答案 S 5考点一 等差数列基本量的运算【例1】 (1)(2017·全国Ⅰ卷)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A.1B.2C.4D.8 (2)(2019·潍坊检测)设等差数列{a n }的前n 项和为S n ,S 11=22,a 4=-12,若a m =30,则m =( )A.9B.10C.11D.15 解析 (1)法一 设等差数列{a n }的公差为d ,依题意得⎩⎪⎨⎪⎧(a 1+3d )+(a 1+4d )=24,6a 1+6×52d =48,所以d =4.法二 等差数列{a n }中,S 6=(a 1+a 6)×62=48,则a 1+a 6=16=a 2+a 5,又a 4+a 5=24,所以a 4-a 2=2d =24-16=8,则d =4.(2)设等差数列{a n }的公差为d ,依题意得⎩⎪⎨⎪⎧S 11=11a 1+11×(11-1)2d =22,a 4=a 1+3d =-12,解得⎩⎨⎧a1=-33,d =7,∴a m =a 1+(m -1)d =7m -40=30,∴m =10.答案 (1)C (2)B【训练1】 (1)等差数列log 3(2x ),log 3(3x ),log 3(4x +2),…的第四项等于()A.3B.4C.log 318D.log 324(2)设等差数列{a n }的前n 项和为S n ,S 3=6,S 4=12,则S 6=________. 解析 (1)∵log 3(2x ),log 3(3x ),log 3(4x +2)成等差数列, ∴log 3(2x )+log 3(4x +2)=2log 3(3x ),∴log 3[2x (4x +2)]=log 3(3x )2,则2x (4x +2)=9x 2,解之得x =4,x =0(舍去).∴等差数列的前三项为log 38,log 312,log 318,∴公差d =log 312-log 38=log 332,∴数列的第四项为log 318+log 332=log 327=3.(2)法一 设数列{a n }的首项为a 1,公差为d ,由S 3=6,S 4=12,可得⎩⎨⎧S 3=3a 1+3d =6,S 4=4a 1+6d =12,解得⎩⎨⎧a 1=0,d =2,所以S 6=6a 1+15d =30.法二 由{a n }为等差数列,故可设前n 项和S n =An 2+Bn , 由S 3=6,S 4=12可得⎩⎨⎧S 3=9A +3B =6,S 4=16A +4B =12,解得⎩⎨⎧A =1,B =-1,即S n =n 2-n ,则S 6=36-6=30. 答案 (1)A (2)30考点二 等差数列的判定与证明【例2】 (经典母题)若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 成等差数列; (2)求数列{a n }的通项公式.(1)证明 当n ≥2时,由a n +2S n S n -1=0,得S n -S n -1=-2S n S n -1,所以1S n -1S n -1=2, 又1S 1=1a 1=2, 故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列. (2)解 由(1)可得1S n=2n ,∴S n =12n . 当n ≥2时,a n =S n -S n -1=12n -12(n -1)=n -1-n 2n (n -1)=-12n (n -1). 当n =1时,a 1=12不适合上式.故a n =⎩⎪⎨⎪⎧12,n =1,-12n (n -1),n ≥2.【训练2】 (2017·全国Ⅰ卷)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6.(1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.解 (1)设{a n }的公比为q ,由题设可得⎩⎨⎧a 1(1+q )=2,a 1(1+q +q 2)=-6,解得⎩⎨⎧q =-2,a 1=-2.故{a n }的通项公式为a n =(-2)n .(2)由(1)可得S n =a 1(1-q n )1-q=-23+(-1)n 2n +13. 由于S n +2+S n +1=-43+(-1)n 2n +3-2n +23. =2⎣⎢⎡⎦⎥⎤-23+(-1)n ·2n +13=2S n , 故S n +1,S n ,S n +2成等差数列.考点三 等差数列的性质及应用角度1 等差数列项的性质【例3-1】 (2019·临沂一模)在等差数列{a n }中,a 1+3a 8+a 15=120,则a 2+a 14的值为( )A.6B.12C.24D.48 解析 ∵在等差数列{a n }中,a 1+3a 8+a 15=120,由等差数列的性质,a 1+3a 8+a 15=5a 8=120,∴a 8=24,∴a 2+a 14=2a 8=48.答案 D角度2 等差数列和的性质【例3-2】 设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( )A.63B.45C.36D.27 解析 由{a n }是等差数列,得S 3,S 6-S 3,S 9-S 6为等差数列, 即2(S 6-S 3)=S 3+(S 9-S 6),得到S 9-S 6=2S 6-3S 3=45,所以a 7+a 8+a 9=45.答案 B规律方法 1.项的性质:在等差数列{a n }中,若m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q .2.和的性质:在等差数列{a n }中,S n 为其前n 项和,则(1)S 2n =n (a 1+a 2n )=…=n (a n +a n +1);(2)S 2n -1=(2n -1)a n .【训练3】 (1)已知S n 是等差数列{a n }的前n 项和,若a 1=-2 015,S 2 0152 015-S 2 0092 009=6,则S 2 019=________.(2)(2019·荆州一模)在等差数列{a n }中,若a 3+a 4+a 5=3,a 8=8,则a 12的值是( )A.15B.30C.31D.64(3)等差数列{a n }与{b n }的前n 项和分别为S n 和T n ,若S n T n =3n -22n +1,则a 7b 7等于( ) A.3727B.1914C.3929D.43 解析 (1)由等差数列的性质可得⎩⎨⎧⎭⎬⎫S n n 也为等差数列. 设其公差为d ,则S 2 0152 015-S 2 0092 009=6d =6,∴d =1.故S 2 0192 019=S 11+2 018d =-2 015+2 018=3,∴S 2 019=3×2 019=6 057.(2)由a 3+a 4+a 5=3及等差数列的性质,∴3a 4=3,则a 4=1.又a 4+a 12=2a 8,得1+a 12=2×8.∴a 12=16-1=15.(3)a 7b 7=2a 72b 7=a 1+a 13b 1+b 13=a 1+a 132×13b 1+b 132×13=S 13T 13=3×13-22×13+1=3727. 答案 (1)6 057 (2)A (3)A考点四 等差数列的前n 项和及其最值【例4】 (2019·衡水中学质检)已知数列{a n }的前n 项和为S n ,a 1≠0,常数λ>0,且λa 1a n =S 1+S n 对一切正整数n 都成立.(1)求数列{a n }的通项公式;(2)设a 1>0,λ=100,当n 为何值时,数列⎩⎨⎧⎭⎬⎫lg 1a n 的前n 项和最大? 解 (1)令n =1,得λa 21=2S 1=2a 1,a 1(λa 1-2)=0,因为a 1≠0,所以a 1=2λ,当n ≥2时,2a n =2λ+S n ,2a n -1=2λ+S n -1,两式相减得2a n -2a n -1=a n (n ≥2).所以a n =2a n -1(n ≥2),从而数列{a n }为等比数列,a n =a 1·2n -1=2n λ.(2)当a 1>0,λ=100时,由(1)知,a n =2n 100,则b n =lg 1a n =lg 1002n =lg 100-lg 2n =2-n lg 2, 所以数列{b n }是单调递减的等差数列,公差为-lg 2,所以b 1>b 2>…>b 6=lg 10026=lg 10064>lg 1=0,当n ≥7时,b n ≤b 7=lg 10027<lg 1=0,所以数列⎩⎨⎧⎭⎬⎫lg 1a n 的前6项和最大. 规律方法 求等差数列前n 项和S n 的最值的常用方法:(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn (a ≠0),通过配方或借助图象求二次函数的最值.(2)利用等差数列的单调性,求出其正负转折项,进而求S n 的最值.①当a 1>0,d <0时,满足⎩⎨⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m (当a m +1=0时,S m +1也为最大值);②当a 1<0,d >0时,满足⎩⎨⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m (当a m +1=0时,S m +1也为最小值).【训练4】 (1)等差数列{a n }的公差d ≠0,且a 3,a 5,a 15成等比数列,若a 5=5,S n 为数列{a n }的前n项和,则数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和取最小值时的n 为( ) A.3B.3或4C.4或5D.5(2)已知等差数列{a n }的首项a 1=20,公差d =-2,则前n 项和S n 的最大值为________.解析 (1)由题意知⎩⎨⎧(a 1+2d )(a 1+14d )=25,a 1+4d =5,由d ≠0,解得a 1=-3,d =2,∴S n n =na 1+n (n -1)2d n =-3+n -1=n -4,则n -4≥0,得n ≥4,∴数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和取最小值时的n 为3或4. (2)因为等差数列{a n }的首项a 1=20,公差d =-2,S n =na 1+n (n -1)2d =20n -n (n -1)2×2 =-n 2+21n =-⎝ ⎛⎭⎪⎫n -2122+⎝ ⎛⎭⎪⎫2122, 又因为n ∈N *,所以n =10或n =11时,S n 取得最大值,最大值为110. 答案 (1)B (2)110三、课后练习1.(2019·济宁模拟)设数列{a n }满足a 1=1,a 2=2,且2na n =(n -1)a n -1+(n +1)a n +1(n ≥2且n ∈N *),则a 18=( )A.259B.269C.3D.289 解析 令b n =na n ,则2b n =b n -1+b n +1(n ≥2),所以{b n }为等差数列,因为b 1=1,b 2=4,所以公差d =3,则b n =3n -2,所以b 18=52,则18a 18=52,所以a 18=269.答案 B2.(2019·青岛诊断)已知等差数列{a n },{b n }的前n 项和分别为S n ,T n (n ∈N *),若S n T n =2n -1n +1,则a 12b 6=( )A.154B.158C.237D.3 解析 由题意不妨设S n =n (2n -1),T n =n (n +1), 所以a 12=S 12-S 11=12×23-11×21=45,b 6=T 6-T 5=6×(6+1)-5×(5+1)=42-30=12,所以a 12b 6=4512=154. 答案 A3.设数列{a n }的通项公式为a n =2n -10(n ∈N *),则|a 1|+|a 2|+…+|a 15|=________. 解析 由a n =2n -10(n ∈N *)知{a n }是以-8为首项,2为公差的等差数列,又由a n =2n -10≥0得n ≥5,∴n ≤5时,a n ≤0,当n >5时,a n >0, ∴|a 1|+|a 2|+…+|a 15|=-(a 1+a 2+a 3+a 4)+(a 5+a 6+…+a 15)=20+110=130. 答案 1304.(2019·长沙雅礼中学模拟)设S n 为等差数列{a n }的前n 项和,已知a 1+a 13=26,S 9=81.(1)求{a n }的通项公式;(2)令b n =1a n +1a n +2,T n =b 1+b 2+…+b n ,若30T n -m ≤0对一切n ∈N *成立,求实数m 的最小值.解 (1)∵等差数列{a n }中,a 1+a 13=26,S 9=81, ∴⎩⎨⎧2a 7=26,9a 5=81,解得⎩⎨⎧a 7=13,a 5=9,∴d =a 7-a 57-5=13-92=2, ∴a n =a 5+(n -5)d =9+2(n -5)=2n -1.(2)∵b n =1a n +1a n +2=1(2n +1)(2n +3) =12⎝ ⎛⎭⎪⎫12n +1-12n +3, ∴T n =12⎝ ⎛⎭⎪⎫13-15+15-17+…+12n +1-12n +3 =12⎝ ⎛⎭⎪⎫13-12n +3, ∵12⎝ ⎛⎭⎪⎫13-12n +3随着n 的增大而增大,知{T n }单调递增. 又12n +3>0,∴T n <16,∴m ≥5, ∴实数m 的最小值为5.。
第25课 等差数列及其前n项和(提分宝典)
第25课 等差数列及其前n 项和1.等差数列中基本量的求解(1)(2019全国Ⅰ,5分)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( ) A.a n =2n -5 B.a n =3n -10 C.S n =2n 2-8nD.S n =12n 2-2n答案:A解析:(法一)设等差数列{a n }的公差为d ,由S 4=0,a 5=5,得⎩⎪⎨⎪⎧4a 1+6d =0,a 1+4d =5,解得⎩⎪⎨⎪⎧a 1=-3,d =2, 所以a n =-3+(n -1)×2=2n -5,S n =-3n +n (n -1)2×2=n 2-4n .故选A.(法二)因为S 4=0,a 5=5,所以a 1+a 4=0,S 5=S 4+a 5=5. 选项B :a 1+a 4=-7+2≠0,故B 错误;选项C :当n =5时,S 5=2×52-8×5=10≠5,故C 错误; 选项D :当n =5时,S 5=12×52-2×5=52≠5,故D 错误.故选A.(2)(2019全国Ⅲ,5分)记S n 为等差数列{a n }的前n 项和,若a 3=5,a 7=13,则S 10= .答案:100解析:设等差数列{a n }的公差为d ,由a 3=5,a 7=13,得d =a 7-a 37-3=13-54=2,所以a 1=a 3-2d =5-2×2=1,所以S 10=10×1+10×(10-1)2×2=100.故答案为100.(3)(2019全国Ⅰ,12分)记S n 为等差数列{a n }的前n 项和,已知S 9=-a 5. (Ⅰ)若a 3=4,求{a n }的通项公式;(Ⅱ)若a 1>0,求使得S n ≥a n 的n 的取值范围. 答案:(Ⅰ)a n =10-2n(Ⅱ)n 的取值范围是{n |1≤n ≤10,n ∈N *} 解:(Ⅰ)设等差数列{a n }的公差为d .由S 9=-a 5得9(a 1+a 9)2=-a 5,即9a 5=-a 5,所以a 5=0,所以a 1+4d =0①.(3分) 由a 3=4,得a 1+2d =4②.由①②解得a 1=8,d =-2,(5分)所以数列{a n }的通项公式为a n =8-2(n -1)=10-2n .(6分) (Ⅱ)由(Ⅰ)得a 5=0,所以a 1+4d =0,所以a 1=-4d ,所以a n =a 1+(n -1)d =(n -5)d ,S n =n (a 1+a n )2=n (n -9)d2.(9分)由S n ≥a n ,得n (n -9)d2≥(n -5)d .由a 1>0,a 5=0,知d <0,故n (n -9)d 2≥(n -5)d 等价于n (n -9)2≤n -5,即n 2-11n +10≤0,解得1≤n ≤10,所以n 的取值范围是{n |1≤n ≤10,n ∈N *}.(12分)2.等差数列中的单调性问题(4)(经典题,5分)下面是关于公差d >0的等差数列{a n }的四个命题: p 1:数列{a n }是递增数列;p 2:数列{na n }是递增数列;p 3:数列⎩⎨⎧⎭⎬⎫a n n 是递增数列;p 4:数列{a n +3nd }是递增数列.其中的真命题为( )A.p 1,p 2B.p 3,p 4C.p 2,p 3D.p 1,p 4 答案:D解析:∵a n =a 1+(n -1)d ,d >0, ∴a n -a n -1=d >0,命题p 1正确;设a n =3n -12,显然{a n }是递增数列,但是na n =3n 2-12n ,{na n }并不是递增数列,故命题p 2不正确;设a n =n +1,显然{a n }是递增数列,但a n n =1+1n 单调递减,∴⎩⎨⎧⎭⎬⎫a n n 是递减数列,故p 3不正确;设b n =a n +3nd ,则b n +1-b n =a n +1-a n +3d =4d >0, ∴数列{a n +3nd }是递增数列,命题p 4正确. 综上,真命题为p 1,p 4.3.等差数列的证明与判定技巧 a.定义法证明等差数列(5)(2021改编,8分)已知数列{a n }的前n 项和为S n ,且a 1=3,S n n -S n -1n -1=1(n ≥2).证明:数列{a n }为等差数列,并求出其通项公式.答案:见证明过程,a n =2n +1证明:因为S n n -S n -1n -1=1(常数),所以数列⎩⎨⎧⎭⎬⎫S n n 是以S 11=3为首项,1为公差的等差数列,所以S nn =3+n -1=n +2,整理得S n =n 2+2n ①,(3分)当n ≥2时,S n -1=(n -1)2+2(n -1)=n 2-1②, ①-②得a n =S n -S n -1=2n +1(n ≥2). 因为a 1=3符合上式,所以数列{a n }的通项公式为a n =2n +1.(6分) 因为a n +1-a n =2(n +1)+1-(2n +1)=2(常数),所以数列{a n }为等差数列,且通项公式为a n =2n +1.(8分)b.等差中项法证明等差数列(6)(2017全国Ⅰ,12分)记S n 为等比数列{a n }的前n 项和,已知S 2=2,S 3=-6. (Ⅰ)求{a n }的通项公式;(Ⅱ)求S n ,并判断S n +1,S n ,S n +2是否成等差数列. 答案:(Ⅰ)a n =(-2)n(Ⅱ)S n =23[(-2)n -1],S n +1,S n ,S n +2成等差数列解:(Ⅰ)设等比数列{a n }的公比为q , 因为S 2=2,S 3=-6,所以⎩⎪⎨⎪⎧a 1+a 2=2,a 1+a 2+a 3=-6,即⎩⎪⎨⎪⎧a 1(1+q )=2,a 1(1+q +q 2)=-6,(2分)解得⎩⎪⎨⎪⎧q =-2,a 1=-2,所以数列{a n }的通项公式为a n =(-2)n .(5分)(Ⅱ)由(Ⅰ)可得S n =a 1(1-q n )1-q =-2[1-(-2)n ]1-(-2)=23[(-2)n -1],(7分)所以S n +1=23[(-2)n +1-1],S n +2=23[(-2)n +2-1],所以S n +1+S n +2=23[(-2)n +1-1]+23[(-2)n +2-1]=43[(-2)n -1].又2S n =43[(-2)n -1],所以S n +1+S n +2=2S n ,所以S n +1,S n ,S n +2成等差数列.(12分)4.等差数列中的设项技巧(7)(经典题,10分)解决下列问题.(Ⅰ)三个数成等差数列,它们的和为21,平方和为155,则这三个数为 ; (Ⅱ)已知四个数成等差数列,它们的和为28,中间两项的积为40,则这四个数为 .答案:(Ⅰ)5,7,9或9,7,5(Ⅱ)-2,4,10,16或16,10,4,-2 解析:(Ⅰ)设这三个数为a -d ,a ,a +d ,根据题意,有⎩⎪⎨⎪⎧a -d +a +a +d =21,(a -d )2+a 2+(a +d )2=155, 解得⎩⎪⎨⎪⎧a =7,d =2或⎩⎪⎨⎪⎧a =7,d =-2.∴这三个数为5,7,9或9,7,5.(Ⅱ)设这四个数为a -3d ,a -d ,a +d ,a +3d ,根据题意,有⎩⎪⎨⎪⎧a -3d +a -d +a +d +a +3d =28,(a -d )(a +d )=40,解得⎩⎪⎨⎪⎧a =7,d =3或⎩⎪⎨⎪⎧a =7,d =-3.∴这四个数为-2,4,10,16或16,10,4,-2.5.等差数列的性质及其应用(8)(2021汇编,15分)已知数列{a n }为等差数列. ①若a 3+a 4+a 5+a 6+a 7=90,则a 2+a 8=( ) A.18 B.30 C.36 D.45 ②若a 2=5,a 4=3,则a 6=( ) A.-1 B.0 C.1 D.6③设数列{a n }的前n 项和为S n ,若S n 满足S 9-S 2=35,则a 6的值是( ) A.5 B.7 C.9 D.3 答案:①C ②C ③A 解析:①∵数列{a n }为等差数列,且a 3+a 4+a 5+a 6+a 7=90,∴a 3+a 4+a 5+a 6+a 7=5a 5=90,解得a 5=18,∴a 2+a 8=2a 5=36.故选C.②∵数列{a n }为等差数列,∴a 2+a 6=2a 4,∴a 6=2a 4-a 2=2×3-5=1.故选C.③∵在等差数列{a n }中,S n 满足S 9-S 2=35,∴a 3+a 4+a 5+a 6+a 7+a 8+a 9=7a 6=35,∴a 6=5.故选A.(9)(2021改编,5分)若{a n }为公差不为0的等差数列,则下列数列中仍为等差数列的有 .(填序号)①{a n +a n +1} ②{a 2n } ③{a n +1-a n } ④{2a n } ⑤{2a n +n } ⑥{a 2n -1} ⑦{a 2n } 答案:①③④⑤⑥⑦解析:设等差数列{a n }的通项公式为a n =a 1+(n -1)d ,则a n +1=a 1+nd ,∴a n +a n +1=2a 1+(2n -1)d =2nd +2a 1-d ,∴{a n +a n +1}为等差数列;a 2n =[a 1+(n -1)d ]2=d 2n 2+(2a 1d -2d 2)n+d 2+a 21-2a 1d ,当d ≠0时,显然{a 2n }不为等差数列;∵a n +1-a n =d ,∴数列{a n +1-a n }为常数列;2a n =2a 1+2(n -1)d =2dn +2a 1-2d ,显然{2a n }为等差数列;2a n +n =2a 1+2(n -1)d +n =(2d +1)n +2a 1-2d ,显然{2a n +n }为等差数列;根据等差数列的性质:每隔相同的距离取出一项组成的数列仍为等差数列,可知{a 2n -1},{a 2n }均为等差数列.6.等差数列前n 项和公式的应用(10)(2019江西模拟,12分)设S n 为等差数列{a n }的前n 项和,且a 2=15,S 5=65. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)设数列{b n }的前n 项和为T n ,且T n =S n -10,求数列{|b n |}的前n 项和R n . 答案:(Ⅰ)a n =-2n +19(Ⅱ)R n =⎩⎪⎨⎪⎧-n 2+18n -10,1≤n ≤9,n 2-18n +152,n ≥10解:(Ⅰ)设等差数列{a n }的公差为d ,则由a 2=15,S 5=65,得⎩⎪⎨⎪⎧a 1+d =15,5a 1+10d =65,(2分)解得⎩⎪⎨⎪⎧a 1=17,d =-2,所以a n =17-2(n -1)=-2n +19.(4分)(Ⅱ)由(Ⅰ)得S n =n (a 1+a n )2=n (17-2n +19)2=-n 2+18n ,所以T n =S n -10=-n 2+18n -10.当n =1时,b 1=T 1=7;当n ≥2时,b n =T n -T n -1=-n 2+18n -10-[-(n -1)2+18(n -1)-10]=-2n +19. 因为b 1=7不满足上述关系式,所以b n =⎩⎪⎨⎪⎧7,n =1,-2n +19,n ≥2.(8分)易知当1≤n ≤9时,b n >0;当n ≥10时,b n <0,所以当1≤n ≤9时,R n =|b 1|+|b 2|+…+|b n |=b 1+b 2+…+b n =T n =-n 2+18n -10; 当n ≥10时,R n =|b 1|+|b 2|+…+|b n |=b 1+b 2+…+b 9-(b 10+b 11+…+b n )=-T n +2T 9=n 2-18n +152.故R n =⎩⎪⎨⎪⎧-n 2+18n -10,1≤n ≤9,n 2-18n +152,n ≥10.(12分)7.等差数列前n 项和的性质及其应用(11)(2021汇编,20分)已知数列{a n }为等差数列,且其前n 项和为S n . ①若S 10=S 20,则S 30= . ②若S 4S 8=15,则S 8S 16= .③若数列{a n }共有99项,其中奇数项之和为300,则偶数项之和为 . ④若a 1=-2019,S 1515-S 1010=5,则S 2020的值等于 .答案:①0 ②522③294 ④0解析:①(法一)设等差数列{a n }的公差为d ,则由S 10=S 20可得10a 1+10×92d =20a 1+20×192d ,化简得a 1=-292d ,所以S 30=30a 1+30×292d =30·⎝⎛⎭⎫-292d +30×292d =0. (法二)由S 10=S 20可得S 20-S 10=0,即a 11+a 12+a 13+…+a 20=0,所以(a 11+a 20)×102=0,所以a 11+a 20=0,从而a 1+a 30=0,所以S 30=(a 1+a 30)×302=0.(法三)因为数列{a n }是等差数列,所以S 10,S 20-S 10,S 30-S 20也成等差数列,所以2(S 20-S 10)=S 30-S 20+S 10.又因为S 10=S 20,所以2×0=S 30+0,所以S 30=0.(法四)若等差数列公差为0,则由S 10=S 20得10a 1=20a 1,即a 1=0,所以a n =0,S n =0,所以S 30=0.若等差数列的公差不为0,因为等差数列前n 项和的形式为S n =An 2+Bn ,其中A 为公差的一半,所以由S 10=S 20可知S n =An 2+Bn 的对称轴为n =-B 2A=15,所以B =-30A ,所以S n =An 2-30An ,所以S 30=A ×302-30A ×30=0.②因为数列{a n }为等差数列,所以S 4,S 8-S 4,S 12-S 8,S 16-S 12成等差数列.因为S 4S 8=15,所以S 8=5S 4,所以S 8-S 4=4S 4,所以(S 8-S 4)-S 4=3S 4,所以S 4,S 8-S 4,S 12-S 8,S 16-S 12是以S 4为首项,3S 4为公差的等差数列,所以S 12-S 8=S 8-S 4+3S 4=7S 4,所以S 12=S 8+7S 4=12S 4,所以S 16-S 12=S 12-S 8+3S 4=7S 4+3S 4=10S 4,所以S 16=10S 4+S 12=22S 4,所以S 8S 16=5S 422S 4=522. ③(法一)因为数列{a n }共有99项,其中奇数项之和为300,所以502(a 1+a 99)=300,解得a 1+a 99=12,所以偶数项之和为49(a 2+a 98)2=49(a 1+a 99)2=49×122=294.(法二)因为数列{a n }共有99项,所以S 奇S 偶=5049,所以S 偶=4950S 奇=4950×300=294.④设等差数列{a n }的公差为d ,由等差数列的性质可得⎩⎨⎧⎭⎬⎫S n n 为等差数列,公差为d 2.因为S 1515-S 1010=5,所以5×d2=5,解得d =2,所以S 2020=2020×(-2019)+2020×20192×2=0.(12)(经典题,5分)等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若S n T n =3n -22n +1,则a 7b 7= .答案:3727解析:(法一)直接利用等差数列前n 项和的性质:S 2n -1=(2n -1)a n ,得a 7b 7=(2×7-1)a 7(2×7-1)b 7=13a 713b 7=S 13T 13=3727. (法二)利用等差数列的基本性质:a 7b 7=2a 72b 7=a 1+a 13b 1+b 13=13×(a 1+a 13)213×(b 1+b 13)2=S 13T 13=3727.8.求等差数列前n 项和最值的方法(13)(2021汇编,15分)已知数列{a n }为等差数列,公差为d ,前n 项和为S n . ①若a 7>0,a 3+a 9<0,则S n 的最小值为( ) A.S 4 B.S 5C.S 6D.S 7 ②若a 1=31,公差d 为整数,S 8最大,则d =( ) A.-2 B.-3 C.-4 D.-5③若公差d <0,且a 21=a 211,则S n取得最大值时的项数n 是( ) A.4 B.5 C.5和6 D.6和7 答案:①C ②C ③C解析:①因为数列{a n }为等差数列,a 3+a 9<0,所以a 3+a 9=2a 6<0,所以a 6<0.又a 7>0,所以数列{a n }的公差为正,数列为递增数列,只有前6项为负,所以数列前n 项和S n 的最小值为S 6.故选C.②因为a 1>0,S 8最大,所以⎩⎪⎨⎪⎧a 8≥0,a 9≤0,即⎩⎪⎨⎪⎧31+7d ≥0,31+8d ≤0,所以-317≤d ≤-318.又d 为整数,所以d =-4.故选C.③因为数列{a n }为等差数列,所以由a 21=a 211可得a 21=(a 1+10d )2,展开整理得20d (a 1+5d )=0.因为d <0,所以a 1+5d =0.(法一)由a 1+5d =0可得a 1=-5d ,所以S n =na 1+n (n -1)2d =12d (n 2-11n )=221111121(11).2224⎡⎤⎛⎫-=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦d n n d n 因为d <0,所以当n =5或n =6时S n 最大.故选C. (法二)由a 1+5d =0可得a 1=-5d ,所以a n =a 1+(n -1)d =(n -6)d .要使S n 最大,则需满足⎩⎪⎨⎪⎧a n ≥0,a n +1≤0,即⎩⎪⎨⎪⎧(n -6)d ≥0,(n -5)d ≤0.因为d <0,所以5≤n ≤6,所以当n =5或n =6时S n 最大.故选C.(法三)由a 1+5d =0可得a 6=0.因为d <0,所以该等差数列{a n }是单调递减数列,所以数列{a n }的前六项非负,所以当S n 最大时,n =5或n =6.故选C.(14)(经典题,5分)等差数列{a n }中,a 1>0,S 4=S 9,则{a n }的前n 项和S n 取最大值时,n = .答案:6或7解析:∵S n 有最大值,∴(n ,S n )是开口向下的抛物线上一些孤立的点,又∵S 4=S 9,∴抛物线的对称轴为直线x =4+92=6.5,∴当n =6或7时,S n 取最大值.(15)(2019北京,13分)设{a n }是等差数列,a 1=-10,且a 2+10,a 3+8,a 4+6成等比数列.(Ⅰ)求{a n }的通项公式;(Ⅱ)记{a n }的前n 项和为S n ,求S n 的最小值. 答案:(Ⅰ)a n =2n -12 (Ⅱ)-30解:(Ⅰ)设等差数列{a n }的公差为d ,根据a 2+10,a 3+8,a 4+6成等比数列,可知(a 3+8)2=(a 2+10)(a 4+6),故(-10+2d +8)2=(-10+d +10)(-10+3d +6),(3分)即(2d -2)2=d (3d -4),即d 2-4d +4=0,解得d =2,故a n =-10+2(n -1)=2n -12.(7分)(Ⅱ)由(Ⅰ)知S n =(-10+2n -12)·n 2=n 2-11n ,(10分)其对应的二次函数图像开口向上,对称轴为直线n =5.5,故n =5或6时,S n 取最小值,最小值为S 5=S 6=-30.(13分)随堂普查练251.(经典题,5分)《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何?”其意思为:“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位)这个问题中,甲所得为( )A.54钱B.53钱C.32钱D.43钱 答案:D解析:设甲、乙、丙、丁、戊五人所得依次构成的等差数列为{a n },依题意有⎩⎪⎨⎪⎧2a 1+d =3a 1+9d ,2a 1+d =52, 解得⎩⎨⎧a 1=43,d =-16,即甲得43钱.故选D.2.(2019全国Ⅲ,5分)记S n 为等差数列{a n }的前n 项和,a 1≠0,a 2=3a 1,则S 10S 5= .答案:4解析:设等差数列{a n }的公差为d ,因为a 2=3a 1,所以a 1+d =3a 1,所以d =2a 1,所以S 10S 5=10(a 1+a 10)5(a 1+a 5)=2(2a 1+9d )2a 1+4d =2(2a 1+18a 1)2a 1+8a 1=40a 110a 1=4.故答案为4.3.(2018山东临沂一模,5分)等差数列{a n }中,a 1=12018,a m =1n ,a n =1m(m ≠n ),则等差数列{a n }的公差d = .答案:12018解析:由a m =1n ,a n =1m (m ≠n ),得d =a m -a n m -n =1n -1m m -n =1mn ,又∵a 1=12018,∴a m =a 1+(m -1)d =12018+(m -1)1mn =1n ,解得1mn =12018,即等差数列{a n }的公差d =12018.4.(2019河北唐山一中冲刺,5分)设S n 是公差为d (d ≠0)的无穷等差数列{a n }的前n 项和,则下列命题错误的是( )A.若d <0,a 1>0,则数列{S n }有最大项B.若数列{S n }有最大项,则d <0C.若数列{S n }是递增数列,则对任意n ∈N *均有S n >0D.若对任意n ∈N *均有S n >0,则数列{S n }是递增数列 答案:C解析:由等差数列前n 项和公式可得S n =na 1+n (n -1)2d =d 2n 2+⎝⎛⎭⎫a 1-d2n . 选项A ,若d <0,a 1>0,由二次函数的性质可得数列{S n }有最大项,故A 正确; 选项B ,若数列{S n }有最大项,则S n =d 2n 2+(a 1-d 2)n 对应的抛物线开口向下,故有d <0,故B 正确;选项C ,若数列{S n }是递增数列,则S n =d2n 2+⎝⎛⎭⎫a 1-d 2n 对应的抛物线开口向上,但不一定对任意n ∈N *,均有S n >0,故C 错误;选项D ,若对任意n ∈N *,均有S n >0,则S n =d2n 2+⎝⎛⎭⎫a 1-d 2n 对应的抛物线开口向上,且a 1=S 1>0,故d >0,可得数列{S n }是递增数列,故D 正确.故选C.5.(经典题,12分)已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数.(Ⅰ)证明:a n +2-a n =λ;(Ⅱ)是否存在λ,使得{a n }为等差数列?并说明理由.答案:(Ⅰ)见证明过程 (Ⅱ)存在λ=4,使得{a n }为等差数列解:(Ⅰ)证明:由题意知a n a n +1=λS n -1,a n +1a n +2=λS n +1-1,(1分)两式相减,得a n +1(a n+2-a n )=λa n +1.(3分)∵a n +1≠0,∴a n +2-a n =λ.(4分)(Ⅱ)由题设知,a 1=1,a 1a 2=λS 1-1,可得a 2=λ-1.由(Ⅰ)知a 3=λ+1.(6分) 假设存在λ,使得{a n }为等差数列,则2a 2=a 1+a 3, ∴2(λ-1)=1+λ+1,解得λ=4,故a n +2-a n =4, 由此可得{a 2n -1}是首项为1,公差为4的等差数列,∴a 2n -1=1+(n -1)·4=4n -3;(8分) {a 2n }是首项为3,公差为4的等差数列,∴a 2n =3+(n -1)·4=4n -1,(10分) ∴a n =2n -1,∴a n +1-a n =2.因此存在λ=4,使得{a n }为等差数列.(12分)6.(2021改编,6分)有两个各项都是正数的数列{a n },{b n },若对于任意正整数n 都有a n ,b 2n ,a n +1成等差数列,b 2n ,a n +1,b 2n +1成等比数列.求证:数列{b n }是等差数列.答案:见证明过程证明:∵a n ,b 2n ,a n +1成等差数列,∴2b 2n =a n +a n +1.①∵b 2n ,a n +1,b 2n +1成等比数列,∴a 2n +1=b 2n ·b 2n +1.②(2分) ∵a n >0,b n >0,∴由②得a n +1=b n ·b n +1, ∴当n ≥2时,a n =b n -1·b n ,(4分)∴由①得2b 2n =b n -1·b n +b n ·b n +1(n ≥2),∴2b n =b n -1+b n +1(n ≥2),∴数列{b n }是等差数列.(6分)7.(2021改编,5分)在等差数列{a n }中,若a 3+a 8+a 13=12,a 3a 8a 13=28,则数列{a n }的通项公式为 .答案:a n =35n -45或a n =-35n +445解析:根据等差数列的性质,知a 3+a 8+a 13=3a 8=12,因此a 8=4.设a 3=4-d ′,a 13=4+d ′,由a 3a 8a 13=28,得(4-d ′)·4·(4+d ′)=4(16-d ′2)=28,解得d ′=±3,∴a 13=7或1.而a 13=a 8+(13-8)d ,∴d =±35,∴a n =a 8+(n -8)d ,即a n =4±35(n -8),∴a n =35n -45或a n =-35n+445.8.(经典题,5分)已知{a n },{b n }都是等差数列,若a 1+b 10=9,a 3+b 8=15,则a 5+b 6= .答案:21解析:∵{a n },{b n }都是等差数列,∴2a 3=a 1+a 5,2b 8=b 10+b 6,∴2(a 3+b 8)=(a 1+b 10)+(a 5+b 6),即2×15=9+(a 5+b 6),∴a 5+b 6=21.9.(2018湖北华中师大模拟,12分)已知数列{a n }满足a 1=2,n (a n +1-n -1)=(n +1)(a n +n )(n ∈N *).(1)求证数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,并求⎩⎨⎧⎭⎬⎫a n n 的通项公式;(2)设b n =2a n -15,求数列{|b n |}的前n 项和T n .答案:(1)数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,通项公式为a nn =2n(2)T n =⎩⎪⎨⎪⎧14n -n 2,n ≤7,n 2-14n +98,n ≥8解:(1)∵n (a n +1-n -1)=(n +1)(a n +n )(n ∈N *),∴na n +1-(n +1)a n =2n (n +1), ∴a n +1n +1-a nn=2,(3分) ∴数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,其公差为2,首项为2,∴a nn=2+2(n -1)=2n . 所以数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,且通项公式为a nn =2n .(4分)(2)由(1)知a n =2n 2(n ∈N *), ∴b n =2a n -15=2n -15, 则数列{b n }的前n 项和S n =n (-13+2n -15)2=n 2-14n .(6分)令b n =2n -15≤0,解得n ≤7.∴n ≤7时,数列{|b n |}的前n 项和T n =-b 1-b 2-…-b n =-S n =-n 2+14n .(8分) n ≥8时,数列{|b n |}的前n 项和T n =-b 1-b 2-…-b 7+b 8+…+b n =-2S 7+S n =-2×(72-14×7)+n 2-14n =n 2-14n +98.(10分)∴数列{|b n |}的前n 项和T n =⎩⎪⎨⎪⎧14n -n 2,n ≤7,n 2-14n +98,n ≥8.(12分)10.(2018广东模拟,5分)在项数为2n +1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n =( )A.9B.10C.11D.12 答案:B解析:由等差数列前n 项和的性质知,若项数为奇数2n +1,则S 偶S 奇=n n +1,即150165=nn +1,解得n =10.11.(2018江苏模拟,5分)在等差数列{a n }中,已知a 1=0,公差d ≠0,若a k =a 1+a 2+a 3+…+a 7,则k = .答案:22解析:由等差数列前n 项和的性质及a 1=0,可知a k =a 1+a 2+a 3+…+a 7=7a 4=7(a 1+3d )=21d (或者可由等差数列的基本性质得出此式).又∵a k =a 1+(k -1)d =(k -1)d =21d ,∴k =22.12.(2018贵州模拟,5分)设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若S n T n =3n2n +1,则a 1+a 2+a 14+a 19b 1+b 3+b 17+b 19的值为 .答案:1713解析:∵S n T n =3n2n +1,且S n 和T n 都是关于n 的二次函数,且常数项为0,∴设S n =3n ·kn ,T n =(2n +1)·kn ,k ≠0,则a 1+a 2+a 14+a 19b 1+b 3+b 17+b 19=(a 1+a 19)+(a 2+a 14)(b 1+b 19)+(b 3+b 17)=2a 10+2a 82b 10+2b 10=2(a 10+a 8)4b 10=4a 94b 10=a 9b 10=S 9-S 8T 10-T 9=3×92-3×82(2×10+1)×10-(2×9+1)×9=1713.13.(2018浙江模拟,4分)设公差为d 的等差数列{a n }的前n 项和为S n ,若a 1=1,-217<d <-19,则当S n 取最大值时,n 的值为 . 答案:9解析:由等差数列的通项公式,得a n =a 1+(n -1)d =1+(n -1)d ,∵-217<d <-19,∴a 9=1+(9-1)d >0,a 10=1+(10-1)d <0,故数列的前9项为正数,从第10项开始为负数.∴当S n 取最大值时,n 的值为9.课后提分练25 等差数列及其前n 项和A 组(巩固提升)1.(2018全国Ⅰ,5分)记S n 为等差数列{a n }的前n 项和.若3S 3= S 2+ S 4,a 1=2,则a 5=( )A .-12B .-10C .10D .12 答案:B解析:(法一)因为3S 3=S 2+S 4,所以3(a 1+a 1+d +a 1+2d )=(a 1+a 1+d )+(a 1+a 1+d +a 1+2d +a 1+3d ), 即3(3a 1+3d )=6a 1+7d , 将a 1=2代入,可得3(3×2+3d )=6×2+7d ,可得d =-3, 所以a 5=a 1+4d =2+4×(-3)=-10. 故选B.(法二)将3S 3=S 2+S 4变形为S 3+(S 3-S 2)=S 4-S 3, 即S 3+a 3=a 4,因为S 3=3a 2,所以3a 2+a 3=a 4, 又因为a 2+a 3=a 1+a 4,所以3a 2+a 3=2a 2+(a 2+a 3)=2a 2+a 1+a 4=a 4, 所以2a 2+a 1=3a 1+2d =0. 根据a 1=2,可知d =-3,所以a 5=a 1+4d =2+4×(-3)=-10. 故选B.2.(2018福建三明模拟,5分)《九章算术》第六卷《均输》中,有问题:“今有竹九节,下三节容量四升,上四节容量三升.问中间二节欲均容,各多少?”其中“欲均容”的意思是:使容量变化均匀.若竹九节由下往上均匀变细,则剩余中间两节的容量之和是( )A .16166升B .2 升C .2322升D .3升答案:C解析:设竹九节由上往下的容量分别为a 1,a 2,a 3,a 4,a 5,a 6,a 7,a 8,a 9,由题意可知a 1,a 2,a 3,a 4,a 5,a 6,a 7,a 8,a 9成等差数列,且公差为d .又因为⎩⎪⎨⎪⎧a 1+a 2+a 3+a 4=3,a 7+a 8+a 9=4,解得⎩⎨⎧a 1=1322,d =766,所以剩余中间两节容量之和为a 5+a 6=2a 1+9d =4722=2322(升).故选C.3.(2018山东模拟,5分)在等差数列{a n } 中,若a 4+a 6+a 8+a 10+a 12=240,则a 9-13a 11的值为( )A .30B .31C .32D .33 答案:C解析:由等差数列的性质及a 4+a 6+a 8+a 10+a 12=240,可得5a 8=240,解得a 8=48.设等差数列{a n }的公差为d ,则a 9-13a 11=a 8+d -13(a 8+3d )=23a 8=32.故选C.4.(2018运城模拟,5分)已知等差数列{a n }的前n 项和为S n ,且S m -1=-2,S m =0,S m+1=3,则m =( )A .3B .4C .5D .6 答案:C解析:(法一)设等差数列{a n }的公差为d ,∵S m -S m -1=a m =2,S m +1-S m =a m +1=3,∴d =a m +1-a m =1.∵S m =m (a 1+a m )2=0,且m ≠0,∴a 1=-a m =-2,∴a m =a 1+(m -1)×1=2,即a m =-2+(m -1)×1=2,解得m =5.(法二)设等差数列{a n }的前n 项和为S n ,易知⎩⎨⎧⎭⎬⎫S n n 为等差数列, ∴2S m m =S m -1m -1+S m +1m +1,即0=-2m -1+3m +1,解得m =5.5.(2018长春模拟,5分)在等差数列{a n } 中,a 2+a 4=p ,a 3+a 5=q ,则其前6项和S 6=( )A.54(p +q )B.32(p +q ) C .p +q D .2(p +q )答案:B解析:由a 2+a 4=p ,a 3+a 5=q ,知2(a 1+a 6)=a 2+a 4+a 3+a 5=p +q ,所以a 1+a 6=p +q2,所以S 6=62(a 1+a 6)=32(p +q ).故选B.6.(2018石家庄模拟,5分)在等差数列{a n }中,首项a 1>0,a 2018+a 2019>0,a 2018·a 2019<0,则使得前n 项和S n >0成立的最大正整数n 是( )A .2018B .2019C .4036D .4037 答案:C解析:由已知得a 2018>0,a 2019<0.根据等差数列的性质可知S 4036=40362(a 2018+a 2019)>0,S 4037=4037a 2019<0,所以使得前n 项和S n >0成立的最大正整数n 为4036.7.(2019陕西三模,5分)已知在等差数列{a n }中,a 2=3,a 5=9,数列{b n }的通项b n =log a ⎝⎛⎭⎫1+1a n(a >1),S n 是数列{ b n }的前n 项和.若T n =log a a n +1,则S n 与T n 的大小关系是( )A .S n ≥T nB .S n >T nC .S n <T nD .S n ≤T n答案:B解析:设等差数列{a n }的公差为d ,∵a 2=3,a 5=9,∴d =a 5-a 25-2=9-33=2,∴a n =3+(n -2)×2=2n -1,∴数列{b n }的通项b n =log a ⎝⎛⎭⎫1+1a n =log a ⎝⎛⎭⎫1+12n -1=log a 2n2n -1>0(a >1),∴S n =log a 21+log a 43+…+log a 2n2n -1=log a ⎝⎛⎭⎫21×43×…×2n 2n -1(a >1).设A =21×43×…×2n 2n -1,∵2n 2n -1>2n +12n, ∴A >32×54×…×2n -12n -2×2n +12n =1A (2n +1),∴A >2n +1,∴S n =log a A >log a 2n +1. 又T n =log a a n +1=log a 2n , ∴S n >T n .故选B.8.(2019江西模拟,5分)设等差数列{a n }的首项a 1>0,公差为d ,则“d <0”是“数列{4a 1a n }为递减数列”的( )A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件 答案:A解析:数列{4a 1a n }为递减数列,等价于当n ≥2时, 4a 1a n <4a 1a n -1,即a 1a n <a 1a n -1.∵a 1>0,∴a n <a n -1(n ≥2),即a n -a n -1=d <0(n ≥2),所以“d <0”是“数列{4a 1a n }为递减数列”的充要条件.故选A.9.(2018苏州模拟,12分)在数列{a n }中,a 1=-3,a n =2a n -1+2n +3,n ≥2,且n ∈N *. (1)求a 2,a 3的值;(2)设b n =a n +32n ,n ∈N *,求证:数列{b n } 是等差数列.答案:(1)a 2=1,a 3=13 (2)见证明过程 解:(1)∵a 1=-3,a n =2a n -1+2n +3,n ≥2,∴a 2=2a 1+22+3=1,a 3=2a 2+23+3=13.(4分)(2)证明:由题意,a n =2a n -1+2n +3,得a n -2a n -1=2n +3,∴a n +1-2a n =2n +1+3.(6分) ∵b n +1-b n =a n +1+32n +1-a n +32n =12n +1[(a n +1-2a n )-3]=12n +1[(2n +1+3)-3]=1,(10分)∴数列{b n }是首项为a 1+32=-3+32=0,公差为1的等差数列.(12分)10.(2019陕西西安一模,12分)记S n 为等差数列{a n }的前n 项和,已知S 1=3,S 3=3. (Ⅰ)求{a n }的通项公式;(Ⅱ)求S n ,并求S n 的最大值.答案:(Ⅰ)a n =5-2n (Ⅱ)S n =-n 2+4n ,最大值为4解:(Ⅰ)设等差数列{a n }的公差为d ,由题意得S 3=3a 1+3×22d =3a 1+3d =3.由a 1=S 1=3得d =-2,所以{a n }的通项公式为a n =3-2(n -1)=5-2n .(6分)(Ⅱ)由(Ⅰ)得S n =n (3+5-2n )2=-n 2+4n =-(n -2)2+4,(9分)所以当n =2时,S n 取得最大值,最大值为4.(12分)B 组(冲刺满分)11.(2018洛阳模拟,5分)设数列{a n }是公差不为0的等差数列,满足a 24+a 25=a 26+a 27,则该数列的前10项和S 10=( )A .-10B .-5C .0D .5 答案:C解析:(法一)设等差数列{a n }的公差为d ,因为a 24+a 25=a 26+a 27,所以a 24-a 26=a 27-a 25,即(a 4-a 6)(a 4+a 6)=(a 7-a 5)(a 7+a 5).根据等差数列的概念和性质,可知-4da 5=4da 6,即a 5+a 6=0.所以S 10=102(a 5+a 6)=0.(法二)由a 24+a 25=a 26+a 27,得(a 1+3d )2+(a 1+4d )2=(a 1+5d )2+(a 1+6d )2,整理得2a 1+9d =0.∴S 10=10a 1+10×92d =10a 1+45d =5(2a 1+9d )=0.故选C.12.(2018淮安模拟,5分)已知数列{a n }是各项均不为0的等差数列,S n 为其前n 项和,且满足a 2n =S 2n -1(n ∈N *),若不等式λa n +1≤n +8·(-1)nn 对任意的n ∈N *恒成立,则实数λ的最大值为( )A .25B .21C .-25D .-21 答案:D解析:由a 2n =S 2n -1(n ∈N *)及等差数列前n 项和的性质,知a 2n =(2n -1)a n .∵数列{a n }是各项均不为0的等差数列,∴a n =2n -1,∴λ2n +1≤n +8·(-1)n n 对任意的n ∈N *恒成立,即λ≤2n +8·(-1)n n +1+16·(-1)n 对任意的n ∈N *恒成立.当n 为偶数时,上式化为λ≤2n +8n +17,又∵2n +8n+17≥22n ·8n+17=25,当且仅当n =2时取等号,∴λ≤25;当n 为奇数时,上式化为λ≤2n -8n -15,又∵⎣⎡⎦⎤2n -8n -15min =2×1-81-15=-21,∴λ≤-21. 综上,λ≤-21,故选D.13.(2019安徽合肥一模,12分)已知等差数列{a n }的前n 项和为S n ,a 1=-2,公差为d (d ∈N *).(Ⅰ)若a 5=30,求数列{a n }的通项公式;(Ⅱ)是否存在d ,n 使S n =10成立?若存在,试找出所有满足条件的d ,n 的值,并求出数列{a n }的通项公式;若不存在,请说明理由.答案:(Ⅰ)a n =8n -10(Ⅱ)存在3组,d ,n 的值与相应的通项公式分别为 d =14,n =2,a n =14n -16; d =3,n =4,a n =3n -5;d =2,n =5,a n =2n -4 解:(Ⅰ)当a 5=30时,由a 5=a 1+4d ,得30=-2+4d ,解得d =8, 所以a n =-2+8(n -1)=8n -10.(3分) (Ⅱ)存在d ,n 使S n =10成立.(4分) 由题意可知,S n =na 1+n (n -1)2d =10,即-4n +dn 2-dn =20,即(n 2-n )d =20+4n .(5分) 当n =1时,方程无解,不符合题意; 当n =2时,2d =28,d =14,符合题意,此时数列{a n }的通项公式为a n =-2+(n -1)×14=14n -16;(7分)当n =3时, 6d =32,解得d =163,不符合题意;当n =4时, 12d =36,解得d =3,符合题意,此时数列{a n }的通项公式为a n =-2+(n -1)×3=3n -5;当n =5时, 20d =40,解得d =2,符合题意,此时数列{a n }的通项公式为a n =-2+(n -1)×2=2n -4;(9分)当n =6时, 30d =44,解得d =2215,不符合题意;当n =7时, 42d =48,解得d =87,不符合题意;当n ≥8时,d <1,均不符合题意,所以满足条件的d ,n 存在3组,d ,n 的值与相应的通项公式分别为d =14,n =2,a n =14n -16; d =3,n =4,a n =3n -5;d =2,n =5,a n =2n -4.(12分)。
2020版高考数学第五章数列第2节等差数列及其前n项和讲义理(含解析)新人教A版
第2节 等差数列及其前n 项和考试要求 1.理解等差数列的概念;2.掌握等差数列的通项公式与前n 项和公式;3.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题;4.体会等差数列与一次函数的关系.知 识 梳 理1.等差数列的概念(1)如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列.数学语言表达式:a n +1-a n =d (n ∈N *,d 为常数).(2)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A =a +b2.2.等差数列的通项公式与前n 项和公式(1)若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)d 2=n (a 1+a n )2.3.等差数列的性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n .(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. (4)若S n 为等差数列{a n }的前n 项和,则数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.(5)若S n 为等差数列{a n }的前n 项和,则数列⎩⎨⎧⎭⎬⎫S n n 也为等差数列.[微点提醒]1.已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列,且公差为p .2.在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值.3.等差数列{a n }的单调性:当d >0时,{a n }是递增数列;当d <0时,{a n }是递减数列;当d =0时,{a n }是常数列.4.数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数).基 础 自 测1.判断下列结论正误(在括号内打“√”或“×”)(1)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( ) (2)等差数列{a n }的单调性是由公差d 决定的.( )(3)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( ) (4)等差数列的前n 项和公式是常数项为0的二次函数.( ) 解析 (3)若公差d =0,则通项公式不是n 的一次函数. (4)若公差d =0,则前n 项和不是二次函数. 答案 (1)√ (2)√ (3)× (4)×2.(必修5P46A2改编)设数列{a n }是等差数列,其前n 项和为S n ,若a 6=2且S 5=30,则S 8等于( ) A.31B.32C.33D.34解析 由已知可得⎩⎪⎨⎪⎧a 1+5d =2,5a 1+10d =30,解得⎩⎪⎨⎪⎧a 1=263,d =-43,∴S 8=8a 1+8×72d =32.答案 B3.(必修5P68A8改编)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=450,则a 2+a 8=________. 解析 由等差数列的性质,得a 3+a 4+a 5+a 6+a 7=5a 5=450,∴a 5=90,∴a 2+a 8=2a 5=180. 答案 1804.(2018·全国Ⅰ卷)记S n 为等差数列{a n }的前n 项和.若3S 3=S 2+S 4,a 1=2,则a 5=( ) A.-12B.-10C.10D.12解析 设等差数列{a n }的公差为d ,则3(3a 1+3d )=2a 1+d +4a 1+6d ,即d =-32a 1.又a 1=2,∴d =-3,∴a 5=a 1+4d =2+4×(-3)=-10. 答案 B5.(2019·上海黄浦区模拟)已知等差数列{a n }中,a 2=1,前5项和S 5=-15,则数列{a n }的公差为( ) A.-3B.-52C.-2D.-4解析 设等差数列{a n }的首项为a 1,公差为d ,因为⎩⎪⎨⎪⎧a 2=1,S 5=-15,所以⎩⎪⎨⎪⎧a 1+d =1,5a 1+5×42d =-15, 解得d =-4. 答案 D6.(2019·苏北四市联考)在等差数列{a n }中,已知a 3+a 8>0,且S 9<0,则S 1,S 2,…,S 9中最小的是______.解析 在等差数列{a n }中, ∵a 3+a 8>0,S 9<0,∴a 5+a 6=a 3+a 8>0,S 9=9(a 1+a 9)2=9a 5<0,∴a 5<0,a 6>0,∴S 1,S 2,…,S 9中最小的是S 5. 答案 S 5考点一 等差数列基本量的运算【例1】 (1)(一题多解)(2017·全国Ⅰ卷)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A.1B.2C.4D.8(2)(2019·潍坊检测)设等差数列{a n }的前n 项和为S n ,S 11=22,a 4=-12,若a m =30,则m =( ) A.9B.10C.11D.15解析 (1)法一 设等差数列{a n }的公差为d , 依题意得⎩⎪⎨⎪⎧(a 1+3d )+(a 1+4d )=24,6a 1+6×52d =48,所以d =4. 法二 等差数列{a n }中,S 6=(a 1+a 6)×62=48,则a 1+a 6=16=a 2+a 5,又a 4+a 5=24,所以a 4-a 2=2d =24-16=8,则d =4.(2)设等差数列{a n }的公差为d ,依题意得⎩⎪⎨⎪⎧S 11=11a 1+11×(11-1)2d =22,a 4=a 1+3d =-12,解得⎩⎪⎨⎪⎧a 1=-33,d =7, ∴a m =a 1+(m -1)d =7m -40=30,∴m =10. 答案 (1)C (2)B规律方法 1.等差数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想来解决问题.2.数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.【训练1】 (1)等差数列log 3(2x ),log 3(3x ),log 3(4x +2),…的第四项等于( ) A.3 B.4 C.log 318 D.log 324(2)(一题多解)设等差数列{a n }的前n 项和为S n ,S 3=6,S 4=12,则S 6=________. 解析 (1)∵log 3(2x ),log 3(3x ),log 3(4x +2)成等差数列, ∴log 3(2x )+log 3(4x +2)=2log 3(3x ),∴log 3[2x (4x +2)]=log 3(3x )2,则2x (4x +2)=9x 2, 解之得x =4,x =0(舍去).∴等差数列的前三项为log 38,log 312,log 318, ∴公差d =log 312-log 38=log 332,∴数列的第四项为log 318+log 332=log 327=3.(2)法一 设数列{a n }的首项为a 1,公差为d , 由S 3=6,S 4=12,可得⎩⎪⎨⎪⎧S 3=3a 1+3d =6,S 4=4a 1+6d =12,解得⎩⎪⎨⎪⎧a 1=0,d =2,所以S 6=6a 1+15d =30.法二 由{a n }为等差数列,故可设前n 项和S n =An 2+Bn , 由S 3=6,S 4=12可得⎩⎪⎨⎪⎧S 3=9A +3B =6,S 4=16A +4B =12,解得⎩⎪⎨⎪⎧A =1,B =-1,即S n =n 2-n ,则S 6=36-6=30.答案 (1)A (2)30考点二 等差数列的判定与证明 典例迁移【例2】 (经典母题)若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 成等差数列;(2)求数列{a n }的通项公式.(1)证明 当n ≥2时,由a n +2S n S n -1=0, 得S n -S n -1=-2S n S n -1,所以1S n -1S n -1=2,又1S 1=1a 1=2,故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列. (2)解 由(1)可得1S n =2n ,∴S n =12n .当n ≥2时,a n =S n -S n -1=12n -12(n -1)=n -1-n 2n (n -1)=-12n (n -1).当n =1时,a 1=12不适合上式.故a n=⎩⎪⎨⎪⎧12,n =1,-12n (n -1),n ≥2.【迁移探究1】 本例条件不变,判断数列{a n }是否为等差数列,并说明理由. 解 因为a n =S n -S n -1(n ≥2),a n +2S n S n -1=0, 所以S n -S n -1+2S n S n -1=0(n ≥2). 所以1S n -1S n -1=2(n ≥2).又1S 1=1a 1=2,所以⎩⎨⎧⎭⎬⎫1S n 是以2为首项,2为公差的等差数列.所以1S n =2+(n -1)×2=2n ,故S n =12n.所以当n ≥2时,a n =S n -S n -1=12n -12(n -1)=-12n (n -1),所以a n +1=-12n (n +1),又a n +1-a n =-12n (n +1)--12n (n -1)=-12n ⎝ ⎛⎭⎪⎫1n +1-1n -1=1n (n -1)(n +1).所以当n ≥2时,a n +1-a n 的值不是一个与n 无关的常数,故数列{a n }不是一个等差数列. 【迁移探究2】 本例中,若将条件变为a 1=35,na n +1=(n +1)a n +n (n +1),试求数列{a n }的通项公式. 解 由已知可得a n +1n +1=a n n +1,即a n +1n +1-a n n =1,又a 1=35, ∴⎩⎨⎧⎭⎬⎫a n n 是以a 11=35为首项,1为公差的等差数列,∴a n n =35+(n -1)·1=n -25,∴a n =n 2-25n . 规律方法 1.证明数列是等差数列的主要方法:(1)定义法:对于n ≥2的任意自然数,验证a n -a n -1为同一常数. (2)等差中项法:验证2a n -1=a n +a n -2(n ≥3,n ∈N *)都成立. 2.判定一个数列是等差数列还常用到结论:(1)通项公式:a n =pn +q (p ,q 为常数)⇔{a n }是等差数列.(2)前n 项和公式:S n =An 2+Bn (A ,B 为常数)⇔{a n }是等差数列.问题的最终判定还是利用定义.【训练2】 (2017·全国Ⅰ卷)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6. (1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列. 解 (1)设{a n }的公比为q ,由题设可得⎩⎪⎨⎪⎧a 1(1+q )=2,a 1(1+q +q 2)=-6,解得⎩⎪⎨⎪⎧q =-2,a 1=-2. 故{a n }的通项公式为a n =(-2)n. (2)由(1)可得S n =a 1(1-q n )1-q =-23+(-1)n 2n +13.由于S n +2+S n +1=-43+(-1)n 2n +3-2n +23.=2⎣⎢⎡⎦⎥⎤-23+(-1)n ·2n +13=2S n , 故S n +1,S n ,S n +2成等差数列. 考点三 等差数列的性质及应用 多维探究角度1 等差数列项的性质【例3-1】 (2019·临沂一模)在等差数列{a n }中,a 1+3a 8+a 15=120,则a 2+a 14的值为( ) A.6B.12C.24D.48解析 ∵在等差数列{a n }中,a 1+3a 8+a 15=120, 由等差数列的性质,a 1+3a 8+a 15=5a 8=120, ∴a 8=24,∴a 2+a 14=2a 8=48. 答案 D角度2 等差数列和的性质【例3-2】 设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( ) A.63B.45C.36D.27解析 由{a n }是等差数列,得S 3,S 6-S 3,S 9-S 6为等差数列, 即2(S 6-S 3)=S 3+(S 9-S 6), 得到S 9-S 6=2S 6-3S 3=45, 所以a 7+a 8+a 9=45. 答案 B规律方法 1.项的性质:在等差数列{a n }中,若m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q .2.和的性质:在等差数列{a n }中,S n 为其前n 项和,则 (1)S 2n =n (a 1+a 2n )=…=n (a n +a n +1); (2)S 2n -1=(2n -1)a n .【训练3】 (1)已知S n 是等差数列{a n }的前n 项和,若a 1=-2 015,S 2 0152 015-S 2 0092 009=6,则S 2 019=________.(2)(2019·荆州一模)在等差数列{a n }中,若a 3+a 4+a 5=3,a 8=8,则a 12的值是( ) A.15B.30C.31D.64(3)等差数列{a n }与{b n }的前n 项和分别为S n 和T n ,若S n T n =3n -22n +1,则a 7b 7等于( )A.3727B.1914C.3929D.43解析 (1)由等差数列的性质可得⎩⎨⎧⎭⎬⎫S n n 也为等差数列. 设其公差为d ,则S 2 0152 015-S 2 0092 009=6d =6,∴d =1.故S 2 0192 019=S 11+2 018d =-2 015+2 018=3, ∴S 2 019=3×2 019=6 057.(2)由a 3+a 4+a 5=3及等差数列的性质, ∴3a 4=3,则a 4=1.又a 4+a 12=2a 8,得1+a 12=2×8. ∴a 12=16-1=15.(3)a 7b 7=2a 72b 7=a 1+a 13b 1+b 13=a 1+a 132×13b 1+b 132×13=S 13T 13=3×13-22×13+1=3727. 答案 (1)6 057 (2)A (3)A 考点四 等差数列的前n 项和及其最值【例4】 (2019·衡水中学质检)已知数列{a n }的前n 项和为S n ,a 1≠0,常数λ>0,且λa 1a n =S 1+S n 对一切正整数n 都成立. (1)求数列{a n }的通项公式;(2)设a 1>0,λ=100,当n 为何值时,数列⎩⎨⎧⎭⎬⎫lg 1a n 的前n 项和最大? 解 (1)令n =1,得λa 21=2S 1=2a 1,a 1(λa 1-2)=0, 因为a 1≠0,所以a 1=2λ,当n ≥2时,2a n =2λ+S n ,2a n -1=2λ+S n -1,两式相减得2a n -2a n -1=a n (n ≥2). 所以a n =2a n -1(n ≥2),从而数列{a n }为等比数列,a n =a 1·2n -1=2nλ. (2)当a 1>0,λ=100时,由(1)知,a n =2n100,则b n =lg 1a n =lg 1002n =lg 100-lg 2n=2-n lg 2,所以数列{b n }是单调递减的等差数列,公差为-lg 2, 所以b 1>b 2>…>b 6=lg 10026=lg 10064>lg 1=0,当n ≥7时,b n ≤b 7=lg 10027<lg 1=0,所以数列⎩⎨⎧⎭⎬⎫lg 1a n 的前6项和最大.规律方法 求等差数列前n 项和S n 的最值的常用方法:(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn (a ≠0),通过配方或借助图象求二次函数的最值.(2)利用等差数列的单调性,求出其正负转折项,进而求S n 的最值. ①当a 1>0,d <0时,满足⎩⎪⎨⎪⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m (当a m +1=0时,S m +1也为最大值);②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m (当a m +1=0时,S m +1也为最小值).【训练4】 (1)等差数列{a n }的公差d ≠0,且a 3,a 5,a 15成等比数列,若a 5=5,S n 为数列{a n }的前n 项和,则数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和取最小值时的n 为( )A.3B.3或4C.4或5D.5(2)已知等差数列{a n }的首项a 1=20,公差d =-2,则前n 项和S n 的最大值为________.解析 (1)由题意知⎩⎪⎨⎪⎧(a 1+2d )(a 1+14d )=25,a 1+4d =5,由d ≠0,解得a 1=-3,d =2,∴S nn=na 1+n (n -1)2dn=-3+n -1=n -4,则n -4≥0,得n ≥4,∴数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和取最小值时的n 为3或4.(2)因为等差数列{a n }的首项a 1=20,公差d =-2,S n =na 1+n (n -1)2d =20n -n (n -1)2×2=-n 2+21n =-⎝ ⎛⎭⎪⎫n -2122+⎝ ⎛⎭⎪⎫2122,又因为n ∈N *,所以n =10或n =11时,S n 取得最大值,最大值为110. 答案 (1)B (2)110[思维升华]1.证明等差数列可利用定义或等差中项的性质,另外还常用前n 项和S n =An 2+Bn 及通项a n =pn +q 来判断一个数列是否为等差数列. 2.等差数列基本量思想(1)在解有关等差数列的基本量问题时,可通过列关于a 1,d 的方程组进行求解. (2)若奇数个数成等差数列,可设中间三项为a -d ,a ,a +d .若偶数个数成等差数列,可设中间两项为a -d ,a +d ,其余各项再依据等差数列的定义进行对称设元.(3)灵活使用等差数列的性质,可以大大减少运算量. [易错防范]1.用定义法证明等差数列应注意“从第2项起”,如证明了a n +1-a n =d (n ≥2)时,应注意验证a 2-a 1是否等于d ,若a 2-a 1≠d ,则数列{a n }不为等差数列.2.利用二次函数性质求等差数列前n 项和最值时,一定要注意自变量n 是正整数.基础巩固题组 (建议用时:40分钟)一、选择题1.已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( ) A.100B.99C.98D.97解析 设等差数列{a n }的公差为d ,由已知,得⎩⎪⎨⎪⎧9a 1+36d =27,a 1+9d =8,所以⎩⎪⎨⎪⎧a 1=-1,d =1, 所以a 100=a 1+99d =-1+99=98. 答案 C2.(2019·淄博调研)设S n 是等差数列{a n }的前n 项和,若a 6a 5=911,则S 11S 9=( )A.1B.-1C.2D.12 解析 由于S 11S 9=11a 69a 5=119×911=1. 答案 A 3.(2019·中原名校联考)若数列{a n }满足1a n +1-1a n =d (n ∈N *,d 为常数),则称数列{a n }为调和数列,已知数列⎩⎨⎧⎭⎬⎫1x n 为调和数列,且x 1+x 2+…+x 20=200,则x 5+x 16=( )A.10B.20C.30D.40解析 依题意,11x n +1-11x n=x n +1-x n =d , ∴{x n }是等差数列.又x 1+x 2+…+x 20=20(x 1+x 20)2=200. ∴x 1+x 20=20,从而x 5+x 16=x 1+x 20=20.答案 B4.(2019·北京海淀区质检)中国古诗词中,有一道“八子分绵”的数学名题:“九百九十六斤绵,赠分八子作盘缠,次第每人多十七,要将第八数来言”.题意是:把996斤绵分给8个儿子作盘缠,按照年龄从大到小的顺序依次分绵,年龄小的比年龄大的多17斤绵,那么第8个儿子分到的绵是( )A.174斤B.184斤C.191斤D.201斤解析 用a 1,a 2,…,a 8表示8个儿子按照年龄从大到小得到的绵数,由题意得数列a 1,a 2,…,a 8是公差为17的等差数列,且这8项的和为996,∴8a 1+8×72×17=996,解之得a 1=65. ∴a 8=65+7×17=184,即第8个儿子分到的绵是184斤.答案 B5.已知等差数列{a n }的前n 项和为S n ,a 1=9,S 99-S 55=-4,则S n 取最大值时的n 为( ) A.4 B.5 C.6 D.4或5 解析 由{a n }为等差数列,得S 99-S 55=a 5-a 3=2d =-4, 即d =-2,由于a 1=9,所以a n =-2n +11,令a n =-2n +11<0,得n >112, 所以S n 取最大值时的n 为5.答案 B二、填空题6.已知等差数列{a n }的公差为2,项数是偶数,所有奇数项之和为15,所有偶数项之和为25,则这个数列的项数为________.解析 设项数为2n ,则由S 偶-S 奇=nd 得,25-15=2n 解得n =5,故这个数列的项数为10.答案 107.已知数列{a n }满足a 1=1,a n -a n +1=2a n a n +1,则a 6=________. 解析 将a n -a n +1=2a n a n +1两边同时除以a n a n +1,1a n +1-1a n =2. 所以⎩⎨⎧⎭⎬⎫1a n 是以1a 1=1为首项,2为公差的等差数列, 所以1a 6=1+5×2=11,即a 6=111. 答案 1118.设S n 是等差数列{a n }的前n 项和,S 10=16,S 100-S 90=24,则S 100=________. 解析 依题意,S 10,S 20-S 10,S 30-S 20,…,S 100-S 90依次成等差数列,设该等差数列的公差为d .又S 10=16,S 100-S 90=24,因此S 100-S 90=24=16+(10-1)d =16+9d ,解得d =89,因此S 100=10S 10+10×92d =10×16+10×92×89=200. 答案 200三、解答题9.等差数列{a n }中,a 3+a 4=4,a 5+a 7=6.(1)求{a n }的通项公式;(2)设b n =[a n ],求数列{b n }的前10项和,其中[x ]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2.解 (1)设数列{a n }首项为a 1,公差为d ,由题意得⎩⎪⎨⎪⎧2a 1+5d =4,a 1+5d =3.解得⎩⎪⎨⎪⎧a 1=1,d =25.所以{a n }的通项公式为a n =2n +35. (2)由(1)知,b n =⎣⎢⎡⎦⎥⎤2n +35. 当n =1,2,3时,1≤2n +35<2,b n =1; 当n =4,5时,2≤2n +35<3,b n =2; 当n =6,7,8时,3≤2n +35<4,b n =3; 当n =9,10时,4≤2n +35<5,b n =4. 所以数列{b n }的前10项和为1×3+2×2+3×3+4×2=24.10.已知等差数列的前三项依次为a ,4,3a ,前n 项和为S n ,且S k =110.(1)求a 及k 的值;(2)设数列{b n }的通项公式b n =S n n ,证明:数列{b n }是等差数列,并求其前n 项和T n .(1)解 设该等差数列为{a n },则a 1=a ,a 2=4,a 3=3a ,由已知有a +3a =8,得a 1=a =2,公差d =4-2=2,所以S k =ka 1+k (k -1)2·d =2k +k (k -1)2×2=k 2+k , 由S k =110,得k 2+k -110=0,解得k =10或k =-11(舍去),故a =2,k =10.(2)证明 由(1)得S n =n (2+2n )2=n (n +1), 则b n =S n n =n +1,故b n +1-b n =(n +2)-(n +1)=1,即数列{b n }是首项为2,公差为1的等差数列,所以T n =n (2+n +1)2=n (n +3)2.能力提升题组(建议用时:20分钟)11.(2019·济宁模拟)设数列{a n }满足a 1=1,a 2=2,且2na n =(n -1)a n -1+(n +1)a n +1(n ≥2且n ∈N *),则a 18=( )A.259B.269C.3D.289 解析 令b n =na n ,则2b n =b n -1+b n +1(n ≥2),所以{b n }为等差数列,因为b 1=1,b 2=4,所以公差d =3,则b n =3n -2,所以b 18=52,则18a 18=52,所以a 18=269. 答案 B12.(2019·青岛诊断)已知等差数列{a n },{b n }的前n 项和分别为S n ,T n (n ∈N *),若S n T n =2n -1n +1,则a 12b 6=( ) A.154B.158C.237D.3 解析 由题意不妨设S n =n (2n -1),T n =n (n +1),所以a 12=S 12-S 11=12×23-11×21=45,b 6=T 6-T 5=6×(6+1)-5×(5+1)=42-30=12,所以a 12b 6=4512=154. 答案 A13.设数列{a n }的通项公式为a n =2n -10(n ∈N *),则|a 1|+|a 2|+…+|a 15|=________. 解析 由a n =2n -10(n ∈N *)知{a n }是以-8为首项,2为公差的等差数列,又由a n =2n -10≥0得n ≥5,∴n ≤5时,a n ≤0,当n >5时,a n >0,∴|a 1|+|a 2|+…+|a 15|=-(a 1+a 2+a 3+a 4)+(a 5+a 6+…+a 15)=20+110=130. 答案 13014.(2019·长沙雅礼中学模拟)设S n 为等差数列{a n }的前n 项和,已知a 1+a 13=26,S 9=81.(1)求{a n }的通项公式;(2)令b n =1a n +1a n +2,T n =b 1+b 2+…+b n ,若30T n -m ≤0对一切n ∈N *成立,求实数m 的最小值.解 (1)∵等差数列{a n }中,a 1+a 13=26,S 9=81,∴⎩⎪⎨⎪⎧2a 7=26,9a 5=81,解得⎩⎪⎨⎪⎧a 7=13,a 5=9, ∴d =a 7-a 57-5=13-92=2,∴a n =a 5+(n -5)d =9+2(n -5)=2n -1.(2)∵b n =1a n +1a n +2=1(2n +1)(2n +3) =12⎝ ⎛⎭⎪⎫12n +1-12n +3, ∴T n =12⎝ ⎛⎭⎪⎫13-15+15-17+…+12n +1-12n +3 =12⎝ ⎛⎭⎪⎫13-12n +3, ∵12⎝ ⎛⎭⎪⎫13-12n +3随着n 的增大而增大,知{T n }单调递增. 又12n +3>0,∴T n <16,∴m ≥5, ∴实数m 的最小值为5.新高考创新预测15.(多填题)设S n 为等差数列{a n }的前n 项和,满足S 2=S 6,S 55-S 44=2,则a 1=________,公差d =________.解析 由{a n }为等差数列,得数列⎩⎨⎧⎭⎬⎫S n n 是首项为a 1,公差为d 2的等差数列,∵S 55-S 44=2,∴d 2=2⇒d =4,又S 2=S 6⇒2a 1+4=6a 1+6×52×4⇒a 1=-14. 答案 -14 4。
等差数列及其前n项和Word版含答案
等差数列及其前n 项和【课前回顾】1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.这个常数叫做等差数列的公差,符号表示为a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n )2. 3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.4.与等差数列各项的和有关的性质(1)若{a n }是等差数列,则⎩⎨⎧⎭⎬⎫S n n 也成等差数列,其首项与{a n }首项相同,公差是{a n }公差的12. (2)若{a n }是等差数列,S m ,S 2m ,S 3m 分别为{a n }的前m 项,前2m 项,前3m 项的和,则S m ,S 2m -S m ,S 3m -S 2m 成等差数列.(3)关于等差数列奇数项和与偶数项和的性质. ①若项数为2n ,则S 偶-S 奇=nd ,S 奇S 偶=a na n +1. ②若项数为2n -1,则S 偶=(n -1)a n ,S 奇=na n ,S 奇-S 偶=a n ,S 奇S 偶=n n -1. (4)两个等差数列{a n },{b n }的前n 项和S n ,T n 之间的关系为a n b n=S 2n -1T 2n -1.【课前快练】1.在等差数列{}a n 中,若a 2=4,a 4=2,则a 6=( ) A .-1 B .0 C .1D .6解析:选B ∵{}a n 为等差数列,∴2a 4=a 2+a 6,∴a 6=2a 4-a 2=2×2-4=0.2.(2017·全国卷Ⅲ)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( )A .-24B .-3C .3D .8 解析:选A 设等差数列{a n }的公差为d , 因为a 2,a 3,a 6成等比数列,所以a 2a 6=a 23, 即(a 1+d )(a 1+5d )=(a 1+2d )2. 又a 1=1,所以d 2+2d =0. 又d ≠0,则d =-2,所以{a n }前6项的和S 6=6×1+6×52×(-2)=-24.3.已知数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,且a 1=1,a 4=4,则a 10=( )A .-45B .-54C.413D.134解析:选A 设等差数列⎩⎨⎧⎭⎬⎫1a n 的公差为d ,由题意可知,1a 4=1a 1+3d =14,解得d =-14,所以1a 10=1a 1+9d =-54,所以a 10=-45. 4.已知等差数列{a n }的公差d ≠0,且a 3+a 9=a 10-a 8,若a n =0,则n =________. 解析:因为a 3+a 9=a 10-a 8,所以a 1+2d +a 1+8d =a 1+9d -(a 1+7d ), 解得a 1=-4d ,所以a n =-4d +(n -1)d =(n -5)d , 令(n -5)d =0(d ≠0),可解得n =5. 答案:55.在等差数列{a n }中,a n >0,a 7=12a 4+4,S n 为数列{a n }的前n 项和,则S 19=________.解析:设等差数列{a n }的公差为d ,由a 7=12a 4+4,得a 1+6d =12(a 1+3d )+4,即a 1+9d =8,所以a 10=8,因此S 19=19(a 1+a 19)2=19×a 10=19×8=152. 答案:152考点一 等差数列的基本运算1.等差数列运算中方程思想的应用(1)等差数列运算问题的一般求法是设出首项a 1和公差d ,然后由通项公式或前n 项和公式转化为方程(组)求解.(2)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.[易错提醒] 在求解数列基本量运算中,要注意公式使用时的准确性与合理性,更要注意运算的准确性.在遇到一些较复杂的方程组时,要注意整体代换思想的运用,使运算更加便捷.2.等差数列前n 项和公式的应用方法根据不同的已知条件选用两个求和公式,若已知首项和公差,则使用公式S n =na 1+n (n -1)2d ;若已知通项公式,则使用公式S n =n (a 1+a n )2,同时注意与性质“a 1+a n =a 2+a n -1=a 3+a n -2=…”的结合使用.【典型例题】1.若等差数列{a n }的前5项和S 5=25,且a 2=3,则a 7=( ) A .12 B .13 C .14D .15解析:选B 设等差数列{a n }的公差为d , 由S 5=5(a 2+a 4)2,得5(3+a 4)2=25,解得a 4=7,所以7=3+2d ,解得d =2,所以a 7=a 4+3d =7+3×2=13.2.(2017·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .8解析:选C 设等差数列{a n }的公差为d ,则由⎩⎪⎨⎪⎧a 4+a 5=24,S 6=48,得⎩⎪⎨⎪⎧a 1+3d +a 1+4d =24,6a 1+6×52d =48,即⎩⎪⎨⎪⎧2a 1+7d =24,2a 1+5d =16,解得d =4.3.(2018·福州质检)设等差数列{a n }的公差d ≠0,且a 2=-d ,若a k 是a 6与a k +6的等比中项,则k =( )A .5B .6C .9D .11解析:选C 因为a k 是a 6与a k +6的等比中项, 所以a 2k =a 6a k +6.又等差数列{a n }的公差d ≠0,且a 2=-d , 所以[a 2+(k -2)d ]2=(a 2+4d )[a 2+(k +4)d ], 所以(k -3)2=3(k +3),解得k =9,或k =0(舍去),故选C.4.设S n 为等差数列{a n }的前n 项和,若a 12=-8,S 9=-9,则S 16=________. 解析:设等差数列{a n }的首项为a 1,公差为d , 由已知,得⎩⎪⎨⎪⎧a 12=a 1+11d =-8,S 9=9a 1+9×82d =-9,解得⎩⎪⎨⎪⎧a 1=3,d =-1. ∴S 16=16×3+16×152×(-1)=-72.答案:-72考点二 等差数列的判定与证明等差数列的判定与证明方法用定义证明等差数列时,容易漏掉对起始项的检验,从而产生错解.比如,对于满足a n -a n -1=1(n ≥3)的数列{a n }而言并不能判定其为等差数列,因为不能确定起始项a 2-a 1是否等于1.【典型例题】(2018·贵州适应性考试)已知数列{a n }满足a 1=1,且na n +1-(n +1)a n =2n 2+2n . (1)求a 2,a 3;(2)证明数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,并求{a n }的通项公式.[思维路径](1)要求数列的项,可根据已知首项和递推关系式,令n =1,2可解得.(2)证明⎩⎨⎧⎭⎬⎫a n n 是等差数列,其关键应推出a n +1n +1-a n n 为常数,对所给条件进行必要的变形即可.解:(1)由已知,得a 2-2a 1=4, 则a 2=2a 1+4,又a 1=1,所以a 2=6. 由2a 3-3a 2=12,得2a 3=12+3a 2,所以a 3=15.(2)证明:由已知na n +1-(n +1)a n =2n 2+2n , 得na n +1-(n +1)a n n (n +1)=2,即a n +1n +1-a nn=2,所以数列⎩⎨⎧⎭⎬⎫a n n 是首项a 11=1,公差d =2的等差数列.则a nn =1+2(n -1)=2n -1,所以a n =2n 2-n .【针对训练】1.(2018·陕西质检)已知数列{a n }的前n 项和S n =an 2+bn (a ,b ∈R)且a 2=3,a 6=11,则S 7等于( )A .13B .49C .35D .63解析:选B 由S n =an 2+bn (a ,b ∈R)可知数列{a n }是等差数列,所以S 7=7(a 1+a 7)2=7(a 2+a 6)2=49.2.已知数列{a n }中,a 1=2,a n =2-1a n -1(n ≥2,n ∈N *),设b n =1a n -1(n ∈N *).求证:数列{b n }是等差数列.证明:∵a n =2-1a n -1(n ≥2), ∴a n +1=2-1a n.∴b n +1-b n =1a n +1-1-1a n -1=12-1a n-1-1a n -1=a n -1a n -1=1, ∴{b n }是首项为b 1=12-1=1,公差为1的等差数列.考点三 等差数列的性质及前n 项和的最值1.应用等差数列的性质解题的2个注意点(1)如果{a n }为等差数列,m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *).因此,若出现a m -n ,a m ,a m +n 等项时,可以利用此性质将已知条件转化为与a m (或其他项)有关的条件;若求a m 项,可由a m =12(a m -n +a m +n )转化为求a m -n ,a m +n 或a m +n +a m -n 的值.(2)要注意等差数列通项公式及前n 项和公式的灵活应用,如a n =a m +(n -m )d ,d =a n -a m n -m,S 2n -1=(2n -1)a n ,S n =n (a 1+a n )2=n (a 2+a n -1)2(n ,m ∈N *)等.2.求等差数列前n 项和S n 最值的2种方法(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解.(2)邻项变号法:①当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .3.理清等差数列的前n 项和与函数的关系 等差数列的前n 项和公式为S n =na 1+n (n -1)2d 可变形为S n =d 2n 2+⎝⎛⎭⎫a 1-d 2n ,令A =d2,B =a 1-d2,则S n =An 2+Bn .当A ≠0,即d ≠0时,S n 是关于n 的二次函数,(n ,S n )在二次函数y =Ax 2+Bx 的图象上,即为抛物线y =Ax 2+Bx 上一群孤立的点.利用此性质可解决前n 项和S n 的最值问题.【典型例题】1.在等差数列{a n}中,a1=29,S10=S20,则数列{a n}的前n项和S n的最大值为() A.S15B.S16C.S15或S16D.S17解析:选A∵a1=29,S10=S20,∴10a1+10×92d=20a1+20×192d,解得d=-2,∴S n=29n+n(n-1)2×(-2)=-n2+30n=-(n-15)2+225.∴当n=15时,S n取得最大值.2.已知函数f(x)的图象关于直线x=-1对称,且f(x)在(-1,+∞)上单调,若数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),则数列{a n}的前100项的和为() A.-200 B.-100C.-50 D.0[学审题]①由函数的对称性及单调性知f(x)在(-∞,-1)上也单调;②结合函数的性质知a50+a51=-2.解析:选B因为函数f(x)的图象关于直线x=-1对称,又函数f(x)在(-1,+∞)上单调,所以f(x)在(-∞,-1)上也单调,且数列{a n}是公差不为0的等差数列.又f(a50)=f(a51),所以a50+a51=-2,所以S100=100(a1+a100)2=50(a50+a51)=-100.【针对训练】1.(2018·岳阳模拟)在等差数列{a n}中,如果a1+a2=40,a3+a4=60,那么a7+a8=() A.95B.100C.135 D.80解析:选B由等差数列的性质可知,a1+a2,a3+a4,a5+a6,a7+a8构成新的等差数列,于是a7+a8=(a1+a2)+(4-1)[(a3+a4)-(a1+a2)]=40+3×20=100.2.设等差数列{a n}的前n项和为S n,且a1>0,a3+a10>0,a6a7<0,则满足S n>0的最大自然数n的值为()A.6 B.7C.12 D.13解析:选C因为a1>0,a6a7<0,所以a6>0,a7<0,等差数列的公差小于零,又a3+a10=a1+a12>0,a1+a13=2a7<0,所以S12>0,S13<0,所以满足S n>0的最大自然数n的值为12.3.设等差数列{a n }的前n 项和为S n ,已知前6项和为36,最后6项的和为180,S n =324(n >6),则数列{a n }的项数为________.解析:由题意知a 1+a 2+…+a 6=36,① a n +a n -1+a n -2+…+a n -5=180,②①+②得(a 1+a n )+(a 2+a n -1)+…+(a 6+a n -5)=6(a 1+a n )=216, ∴a 1+a n =36, 又S n =n (a 1+a n )2=324, ∴18n =324,∴n =18. 答案:18【课后演练】1.已知等差数列{a n }的前n 项和为S n ,若a 1=2,a 8+a 10=28,则S 9=( ) A .36 B .72 C .144D .288解析:选B 法一:∵a 8+a 10=2a 1+16d =28,a 1=2, ∴d =32,∴S 9=9×2+9×82×32=72.法二:∵a 8+a 10=2a 9=28,∴a 9=14, ∴S 9=9(a 1+a 9)2=72. 2.若等差数列{a n }的前n 项和为S n ,且满足a 2+S 3=4,a 3+S 5=12,则a 4+S 7的值是( )A .20B .36C .24D .72解析:选C 由a 2+S 3=4及a 3+S 5=12,得⎩⎪⎨⎪⎧ 4a 1+4d =4,6a 1+12d =12,解得⎩⎪⎨⎪⎧a 1=0,d =1,∴a 4+S 7=8a 1+24d =24.3.已知数列{a n }满足a 1=15,且3a n +1=3a n -2.若a k ·a k +1<0,则正整数k =( ) A .21 B .22 C .23D .24解析:选C 由3a n +1=3a n -2⇒a n +1-a n =-23⇒{a n }是等差数列,则a n =473-23n .∵a k ·a k+1<0,∴⎝⎛⎭⎫473-23k ⎝⎛⎭⎫453-23k <0,∴452<k <472,又∵k ∈N *,∴k =23.4.已知数列{a n }的首项为3,{b n }为等差数列,且b n =a n +1-a n (n ∈N *),若b 3=-2,b 2=12,则a 8=( )A .0B .-109C .-181D .121解析:选B 设等差数列{b n }的公差为d ,则d =b 3-b 2=-14,因为a n +1-a n =b n ,所以a 8-a 1=b 1+b 2+…+b 7=7(b 1+b 7)2=7b 4=7×(-2-14)=-112,又a 1=3,所以a 8=-109.5.在数列{a n }中,a 1=3,a n +1=3a na n +3,则a 4=( ) A.34 B .1 C.43D.32解析:选A 依题意得1a n +1=a n +33a n =1a n +13,1a n +1-1a n =13,故数列⎩⎨⎧⎭⎬⎫1a n 是以1a 1=13为首项、13为公差的等差数列,则1a n =13+n -13=n 3,a n =3n ,a 4=34.6.已知数列{a n }满足a n +1-a n =2,a 1=-5,则|a 1|+|a 2|+…+|a 6|=( ) A .9 B .15 C .18D .30解析:选C 由a n +1-a n =2可得数列{a n }是等差数列,公差d =2,又a 1=-5,所以a n =2n -7,所以|a 1|+|a 2|+|a 3|+|a 4|+|a 5|+|a 6|=5+3+1+1+3+5=18.7.(2016·北京高考)已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6=________.解析:∵a 3+a 5=2a 4,∴a 4=0. ∵a 1=6,a 4=a 1+3d ,∴d =-2. ∴S 6=6a 1+6×(6-1)2d =6×6-30=6.答案:68.等差数列{a n }中,已知a 5>0,a 4+a 7<0,则{a n }的前n 项和S n 的最大值为________.解析:∵⎩⎪⎨⎪⎧ a 4+a 7=a 5+a 6<0,a 5>0,∴⎩⎪⎨⎪⎧a 5>0,a 6<0,∴S n 的最大值为S 5. 答案:S 59.若等差数列{a n }的前17项和S 17=51,则a 5-a 7+a 9-a 11+a 13=________.解析:因为S 17=a 1+a 172×17=17a 9=51,所以a 9=3. 根据等差数列的性质知a 5+a 13=a 7+a 11, 所以a 5-a 7+a 9-a 11+a 13=a 9=3. 答案:310.在等差数列{a n }中,公差d =12,前100项的和S 100=45,则a 1+a 3+a 5+…+a 99=________.解析:因为S 100=1002(a 1+a 100)=45,所以a 1+a 100=910, a 1+a 99=a 1+a 100-d =25,则a 1+a 3+a 5+…+a 99=502(a 1+a 99)=502×25=10. 答案:1011.已知S n 是数列{a n }的前n 项和,且S n +1=S n +a n +3,a 4+a 5=23,则S 8=( ) A .72 B .88 C .92D .98解析:选C 法一:由S n +1=S n +a n +3,得a n +1-a n =3,故数列{a n }是公差为3的等差数列,又a 4+a 5=23=2a 1+7d =2a 1+21,∴a 1=1,S 8=8a 1+8×72d =92.法二:由S n +1=S n +a n +3,得a n +1-a n =3,故数列{a n }是公差为3的等差数列,S 8=8(a 1+a 8)2=8(a 4+a 5)2=92. 12.在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增一十三里;驽马初日行九十七里,日减半里,良马先至齐,复还迎驽马,二马相逢,问:几日相逢( )A .8日B .9日C .12日D .16日解析:选B 设n 日相逢,则依题意得103n +n (n -1)2×13+97n +n (n -1)2×⎝⎛⎭⎫-12=1125×2,整理得n 2+31n -360=0, 解得n =9(负值舍去),故选B.13.等差数列{a n }的前n 项和为S n ,其中n ∈N *,则下列命题错误的是( ) A .若a n >0,则S n >0 B .若S n >0,则a n >0C .若a n >0,则{S n }是单调递增数列D .若{S n }是单调递增数列,则a n >0解析:选D 由等差数列的性质可得:∀n ∈N *,a n >0,则S n >0,反之也成立.a n >0,d >0,则{S n }是单调递增数列.因此A 、B 、C 正确.对于D ,{S n }是单调递增数列,则d >0,而a n >0不一定成立.14.在等差数列{a n }中,a 1=7,公差为d ,前 n 项和为S n ,当且仅当n =8 时S n 取得最大值,则d 的取值范围为________.解析:由题意,当且仅当n =8时S n 有最大值,可得⎩⎪⎨⎪⎧ d <0,a 8>0,a 9<0,即⎩⎪⎨⎪⎧ d <0,7+7d >0,7+8d <0,解得-1<d <-78. 答案:⎝⎛⎭⎫-1,-78 15.设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则m =________. 解析:因为等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3, 所以a m =S m -S m -1=2,a m +1=S m +1-S m =3,数列的公差d =1,a m +a m +1=S m +1-S m -1=5,即2a 1+2m -1=5,所以a 1=3-m .由S m =(3-m )m +m (m -1)2×1=0, 解得m =5.答案:516.已知数列{a n }的前n 项和为S n ,且S n =2n -1(n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =log 4a n +1,求{b n }的前n 项和T n .解:(1)当n ≥2时,a n =S n -S n -1=2n -1, 当n =1时,a 1=2-1=1,满足a n =2n -1, ∴数列{a n }的通项公式为a n =2n -1(n ∈N *). (2)由(1)得,b n =log 4a n +1=n +12, 则b n +1-b n =n +22-n +12=12, ∴数列{b n }是首项为1,公差d =12的等差数列,∴T n =nb 1+n (n -1)2d =n 2+3n 4. 17.已知递增等差数列{a n }的前n 项和为S n ,且a 2a 3=15,S 4=16.(1)求数列{a n }的通项公式以及S n 的表达式;(2)若数列{b n }满足:b 1=1,b n +1-b n =1a n a n +1,求数列{b n }的通项公式. 解:(1)设数列{a n }的公差为d (d >0), 则⎩⎪⎨⎪⎧ a 2a 3=(a 1+d )(a 1+2d )=15,S 4=4a 1+6d =16, 解得⎩⎪⎨⎪⎧ a 1=1,d =2或⎩⎪⎨⎪⎧a 1=7,d =-2(舍去), ∴a n =1+2(n -1)=2n -1,S n =n (1+2n -1)2=n 2,n ∈N *. (2)由(1)知,b n +1-b n =1a n a n +1=1(2n -1)(2n +1)=12⎛⎭⎫12n -1-12n +1, b n -b 1=(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1)=12⎣⎡⎦⎤⎝⎛⎭⎫1-13+⎝⎛⎭⎫13-15+…+⎝⎛⎭⎫12n -3-12n -1=12⎝⎛⎭⎫1-12n -1=n -12n -1(n ≥2),∴b n =3n -22n -1. 当n =1时,b 1=1也符合上式, ∴b n =3n -22n -1(n ∈N *). 18.已知数列{a n }满足,a n +1+a n =4n -3(n ∈N *).(1)若数列{a n }是等差数列,求a 1的值;(2)当a 1=2时,求数列{a n }的前n 项和S n . 解:(1)法一:∵数列{a n }是等差数列, ∴a n =a 1+(n -1)d ,a n +1=a 1+nd . 由a n +1+a n =4n -3,得a 1+nd +a 1+(n -1)d =4n -3, ∴2dn +(2a 1-d )=4n -3,即2d =4,2a 1-d =-3,解得d =2,a 1=-12. 法二:在等差数列{a n }中,由a n +1+a n =4n -3, 得a n +2+a n +1=4(n +1)-3=4n +1,∴2d =a n +2-a n =4n +1-(4n -3)=4,∴d =2.又∵a 1+a 2=2a 1+d =2a 1+2=1,∴a 1=-12. (2)由题意知,①当n 为奇数时, S n =a 1+a 2+a 3+…+a n=a 1+(a 2+a 3)+(a 4+a 5)+…+(a n -1+a n )=2+4[2+4+…+(n -1)]-3×n -12=2n 2-3n +52. ②当n 为偶数时,S n =a 1+a 2+a 3+…+a n =(a 1+a 2)+(a 3+a 4)+…+(a n -1+a n ) =1+9+…+(4n -7)=2n 2-3n 2. 综上,S n =⎩⎨⎧2n 2-3n +52,n 为奇数,2n 2-3n 2,n 为偶数.。
等差数列的前n项和习题(含答案)
[A 基础达标]1.记等差数列{a n }的前n 项和为S n ,若S 4=20,S 2=4,则公差d 为( )A .2B .3C .6D .7解析:选B.由⎩⎪⎨⎪⎧S 2=4,S 4=20得⎩⎪⎨⎪⎧2a 1+d =4,4a 1+6d =20,解得⎩⎪⎨⎪⎧a 1=12,d =3.2.已知数列{a n }为等差数列,a 10=10,数列前10项和S 10=70,则公差d =( )A .-23B .-13 C.13 D .23解析:选D.由S 10=10(a 1+a 10)2,得70=5(a 1+10),解得a 1=4,所以d =a 10-a 110-1=10-49=23,故选D. 3.在等差数列{a n }中,a 1+a 2+a 3=-24,a 18+a 19+a 20=78,则此数列前20项和等于( )A .160B .180C .200D .220解析:选B.(a 1+a 2+a 3)+(a 18+a 19+a 20)=(-24)+78=54,又a 1+a 20=a 2+a 19=a 3+a 18,则3(a 1+a 20)=54,所以a 1+a 20=18.则S 20=20(a 1+a 20)2=10×18=180. 4.已知数列{a n }的前n 项和公式是S n =2n 2+3n ,则⎩⎨⎧⎭⎬⎫S n n ( ) A .是公差为2的等差数列B .是公差为3的等差数列C .是公差为4的等差数列D .不是等差数列解析:选A.因为S n =2n 2+3n ,所以S n n=2n +3, 当n ≥2时,S n n -S n -1n -1=2n +3-2(n -1)-3=2, 故⎩⎨⎧⎭⎬⎫S n n 是公差为2的等差数列. 5.等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若a n b n =2n 3n +1,则S 21T 21的值为( ) A.1315B .2335 C.1117 D .49解析:选C.S 21T 21=21(a 1+a 21)221(b 1+b 21)2=a 1+a 21b 1+b 21=a 11b 11=2×113×11+1=1117. 6.若等差数列{a n }的前n 项和为S n =An 2+Bn ,则该数列的公差为________.解析:数列{a n }的前n 项和为S n =An 2+Bn ,所以当n ≥2时,a n =S n -S n -1=An 2+Bn -A (n -1)2-B (n -1)=2An +B -A ,当n =1时满足,所以d =2A .答案:2A7.等差数列{a n }的前n 项和为S n ,且6S 5-5S 3=5,则a 4=________.解析:设等差数列的首项为a 1,公差为d ,则由6S 5-5S 3=5知,6×(5a 1+10d )-5(3a 1+3d )=5,得3(a 1+3d )=1,所以a 4=13. 答案:138.若等差数列{a n }满足3a 8=5a 13,且a 1>0,S n 为其前n 项和,则S n 最大时n =________.解析:因为3a 8=5a 13,所以3(a 1+7d )=5(a 1+12d ),所以d =-2a 139,故a n =a 1+(n -1)d =a 1-2a 139(n -1)=a 139(41-2n ).由a 1>0可得当n ≤20时,a n >0,当n >20时,a n <0,所以S n 最大时n =20.答案:209.已知在等差数列{a n }中,a 1=1,a 3=-3.(1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-35,求k 的值.解:(1)设等差数列{a n }的公差为d .由a 1=1,a 3=-3,可得1+2d =-3,解得d =-2.所以a n =1+(n -1)×(-2)=3-2n .(2)由a 1=1,d =-2,得S n =2n -n 2.又S k =-35,则2k -k 2=-35,即k 2-2k -35=0,解得k =7或k =-5.又k ∈N +,故k =7.10.某仓库有同一型号的圆钢600根,堆放成如图所示的形状,从第二层开始,每一层比下面一层少放一根,而第一层至少要比第二层少一根,要使堆垛的占地面积最小(即最下面一层根数最少),则最下面一层放几根?共堆了多少层?解:设最下面一层放n 根,则最多可堆n 层,则1+2+3+…+n =n (n +1)2≥600, 所以n 2+n -1 200≥0,记f (n )=n 2+n -1 200,因为当n ∈N +时,f (n )单调递增,而f (35)=60>0,f (34)=-10<0,所以n ≥35,因此最下面一层最少放35根.因为1+2+3+…+35=630,所以最多可堆放630根,必须去掉上面30根,去掉顶上7层,共1+2+3+…+7=28根,再去掉顶上第8层的2根,剩下的600根共堆了28层.[B 能力提升]11.等差数列{a n }的前四项之和为124,后四项之和为156,各项和为210,则此数列的项数为( )A .5B .6C .7D .8解析:选B.由题意知a 1+a 2+a 3+a 4=124,a n +a n -1+a n -2+a n -3=156,所以4(a 1+a n )=280,所以a 1+a n =70.又S n =n (a 1+a n )2=n 2×70=210,所以n =6. 12.若两个等差数列的前n 项和之比是(7n +1)∶(4n +27),则它们的第11项之比为____________.解析:设等差数列{a n }的前n 项和为S n ,等差数列{b n }的前n 项和为T n ,则a 11=a 1+a 212,b 11=b 1+b 212, 所以a 11b 11=12(a 1+a 21)12(b 1+b 21)=12(a 1+a 21)·2112(b 1+b 21)·21=S 21T 21=7×21+14×21+27=43. 答案:4∶313.已知数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n ⎝⎛⎭⎫S n -12. (1)证明:数列⎩⎨⎧⎭⎬⎫1S n 为等差数列,并求S n 的表达式; (2)设b n =S n 2n +1,求{b n }的前n 项和T n . 解:(1)由题意S 2n =a n ⎝⎛⎭⎫S n -12,结合a n =S n -S n -1(n ≥2)得S 2n =(S n -S n -1)⎝⎛⎭⎫S n -12(n ≥2),化简整理得1S n -1S n -1=2(n ≥2),知数列⎩⎨⎧⎭⎬⎫1S n 为公差为2的等差数列,所以1S n =1S 1+(n -1)×2=1+(n -1)×2=2n -1,所以S n =12n -1. (2)b n =S n 2n +1=12×⎝⎛⎭⎫12n -1-12n +1, 所以T n =b 1+b 2+…+b n=12⎝⎛1-13+13-15+…+12n -1- ⎭⎫12n +1=12⎝⎛⎭⎫1-12n +1=n 2n +1.14.(选做题)已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足a 3·a 4=117,a 2+a 5=22.(1)求数列{a n }的通项公式;(2)求S n 的最小值;(3)若数列{b n }是等差数列,且b n =S n n +c,求非零常数c 的值. 解:(1)因为数列{a n }为等差数列,所以a 3+a 4=a 2+a 5=22.又a 3·a 4=117,所以a 3,a 4是方程x 2-22x +117=0的两实根,又公差d >0,所以a 3<a 4,所以a 3=9,a 4=13,从而可得a 1=1,d =4,所以a n =4n -3.(2)由(1)知a 1=1,d =4,所以S n =na 1+n (n -1)2·d =2n 2-n =2⎝⎛⎭⎫n -142-18,所以当n =1时,S n 最小,最小值为S 1=a 1=1.(3)由(2)知S n =2n 2-n ,所以b n =S n n +c =2n 2-n n +c , 所以b 1=11+c ,b 2=62+c ,b 3=153+c .因为数列{b n }是等差数列,所以2b 2=b 1+b 3,即62+c ×2=11+c +153+c ,得2c 2+c =0,所以c =-12或c =0(舍去),所以c =-12.。
2022年高考数学(文)一轮复习文档:第五章 数列 第2讲等差数列及其前n项和 Word版含答案
第2讲 等差数列及其前n 项和,)1.等差数列的有关概念 (1)定义假如一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式(1)通项公式:a n =a 1+(n -1)d .(2)前n 项和公式:S n =na 1+n (n -1)2d =(a 1+a n )n2.3.等差数列的性质已知数列{a n }是等差数列,S n 是其前n 项和. (1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *). (2)若k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }的公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{b n }是等差数列,则{pa n +qb n }也是等差数列. (5)数列S m ,S 2m -S m ,S 3m -S 2m ,…构成等差数列.1.辨明两个易误点(1)要留意概念中的“从第2项起”.假如一个数列不是从第2项起,而是从第3项或第4项起,每一项与它前一项的差是同一个常数,那么此数列不是等差数列.(2)留意区分等差数列定义中同一个常数与常数的区分. 2.妙设等差数列中的项若奇数个数成等差数列,可设中间三项为a -d ,a ,a +d ;若偶数个数成等差数列,可设中间两项为a -d ,a +d ,其余各项再依据等差数列的定义进行对称设元. 3.等差数列的四种推断方法(1)定义法:a n +1-a n =d (d 是常数)⇔{a n }是等差数列. (2)等差中项法:2a n +1=a n +a n +2(n ∈N *)⇔{a n }是等差数列. (3)通项公式法:a n =pn +q (p ,q 为常数)⇔{a n }是等差数列.(4)前n 项和公式法:S n =An 2+Bn (A 、B 为常数)⇔{a n }是等差数列.1.教材习题改编 等差数列11,8,5,…,中-49是它的第几项( ) A .第19项 B .第20项 C .第21项D .第22项C a 1=11,d =8-11=-3, 所以a n =11+(n -1)×(-3)=-3n +14. 由-3n +14=-49,得n =21.故选C.2.教材习题改编 已知p :数列{a n }是等差数列,q :数列{a n }的通项公式a n =k 1n +k 2(k 1,k 2均为常数),则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件C 若{a n }是等差数列,不妨设公差为d . 所以a n =a 1+(n -1)d =dn +a 1-d , 令k 1=d ,k 2=a 1-d ,则a n =k 1n +k 2,若数列{a n }的通项公式a n =k 1n +k 2(k 1,k 2为常数,n ∈N *), 则当n ≥2且n ∈N *时,a n -1=k 1(n -1)+k 2, 所以a n -a n -1=k 1(常数)(n ≥2且n ∈N *), 所以{a n }为等差数列, 所以p 是q 的充要条件.3.教材习题改编 等差数列{a n }的前n 项之和为S n ,若a 5=6,则S 9为( ) A .45 B .54 C .63D .27B 法一:由于S 9=9(a 1+a 9)2=9a 5=9×6=54.故选B.法二:由a 5=6,得a 1+4d =6,所以S 9=9a 1+9×82d =9(a 1+4d )=9×6=54,故选B.4.(2021·金丽衢十二校联考)已知等差数列{a n }满足:a 3=13,a 13=33,则数列{a n }的公差为________.设等差数列{a n }的公差为d ,则d =a 13-a 313-3=33-1310=2.25.设S n 为等差数列{a n }的前n 项和,a 12=-8,S 9=-9,则S 16=________. 设等差数列{a n }的首项为a 1,公差为d ,由已知,得⎩⎪⎨⎪⎧a 12=a 1+11d =-8,S 9=9a 1+9d ×82=-9,解得⎩⎪⎨⎪⎧a 1=3,d =-1. 所以S 16=16×3+16×152×(-1)=-72.-72等差数列的基本运算(高频考点)等差数列基本量的计算是高考的常考内容,多消灭在选择题、填空题或解答题的第(1)问中,属简洁题. 高考对等差数列基本量计算的考查主要有以下三个命题角度: (1)求公差d 、项数n 或首项a 1; (2)求通项或特定项; (3)求前n 项和.(1)(2021·高考全国卷Ⅰ)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=( )A .172B .192C .10D .12(2)设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S n +2-S n =36,则n =( ) A .5B .6C .7D .8【解析】 (1)由于公差为1,所以S 8=8a 1+8×(8-1)2×1=8a 1+28,S 4=4a 1+6.由于 S 8=4S 4,所以8a 1+28=4(4a 1+6),解得a 1=12,所以a 10=a 1+9d =12+9=192,故选B.(2)法一:由题知S n =na 1+n (n -1)2d =n +n (n -1)=n 2,S n +2=(n +2)2,由S n +2-S n =36得,(n +2)2-n 2=4n +4=36,所以n =8.法二:S n +2-S n =a n +1+a n +2=2a 1+(2n +1)d =2+2(2n +1)=36,解得n =8. 【答案】 (1)B (2)D等差数列基本运算的解题方法(1)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想来解决问题.(2)数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.角度一 求公差d 、项数n 或首项a 11.(2021·豫东、豫北十所名校联考)已知等差数列{a n }中,a 5=13,S 5=35,则公差d =( ) A .-2 B .-1 C .1D .3D 依题意,得⎩⎪⎨⎪⎧a 1+4d =13,5a 1+10d =35,解得⎩⎪⎨⎪⎧a 1=1,d =3,故选D.角度二 求通项或特定项2.(2022·高考全国卷乙)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( ) A .100 B .99 C .98D .97C 设等差数列{a n }的公差为d ,由于{a n }为等差数列,且S 9=9a 5=27,所以a 5=3.又a 10=8,解得5d =a 10-a 5=5,所以d =1,所以a 100=a 5+95d =98,选C.角度三 求前n 项和3.已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于________.由a 1=1,a n =a n -1+12(n ≥2),可知数列{a n }是首项为1,公差为12的等差数列,故S 9=9a 1+9×(9-1)2×12=9+18=27. 27等差数列的判定与证明已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数. (1)证明:a n +2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由.【解】 (1)证明:由题设知a n a n +1=λS n -1,a n +1a n +2=λS n +1-1,两式相减得a n +1(a n +2-a n )=λa n +1, 由于a n +1≠0, 所以a n +2-a n =λ.(2)由题设知a 1=1,a 1a 2=λS 1-1, 可得a 2=λ-1. 由(1)知,a 3=λ+1. 令2a 2=a 1+a 3,解得λ=4. 故a n +2-a n =4,由此可得{a 2n -1}是首项为1, 公差为4的等差数列,a 2n -1=4n -3;{a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1. 所以a n =2n -1,a n +1-a n =2, 因此存在λ=4, 使得数列{a n }为等差数列.(1)推断证明一个数列是否是等差数列的解答题,常用定义法和等差中项法,而通项公式法和前n 项和公式法主要适用于选择题、填空题中的简洁推断.(2)用定义证明等差数列时,常接受两个式子a n +1-a n =d 和a n -a n -1=d ,但它们的意义不同,后者必需加上“n ≥2”,否则n =1时,a 0无定义.已知数列{a n }中,a 1=2,a n =2-1a n -1(n ≥2,n ∈N *).设b n =1a n -1(n ∈N *),求证:数列{b n }是等差数列.由于a n =2-1a n -1,所以a n +1=2-1a n.所以b n +1-b n =1a n +1-1-1a n -1,=12-1a n-1-1a n -1,=a n -1a n -1=1, 所以{b n }是首项为b 1=12-1=1,公差为1的等差数列.等差数列的性质及最值(1)在等差数列{a n }中,a 3+a 9=27-a 6,S n 表示数列{a n }的前n 项和,则S 11=( ) A .18 B .99 C .198D .297(2)已知{a n },{b n }都是等差数列,若a 1+b 10=9,a 3+b 8=15,则a 5+b 6=________.(3)在等差数列{a n }中,a 1=7,公差为d ,前n 项和为S n ,当且仅当n =8时S n 取得最大值,则d 的取值范围为________.【解析】 (1)由于a 3+a 9=27-a 6,2a 6=a 3+a 9,所以3a 6=27,所以a 6=9,所以S 11=112(a 1+a 11)=11a 6=99.(2)由于{a n },{b n }都是等差数列,所以2a 3=a 1+a 5,2b 8=b 10+b 6,所以2(a 3+b 8)=(a 1+b 10)+(a 5+b 6),即2×15=9+(a 5+b 6),解得a 5+b 6=21.(3)当且仅当n =8时,S n 取得最大值,说明⎩⎪⎨⎪⎧a 8>0,a 9<0.所以⎩⎪⎨⎪⎧7+7d >0,7+8d <0.所以-1<d <-78.【答案】 (1)B (2)21 (3)⎝⎛⎭⎪⎫-1,-78应用等差数列的性质应留意的两点(1)在等差数列{a n }中,若m +n =p +q =2k (m 、n 、p 、q 、k ∈N *),则a m +a n =a p +a q =2a k 是常用的性质. (2)把握等差数列的性质,悉心争辩每共性质的使用条件及应用方法,认真分析项数、序号、项的值的特征,这是解题的突破口.1.已知等差数列{a n }的公差为2,项数是偶数,全部奇数项之和为15,全部偶数项之和为25,则这个数列的项数为( )A .10B .20C .30D .40A 设这个数列有2n 项,则由等差数列的性质可知:偶数项之和减去奇数项之和等于nd ,即25-15=2n ,故2n =10,即数列的项数为10.2.在等差数列{a n }中,a 1=29,S 10=S 20,则数列{a n }的前n 项和S n 的最大值为( ) A .S 15B .S 16C .S 15或S 16D .S 17A 设{a n }的公差为d , 由于a 1=29,S 10=S 20,所以10a 1+10×92d =20a 1+20×192d ,解得d =-2,所以S n =29n +n (n -1)2×(-2)=-n 2+30n =-(n -15)2+225.所以当n =15时,S n 取得最大值.3.(2021·陕西省五校模拟)等差数列{a n }中,假如 a 1+a 4+a 7=39,a 3+a 6+a 9=27,则数列{a n }前9项的和为( )A .297B .144C .99D .66C 由等差数列的性质可知,2(a 2+a 5+a 8)=(a 1+a 4+a 7)+(a 3+a 6+a 9)=39+27=66, 所以a 2+a 5+a 8=33,所以数列{a n }前9项的和为66+33=99.,)——整体思想在等差数列中的应用在等差数列{a n }中,S 10=100,S 100=10,则S 110=________. 【解析】 法一:设数列{a n }的公差为d ,首项为a 1,则⎩⎪⎨⎪⎧10a 1+10×92d =100,100a 1+100×992d =10,解得⎩⎪⎨⎪⎧a 1=1 099100,d =-1150.所以S 110=110a 1+110×1092d =-110.法二:法一中两方程相减得 -90a 1-100×99-902d =90,所以a 1+110-12d =-1,所以S 110=110a 1+110(110-1)2d =-110.法三:由于S 100-S 10=(a 11+a 100)×902=-90,所以a 11+a 100=-2,所以S 110=(a 1+a 110)×1102=(a 11+a 100)×1102=-110.【答案】 -110(1)法一是利用等差数列的前n 项和公式求解基本量,然后求和,是等差数列运算问题的常规思路.而法二、法三都突出了整体思想,分别把a 1+110-12d 、a 11+a 100看成了一个整体,解起来都很便利.(2)整体思想是一种重要的解题方法和技巧,这就要求同学要娴熟把握公式,理解其结构特征.已知{a n }为等差数列,若a 1+a 2+a 3=5,a 7+a 8+a 9=10,则a 19+a 20+a 21=________.法一:设数列{a n }的公差为d ,则a 7+a 8+a 9=a 1+6d +a 2+6d +a 3+6d =5+18d =10,所以18d =5,故a 19+a 20+a 21=a 7+12d +a 8+12d +a 9+12d =10+36d =20.法二:由等差数列的性质,可知S 3,S 6-S 3,S 9-S 6,…,S 21-S 18成等差数列,设此数列公差为D . 所以5+2D =10, 所以D =52.所以a 19+a 20+a 21=S 21-S 18=5+6D =5+15=20. 20,)1.若等差数列{a n }的前5项之和S 5=25,且a 2=3,则a 7=( ) A .12 B .13 C .14D .15B 设{a n }的公差为d ,由S 5=(a 2+a 4)·52⇒25=(3+a 4)·52⇒a 4=7,所以7=3+2d ⇒d =2,所以a 7=a 4+3d =7+3×2=13.2.在单调递增的等差数列{a n }中,若a 3=1,a 2a 4=34,则a 1=( )A .-1B .0C .14D .12B 由题知,a 2+a 4=2a 3=2, 又由于a 2a 4=34,数列{a n }单调递增,所以a 2=12,a 4=32.所以公差d =a 4-a 22=12.所以a 1=a 2-d =0. 3.在等差数列{a n }中,a 3+a 5+a 11+a 17=4,且其前n 项和为S n ,则S 17为( ) A .20 B .17 C .42D .84B 由a 3+a 5+a 11+a 17=4⇒2(a 4+a 14)=4⇒a 1+a 17=2,故S 17=17(a 1+a 17)2=17.4.(2021·东北三校联考(一))已知数列{a n }的首项为3,{b n }为等差数列,且b n =a n +1-a n (n ∈N *),若b 3=-2,b 2=12,则a 8=( )A .0B .-109C .-181D .121B 设等差数列{b n }的公差为d ,则d =-14,由于a n +1-a n =b n ,所以a 8-a 1=b 1+b 2+…+b 7=7(b 1+b 7)2=72=-112,则a 8=-109. 5.(2021·黄冈质检)在等差数列{a n }中,假如a 1+a 2=40,a 3+a 4=60,那么a 7+a 8=( ) A .95 B .100 C .135D .80B 由等差数列的性质可知,a 1+a 2,a 3+a 4,a 5+a 6,a 7+a 8构成新的等差数列,于是a 7+a 8=(a 1+a 2)+(4-1)=40+3×20=100.6.(2021·杭州重点中学联考)设S n 为等差数列{a n }的前n 项和,若a 4<0,a 5>|a 4|,则使S n >0成立的最小正整数n 为( )A .6B .7C .8D .9C 在等差数列{a n }中 ,由于a 4<0,a 5>|a 4|,所以a 5>0,a 5+a 4>0,S 7=7(a 1+a 7)2=7×2a 42=7a 4<0,S 8=8(a 1+a 8)2=8(a 4+a 5)2=4(a 4+a 5)>0.所以使S n >0成立的最小正整数n 为8,故选C.7.在等差数列{a n }中,a 1=0,公差d ≠0,若a m =a 1+a 2+…+a 9,则m 的值为________. a m =a 1+a 2+…+a 9=9a 1+9×82d =36d =a 37. 所以m =37. 378.设S n 为等差数列{a n }的前n 项和,S 2=S 6,a 4=1,则a 5=__________. 设{a n }的公差为d ,由题意知 ⎩⎪⎨⎪⎧2a 1+d =6a 1+6×52d ,a 1+3d =1,解得⎩⎪⎨⎪⎧a 1=7,d =-2,所以a 5=a 4+d =1+(-2)=-1.-19.若两个等差数列{a n }和{b n }的前n 项和分别为S n 和T n ,已知S n T n =7n n +3,则a 5b 5等于________.由于a 5=a 1+a 92,b 5=b 1+b 92,所以a 5b 5=a 1+a 92b 1+b 92=9(a 1+a 9)29(b 1+b 9)2=S 9T 9=7×99+3=214.21410.记等差数列{a n }的前n 项和为S n ,当k ≥2时,若S k -1=8,S k =0,S k +1=-10,则S n 的最大值为________. 当k ≥2时,a k =S k -S k -1=-8,a k +1=S k +1-S k =-10,公差d =a k +1-a k =-2,S k =k (a 1+a k )2=0,所以a 1+a k =0,所以a 1=8,所以a n =-2n +10,由a n =0得n =5,所以S 4=S 5=20最大.2011.已知数列{a n }满足a 1=1,a n =a n -12a n -1+1(n ∈N *,n ≥2),数列{b n }满足关系式b n =1a n(n ∈N *).(1)求证:数列{b n }为等差数列; (2)求数列{a n }的通项公式.(1)证明:由于b n =1a n ,且a n =a n -12a n -1+1,所以b n +1=1a n +1=1a n2a n +1=2a n +1a n,所以b n +1-b n =2a n +1a n -1a n=2.又b 1=1a 1=1,所以数列{b n }是以1为首项,2为公差的等差数列.(2)由(1)知数列{b n }的通项公式为b n =1+(n -1)×2=2n -1,又b n =1a n ,所以a n =1b n =12n -1.所以数列{a n }的通项公式为a n =12n -1.12.已知等差数列{a n }中,S n 是前n 项的和,a 1=-2 017,S 2 0172 017-S 2 0152 015=2,则S 2 019的值为________.由S 2 0172 017-S 2 0152 015=a 1 009-a 1 008=2. 即{a n }的公差d =2,又a 1=-2 017,所以S 2 019=2 019×(-2 017)+2 019×2 0182×2=2 019.2 01913.各项均为正数的数列{a n }满足a 2n =4S n -2a n -1(n ∈N *),其中S n 为{a n }的前n 项和. (1)求a 1,a 2的值; (2)求数列{a n }的通项公式. (1)当n =1时,a 21=4S 1-2a 1-1, 即(a 1-1)2=0,解得a 1=1.当n =2时,a 22=4S 2-2a 2-1=4a 1+2a 2-1=3+2a 2, 解得a 2=3或a 2=-1(舍去). (2)a 2n =4S n -2a n -1,①a 2n +1=4S n +1-2a n +1-1.②②-①得a 2n +1-a 2n =4a n +1-2a n +1+2a n =2(a n +1+a n ), 即(a n +1-a n )(a n +1+a n )=2(a n +1+a n ).由于数列{a n }各项均为正数,所以a n +1+a n >0,a n +1-a n =2, 所以数列{a n }是首项为1,公差为2的等差数列. 所以a n =2n -1.14.已知数列{a n }满足2a n +1=a n +a n +2(n ∈N *),它的前n 项和为S n ,且a 3=10,S 6=72,若b n =12a n -30,设数列{b n }的前n 项和为T n ,求T n 的最小值.由于2a n +1=a n +a n +2,所以a n +1-a n =a n +2-a n +1, 故数列{a n }为等差数列.设数列{a n }的首项为a 1,公差为d ,由a 3=10,S 6=72得,⎩⎪⎨⎪⎧a 1+2d =10,6a 1+15d =72,解得a 1=2,d =4. 所以a n =4n -2,则b n =12a n -30=2n -31,令⎩⎪⎨⎪⎧b n ≤0,b n +1≥0,即⎩⎪⎨⎪⎧2n -31≤0,2(n +1)-31≥0, 解得292≤n ≤312,由于n ∈N *,所以n =15,即数列{b n }的前15项均为负值,所以T 15最小. 由于数列{b n }的首项是-29,公差为2, 所以T 15=15(-29+2×15-31)2=-225.。
归纳与技巧:等差数列及其前n项和(含解析)
归纳与技巧:等差数列及其前n 项和基础知识归纳一、等差数列的有关概念1.定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为a n +1-a n =d (n ∈N *,d 为常数).2.等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.二、等差数列的有关公式 1.通项公式:a n =a 1+(n -1)d . 2.前n 项和公式:S n =na 1+n (n -1)2d =(a 1+a n )n2. 三、等差数列的性质1.若m ,n ,p ,q ∈N *,且m +n =p +q ,{a n }为等差数列,则a m +a n =a p +a q . 2.在等差数列{a n }中,a k ,a 2k ,a 3k ,a 4k ,…仍为等差数列,公差为kd . 3.若{a n }为等差数列,则S n ,S 2n -S n ,S 3n -S 2n ,…仍为等差数列,公差为n 2d . 4.等差数列的增减性:d >0时为递增数列,且当a 1<0时前n 项和S n 有最小值.d <0时为递减数列,且当a 1>0时前n 项和S n 有最大值.5.等差数列{a n }的首项是a 1,公差为d .若其前n 项之和可以写成S n =An 2+Bn ,则A =d 2,B =a 1-d2,当d ≠0时它表示二次函数,数列{a n }的前n 项和S n =An 2+Bn 是{a n }成等差数列的充要条件.基础题必做1. 等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( ) A .1 B .2 C .3D .4解析:选B 法一:设等差数列{a n }的公差为d ,由题意得⎩⎪⎨⎪⎧2a 1+4d =10,a 1+3d =7.解得⎩⎪⎨⎪⎧a 1=1,d =2.故d =2.法二:∵在等差数列{a n }中,a 1+a 5=2a 3=10,∴a 3=5. 又a 4=7,∴公差d =7-5=2.2.(教材习题改编)在等差数列{a n }中,a 2+a 6=3π2,则sin ⎝⎛⎭⎫2a 4-π3=( ) A.32B.12 C .-32D .-12解析:选D ∵a 2+a 6=3π2,∴2a 4=3π2.∴sin ⎝⎛⎭⎫2a 4-π3=sin ⎝⎛⎭⎫3π2-π3=-cos π3=-12. 3. 在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11=( ) A .58 B .88 C .143D .176解析:选B S 11=11(a 1+a 11)2=11(a 4+a 8)2=88.4.在数列{a n }中,若a 1=1,a n +1=a n +2(n ≥1),则该数列的通项a n =________. 解析:由a n +1=a n +2知{a n }为等差数列其公差为2. 故a n =1+(n -1)×2=2n -1. 答案:2n -15. 已知{a n }为等差数列,S n 为其前n 项和,若a 1=12,S 2=a 3,则a 2=________,S n=________.解析:设{a n }的公差为d ,由S 2=a 3知,a 1+a 2=a 3,即2a 1+d =a 1+2d , 又a 1=12,所以d =12,故a 2=a 1+d =1,S n =na 1+12n (n -1)d =12n +12(n 2-n )×12=14n 2+14n . 答案:1 14n 2+14n解题方法归纳1.与前n 项和有关的三类问题(1)知三求二:已知a 1、d 、n 、a n 、S n 中的任意三个,即可求得其余两个,这体现了方程思想.(2)S n =d2n 2+⎝⎛⎭⎫a 1-d 2n =An 2+Bn ⇒d =2A . (3)利用二次函数的图象确定S n 的最值时,最高点的纵坐标不一定是最大值,最低点的纵坐标不一定是最小值.2.设元与解题的技巧已知三个或四个数组成等差数列的一类问题,要善于设元,若奇数个数成等差数列且和为定值时,可设为…,a -2d ,a -d ,a ,a +d ,a +2d ,…;若偶数个数成等差数列且和为定值时,可设为…,a -3d ,a -d ,a +d ,a +3d ,…,其余各项再依据等差数列的定义进行对称设元.等差数列的判断与证明典题导入[例1] 在数列{a n }中,a 1=-3,a n =2a n -1+2n +3(n ≥2,且n ∈N *). (1)求a 2,a 3的值;(2)设b n =a n +32n (n ∈N *),证明:{b n }是等差数列.[自主解答] (1)∵a 1=-3,a n =2a n -1+2n +3(n ≥2,且n ∈N *),∴a 2=2a 1+22+3=1,a 3=2a 2+23+3=13.(2)证明:对于任意n ∈N *,∵b n +1-b n =a n +1+32n +1-a n +32n =12n +1[(a n +1-2a n )-3]=12n +1[(2n +1+3)-3]=1,∴数列{b n }是首项为a 1+32=-3+32=0,公差为1的等差数列.解题方法归纳1.证明{a n }为等差数列的方法:(1)用定义证明:a n -a n -1=d (d 为常数,n ≥2)⇔{a n }为等差数列; (2)用等差中项证明:2a n +1=a n +a n +2⇔{a n }为等差数列; (3)通项法:a n 为n 的一次函数⇔{a n }为等差数列; (4)前n 项和法:S n =An 2+Bn 或S n =n (a 1+a n )2.2.用定义证明等差数列时,常采用的两个式子a n +1-a n =d 和a n -a n -1=d ,但它们的意义不同,后者必须加上“n ≥2”,否则n =1时,a 0无定义.以题试法1.已知数列{a n }的前n 项和S n 是n 的二次函数,且a 1=-2,a 2=2,S 3=6.(1)求S n ;(2)证明:数列{a n }是等差数列. 解:(1)设S n =An 2+Bn +C (A ≠0), 则⎩⎪⎨⎪⎧-2=A +B +C ,0=4A +2B +C ,6=9A +3B +C ,解得A =2,B =-4,C =0.故S n =2n 2-4n . (2)证明:∵当n =1时,a 1=S 1=-2.当n ≥2时,a n =S n -S n -1=2n 2-4n -[2(n -1)2-4(n -1)]=4n -6. ∴a n =4n -6(n ∈N *).a n +1-a n =4, ∴数列{a n }是等差数列.等差数列的基本运算典题导入[例2] 已知{a n }为等差数列,且a 1+a 3=8,a 2+a 4=12. (1)求{a n }的通项公式;(2)记{a n }的前n 项和为S n ,若a 1,a k ,S k +2成等比数列,求正整数k 的值. [自主解答] (1)设数列{a n }的公差为d ,由题意知⎩⎪⎨⎪⎧ 2a 1+2d =8,2a 1+4d =12,解得⎩⎪⎨⎪⎧a 1=2,d =2. 所以a n =a 1+(n -1)d =2+2(n -1)=2n .(2)由(1)可得S n =n (a 1+a n )2=n (2+2n )2=n (n +1).因为a 1,a k ,S k +2成等比数列,所以a 2k =a 1S k +2. 从而(2k )2=2(k +2)(k +3),即k 2-5k -6=0, 解得k =6或k =-1(舍去),因此k =6.解题方法归纳1.等差数列的通项公式a n =a 1+(n -1)d 及前n 项和公式S n =n (a 1+a n )2=na 1+n (n -1)2d ,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了方程的思想.2.数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.以题试法2.(1)在等差数列中,已知a 6=10,S 5=5,则S 8=________.(2) 设等差数列{a n }的前n 项和为S n ,若S 412-S 39=1,则公差为________.解析:(1)∵a 6=10,S 5=5,∴⎩⎪⎨⎪⎧a 1+5d =10,5a 1+10d =5. 解方程组得⎩⎪⎨⎪⎧a 1=-5,d =3.则S 8=8a 1+28d =8×(-5)+28×3=44. (2)依题意得S 4=4a 1+4×32d =4a 1+6d ,S 3=3a 1+3×22d =3a 1+3d ,于是有4a 1+6d12-3a 1+3d9=1,由此解得d =6,即公差为6. 答案:(1)44 (2)6等差数列的性典题导入[例3] (1)等差数列{a n }中,若a 1+a 4+a 7=39,a 3+a 6+a 9=27,则前9项和S 9等于( ) A .66 B .99 C .144D .297(2) 设等差数列{a n }的前n 项和S n ,若S 4=8,S 8=20,则a 11+a 12+a 13+a 14=( ) A .18 B .17 C .16D .15[自主解答] (1)由等差数列的性质及a 1+a 4+a 7=39,可得3a 4=39,所以a 4=13.同理,由a 3+a 6+a 9=27,可得a 6=9.所以S 9=9(a 1+a 9)2=9(a 4+a 6)2=99.(2)设{a n }的公差为d ,则a 5+a 6+a 7+a 8=S 8-S 4=12,(a 5+a 6+a 7+a 8)-S 4=16d ,解得d =14,a 11+a 12+a 13+a 14=S 4+40d =18.[答案] (1)B (2)A解题方法归纳1.等差数列的性质是等差数列的定义、通项公式以及前n 项和公式等基础知识的推广与变形,熟练掌握和灵活应用这些性质可以有效、方便、快捷地解决许多等差数列问题.2.应用等差数列的性质解答问题的关键是寻找项的序号之间的关系.以题试法3.(1) 设数列{a n },{b n }都是等差数列,若a 1+b 1=7,a 3+b 3=21,则a 5+b 5=________. (2) 若数列{a n }满足:a 1=19,a n +1=a n -3(n ∈N *),则数列{a n }的前n 项和数值最大时,n 的值为( )A .6B .7C .8D .9解析:(1)设两等差数列组成的和数列为{c n },由题意知新数列仍为等差数列且c 1=7,c 3=21,则c 5=2c 3-c 1=2×21-7=35.(2)∵a n +1-a n =-3,∴数列{a n }是以19为首项,-3为公差的等差数列,∴a n =19+(n-1)×(-3)=22-3n .设前k 项和最大,则有⎩⎪⎨⎪⎧ a k ≥0,a k +1≤0,即⎩⎪⎨⎪⎧22-3k ≥0,22-3(k +1)≤0,解得193≤k ≤223.∵k ∈N *,∴k =7.故满足条件的n 的值为7.答案:(1)35 (2)B1. {a n }为等差数列,公差d =-2,S n 为其前n 项和.若S 10=S 11,则a 1=( ) A .18 B .20 C .22D .24解析:选B 由S 10=S 11,得a 11=S 11-S 10=0,a 1=a 11+(1-11)d =0+(-10)×(-2)=20.2. 等差数列{a n }的前n 项和为S n ,已知a 5=8,S 3=6,则S 10-S 7的值是( ) A .24 B .48 C .60D .72解析:选B 设等差数列{a n }的公差为d ,由题意可得⎩⎪⎨⎪⎧ a 5=a 1+4d =8,S 3=3a 1+3d =6,解得⎩⎪⎨⎪⎧a 1=0,d =2,则S 10-S 7=a 8+a 9+a 10=3a 1+24d =48.3. 等差数列{a n }中,a 5+a 6=4,则log 2(2a 1·2a 2·…·2a 10)=( ) A .10 B .20 C .40D .2+log 25解析:选B 依题意得,a 1+a 2+a 3+…+a 10=10(a 1+a 10)2=5(a 5+a 6)=20,因此有log 2(2a 1·2a 2·…·2a 10)=a 1+a 2+a 3+…+a 10=20.4. 已知数列{a n }满足:a 1=1,a n >0,a 2n +1-a 2n =1(n ∈N *),那么使a n <5成立的n 的最大值为( )A .4B .5C .24D .25解析:选C ∵a 2n +1-a 2n =1,∴数列{a 2n }是以a 21=1为首项,1为公差的等差数列.∴a 2n =1+(n -1)=n .又a n >0,∴a n =n .∵a n <5,∴n <5.即n <25.故n 的最大值为24.5.已知等差数列{a n }的前n 项和为S n ,并且S 10>0,S 11<0,若S n ≤S k 对n ∈N *恒成立,则正整数k 的值为( )A .5B .6C .4D .7解析:选A 由S 10>0,S 11<0知a 1>0,d <0,并且a 1+a 11<0,即a 6<0,又a 5+a 6>0,所以a 5>0,即数列的前5项都为正数,第5项之后的都为负数,所以S 5最大,则k =5.6.数列{a n }的首项为3,{b n }为等差数列且b n =a n +1-a n (n ∈N *).若b 3=-2,b 10=12,则a 8=( )A .0B .3C .8D .11解析:选B 因为{b n }是等差数列,且b 3=-2,b 10=12, 故公差d =12-(-2)10-3=2.于是b 1=-6,且b n =2n -8(n ∈N *),即a n +1-a n =2n -8.所以a 8=a 7+6=a 6+4+6=a 5+2+4+6=…=a 1+(-6)+(-4)+(-2)+0+2+4+6=3.7. 已知递增的等差数列{a n }满足a 1=1,a 3=a 22-4,则a n =________.解析:设等差数列公差为d ,∵由a 3=a 22-4,得1+2d =(1+d )2-4,解得d 2=4,即d=±2.由于该数列为递增数列,故d =2.∴a n =1+(n -1)×2=2n -1. 答案:2n -18.已知数列{a n }为等差数列,S n 为其前n 项和,a 7-a 5=4,a 11=21,S k =9,则k =________. 解析:a 7-a 5=2d =4,则d =2.a 1=a 11-10d =21-20=1, S k =k +k (k -1)2×2=k 2=9.又k ∈N *,故k =3.答案:39.设等差数列{a n},{b n}的前n项和分别为S n,T n,若对任意自然数n都有S nT n=2n-3 4n-3,则a9b5+b7+a3b8+b4的值为________.解析:∵{a n},{b n}为等差数列,∴a9b5+b7+a3b8+b4=a92b6+a32b6=a9+a32b6=a6b6.∵S11T11=a1+a11b1+b11=2a62b6=2×11-34×11-3=1941,∴a6b6=1941.答案:194110.已知等差数列{a n}中,a1=1,a3=-3.(1)求数列{a n}的通项公式;(2)若数列{a n}的前k项和S k=-35,求k的值.解:(1)设等差数列{a n}的公差为d,则a n=a1+(n-1)d.由a1=1,a3=-3,可得1+2d=-3,解得d=-2.从而a n=1+(n-1)×(-2)=3-2n.(2)由(1)可知a n=3-2n,所以S n=n[1+(3-2n)]2=2n-n2.由S k=-35,可得2k-k2=-35,即k2-2k-35=0,解得k=7或k=-5.又k∈N*,故k=7.11.设数列{a n}的前n项积为T n,T n=1-a n,(1)证明⎩⎨⎧⎭⎬⎫1T n是等差数列;(2)求数列⎩⎨⎧⎭⎬⎫a nT n的前n项和S n.解:(1)证明:由T n=1-a n得,当n≥2时,T n=1-T nT n-1,两边同除以T n得1T n-1T n-1=1.∵T1=1-a1=a1,故a1=12,1T1=1a1=2.∴⎩⎨⎧⎭⎬⎫1T n是首项为2,公差为1的等差数列.(2)由(1)知1T n=n+1,则T n=1n+1,从而a n =1-T n =n n +1.故a nT n=n .∴数列⎩⎨⎧⎭⎬⎫a n T n 是首项为1,公差为1的等差数列.∴S n =n (n +1)2.12.已知在等差数列{a n }中,a 1=31,S n 是它的前n 项和,S 10=S 22. (1)求S n ;(2)这个数列的前多少项的和最大,并求出这个最大值. 解:(1)∵S 10=a 1+a 2+…+a 10, S 22=a 1+a 2+…+a 22,又S 10=S 22, ∴a 11+a 12+…+a 22=0, 即12(a 11+a 22)2=0,故a 11+a 22=2a 1+31d =0. 又∵a 1=31,∴d =-2,∴S n =na 1+n (n -1)2d =31n -n (n -1)=32n -n 2.(2)法一:由(1)知S n =32n -n 2,故当n =16时,S n 有最大值,S n 的最大值是256. 法二:由S n =32n -n 2=n (32-n ),欲使S n 有最大值, 应有1<n <32,从而S n ≤⎝⎛⎭⎫n +32-n 22=256,当且仅当n =32-n ,即n =16时,S n 有最大值256.1.等差数列中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则该数列前13项的和是( ) A .156 B .52 C .26D .13解析:选C ∵a 3+a 5=2a 4,a 7+a 10+a 13=3a 10, ∴6(a 4+a 10)=24,故a 4+a 10=4. ∴S 13=13(a 1+a 13)2=13(a 4+a 10)2=26.2.在等差数列{a n }中,a 1>0,a 10·a 11<0,若此数列的前10项和S 10=36,前18项和S 18=12,则数列{|a n |}的前18项和T 18的值是( )A .24B .48C .60D .84解析:选C 由a 1>0,a 10·a 11<0可知d <0,a 10>0,a 11<0,故T 18=a 1+…+a 10-a 11-…-a 18=S 10-(S 18-S 10)=60.3.数列{a n }满足a n +1+a n =4n -3(n ∈N *). (1)若{a n }是等差数列,求其通项公式;(2)若{a n }满足a 1=2,S n 为{a n }的前n 项和,求S 2n +1. 解:(1)由题意得a n +1+a n =4n -3,① a n +2+a n +1=4n +1,② ②-①得a n +2-a n =4,∵{a n }是等差数列,设公差为d ,∴d =2. ∵a 1+a 2=1,∴a 1+a 1+d =1, ∴a 1=-12,∴a n =2n -52.(2)∵a 1=2,a 1+a 2=1,∴a 2=-1.又∵a n +2-a n =4,∴数列的奇数项与偶数项分别成等差数列,公差均为4, ∴a 2n -1=4n -2,a 2n =4n -5,S 2n +1=(a 1+a 3+…+a 2n +1)+(a 2+a 4+…+a 2n ) =(n +1)×2+(n +1)n 2×4+n ×(-1)+n (n -1)2×4=4n 2+n +2.1.已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *).(1)求证:数列{b n }是等差数列;(2)求数列{a n }中的最大项和最小项,并说明理由. 解:(1)证明:∵a n =2-1a n -1(n ≥2,n ∈N *),b n =1a n -1. ∴n ≥2时,b n -b n -1=1a n -1-1a n -1-1=1⎝⎛⎭⎫2-1an -1-1-1a n -1-1=a n -1a n -1-1-1a n -1-1=1.又b 1=1a 1-1=-52.∴数列{b n }是以-52为首项,1为公差的等差数列. (2)由(1)知,b n =n -72, 则a n =1+1b n =1+22n -7, 设函数f (x )=1+22x -7, 易知f (x )在区间⎝⎛⎭⎫-∞,72和⎝⎛⎭⎫72,+∞内为减函数. 故当n =3时,a n 取得最小值-1;当n =4时,a n 取得最大值3.2.已知等差数列{a n }的前n 项和为S n ,且满足:a 2+a 4=14,S 7=70.(1)求数列{a n }的通项公式;(2)设b n =2S n +48n,数列{b n }的最小项是第几项,并求出该项的值. 解:(1)设等差数列{a n }的公差为d ,则有⎩⎪⎨⎪⎧ 2a 1+4d =14,7a 1+21d =70, 即⎩⎪⎨⎪⎧ a 1+2d =7,a 1+3d =10,解得⎩⎪⎨⎪⎧a 1=1,d =3. 所以a n =3n -2.(2)因为S n =n 2[1+(3n -2)]=3n 2-n 2, 所以b n =3n 2-n +48n =3n +48n-1≥2 3n ·48n-1=23, 当且仅当3n =48n,即n =4时取等号, 故数列{b n }的最小项是第4项,该项的值为23.3.已知数列{a n },对于任意n ≥2,在a n -1与a n 之间插入n 个数,构成的新数列{b n }成等差数列,并记在a n -1与a n 之间插入的这n 个数均值为C n -1.(1)若a n =n 2+3n -82,求C 1,C 2,C 3; (2)在(1)的条件下是否存在常数λ,使{C n +1-λC n }是等差数列?如果存在,求出满足条件的λ,如果不存在,请说明理由.解:(1)由题意a 1=-2,a 2=1,a 3=5,a 4=10,∴在a 1与a 2之间插入-1,0,C 1=-12. 在a 2与a 3之间插入2,3,4,C 2=3.在a 3与a 4之间插入6,7,8,9,C 3=152.(2)在a n -1与a n 之间插入n 个数构成等差数列,d =a n -a n -1n +1=1, ∴C n -1=n (a n -1+a n )2n =a n -1+a n 2=n 2+2n -92. 假设存在λ使得{C n +1-λC n }是等差数列. ∴(C n +1-λC n )-(C n -λC n -1) =C n +1-C n -λ(C n -C n -1) =2n +52-λ·2n +32=(1-λ)n +52-32λ=常数,∴λ=1. 即λ=1时,{C n +1-λC n }是等差数列.。
等差数列及其前n项和(解析版)
等差数列及其前n 项和一、学习目标1.理解等差数列的概念;2.掌握等差数列的通项公式与前n 项和公式;3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题;4.了解等差数列与一次函数、二次函数的关系. 二、知识讲解知识点一 等差数列的定义如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示.数学语言表达式:a n +1-a n =d (n ∈N *,d 为常数),或a n -a n -1=d (n ≥2,d 为常数). 知识点二 等差数列的通项公式与前n 项和公式(1)若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n = 通项公式的推广:a n = (2)等差数列的前n 项和公式 S n =知识点三 等差数列及前n 项和的性质(1)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A =a +b2.(2)若{a n }为等差数列,且m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *).(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. (4)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列. 知识点四 等差数列的前n 项和公式与函数的关系 S n =d2n 2+⎝⎛⎭⎫a 1-d 2n . 数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数). 知识点五 等差数列的前n 项和的最值在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值. 三、例题辨析考点一 等差数列基本量的运算【典例1】记nS 为等差数列{}n a 的前n 项和.已知4505S a ==,,则( )A .25n a n =-B .310n a n =-C .228n S n n=- D .2122n S n n =-【解析】由题知,41514430245d S a a a d ⎧=+⨯⨯=⎪⎨⎪=+=⎩,解得132a d =-⎧⎨=⎩,∴25n a n =-,24n S n n =-,故选A 。
等差数列的前n项和公式答案
4.2.2(1) 等差数列的前n 项和公式答案1.已知等差数列{a n }的前n 项和为S n ,若2a 6=a 8+6,则S 7等于( )A .49B .42C .35D .28答案 B解析 2a 6-a 8=a 4=6,S 7=72(a 1+a 7)=7a 4=42. 2.在等差数列{a n }中,已知a 1=10,d =2,S n =580,则n 等于( )A .10B .15C .20D .30答案 C解析 因为S n =na 1+12n (n -1)d =10n +12n (n -1)×2=n 2+9n ,所以n 2+9n =580, 解得n =20或n =-29(舍去).3.设{a n }为等差数列,公差d =-2,S n 为其前n 项和.若S 10=S 11,则a 1等于( )A .18B .20C .22D .24答案 B解析 由S 10=S 11,得a 11=S 11-S 10=0,所以a 1=a 11+(1-11)d =0+(-10)×(-2)=20.4.等差数列{a n }满足a 1+a 2+a 3=-24,a 18+a 19+a 20=78,则此数列的前20项和等于( )A .160B .180C .200D .220答案 B解析 由a 1+a 2+a 3=3a 2=-24,得a 2=-8,由a 18+a 19+a 20=3a 19=78,得a 19=26,S 20=12×20×(a 1+a 20)=10(a 2+a 19)=10×18=180.5.在等差数列{a n }中,已知a 1=-12,S 13=0,则使得a n >0的最小正整数n 为( )A .7B .8C .9D .10 答案 B解析 由S 13=13(a 1+a 13)2=0, 得a 13=12,则a 1+12d =12,得d =2,∴数列{a n }的通项公式为a n =-12+(n -1)×2=2n -14,由2n -14>0,得n >7,即使得a n >0的最小正整数n 为8.6.(多选)在等差数列{a n }中,d =2,a n =11,S n =35,则a 1等于( )A .-1B .3C .5D .7答案 AB解析 由题意知a 1+(n -1)×2=11,①S n =na 1+n (n -1)2×2=35,② 由①②解得a 1=3或a 1=-1.7.设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S k +2-S k =24,则k =________.答案 5解析 因为S k +2-S k =a k +1+a k +2=a 1+kd +a 1+(k +1)d =2a 1+(2k +1)d =2×1+(2k +1)×2=4k +4=24,所以k =5.8.在等差数列{a n }中,S 10=4S 5,则a 1d=________. 答案 12解析 设数列{a n }的公差为d ,由题意得10a 1+12×10×9d =4⎝⎛⎭⎫5a 1+12×5×4d , 所以10a 1+45d =20a 1+40d ,所以10a 1=5d ,所以a 1d =12. 9.在等差数列{a n }中,a 10=30,a 20=50.(1)求数列的通项公式;(2)若S n =242,求n .解 (1)设数列{a n }的首项为a 1,公差为d .则⎩⎪⎨⎪⎧ a 10=a 1+9d =30,a 20=a 1+19d =50, 解得⎩⎪⎨⎪⎧a 1=12,d =2, ∴a n =a 1+(n -1)d =12+(n -1)×2=10+2n .(2)由S n =na 1+n (n -1)2d 以及a 1=12,d =2,S n =242, 得方程242=12n +n (n -1)2×2,即n 2+11n -242=0,解得n =11或n =-22(舍去).故n =11.10.设等差数列{a n }的前n 项和为S n ,且S 5=a 5+a 6=25.(1)求{a n }的通项公式;(2)求等差数列{a n }的前n 项和S n .解 (1)设公差为d ,由S 5=a 5+a 6=25,得5a 1+5×42d =a 1+4d +a 1+5d =25,∴a 1=-1,d =3.∴{a n }的通项公式为a n =3n -4.(2)由(1)知a n =3n -4,得{a n }的前n 项和为S n =n ()a 1+a n 2=n ()-1+3n -42=3n 2-5n 2,则S n =32n 2-52n .11.在小于100的自然数中,所有被7除余2的数之和为( )A .765B .665C .763D .663答案 B解析 ∵a 1=2,d =7,2+(n -1)×7<100,∴n <15,∴n =14,S 14=14×2+12×14×13×7=665.12.等差数列{a n }的前四项之和为124,后四项之和为156,各项和为210,则此数列的项数为() A .5 B .6 C .7 D .8答案 B解析 由题意知a 1+a 2+a 3+a 4=124,a n +a n -1+a n -2+a n -3=156,∴4(a 1+a n )=280,∴a 1+a n =70.又S n =n (a 1+a n )2=n 2·70=210,∴n =6.13.如图所示,将若干个点摆成三角形图案,每条边(包括两个端点)有n (n >1,n ∈N *)个点,相应的图案中总的点数记为a n ,则a 2+a 3+a 4+…+a n 等于( )A.3n 22B.n (n +1)2C.3n (n -1)2D.n (n -1)2答案 C解析 由图案的点数可知a 2=3,a 3=6,a 4=9,a 5=12,所以a n =3n -3,n ≥2,所以a 2+a 3+a 4+…+a n =(n -1)(3+3n -3)2=3n (n -1)2. 14.把形如M =m n (m ,n ∈N *)的正整数表示为各项都是整数、公差为2的等差数列的前m 项和,称作“对M 的m 项划分”.例如:9=32=1+3+5,称作“对9的3项划分”;把64表示成64=43=13+15+17+19,称作“对64的4项划分”.据此,对324的18项划分中最大的数是________.答案 35解析 设对324的18项划分中最小数为a 1,最大数为a 18,则由⎩⎪⎨⎪⎧ a 18=a 1+()18-1×2,18()a 1+a 182=324,解得⎩⎪⎨⎪⎧a 1=1,a 18=35.15.(多选)已知S n 是等差数列{a n }的前n 项和,则下列选项中可能是S n 所对应的函数的图象的是( )答案 ABC解析 因为S n 是等差数列{a n }的前n 项和,所以S n =an 2+bn (a ,b 为常数,n ∈N *),则其对应函数为y =ax 2+bx .当a =0时,该函数的图象是过原点的直线上一些孤立的点,如选项C ;当a ≠0时,该函数的图象是过原点的抛物线上一些孤立的点,如选项A ,B ;选项D 中的曲线不过原点,不符合题意.16.已知等差数列{a n }的公差d >0,前n 项和为S n ,且a 2a 3=45,S 4=28.(1)求数列{a n }的通项公式;(2)若b n =S n n +c(c 为非零常数),且数列{b n }也是等差数列,求c 的值. 解 (1)∵S 4=28,∴(a 1+a 4)×42=28,a 1+a 4=14, ∴a 2+a 3=14,又a 2a 3=45,公差d >0,∴a 2<a 3,∴a 2=5,a 3=9,∴⎩⎪⎨⎪⎧ a 1+d =5,a 1+2d =9,解得⎩⎪⎨⎪⎧a 1=1,d =4, ∴a n =4n -3,n ∈N *.(2)由(1),知S n =2n 2-n ,∴b n =S n n +c =2n 2-n n +c, ∴b 1=11+c ,b 2=62+c ,b 3=153+c. 又{b n }也是等差数列,∴b 1+b 3=2b 2,即2×62+c =11+c +153+c, 解得c =-12(c =0舍去).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等差数列及其前n项和
一、单选题(共10道,每道10分)
1.下面有四个命题:
①如果已知一个数列的递推公式及其首项,那么可以写出这个数列的任何一项;
②数列,,,,…的通项公式是;
③数列的图象是一些孤立的点;
④数列与数列是同一个数列.
其中真命题的个数是( )
A.1
B.2
C.3
D.4
答案:A
解题思路:
试题难度:三颗星知识点:等差数列的性质
2.数列中,,,,那么等于( )
A. B.
C. D.
答案:D
解题思路:由题意,
试题难度:三颗星知识点:数列递推式
3.若数列中,,,则的值为( )
A.1
B.2
C.3
D.4
答案:A
解题思路:
试题难度:三颗星知识点:数列递推式
4.在等差数列中,,,则( )
A.12
B.14
C.16
D.18
答案:D
解题思路:
试题难度:三颗星知识点:等差数列的性质
5.等差数列中,,,则( )
A.-1
B.1
C.3
D.7
答案:B
解题思路:由等差数列通项公式得,
试题难度:三颗星知识点:等差数列的性质
6.数列1,3,6,10,15,…的通项公式是( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:等差数列的前n项和
7.已知数列的通项公式为,要使此数列的前n项和最大,则n的值为( )
A.12
B.13
C.12或13
D.14
答案:C
解题思路:
试题难度:三颗星知识点:等差数列的前n项和
8.在等差数列中,已知,则的值是( )
A. B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:等差数列的前n项和
9.在等差数列中,公差,,则的值为( )
A.57
B.58
C.59
D.60
答案:D
解题思路:
试题难度:三颗星知识点:等差数列的性质
10.在等差数列中,,则此数列前10项的和( )
A.45
B.60
C.75
D.90
答案:A
解题思路:
试题难度:三颗星知识点:等差数列的前n项和。