不定积分换元法例题1
不定积分之第一换元法
◆第一换元法
f x dx g x x dx
令u x
◆第二换元法
凑微分
g u du
u ( x )
d ( x )
f x dx
注:x
令x u
f u u du
1 2x 4x 3 ln C 2 3 3
2
4 x2 3
辅助三角形
1 2 ln 2 x 4 x 3 C1 2
1 C1 C ln 3 2
例4 解 原式
dx 求不定积分 2 2 ( x 1) 2 则 dx sec udu 令 x tan u,
u 1 ( x )
u 单调、可导,且 u 0
一般地:第二类换元法主要是利用三角关系式
sin x cos x 1, 1 tan x sec x
2 2 2 2
化根式
再积分。 对于
a x ,
2 2
x a ,
2 2
x a
2
2
为三角函数的有理式,
a x ,
求不定积分
x
2
ln xdx
udv uv vdu
原式
1 3 ln xdx 3
1 3 3 ( x ln x x dx) 3 x 1 3 2 ( x ln x x dx) 3 1 3 1 3 ( x ln x x ) C 3 3
幂函数 对数函数dx v u 1
例9
求不定积分
sin ln x dx
udv uv vdu
解
原式
1 x sin ln x x cos ln x dx x
08-不定积分的第一类换元法课件
2 cos 2x d x .
u ( x )
cos x d x sin x C
解 2cos 2x d x cos 2x(2x)d x
cosu d u
sin u |u2x C
u2 x
sin 2x C .
例
求积分
1 3 2x
d
x
.
f
[ ( x )] ( x) d x f (u) d u
例如
3
1 2x
d
x
1 2
1 3 2x
d(3
2x)
1 2
ln
|
3
2x
|
C
.
凑微分法
例 求积分 2x ex22 d x . 解 2x ex2 d x ex2 d(x2 )
ex2 C .
例 求积分 x 1 x2 d x .
解
x 1 x2 d x
1
(1
x
2
)
1 2
d(1 x2 )
1 x2 1 x2
所以
2 1 x2 ,
2 1 x2 d x x 1 x2 arcsin x C .
定理 设函数 f (x) 有原函数 F(x),且 u (x)可导,
则
f [(x)](x) d x F[(x)] C f (u) d u . u ( x )
f (u)d u F(u) C
例
求积分
x2
1
a2
d
x
(a
0)
.
解
因为
1 x2 a2
1 1 2a x a
x
1
a
,
所以
x2
1
a2
d
x
不定积分求解方法-换元法
例1. 求 (a x b )m d x(m 1 ).
解: 令 uaxb,则 duadx,故
原式 = um 1 d u 1 1 um1C
a
a m1
1 (axb)m1C a(m1)
注: 当 m1时
dx目录 上页 下页 返回 结束
例2. (P222)求
机动 目录 上页 下页 返回 结束
一、第一类换元法 (P221)
定理1. 设f (u)有原函,数u(x)可导 ,则有换元
公式
f[(x) ](x)dx f(u)du u(x) 即 f[(x) ](x)dxf((x)d )(x)
(也称配元法 , 凑微分法)
精选版ppt
3
机动 目录 上页 下页 返回 结束
dx a2 x2
.
解:
dx a2 x2
1 a2
dx 1(( aaxx )) 2
令 u x , 则 du 1 d x
a
a
1a
du 1 u
2
1arctaunC a
1arctax)n(C aa
想到公式
1
d
u u
2
arc u tC an
机动 目录 上页 下页 返回 结束
例3. (P223) 求
解:
tanxdx
sin xdx cosx
dccoossxx
ln co x sC
类似
coxtdx? cosisnxxdx
dsinx sinx
lnsixnC
机动 目录 上页 下页 返回 结束
例5. (P223)求
dx x2 a2
.
解:
1 x2 a2
1 2a
(x a ) (x a )1( 1 1 ) ( x a )( x a ) 2a xa xa
不定积分的换元积分法
csc xdx ln csc x cot x C .
21
应用第一类换元法的常见的积分类型如下:
1.
2. x
1 f (ax b)dx f (ax b)d(ax b) ; a
n 1
f (axn b)dx
1 f (axn b)d(axn b) ; na
这类求不定积分的方法,称为第二换元 法.
32
例11 解
dx 求 1 3 - x .
设 t 3 x,则 x 3 t 2 , dx 2tdt .
dx 2t dt 2 1 t 1 dt 1 t 1 t 1 3 x 1 2 (1 )dt 1 t
8
例1 解 所以
求 sin 2 xdx .
1 设 t 2 x ,则 dt 2dx ,即 dx dt . 2
1 1 sin 2 xdx sin tdt cos t C , 2 2
再将 t 2 x 代入,得
1 sin 2 xdx cos 2 x C . 2
2
x 1 (9) cos xdx sin 2 x C 2 4
28
1 1 C (10) dx 2 2(2 x 3) (2 x 3)
(11)
x 1 ( x 2 2 x 3)
2 1 4
2 2 dx ( x 2 x 3) C 3
3 2 2
3 4
于是
利用复合函数求导公式,可以验证(4.3.1) 的正确性.
3
实际上,由 d F ( ( x)) C F ( x) ( x) dx f ( x) ( x) , 可知公式(4.3.1)成立.利用公式(4.3.1)来计 算不定积分,就是第一换元法,亦称为凑微分 法.
第5章2不定积分换元积分(1)
例10 求 sin3 x dx.
解 sin3 x dx sin2 x sin x dx (1 cos2 x)d cos x
1 cos3 x cos x C 3
说明 当被积函数是三角函数相乘并有奇次幂 时,拆开奇次项去凑微分.
例11 求 sin2 x cos5 xdx.
积分: f [(x)](x)dx F[(x)d[(x)] dF[(x)
第一类换元法可表述为:
换元 ( x )u
积分
f [( x)]( x)dx f (u)duF(u) C
u ( x )还原
F[( x)] C
4
换元积分法
一、第一类换元法
例2 求 2xex2dx .
例3 求 x 1 - x2dx .
19
(1)
5
(1 3x)2 dx
2
(1
7
3x)2
C
21
(3)
1
x x
2
dx
1 ln(1 x2 ) C 2
(5) (ln x)2 dx 1x
(7)
ex x2
dx
1 ln( x)3 C 3
1
ex C
(9) dv 1 2v C 1 2v
(11)
x
2x 2
x
1
3
dx
ln x 2 x 3 C
解
tanxdx
sin cos
x x
dx
1 d cos x cos x
= - ln |cosx| + C
tanxdx = - ln |cosx| + C = ln |secx| + C
同理 cotxdx = ln |sinx| + C = - ln |cscx| + C
5-2 不定积分的换元积分法
1 2 xdx (2) xe dx
(1)
5 x2
1 3 1 1 2 1 2 x 2 C (1 2 x ) 2 d (1 2 x ) 2 3 2
x (3) dx 2 2 3x
e 10
1
5 x2
1 5 x2 d (5 x ) e C 10
1 (2) 2 dx; a x
1 a 2 x 2 dx;
x a 2 x 2 dx
1 1 x x (3) dx; dx; dx; dx 3 2 2 5 1 x (1 x ) 1 x (1 x )
19
换元积分法
二、第二换元积分法
第一换元法中 ( x) u f [ ( x)] ( x)dx
1 ln1 2 ln x C 2
1 1 ln x d (ln x ) 1 x
x
1 1 1 d (1 2ln x ) 1 x (1 2ln x ) 2
x
11
换元积分法
利用基本积分表的公式把被积函数中的一部分凑成 中间变量的微分,常见的有:
1 dx d ax b a 1 n 1 x dx d x n n e x dx d(e x ) cos xdx d(sin x ) sec 2 xdx d(tan x ) 1
1 (t 1) 1 1 1 x dx 1 t 2tdt 2 1 t dt 1 2 (1 )dt 1 t
2t 2ln 1 t C
2 x 2 ln( 1 x) C
23
换元积分法
练习 求下列函数的不定积分 x 1 (1) x x 1dx; (2) 3 dx . 3x 1
第3-1不定积分的第一类换元积分法
sin
3
xdx sin x sin xdx (1 cos x)d cos x
2 2
1 3 cos x cos x C 3
sec 6 xdx . 例10.求
解: 原式 = (tan 2 x 1) 2 d tan x d x sec 2
(tan 4 x 2 tan 2 x 1) dtan x
2
x a
2
2
ln |
x2 a2 x a | C1
t a
(C C1 ln a)
x
公式15:
ln x x a C (a 0)
2 2
例17. 求
解:
1 x2 2x 2
dx .
原式
1 ( x 1) 1
2 2
d (x 1)
(由公式2)
1 ln a x ln a x 2a
1 ax C ln C 2a a x
例7. 求
dln x 1 d(1 2 ln x) 解: 原式 = 1 2 ln x 2 1 2 ln x
dx . 例8. 求 x 1 e 解法1 (1 e x ) e x d(1 e x ) dx dx x x 1 e 1 e x ln(1 e x ) C
2 3 1 5 tan x tan x tan x C 3 5
例12. 求 sin 4 x cos 3xdx
1 解: 利用公式 sin cos [sin( ) sin( )] 2 1 原式= (sin 7 x sin x)dx 2 1 1 cos 7 x cos x C 14 2
不定积分换元法例题
【第一换元法例题】1、(5x 7)9dx (5x 7)9dx (5x1 9 1 15 (5x 7)d(5x 7) 5 10(5x【注】(5x 7)' 5, d(5x 7) 5dx,7)9;d(5x 7)7)10C — (5x501d(5x51 (5x 7)9d(5x 7)57)10C% InxIn x d ln x1x dx In x d In x x -W x)2【注】(Inx)' 1x d(ln x)1别nx) -dx, x3 (1) tan xdx sinx ,dxcosxsin xdxcosx【注】3 (2)【注】4 (1)dx 7)-dxxd(l nx)d cosx d cosxcosx cosxd cosxcosx(cosx)'cot xdxd sin xsin x(sin x)'In |cosx | C In |cosx| Csinx, d (cosx)叱dx 竺型sinx sinxsin xdx, sin xdx d(cos x)d sin xsin xIn | sin x | C In |sin x | Ccosx, d (sin x) cosxdx, cosxdx d (sin x)—dx a x1 d(a a xd(a x)【注】(a x)' 1, d (a x) dx, dx d (a x)4 (2)1 dx 1 dx 1 d(x a)x a x a x a1 d(x a) In |x a| C ln| x a | Cx a【注】(x a)' 1, d(x a) dx, dx d(x a)4 (3)1 J、, 1 1 1 1 1 1dx dx 22dx 2 2dx 2ax a x a x a x a 2a x ax| C In |a x| Cx) In |a1 dxx aIn | x a |2aIn | x a | Cx ax aC2a2, secx(secx tan x) sec x secxtanx , (1) secxdx --------------------------------- dx ---------------------------- dxsecx tanx secx tanx d(tanx secx) d(tanx secx)secx tan x secx tan xIn | secx tan x | C(2)(1)(2)(1)(2)(1)(2)(1)(2)secxdx —dxcosxcosx ,2 dxcos xcosx dx d sin xd sin x1 sin2xcsc xdxd( cotxcscxcsc xdxd( cotx2 sin x 1 sin xcscx(cscx cot x),dxcscx cotxcos2 xdsin x2csc x1 sin2xInsin x 1sin x 11ln21 sin x1 sin xcscx cot x ,dxcscx cotxcscx)cotxd(cscx cotx)cscx cot xIn | cscx cot x|cscx(cscx cotx), dxcscx cot xcsc2 x cscx cot x ,dxcscx cotxcscx)cscx cot x.I1"a^x?—dxx.3 5sin xcosdxdx2xxdxd(cscx cotx)cscx cot xIn | cscx cot x |dxarcsin x Carcta nxdx2x.2sindx5xcos(1 cos2 x) cos5・3 5 ■sin xcos xdxx d cos x.3 4sin xcosxaC2x2xadxsin xdx(cos7 x.2sin 5xcos d cosxcos5 x) d cosxcos8 x cos63 4x cosxdx sin xcos x dsinxarcsi n^ Ca丄arctan^ C , ( a a a5 56 67 78 89 9.4 .6 .3 2 2 3 5.7 sin X SIn X sin x(1 sin x) d sinx (sin x 2sin x sin x) d sinx4 3.8s^x C810 (1) 10 (2)dxxln xdxxln2 x1In x1 dx d I nx In x----- d In x In In x C In x11 (1) 12、13、14、15、16、17、1 1 dxIn x x d In xIn2xd I n xIn2x1In x2xdxx 2x 22xdx dx24^2^x 2x 2 2x2 2d(x2 1)2 21 (x 1)2arcta n(x 1)xdx 1 2 xdx 1 dx2 1 d(x21)x4 2x2 5 2 x4 2x2 5 2 x4 2x2 5 2 4 (x21)211 (2)d Jd(x21)sin、x x2 1 2x21-arctang4 2sin、x x dx/x dx2 sin x d x 2cos x C 2cos、x C2x 1 2x1 e dx e d2x2 e2x d2x 1e2x C2sin3 x cosxdx(2x 5)100dx(2x 5)100d(2x xsin x2dx sinsin(2x5)x cosxdx5)100 dxsin(2x5)101x2 xdx1 .sin2 x23 x d sin x5)100dx2sin3x d si n x.4sin xIn x —dx x、1 In x In x 1 dxxIn x.1 In x1 d(2x 5)2丄(2x 5)1012021005) d(2x 5)sin x2dx2(11cosx2I In x) 1 -d I n x”1 In x18、19、20、21、22、23、24、25、1 Inx d(123(13ln x)2arcta n xxE x12 1 x2sin xdxcos3 xxex dx2 edx、厂2乂—xdxx2x 2(x计算j____ d l n x.1 lnx1ln x) d(1 ln x)寸1 ln x12(1 ln x)2Carctan xe 2 dxxarcta nxe d arctan x arcta nx e arcta n xd arctan x e2d(1 x )Inxdx2.1dx2d(1 x2)1sin xdxcos3 xx 1dxxdx■2 (1 x)2一cos3 xx de xi12ln x ln2xd(1 x)112 ed I nxdln2x(1 x)2cosx32cos 2xd cosx12cos 2x C (xdxF(xd(x;)Ae x) ln( 2d(1 x)2 2(1 x)(x 1)d(x £)arcsi n1 x C421d(x2)1 2 7—) (—)2 2arctansin xcosx2 ~~2 —2 2—a sin xb cos xdx,a2b22「7arctan2x—1 C471 2 2 2 222 d(a sin x b cos x)2(a 2b 2)【不定积分的第二类换兀法】已知 f(t)dt F(t) C求 g(x)dx g( (t))d (t)g( (t)) '(t)dt 【做变换,令x (t),再求微分】f(t)dtF(t) C【求积分】F( 1(x))C【变量还原,t1(x)】变量还原【分析】因为:2 2 2 2 2 2 2 2(a sin x b cos x)' a 2sin xcosx b 2cos x( sin x) 2(a b )sin xcosx 所以:d (a 2s in 2 x b 2cos 2 x) 2(a 2 b 2)sin xcosxdx 2cost C 2cos x C2(1}1 J 】"x t 2G 2—2tdt1 t2 丄 dt 2 1 — dt 1 t 1 tsin xcosxdx【解答】sin xcosxsin xcosxdx1______________ d x222.2 ,2 2 2.2 ,2 22 2a sin xb cos xa sin xb cos x a b2 ■ 2 2 2 、d(a sin x b cos x) 2 a 2 sin 2x b 2 cos 2 x1d(a 2sin 2x b 2cos x) a b2 a 2sin 2x b 2 cos x———2 Ja 2sin 2xb 2 cos 2 x C a b 2si ntdt令x t2 (2)变量还原_ _2 t ln|1 t| C 2 x ln|1 G| Ct J xdx\ x令1+ x tx (t 1)12td(t 1)21 2(t 1)dt dt dt变量还原_ _2 t ln|t| C 2 1 .x ln|1 匸| Ct 1、x12 (t6dxt3)dt1dxx(1 x)3 _____4令1 x t3 4x (t 1)x t2、(t31)4t d(t3 1)41(O 2t 4(t3 1)33t2dt变量还原12t 31 4x123(1 :x)4变量还原2arcta nt Ct xdt22tdt 2 -^^dtt (1 t ) t(1 t ) 1 t2arctan、x C1 令e x t 15、x dx d lnt1 e x x lnt 1 t1 1 dt1 t t1 亠 1 1dtt 1 tt(1Ul t)变量还原Ilnt e xe xC1 e xIn |t| l n|1 t| C In |t I Cdx 令6x t(1 :x)」x x t6(1 t2)t3dt6(1 t2)t3貳水t21 t2dt1 t2dt变量还原6(t arcta nt) C 6t6( . x arctan ,x) C【注】被积函数中出现了两个根式m—— n——k .■—\ x, \ x时,可令\ x t,其中k为m, n的最小公倍数。
不定积分第一类换元法
不定积分第一类换元法(凑微分法)一、 方法简介设)(x f 具有原函数)(u F ,即)()('u f u F =,C u F du u f +=⎰)()(,如果U 是中间变量,)(x u ϕ=,且设)(x ϕ可微,那么根据复合函数微分法,有dx x x f x dF )(')]([)]([ϕϕϕ=从而根据不定积分的定义得)(])([)]([)(')]([x u du u f C x F dx x x f ϕϕϕϕ=⎰⎰=+=.则有定理:设)(u f 具有原函数,)(x u ϕ=可导,则有换元公式)(])([)(')]([x u du u f dx x x f ϕϕϕ=⎰⎰=由此定理可见,虽然⎰dx x x f )(')]([ϕϕ是一个整体的记号,但如用导数记号dxdy 中的dx 及dy 可看作微分,被积表达式中的dx 也可当做变量x 的微分来对待,从而微分等式du dx x =)('ϕ可以方便地应用到被积表达式中。
几大类常见的凑微分形式:○1⎰⎰++=+)()(1)(b ax d b ax f a dx b ax f )0(≠a ; ○2⎰⎰=x d x f xdx x f sin )(sin cos )(sin ,⎰⎰-=xd x f xdx x f cos )(cos sin )(cos ,⎰⎰=x d x f x dx x f tan )(tan cos )(tan 2,x d x f xdxx f cot )(cot sin )(cot 2⎰⎰-=; ○3⎰⎰=x d x f dx xx f ln )(ln 1)(ln ,⎰⎰=x x x x de e f dx e e f )()(; ○4n n n n x d x f ndx x x f ⎰⎰=-)(1)(1)0(≠n ,⎰⎰-=)1()1()1(2xd x f x dx x f ,⎰⎰=)()(2)(x d x f xdx x f ;○5⎰⎰=-x d x f xdx x f arcsin )(arcsin 1)(arcsin 2;⎰⎰=+x d x f xdxx f arctan )(arctan 1)(arctan 2; ○6复杂因式【不定积分的第一类换元法】 已知()()f u du F u C =+⎰求()(())'()(())()g x dx f x x dx f x d x ϕϕϕϕ==⎰⎰⎰ 【凑微分】()()f u du F u C ==+⎰ 【做变换,令()u x ϕ=,再积分】(())F x C ϕ=+ 【变量还原,()u x ϕ=】【求不定积分()g x dx ⎰的第一换元法的具体步骤如下:】(1)变换被积函数的积分形式:()(())'()dx g x f x x dx ϕϕ=⎰⎰(2)凑微分:()(())((')))(()x g x dx d x dx f x f x ϕϕϕϕ==⎰⎰⎰(3)作变量代换()u x ϕ=得:()(())'()()()()g x dx f x x x x dx f d ϕϕϕϕ==⎰⎰⎰()u f u d =⎰(4)利用基本积分公式()()f u du F u C =+⎰求出原函数:()(())'()(())()g x dx f x x dx f x d x ϕϕϕϕ==⎰⎰⎰()()d u u C f u F ==+⎰(5)将()u x ϕ=代入上面的结果,回到原来的积分变量x 得:()(())'()(())()g x dx f x x dx f x d x ϕϕϕϕ==⎰⎰⎰()()f u du F u C ==+⎰(())F x C ϕ=+【注】熟悉上述步骤后,也可以不引入中间变量()u x ϕ=,省略(3)(4)步骤,这与复合函数的求导法则类似。
不定积分的换元法
一般的说,若积分 f (x)dx不易计算可以作适当的
变量代换 x (t) ,把原积分化为 f ((t))'(t) dt 的形
式而可能使其容易积分.当然在求出原函数后, 还要
将 t 1(x) 代回.还原成x的函数,这就是第二换元
积分法计算不定积分的基本思想.
应用第二类换元法求不定积分的步骤为
f
( x) d
x
x
换元
(t)
f
(t)
'(t ) d
t
g(t)d t
F(t)
C
还原
(t)
x
F
1(t) C
第二类积分换元法 分为两种基本类型根 三式 角代 代换 换
例6 求
x dx. 1 x
解 令 1 x t,得x 1t2,得dx 2tdt,所以有
x 1
x
dx
1t
t
2
2tdt
2 (1 t2)dt
ln
x a
x
2 a
a
2
C
.
x2 a2
x
t a
练习:P109 1(12)
小结:二类换元积分法的思想与步骤
作业:P109 1(1)、(4)、(10)
C
1 3
(
x2
3
4)2
C.
x2
4dx
1 2
udu
练习:P109 1(2)、(5)、(15)
二、 第二类换元法
第一类换元法是通过变量替换 u ( x)
将积分
f [( x)]( x)dx化为积分 f (u)du
下面介绍的第二类换元法是通过变量替
换 x (t) 将积分
f ( x)dx化为积分 f [(t)](t)dt
不定积分典型例题
不定积分典型例题一、直接积分法直接积分法是利用基本积分公式和不定积分性质求不定积分的方法,解题时往往需对被积函数进行简单恒等变形,使之逐项能用基本积分公式.例1、求∫(1−1)x x dx x 234−54714解原式=∫(x −x )dx =x 4+4x 4+C 7e 3x +1例2、求∫x dx e +1解原式=∫(e 2x −e x +1)dx =例3、求∫12x e −e x +x +C 21dx 22sin x cos xsin 2x +cos 2x 11解原式=∫dx =dx +dx =tan x −cot x +C 2222∫∫sin x cos x cos x sin x例4、∫cos 2解原式=∫x dx 2x +sin x 1+cos x dx =+C 22x 2例5、∫dx 21+x x 2+1−11dx =(1−解原式=∫∫1+x 2)dx =x −arctan x +C 1+x 2注:本题所用“加1减1”方法是求积分时常用的恒等变形技巧.二、第一类换元积分法(凑微分法)∫f (x )dx =∫g [ϕ(x )]ϕ'(x )dx 凑成令ϕ(x )=u =∫g (u )du 求出=G (u )+C 还原=G [ϕ(x )]+C 在上述过程中,关键的一步是从被积函数f (x )中选取适当的部分作为ϕ'(x ),与dx 一起凑成ϕ(x )的微分d ϕ(x )=du 且∫g (u )du 易求.tan x dx cos x例1、求∫3−2sin x −d cos x =−∫(cos x )2d cos x =+C dx =∫解原式=∫cos x cos x cos x cos x cos x例2、求∫arcsin xx −x 2dx解原式=∫arcsin x1−x ⋅1x dx =∫2arcsin x1−(x )2d (x )=2∫arcsin xd (arcsin x )=(arcsin x )2+C注1dx =2d (x )x1−x9−4x 2 例3、求∫dx1−1d (2x )12 解原式=∫+∫(9−4x )2d (9−4x 2)232−(2x )28=12∫2d (x )11213+9−4x 2=arcsin x +9−4x 2+C 423421−(x )23例4、求∫tan 1+x 2⋅x1+x 2dx解原式=∫tan1+x 2d 1+x 2=−ln |cos 1+x 2|+C 例5、求∫x x −x −12dxx (x +x 2−1)22dx =x dx +x x −1dx 解原式=∫2∫∫x −(x 2−1)3x 31x 31222=+∫x −1d (x −1)=+(x −1)2+C 3233例6、求∫1dx 1+tan xcos x 1cos x −sin x )dx dx =∫(1+sin x +cos x 2cos x +sin x解原式=∫=1⎡1⎤1++(cos sin )x d x x =(x +ln |cos x +sin x |)+C ∫⎢⎥2⎣cos x +sin x ⎦211+x ln dx 1−x 21−x11+x 1+x 121+x ln (ln +C )d ln =∫21−x 1−x 41−x例7、求∫ 解原式= 例8、求∫1dx x e +1e x 1+e x −e x dx =∫dx −∫dx 解原式=∫e x +11+e x=∫dx −∫1x x d (1+e )=x −ln(1+e )+C x1+e例9、求∫1dx e x +e −xe x 1 解原式=∫2x dx =∫d (e x )=arctan e x +C x 2e +11+(e ) 例10、求∫sin x dx 1+sin x11−sin x )dx =∫dx −∫dx 21+sin x cos x解原式=∫(1−=x −∫1sin x dx +dx =x −tan x +sec x +C 22∫cos x cos x例11、求∫dx x 2−3ln x−12 解原式=∫(2−3ln x )d (ln x )1111(2−3ln x )2+C =∫(2−3ln x )(−)d (2−3ln x )=−⋅33−1+12−12=−22−3ln x +C 31dx a 2sin 2x +b 2cos 2x1b 2+a 2tan 2x d (tan x )=11a (tan x )d ab ∫1+(a tan x )2b b例 12、求∫ 解原式=∫=1a arctan(tan x )+C ab bx 4+1dx 例13、求∫6x +1(x 2)2−x 2+1x 2x 4−x 2+1+x 2dx +∫32dx dx =∫解原式=∫(x 2)3+1(x )x 6+1=∫111133dx +dx =arctan x +arctan x +C 232∫1+x 31+(x )3例14、求∫1dx x (1+x 8)1+x 8−x 811x 78=−dx dx dx 解原式=∫=ln |x |−ln(1+x )+C 88∫x ∫1+x x (1+x )8例15、求∫3x −2dx x 2−4x +53d (x 2−4x +5)1+4∫2 解原式=∫2dx 2x −4x +5x −4x +5d (x −2)3ln |x 2−4x +5|+4∫22(x −2)+13ln |x 2−4x +5|+4arctan(x −2)+C 2== 注由于分子比分母低一次,故可先将分子凑成分母的导数,把积分化为形1dx 的积分(将分母配方,再凑微分).如∫2ax +bx +cx 2 例16、已知f (x −1)=ln 2,且f [ϕ(x )]=ln x ,求∫ϕ(x )dx .x −22x 2−1+1x +1 解 因为f (x −1)=ln 2,故f (x )=ln ,又因为x −1−1x −12f [ϕ(x )]=ln ϕ(x )+1ϕ(x )+1x +1=ln x ,得=x ,解出ϕ(x )=,从而ϕ(x )−1ϕ(x )−1x −1∫ϕ(x )dx =∫ 例17、求∫x +12dx =∫(1+)dx =x +2ln |x −1|+C x −1x −11dx cos 4x1 解原式=∫sec 2xd tan x =∫(1+tan 2x )d tan x =tan x +tan 3x +C 3例18、求∫1+ln x dx 22+(x ln x ) 解原式=∫1d (x ln x )x ln x arctan(=)+C 2+(x ln x )222三、第二类换元法设x =ϕ(t )单调可导,且ϕ'(t )≠0,已知∫f [ϕ(t )]ϕ'(t )dt =F (t )+C ,则∫f (x )dx 令x =ϕ(t )=∫f [ϕ(t )]ϕ'(t )dt =F (t )+C t =ϕ−1(x )还原=F [ϕ−1(x )]+C选取代换x =ϕ(t )的关键是使无理式的积分化为有理式的积分(消去根号),同时使∫f [ϕ(t )]ϕ'(t )dt 易于计算.例1、求∫xdx(x +1)1−x 22 解令x =sin t ,dx =cos tdt原式=∫111sin t cos tdt d cos t (=−)d cos t =−+22∫∫(sin t +1)cos t 2−cos t 222−cos t 2+cos t2+cos t 12+1−x 2ln +C =−+C ln =−2222−cos t 222−1−x 1例2、求∫dxx41+x2解令x=tan t,dx=sec2tdtsec2tdt cos3tdt1−sin2t原式=∫=∫=∫d sin t=∫(sin−4t−sin−2t)d sin t 444tan t⋅sec t sin t sin t(1+x2)3(1+x2)111++C=−++C=−333sin t sin t3x xx2−9dxx2例3、求∫解令x=3sec t,则dx=3sec t⋅tan tdt3tan t tan2t原式=∫⋅3sec t⋅tan tdt=∫dt=∫(sec t−cos t)dt29sec t sec t=ln|sec t+tan t|−sin t+C1x x2−a2x2−a2=ln+−+C1a a xx2−a2+C=ln x+x−a−x22例4、求∫1dxx(x7+2)11 解令x=,则dx=−2dt,t t1t 6117 原式=∫(−2)dt =−∫dt =−d (1+2t )77∫11+2t 141+2t +2t 7t t 111ln |1+2t 7|+C =−ln |2+x 7|+ln |x |+C 14142=− 注设m ,n 分别为被积函数的分子,分母关于x 的最高次数,当n −m >1时,可用倒代换求积分.例5、求∫x +1x 2x −12dx11 解令x =,dx =−2dt t t 1+111+t 1d (1−t 2)t (−2)dt =−∫dt =−∫dt +∫ 原式=∫222t 111−t 1−t 21−t −1t 2t 2=−arcsin t +1−t +C =2x 2−11−arcsin +C x x例6、求∫x 3x −x 24dxt 10⋅t 4t 6t 1411解原式=11∫83⋅12t dt =12∫5dt =12∫5dt dx =12t dt t −t t −1t −1令12x =t t 10−1+14121121212⋅t dt =∫(t 5+1+5)dt 5=t 10+t 5+ln |t 5−1|+C =12∫5t −15t −1105561212=x 6+x 12+ln x 12−1+C 555555例7、求∫dx1+e x解令1+e x =t ,e x =t 2−1,dx =2t dt 2t −112t 1t −11+e x −1原式=∫⋅2dt =2∫2dt =ln +C =ln +C x t t −1t −1t +11+e +1ln x dx x 1+ln x例8、求∫解令t =1+ln x原式=∫ln x t −1d ln x =∫dt 1+ln x t112322=∫(t −)dt =t −2t 2+C =(ln x −2)1+ln x +C 33t例9、求∫x +1−1dx x +1+1解令x +1=t ,x =t 2−1,dx =2tdt因为原式=∫x +2−2x +1x +1dx =x +2ln |x |−2∫dx x x而∫x +12t 2dt 1dx =∫2=2∫(1+2)dt x t −1t −1t −1x +1−1+C =2x +1+ln +C t +1x +1+1=2t +ln原式=x +2ln |x |−4x +1−2ln x +1−1+C =x −4x +1+4ln x +1+1+C x +1+1四、分部积分法分部积分公式为∫uv 'dx =uv −∫u 'vdx 使用该公式的关键在于u ,v '的选取,可参见本节答疑解惑4.例1、求∫x 3e x dx解原式=∫x 3de x =x 3e x −3∫x 2de x =x 3e x −3x 2e x +6∫xde x =x 3e x −3x 2e x +6xe x −6e x +C例2、求∫x 2cos 2解原式=x dx 2121312x (1+cos x )dx =x +∫x cos xdx ∫262=131211x +∫x d sin x =x 3+x 2sin x −∫x sin xdx 6262131211x +x sin x +∫xd cos x =x 3+x 2sin x +x cos x −∫cos xdx 62621312x +x sin x +x cos x −sin x +C 623==例3、求∫e x dx令3x =t 解原式dx =3t 2dt=3∫t e dt =3∫t de 2t 2t =3t 2e t −6te t +6e t +C=33x 2e 3x −63xe 3x +6e 3x +C例4、求∫cos(ln x )dx解原式=x cos(ln x )+∫sin(ln x )dx=x cos(ln x )+x sin(ln x )−∫cos(ln x )dxx移项,整理得原式=[cos(ln x )+sin(ln x )]+C2注应用一次分部积分法后,等式右端循环地出现了我们所要求出的积分式,移项即得解,类似地能出现循环现象的例题是求如下不定积分:αxe ∫cos βxdx 或αxe ∫sin βxdx例5、求∫ln(x +1+x 2)dx解原式=x ln(x +1+x 2)−∫x 1+x 2dx =x ln(x +1+x 2)−1+x 2+Cln 3x例6、求∫2dx x 1ln 3x 1 解原式==∫−ln xd ()=−−3∫ln 2xd ()x x x3ln 3x ⎡ln 2x 1⎤ln 3x 3ln 2x 6ln x 6−3⎢+2∫ln xd ()⎥=−−−−+C=−x x ⎦x x x x ⎣x例7、推导∫1dx 的递推公式22n(x +a ) 解令I n =∫1dx (x 2+a 2)nx x 2+a 2−a 21x 2I n =2n +dx 222=+−nI na dx n 2n 22n +122n 22n +1∫∫(x +a )(x +a )(x +a )(x +a )=x 2+2nI −2na In +1n 22n(x +a )I n +1=12na 2⎡⎤x(2n 1)I +−n ⎥⎢(x 2+a 2)n ⎣⎦⎡⎤x(2n 3)I +−n −1⎥⎢(x 2+a 2)n −1⎣⎦I n =12(n −1)a 2例8、推导I n=∫tan n xdx 的递推公式.解I n=∫tan n −2x ⋅tan 2xdx =∫tan n −2x ⋅(sec 2x −1)dx=∫tan n −2x ⋅sec 2xdx −∫tan n −2xdx =∫tann −2xd (tan x )−In −2=1tan n −1x −I n −2n −1注应用分部积分法可以建立与正整数n 有关的一些不定积分的递推公式.例9、已知f (x )的一个原函数是e −x ,求∫xf '(x )dx解原式=∫xdf (x )=xf (x )−∫f (x )dx =xf (x )−e −x +C例10、求∫x arctan x ln(1+x2)dx解因为∫x ln(1+x 2)dx ==221ln(1+x 2)d (1+x 2)∫211(1+x 2)ln(1+x 2)−x 2+C 221⎤⎡1所以 原式=∫arctan xd ⎢(1+x 2)ln(1+x 2)−x 2⎥2⎦⎣211⎡x 2⎤2222=(1+x )ln(1+x )−x arctan x −∫⎢ln(1+x )−2⎥22⎣1+x ⎦[]=13x arctan x (1+x 2)ln(1+x 2)−x 2−3−ln(1+x 2)+x +C 222[]注本题是三类函数相乘的形式,这类问题大多采用本题的方法.xe arctan xdx 例11、求∫2(1+x )解令x =tan t ,dx =sec 2tdttan t ⋅e t sec 2tdt =∫sin t cos te t dt 原式=∫4sec te arctan x (x 2+x −1)11t t +C =∫sin 2te dt =e (sin 2t −cos 2t )+C =25(1+x )210x 2arctan xdx 例12、求∫21+x 解原式=∫(1−11=−)arctan xdx arctan xdx ∫∫1+x 2arctan xdx 1+x 211=x arctan x −ln(1+x 2)−(arctan x )2+C22arcsin x 1+x 2⋅dx 例13、求∫22x 1−x 解令x =sin t ,arcsin x =t ,dx =cos tdt ,t (1+sin 2t )t cos ⋅tdt = 原式=∫∫sin 2tdt +∫tdt sin 2t cos t=td (−cot t )+∫121t=−t cot t +∫cot tdt +t2221=−t cos t +ln |sin t |+t 2+C21−x 21=−arcsin x +ln |x |+(arcsin x )2+Cx 2注直接积分法、换元法、分部积分法是求不定积分最重要的方法,主要用到了“拆、凑、换、分”的技巧,同时应注意这些方法的综合运用.五、有理函数的积分有理函数的积分总可化为整式和如下四种类型的积分:(1)∫Adx =A ln |x −a |+C x −a−AA 1dx =+C (n ≠1)n n −1(x −a )n −1(x −a )(2)∫(3)∫dx dx dx =∫⎡p 4q −p 2⎤n(x 2+px +q )n 2⎢(x +)+⎥24⎣⎦p令x +=u24q −p 2令=a 4=du 22n∫(u +a )2(4)∫(x +a )dx 11p dx()dx a =−+−,其2n 2n −12n∫(x +px +q )2(n −1)(x +px +q )2(x +px +q )中p 2−4q <0.这就是说有理函数积分,从理论上讲,可先化假分式为整式与真分式之和,再将真分式化为若干部分分式之和,然后逐项积分,但这样做有时非常复杂,因此我们最好先分析被积函数的特点,寻求更合适,更简捷的方法也是很必要的.例1、求∫dx2x −2x +31dx d (x −1)x −1arctan ==+C(x −1)2+2∫2+(x −1)222解原式=∫x 2+5x +4例2、求∫4dx 2x +5x +4x 2+4x解原式=∫2dx +5dx222∫(x +1)(x +4)(x +1)(x +4)dx 5dx 25112=∫2arctan x ()dx +∫2=+−222∫x +12(x +1)(x +4)6x +1x +45x 2+1+C=arctan x +ln 26x +4本题若用待定系数法,较麻烦一些,也可获得同样的结果.事实上,x 2+5x +4Ax +B Cx +D 设4=2+2,通分后应有2x +5x +4x +1x +4x 2+5x +4=(Ax +B )(x 2+4)+(Cx +D )(x 2+1)得A +C =0,B +D =0,4A +C =5,4B +D =4比较等式两端x 的同次幂的系数,55由此,A =,B =1,C =−,D =−1335⎡5⎤−−+11x x ⎢3⎥5x 2+13+2+arctan x +C 故原式=∫⎢2⎥dx =ln 2x +4⎥6x +4⎢x +1⎣⎦例3、求∫解设xdx3x −1x A Bx +C2=+,通分后应有x =A (x +x +1)+(Bx +C )(x −1)32x −1x −1x +x +1比较等式两端x 的同次幂的系数,得A +B =0,A −B +C =1,A −C =0,由此,111A =,B =−,C =333⎡1⎤x −1故原式=∫⎢dx −⎥2⎣3(x −1)3(x +x +1)⎦1d (x +)1dx 12x +112dx +∫=∫−∫23x −16x +x +12(x +1)2+324(x −1)212x +11=ln 2+arctan +C 6x +x +133例4、求∫dx24x (1−x )(x 2+1)−x 211解原式=∫2dx dx =−∫x 2(1−x 2)∫(1−x 2)(1+x 2)dx x (1−x 4)=∫(11111+−+)dx ()dx x 21−x 22∫1−x 21+x 211111=−+∫−dx dx 22∫21+x x 21−x 111+x 1−arctan x +C=−+ln x 41−x 2注:本题若用待定系数法,应当将被积函数分解为A B C D Ex +F11==++++x 2(1−x 4)x 2(1−x )(1+x )(1+x 2)x x 21−x 1+x 1+x 2然后再确定系数,显然这样做比较麻烦,也可获同样结果,此处从略.x 11dxdx 例5、求∫8x +3x 4+3解令x 4=u ,则du =4x 3dx ,于是,u 21411−原式=∫2du =∫(1+)du u +1u +24u +3u +241x 41=(u +ln |u +1|−4ln |u +2|+C )=+ln(1+x 4)−ln(x 4+2)+C 444x 5例6、求∫dx23(2x +3)解令2x 2+3=t ,x 2=t −3,4xdx =dt ,从而,2(t −3)21169原式=∫dt =(−2+3)dt 3∫4⋅4t 16t t t 169169(ln |t |+−2)+C =[ln |2x 2+3|+2−]+C 221616t 2t 2x +32(2x +3)=x 4dx 例7、求∫4x +5x 2+4x 4−(5x 2+4)解4=1+4x +5x 2+4x +5x 2+4−(5x 2+4)A 1x +B 1A 2x +B2设4=2+2,通分后应有x +5x 2+4x +1x +4−(5x 2+4)=(A 1x +B 1)(x 2+4)+(A 2x +B 2)(x 2+1)116由此,A 1=0,B 1=,A 2=0,B 2=−,故33⎡18116⎤xdx −原式=∫⎢1+arctan arctan =x +x −+C ⎥223(1)3(4)++x x 332⎣⎦例8、求∫dx 102x (x +1)x 10+1−x 10x 911==−10解由于102102102x (x +1)x (x +1)x (x +1)(x +1)1x 9x 9=−10−102x (x +1)(x +1)⎤⎡1x 9x 91d (x 10+1)1d (x 10+1)dx =ln |x |−∫10原式=∫⎢−10−∫10−102⎥2x x x (1)(1)10x +110(x +1)++⎦⎣111x 10110=ln |x |−ln(x +1)++C =ln ++C10x 10+110(x 10+1)1010(x 10+1)注对被积函数先做初等变形常常可以使问题得到简化,常见的初等变形有:分子分母同乘一个因子;有理化;加一项或者减一项以及利用三角函数恒等变形等.六、三角函数有理式的积分一般从理论上讲,三角函数有理式的积分∫R (sin x ,cos x )dx 可通过万能代换x化为代数有理式的积分,但有时较繁,因此我们常采用三角恒等变形,2然后再求解.t =tan 例1、求∫dx4sin x cos xsin 2x +cos 2x sin x dx dx dx =+解原式=∫442∫∫sin x cos x cos x sin x cos x=−∫=sin x dx1d (cos x )dx ++∫cos 2x ∫sin xcos 4x x 111d (cos x )x −+ln |tan |=++ln |tan |+C 3cos 3x ∫cos 2x 23cos 3x cos x 2例2、求∫1+sin xdxx x x x +cos 2+2sin cos dx2222解原式=∫sin 2=∫(sin x x x x x x+cos )2dx =∫(sin +cos )dx =−2cos +2sin +C222222例3、求∫dx2sin x −cos x +5x 2t 1−t 22dt,cos x ,dx ==,于是解令t =tan ,则sin x =22221+t 1+t 1+t x ⎞⎛3tan +1⎟⎜11dt ⎛3t +1⎞2⎟+C 原式=∫2arctan ⎜arctan ⎜=⎟+C =3t +2t +2555⎜⎟⎝5⎠⎜⎟⎝⎠例4、求∫sin xdx 1+sin xsin x (1−sin x )sin x 1−cos 2xdx =∫dx −∫dx 解原式=∫cos 2x cos 2x cos 2x=1−tan x +x +C cos xsin xdx sin x +cos x1sin x +cos x +sin x −cos x 1⎛sin x −cos x ⎞dx =⎜1+⎟dx ∫∫2sin x +cos x 2⎝sin x +cos x ⎠例5、求∫解原式==11−d (sin x +cos x )1x +∫=(x −ln |sin x +cos x |)+C 22sin x +cos x 2例6、求∫sin 5x cos xdx解原式=111[sin 4x +sin 6x ]dx =−cos 4x −cos6x +C 2∫812注积化和差公式1sin αx ⋅cos βx =[sin(α+β)x +sin(α−β)x ]21sin αx ⋅sin βx =[cos(α−β)x −cos(α+β)x ]21cos αx ⋅cos βx =[cos(α+β)x +cos(α−β)x ]2例7、求∫dx2(2+sin x )cos x解令sin x =t ,cos xdx =dt1(2+t 2)+(1−t 2)dt =于是原式=∫dt(2+t 2)(1−t 2)3∫(2+t 2)(1−t 2)=1dt 111+t 1dt tln +=+arctan()+C 22∫∫31−t 32+t 61−t 32211+sin x 1sin xarctan(=ln +)+C 61−sin x 322注形如∫R (sin x ,cos x )dx 的有理函数的积分,一般可利用代换tan 为有理函数的积分.(i) 若R (−sin x ,cos x )=−R (sin x ,cos x )或R (sin x ,−cos x )=−R (sin x ,cos x )成立,最好利用代换cos x =t 或对应的sin x =t .(ii) 若等式R (−sin x ,−cos x )=R (sin x ,cos x )成立,最好利用代换tan x =t .x=t 化2例8、求∫sin xdx sin 3x +cos 3x解令tan x =t ,则sec 2xdx =dt ,于是t 1(1+t )2−(1−t +t 2)1t +11dt dt =dt =dt −原式=∫1+t 33∫(1+t )(1−t +t 2)3∫1−t +t 23∫1+t 112t −11arctan()−ln |1+t |+C =ln(t 2−t +1)+63332tan x −11tan 2x −tan x +11+arctan()+C =ln 26(1+tan x )33 21。
不定积分换元法例题10页word
【不定积分的第一类换元法】已知()()f u du F u C =+⎰求()(())'()(())()g x dx f x x dx f x d x ϕϕϕϕ==⎰⎰⎰ 【凑微分】()()f u du F u C ==+⎰ 【做变换,令()u x ϕ=,再积分】(())F x C ϕ=+ 【变量还原,()u x ϕ=】【求不定积分()g x dx ⎰的第一换元法的具体步骤如下:】 (1)变换被积函数的积分形式:()(())'()dx g x f x x dx ϕϕ=⎰⎰ (2)凑微分:()(())((')))(()x g x dx d x dx f x f x ϕϕϕϕ==⎰⎰⎰(3)作变量代换()u x ϕ=得:()(())'()()()()g x dx f x x x x dx f d ϕϕϕϕ==⎰⎰⎰()u f u d =⎰ (4)利用基本积分公式()()f u du F u C =+⎰求出原函数:()(())'()(())()g x dx f x x dx f x d x ϕϕϕϕ==⎰⎰⎰()()d u u C f u F ==+⎰ (5)将()u x ϕ=代入上面的结果,回到原来的积分变量x 得:()(())'()(())()g x dx f x x dx f x d x ϕϕϕϕ==⎰⎰⎰()()f u du F u C ==+⎰(())F x C ϕ=+【注】熟悉上述步骤后,也可以不引入中间变量()u x ϕ=,省略(3)(4)步骤,这与复合函数的求导法则类似。
__________________________________________________________________________________________ 【第一换元法例题】1、9999(57)(57)(5711(57)(57)55)(57)dx d x d x dx x x x x +=+⋅=+⋅=+⋅++⎰⎰⎰⎰ 110091(57)(57)(57)10111(57)5550d C x x x x C =⋅=⋅+=+++++⎰ 【注】1(57)'5,(57)5,(57)5x d x dx dx d x +=+==+⇒⇒2、1ln ln ln ln dx d x xx dx x x x =⋅=⋅⎰⎰⎰221(l 1ln ln (ln )2n )2x x x d C x C =⋅=+=+⎰【注】111(ln )',(ln ),(ln )x d x dx dx d x x x x===⇒⇒3(1)sin tan cos co si s cos cos n cos cos xdx d x xdx dx x d x x xxx --====⎰⎰⎰⎰⎰cos ln |cos |c ln |co s |o s x x d C x C x=-=-+=-+⎰【注】(cos )'sin ,(cos )sin ,sin (cos )x x d x xdx xdx d x =-=-=-⇒⇒ 3(2)cos cos cot sin sin sin sin xdx x xdx dx d xx x x===⎰⎰⎰⎰sin ln |si ln |sin |n |sin xx d C x C x==+=+⎰【注】(sin )'cos ,(sin )cos ,cos (sin )x x d x xdx xdx d x ==⇒=⇒ 4(1)1()11d dx a x a x a d x x a x =⋅=⋅++++⎰⎰⎰ ln |1(|)ln ||d C a x a x a x a xC ++=⋅=+=+++⎰【注】()'1,(),()a x d a x dx dx d a x +=+==+⇒⇒ 4(2)1()11d dx x a x x x d a a x a =⋅=⋅----⎰⎰⎰ ln |1(|)ln ||d C x a x a x a x aC --=⋅=+=--+⎰【注】()'1,(),()x a d x a dx dx d x a -=-==-⇒⇒ 4(3)22221111111212x a a x a dx dx x a x a dx dx a a a x dx x ⎛⎫- ⎪--+⎝⎛⎫=-+⎭==- ⎪-⎝⎭⎰⎰⎰⎰⎰ ()11ln ||ln ||ln22x ax a x a C C a a x a-=--++=++ 5(1)2sec ()sec tan sec sec tan sec tan sec sec tan x x x x xdx x x x xdx dx x x+==⋅+++⎰⎰⎰ tan sec tan sec sec ()()ln |sec tan |se tan c tan d x x x x x xd x x C x x +===+++++⎰⎰5(2)2221cos sec cos c cos sin os cos 1sin x xdx dx dx x xx dx d x x x ====-⋅⎰⎰⎰⎰⎰ 2sin si 1111sin 111sin ln ln 1n sin 2112sin 121s sin sin in d x x x x x xd C C x xx --⎛⎫==-⋅=+=+ ⎪--+++⎝⎭⎰⎰6(1)2csc ()csc cot csc csc cot csc cot csc csc cot x x x x xdx x x x xdx dx x x+==⋅+++⎰⎰⎰ ()()ln |csc cot |csc c cot csc csc cot csc o ot t c d d x x x x x xx x C x x --+=-==+-+++⎰⎰6(2)2csc ()csc cot csc csc cot csc cot csc csc cot x x x x xdx x x x xdx dx x x==⋅----⎰⎰⎰ ()(cot csc csc co )ln |csc t csc co cot |c t sc cot d x x x x d x x xx x C x -+-=---==+⎰⎰7(1)arcsin x C ==+⎰7(2)arcsind xC ax d x =====+⎛⎫ ⎪⎛⎫ ⎪⎰8(1)221arctan 11dx dx x C x x==+++⎰⎰ 8(2)222222221111arctan 111d dx x dx C a x a x a a a x x x d dx x a x a a a a a a ⎛⎫⎛⎫⎪=====+++⎡⎤⎛⎫⎛⎫++⎝⎭⎛⎫⎪+⎢⎥⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦⎝⎭⎪⎝⎭⎰⎰⎰⎰⎰,(0a >) 9(1)352525s sin cos sin cos sin i c s o c n o s xd x xdx x x x x x d x =⋅-⋅=⎰⎰⎰862575cos cos (1cos )cos cos (cos cos )cos 86x xx x d x x x d x C =--⋅⋅=-⋅=-+⎰⎰9(2)353434c sin cos sin cos sin cos os sin x x xdx x x x dx d x x =⋅=⋅⎰⎰⎰468322357sin sin sin sin (1sin )sin (sin 2sin sin )sin 438x x xx x d x x x x d x C =-⋅=-+⋅=-++⎰⎰10(1)1ln 111l l n ln ln l ln n n ln dx d x C x x x x dx d x x x x =⋅=⋅=⋅=+⋅⎰⎰⎰⎰ 10(2)222211111ln ln ln ln ln n ln l dx d C x x x x d x xx x d x x ⋅=⋅=⋅=⋅=-+⎰⎰⎰⎰ 11(1)242424222222()arctan(21)222)121122(xdx d x C x x x x x x x x dx x dx ====+++++++++++⎰⎰⎰⎰ 11(2)2242422422121()2521112252524()xdx d x xdx d x x x x x x x x +===++++++++⎰⎰⎰⎰2222222121(1)111arctan()8442111122x d d x x C x x ⎛⎫+ ⎪++⎝⎭===+⎛⎫⎛⎫++++ ⎪ ⎪⎝⎭⎝⎭⎰⎰ 12、s 22dx dx dx ==⋅=⎰⎰⎰2C C ==-=-⎰ 13、222211222122x x xx e dx e d x d e x C e ===+⎰⎰⎰ 14、 43333co sin sin cos sin sin s sin i 4sin s n xx xdx x x d C dx x x x d x =⋅=⋅=⋅=+⎰⎰⎰⎰ 15、100(25)x dx +⎰10010010011(25)(25)2(25)(25)(25)2dx d x x x x d x =+⋅=+++⋅+⋅=⎰⎰⎰ 1001100111(25)(25)(25)101111(25)22202x x x d C x C =⋅=⋅+=+++++⎰ 16、2222222111sin sin s 2in sin cos 22x x x x x dx x xdx dx x d C =⋅=⋅=⋅=-+⎰⎰⎰⎰17、ln 1ln dx d d x x x ===⎰3122ln ln (1ln )(1ln )2(1ln )2(1ln )3d x d xd x d x x x C =-=+-+=+-++18、arctan arctan arctan arc arct 2tan 2an arcta 11arct 1n an x x x xx e dx e e e d e C x dx d x xx +=⋅=⋅=⋅=++⎰⎰⎰⎰ 19、22(1)x d xd dx x ===--2(1)d x C -=-=20、si n cos x dx d dx x =-=3221coscos 2cosx C x d x --=-=+⎰21、111()ln(22222)2x x x xx x x x x e dx d e e dx d e C e e e ee =⋅=⋅==+++++++⎰⎰⎰⎰22、23222ln ln ln l 1ln ln ln n 3x x dx x x x x d C x dx d x x =⋅=⋅=⋅=+⎰⎰⎰⎰ 23、C ==== 24、2221()177112()()()22424d x dx x x x x d x dx -===-+-+-+-⎰⎰⎰1()1d x C C x -==-+=+⎰ 25、计算⎰,22a b ≠【分析】因为:22222222(sin cos )'2sin cos 2cos (sin )2()sin cos a x b x a x x b x x a b x x +=+-=- 所以:222222(sin cos )2()sin cos d a x b x a b x xdx +=- 2222221sin cos (sin cos )2()x xdx d a x b x a b =⋅+-【解答】2222221a b ==-2222221C a b ==-【不定积分的第二类换元法】 已知()()f t dt F t C =+⎰求()(())()(())'()g x dx g t d t g t t dt ϕϕϕϕ==⎰⎰⎰ 【做变换,令()x t ϕ=,再求微分】 ()()f t dt F t C ==+⎰ 【求积分】1(())F x C ϕ-=+ 【变量还原,1()t x ϕ-=】__________________________________________________________________________________________ 【第二换元法例题】1、22sin sin 2si 2n t x t t t tdt t t dt tdt =⋅=⋅=⎰⎰⎰⎰2cos t t C C =-+-+变量还原2(1)22111122111211t x t dt td t dt dt t t t t t =⎛⎫⋅=⋅==- ⎪++++⎝⎭⎰⎰⎰⎰⎰ ())2ln |1|2ln |1t t t C C =-++++变量还原2(2)22(1)(1)2(1)1111221t x t d t dt dt t t t t dt t t =--⎛⎫⋅=⋅==- ⎪⎝⎭--⎰⎰⎰⎰⎰令()()12ln ||21ln |1|t t t C C ==-++++变量还原3、343324332(1)111(1)(1)4(1)3tx t dx t t t d t t t dt =-⋅=--⋅⋅⋅-⎰ 746312()1274t t t t dt C ⎛⎫=-=-+ ⎪⎝⎭⎰1274t C -+⎝=⎭变量还原4、222221112(1)(1)12t x t dt td dt t t t t t t =⋅====⋅=+++⎰⎰⎰2arctan t t C C =+变量还原5、ln 111111111(1)11ln xx e t x t dx dt dt e t t t t t t t t t d d =========⎛⎫⋅=⋅==- ⎪+++++⎝⎭=⎰⎰⎰⎰⎰令 ln ||ln |1|ln ln 11xxx t e t e t t C C C t e========-++=+++=+变量还原 6、6223236522111661(1)(61)11t x t t dt dt t t t t t dt t t d t =⎛⎫⋅=⋅==- ⎪++++==⎝⎭⎰⎰⎰⎰6(arctan )arctan t t t C C +=-+变量还原【注】被积函数中出现了两个根式时,可令t =,其中k 为,m n 的最小公倍数。
求不定积分的若干方法
求不定积分的若干方法一、换元法换元法是求不定积分常用的一种方法之一、通过引入一个新的变量,使得原积分的形式更加简单化,从而更易求解。
1. 微分换元法:设 u=g(x),则 du=g'(x)dx,通过替换变量 x 和dx,将原积分转化为对新变量 u 的积分。
例子:求∫(2x+1)²dx。
取 u=2x+1,则 du=2dx,将积分转化为∫u²/2du=u³/6+C=(2x+1)³/6+C。
2.三角换元法:根据三角函数的性质,通过适当的三角函数换元,将积分转化为更简单的形式。
例子:求∫sin²xdx。
利用三角公式sin²x=(1-cos2x)/2,将积分转化为∫(1-cos2x)/2dx=x/2-sin2x/4+C。
3.指数换元法:常用于含有指数、对数函数的积分求解。
通过引入指数函数或对数函数,将积分转化为更易处理的形式。
例子:求∫eˣsinxdx。
利用指数换元 eˣ=sinhx+coshx,将积分转化为∫(sinhxcoshx+cos²hx)dx=(1/2)sinh²x+(1/2)x+C。
二、分部积分法分部积分法是求不定积分的另一种常用方法。
对于积分中的乘积形式,可以通过分部积分来简化积分的形式。
公式:∫u(x)v'(x)dx=u(x)v(x)-∫v(x)u'(x)dx,其中 u(x) 和 v(x) 是可导的函数。
例子:求∫xlnxdx。
取 u=lnx,v'=xdx,则 u'=1/x。
利用分部积分公式,可得∫xlnxdx=(1/2)x²lnx-(1/2)∫xdx=(1/2)x²lnx-(1/4)x²+C。
三、特殊函数的不定积分1.幂函数的不定积分:- 当n≠-1 时,∫xⁿdx=(xⁿ⁺¹)/(n+1)+C;- 当 n=-1 时,∫(1/x)dx=ln,x,+C。
求不定积分的几种基本方法
x
dx x2
1
1 dt arcsin t C arcsin 1 C.
1 t2
x
综合起来,得
x
dx arcsin 1 C.
x2 1
x
在本节的例题中,有几个积分结果是以后经常会遇到
的.所以它们通常也被当作公式使用.这样,常用的积分 公式,除了基本积分表中的以外,再添加下面几个(其中 常数a>0).
1 2x
dx 3
1 2
1 2x
3
(2x
3)dx
1 2
1 2x
3
d(2x
3)
1 2
1du u
1 ln u C 1 ln 2x 3 C.
2
2
,
一般地,对于积分
f (ax b)dx 总可以作变量代换
u ax b,把它化为
f
(ax
b)dx
3
1
(x2
3
1) 2
C.
3
例5 求
xex2 dx.
解 令 u x2,则 du 2xdx ,有
xex2 dx 1 ex2 (2x)dx 1 eudu
2
2
,
1 eu C 1 ex2 C.
2
2
凑微分与换元的目的是为了便于利用基本积分公式.在
解 为使被积函数有理化.利用三角公式
令 x a sin t,t ( , ), 则它是
22
sin2 t cos2 t 1
不定积分 换元法
(也称配元法 , 凑微分法)
例1. 求 解: 令 u a x b , 则 d u adx , 故 原式 = u
m
1 a
du
1
a m 1
1
u
m 1
C
注: 当
时
例2. 求
ቤተ መጻሕፍቲ ባይዱ
想到公式
1 a
2
解:
1 ( x)2
a
dx
1 u2
arctan u C
dx
du
令u
2
2
2
dx
2
(x 2
2
a )
2
2
1 2
d( x a )
2
3 2
a
2
(x
2
a )
d( x a )
2
2
例12 . 求
1 cos 2 x 2 解: cos x (cos x) ( ) 2 2 1 (1 2 cos 2 x cos 2 x) 4
4 2 2
1
x a
, 则 du 1 a
1 a
a 1 u2
du
arctan u C
例3. 求
解:
a
dx
x 2 1 (a)
x d (a) x 1 (a) 2
想到
du 1 u
2
arcsin u C
f [ ( x)] ( x)dx
f ( ( x))d ( x)
3
例9. 求 解法1
1 ex .
dx
(1 e ) e 1 e
第一节不定积分的概念及性质
为二次式的根式的情况.
例11 求 a2 x2dx.
解
作三角变换,令 x
a sin t
π 2
t
π 2
, 那么
a2 x2 a cos t且dx a cos tdt,
于是
a2 x2dx a2 cos2 tdt a2 1 cos 2tdt
a2 a2
2
t sin 2t C.
24
tan
xdx
sin cos
x x
dx
d(cos x) cos x
ln
|
cos
x
|
C.
类似得(4) cot xdx ln | sin x | C.
(5)
sec
xdx
sec
x(sec x tan tan x sec x
x)
dx
sec2 x tan x
sec x tan sec x
xdx
(tan
cos xdx d(sin x),sec2 xdx d(tan x),csc2 xdx d(cotx),
dx d(arcsin x), 1 x2
dx 1 x2
d(arctan x).
下面的例子,将继续展示凑微分法的解题技巧.
例 6 求下列积分:
(1)
dx (a 0); (2) a2 x2
(4)
sin
2
xdx
1
cos 2
2
x
dx
1 2
dx
1 2
cos
2
xdx
1 2
x
1 4
cos
2xd2
x
1 x 1 sin 2x C. 24
(5)
1
不定积分的换元积分法
第四节 不定积分的换元积分法不定积分时若凑微分法、分部法均解决不了问题,且被积函数中含有复杂的量arcsin x 、()nax b +等),则可以考虑使用换元积分法.一、换元积分法例6.4.1 求不定积分.解 这里主要障碍是 t = 此时2x t =t ”则211dt t=+⎰ 21t dt t=+⎰ 1121t dt t+-=+⎰ 12(1)1dt t =-+⎰ 22ln 1t t C =-++(2ln 1C =+. 例6.4.2 求不定积分11x dx e+⎰. 解 同样令主要障碍x e t =,此时ln x t = 则11x dx e +⎰1ln 1d t t =+⎰()11dt t t=+⎰ 11()1dt t t=-+⎰ ln ln 1t t C =-++ln(1)x x e C =-++.例6.4.3 求不定积分arcsin xdx ⎰.解 令arcsin x t =,此时sin x t =,则 arcsin xdx ⎰sin td t =⎰sin sin t t tdt =-⎰sin cos t t t C =++arcsin x x C =.例6.4.4 求不定积分()2101x dx x +⎰.解 令()1x t +=,此时1x t =-,则()2101x dx x +⎰ ()()21011t d t t -=-⎰21021t t dt t-+=⎰ 8910(2)t t t dt ---=-+⎰789111749C t t t=-+-+ ()()()789111714191C x x x =-+-++++.从以上例题可见,换元可使复杂积分变得简单,可关键是怎么换.二、换元积分举例例6.4.5 用换元法求下列不定积分:(1); (2)⎰; (3);(4)⎰; (5);(6). 解(1)21t dt t +221t dt t =+⎰21121t dt t -+=+⎰1211t dt t ⎛⎫=-+ ⎪+⎝⎭⎰ =222ln 1t t t C -+++=(2ln 1x C -++;(2)⎰2t e dt2t te dt =⎰22t t te e dt =-⎰()21t e t C =-+=)21C +;(3) ()2111t d t t --+ 221t t dt t -=+⎰ 22221t t dt t --+=+⎰ 2221t dt t ⎛⎫=-+ ⎪+⎝⎭⎰ ()244ln 1t t t C =-+++=)14ln1x C +-+;(4)⎰ 2222()55t t td -- 422425t t dt -=⎰ 532412575t t C =-+=532412575C -+;(5)⎰()63211dt t t + 226t 661dt t+-=+⎰ 66arctan t t C =-+=C ;(6)21ln(1)d t t- 2121dt t =-⎰ 1111dt t t ⎛⎫=- ⎪-+⎝⎭⎰ 1ln 1t C t -=++ln C =+.t =”也就行了.“2x ”项,问题就不是那么简单了.例6.4.6cos t =(,22t ππ⎡⎤∈-⎢⎥⎣⎦)换元,求积分. 解sin cos sin x t td t =⎰2cos tdt =⎰1cos 22t dt +=⎰ 11cos 2224dt td t =+⎰⎰ 11sin 224t t C =++ 11sin cos 22t t t C =++ ()11arcsin cos arcsin 22x x x C =++. 例6.4.7sec t =(,22t ππ⎡⎤∈-⎢⎥⎣⎦)换元,求积分.解12tan 2tan 2sec x t d t t=⎰sec tdt =⎰ ln sec tan t t C =++ln sec arctan 22x x C ⎛⎫=++ ⎪⎝⎭.例6.4.8 tan t =(0,2t π⎡⎤∈⎢⎥⎣⎦)换元,求积分. 解33sec 3sec 27sec 3tan d t x t t t =⋅⎰ 21127sec dt t=⎰ 21cos 27tdt =⎰ 1(1cos 2)54t dt =+⎰ 11sin 254108t t C =++ 11sin cos 5454t t t C =++ 1313arccos sin arccos 5418C x x x ⎛⎫=++ ⎪⎝⎭. 例6.4.9 求下列不定积分:(1)sin sin cos x dx x x +⎰;(2);(3)⎰. 解(1)sin sin cos x dx x x +⎰11cot dx x=+⎰cot x t =1cot 1darc t t +⎰21111dt t t =-++⎰ 2111211t dt t t -⎛⎫=-- ⎪++⎝⎭⎰ 211112121t dt dt t t-=-+++⎰⎰ 2211111212121t dt dt dt t t t =-+-+++⎰⎰⎰ ()2111ln 1ln 1cot 242t t arc t C =-+++++ =()2111ln 1cot ln 1cot 242x x x C -+++++;(2)dx222= 222dt =+22=-+ 查《积分表》(见文献文献×)12arcsin 2arcsin 2t t C ⎛=-++ ⎝arcsin t C =-+=(C -;(3)⎰t22sec tan t tdt =2tan tan td t =3t C =+3arc s co C x ⎛=+ ⎝⎭; 此题还可以用另一个很简单的解法:⎰212= ()()12221332x d x =--⎰ ()322133x C =-+; 可见换元积分法不是一个很好的方法,凑微分法、分部法均解决不了,再考虑用它. 思考题6.41.本节介绍的换元积分法中,换元的根本目的是什么?应注意什么问题?2.总结一下利用三角公式换元积分法(三角代换法)的三种类型.3.思考凑微分法、分部法及换元法三种积分方法的优先次序,如何选用? 练习题6.41. 用换元法求下列不定积分:(1); (2); (3)()31x dx x -⎰. 2. 利用三角代换求下列不定积分:(1)()0a >; (2); (3)()0a >.练习题6.4答案1.解(1)()2211t d t t-- ()221t dt =-⎰3223t t C =-+C -; (2)()3121d t t -+ 231t dt t=+⎰ 21131t dt t-+=+⎰ 1311t dt t ⎛⎫=-+ ⎪+⎝⎭⎰ =2333ln 12t t t C -+++=233ln 12C -+; (3)()31xdx x -⎰()3111t d t t--⎰-x=t 31t dt t-=⎰ 2311dt t t ⎛⎫=- ⎪⎝⎭⎰ 212C t t=-++=()21211C x x ++--.2. 解(1)()0a > sin cos (sin )x a t a td a t =⎰ 22cos a tdt =⎰()21cos 22a t dt =+⎰22sin 224a a t t C =++=2arcsin 2a x C a ; (2)21x 2tan 2tan 4tan 2sec t d t t t =⎰ 21cos 4sin t dt t=⎰ 211sin 4sin d t t=⎰ 14sin C t =-+ 1csc arctan 42x C ⎛⎫=-+ ⎪⎝⎭; (3)()0a >1x sec sec sec tan a t da t a ta t =⎰ 1dt a =⎰ 1t C a=+ 1arccos a C a x =+.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
__________________________________________________________________________________________ 【第一换元法例题】1、9999(57)(57)(5711(57)(57)55)(57)dx d x d x dx x x x x +=+⋅=+⋅=+⋅++⎰⎰⎰⎰ 110091(57)(57)(57)10111(57)5550d C x x x x C =⋅=⋅+=+++++⎰ 【注】1(57)'5,(57)5,(57)5x d x dx dx d x +=+==+⇒⇒2、1ln ln ln ln dx d x xx dx x x x =⋅=⋅⎰⎰⎰ 221(l 1ln ln (ln )2n )2x x x d C x C =⋅=+=+⎰【注】111(ln )',(ln ),(ln )x d x dx dx d x x x x===⇒⇒3(1)sin tan cos co si s cos cos n cos cos xdx d x xdx dx x d x x xxx --====⎰⎰⎰⎰⎰cos ln |cos |c ln |co s |o s xx d C x C x=-=-+=-+⎰【注】(cos )'sin ,(cos )sin ,sin (cos )x x d x xdx xdx d x =-=-=-⇒⇒ 3(2)cos cos cot sin sin sin sin xdx x xdx dx d xx x x===⎰⎰⎰⎰ sin ln |si ln |sin |n |sin xx d C x C x==+=+⎰【注】(sin )'cos ,(sin )cos ,cos (sin )x x d x xdx xdx d x ==⇒=⇒4(1)1()11d dx a x a x a d x xa x =⋅=⋅++++⎰⎰⎰ ln |1(|)ln ||d C a x a x a x a xC ++=⋅=+=+++⎰【注】()'1,(),()a x d a x dx dx d a x +=+==+⇒⇒ 4(2)1()11d dx x a x x x d a ax a =⋅=⋅----⎰⎰⎰ ln |1(|)ln ||d C x a x a x a x aC --=⋅=+=--+⎰【注】()'1,(),()x a d x a dx dx d x a -=-==-⇒⇒4(3)22221111111212x a a x a dx dx x a x a dx dx a a a x dx x ⎛⎫- ⎪--+⎝⎛⎫=-+⎭==- ⎪-⎝⎭⎰⎰⎰⎰⎰ ()11ln ||ln ||ln22x ax a x a C C a a x a-=--++=++5(2)2221cos sec cos c cos sin os cos 1sin x xdx dx dx x x x dx d xx x====-⋅⎰⎰⎰⎰⎰ 2sin si 1111sin 111sin ln ln 1n sin 2112sin 121s sin sin in d x x x x x xd C C x xx --⎛⎫==-⋅=+=+ ⎪--+++⎝⎭⎰⎰ 6(1)2csc ()csc cot csc csc cot csc cot csc csc cot x x x x xdx x x x xdx dx x x+==⋅+++⎰⎰⎰()()ln |csc cot |csc c cot csc csc cot csc o ot t c d d x x x x x xx x C x x --+=-==+-+++⎰⎰6(2)2csc ()csc cot csc csc cot csc cot csc csc cot x x x x xdx x x x xdx dx x x==⋅----⎰⎰⎰ ()(cot csc csc co )ln |csc t csc co cot |c t sc cot d x x x x d x x xx x C x -+-=---==+⎰⎰7(1)arcsin x C ==+⎰7(2)arcsind xC ax d x =====+⎛⎫ ⎪⎛⎫ ⎪⎰8(1)221arctan 11dx dx x C x x==+++⎰⎰ 8(2)222222221111arctan 111d dx x dx C a x a x a a a x x x d dx x a x a a a a a a ⎛⎫⎛⎫⎪=====+++⎡⎤⎛⎫⎛⎫++⎝⎭⎛⎫ ⎪+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦⎝⎭⎪⎝⎭⎰⎰⎰⎰⎰,(0a >)9(1)352525s sin cos sin cos sin i c s o c n o s xd x xdx x x x x x d x =⋅-⋅=⎰⎰⎰862575cos cos (1cos )cos cos (cos cos )cos 86x xx x d x x x d x C =--⋅⋅=-⋅=-+⎰⎰9(2)353434c sin cos sin cos sin cos os sin x x xdx x x x dx d x x =⋅=⋅⎰⎰⎰468322357sin sin sin sin (1sin )sin (sin 2sin sin )sin 438x x xx x d x x x x d x C =-⋅=-+⋅=-++⎰⎰10(1)1ln 111l l n ln ln l ln n n ln dx d x C x x x x dx d x x x x =⋅=⋅=⋅=+⋅⎰⎰⎰⎰ 10(2)222211111ln ln ln ln ln n ln l dx d C x x x x d x xx x d x x ⋅=⋅=⋅=⋅=-+⎰⎰⎰⎰11(1)242424222222()arctan(21)222)121122(xdx d x C x x x x x x x x dx x dx ====+++++++++++⎰⎰⎰⎰ 11(2)2242422422121()2521112252524()xdx d x xdx d x x x x x x x x +===++++++++⎰⎰⎰⎰2222222121(1)111arctan()8442111122x d d x x C x x ⎛⎫+ ⎪++⎝⎭===+⎛⎫⎛⎫++++ ⎪ ⎪⎝⎭⎝⎭⎰⎰12、s 22dx dx dx =⋅=⋅=⎰⎰⎰2C C ==-=-⎰13、222211222122x x xx e dx e d x d e x C e ===+⎰⎰⎰14、 43333co sin sin cos sin sin s sin i 4sin s n xx xdx x x d C dx x x x d x =⋅=⋅=⋅=+⎰⎰⎰⎰15、100(25)x dx +⎰10010010011(25)(25)2(25)(25)(25)2dx d x x x x d x =+⋅=+++⋅+⋅=⎰⎰⎰ 1001100111(25)(25)(25)101111(25)22202x x x d C x C =⋅=⋅+=+++++⎰16、2222222111sin sin s 2in sin cos 22x x x x x dx x xdx dx x d C =⋅=⋅=⋅=-+⎰⎰⎰⎰17、ln 1ln dx d d x x x ===3122ln ln (1ln )(1ln )2(1ln )2(1ln )3d x d xd x d x x x C =-=+-+=+-++18、arctan arctan arctan arc arct 2tan 2an arcta 11arct 1n an x x x xx e dx e e e d e C x dx d x xx +=⋅=⋅=⋅=++⎰⎰⎰⎰ 19、22(1)x d xd dx x ===--⎰⎰⎰2(1)d x C -=-=20、si n cos x dx d x =-=⎰⎰3221coscos 2cosx C x d x --=-=+⎰21、111()ln(22222)2x x x x x xx x x e dx d e e dx d e C e e e ee =⋅=⋅==+++++++⎰⎰⎰⎰22、23222ln ln ln l 1ln ln ln n 3x x dx x x x x d C x dx d x x =⋅=⋅=⋅=+⎰⎰⎰⎰23、C ====+24、2221()177112()()()22424d x dx x x x x d x dx -===-+-+-+-⎰⎰⎰1()1d x C C x -==-+=⎰25、计算,22a b ≠【分析】因为:22222222(sin cos )'2sin cos 2cos (sin )2()sin cos a x b x a x x b x x a b x x +=+-=- 所以:222222(sin cos )2()sin cos d a x b x a b x xdx +=-2222221sin cos (sin cos )2()x xdx d a x b x a b =⋅+-【解答】2222221a b ==-2222221C a b ==-【不定积分的第二类换元法】 已知()()f t dt F t C =+⎰求()(())()(())'()g x dx g t d t g t t dt ϕϕϕϕ==⎰⎰⎰ 【做变换,令()x t ϕ=,再求微分】()()f t dt F t C ==+⎰ 【求积分】1(())F x C ϕ-=+ 【变量还原,1()t x ϕ-=】__________________________________________________________________________________________ 【第二换元法例题】1、22sin sin 2si 2n t x t t t tdt t t dt tdt =⋅=⋅=⎰⎰⎰⎰2cos t t C C =-+-+变量还原2(1)22111122111211t x t dt td t dt dt t t t t t =⎛⎫⋅=⋅==- ⎪++++⎝⎭⎰⎰⎰⎰⎰ ())2ln |1|2ln |1|t t t C C =-++-++变量还原2(2)22(1)(1)2(1)1111221t x t d t dt dt t t t t dt t t =--⎛⎫⋅=⋅==- ⎪⎝⎭--⎰⎰⎰⎰⎰令()()12ln ||21ln |1|t t t C C ==-++++变量还原3、343324332(1)1(1)(1)4(1)3tx t dx t t t d t t t dt =-⋅=--⋅⋅⋅-⎰ 746312()1274t t t t dt C ⎛⎫=-=-+ ⎪⎝⎭⎰12t C -+⎝=⎭变量还原4、222221112(1)(1)12t x t dt td dt t t t t t t =⋅====⋅=+++⎰⎰⎰2arctan t t C C =+变量还原5、ln 111111111(1)11ln xx e t x t dx dt dt e t t t t t t t t t d d =========⎛⎫⋅=⋅==- ⎪+++++⎝⎭=⎰⎰⎰⎰⎰令 ln ||ln |1|ln ln 11xxx t e t e t t C C C t e========-++=+++=+变量还原6、6223236522111661(1)(61)11t x t t dt dt t t t t t dt t t d t =⎛⎫⋅=⋅==- ⎪++++==⎝⎭⎰⎰⎰⎰6(arctan )t t t C C +=-+变量还原【注】被积函数中出现了两个根式t =,其中k 为,m n 的最7(1)322233ln |1|12tx t dx t t dt t t C t =-⎛⎫=-+++ ⎪+⎝⎭⎰⎰3ln |12t C ⎫⎪-+++⎪⎝⎭变量还原7(2)⎰211222222ln |1|ln |1|1t x t t dt t t t C t =--=-++--+-⎰12ln |1|ln |1|t xCx +---+变量还原【注】被积函数中含有简单根式或时,可令这个简单根式为 t ,即可消去根式。