反比例函数的应用综合练习及答案

合集下载

反比例函数练习题及答案6套

反比例函数练习题及答案6套

反比例函数练习(1)一、判断题1.当x 与y 乘积一定时,y 就是x 的反比例函数,x 也是y 的反比例函数( ) 2.如果一个函数不是正比例函数,就是反比例函数 ( )3.y 与2x 成反比例时y 与x 并不成反比例( ) 二.填空题4.已知三角形的面积是定值S ,则三角形的高h 与底a 的函数关系式是h =__________,这时h 是a 的__________; 5.如果y 与x 成反比例,z 与y 成正比例,则z 与x 成_______; 6.如果函数222-+=k kkx y 是反比例函数,那么k =________,此函数的解析式是____ ____;7. 有一面积为60的梯形,其上底长是下底长的31,若下底长为x ,高为y ,则y 与x 的函数关系是______________;三、选择题: 8.如果函数12-=m x y 为反比例函数,则m 的值是 ( )A1- B 0 C 21 D 19.李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校。

在课堂上,李老师请学生画出自行车行进路程s 千米与行进时间t 的函数图像的示意图,同学们画出的示意图如下,你认为正确的是( )10、下列函数中,y 是x 反比例函数的是( ) (A )12+=x y (B )22x y =(C )x y 51=(D )x y =2四.辨析题(1)兄弟二人分吃一碗饺子,每人吃饺子的个数如下表:①写出兄吃饺子数y 与弟吃饺子数x 之间的函数关系式(不要求写xy 的取值范围).¥②虽然当弟吃的饺子个数增多时,兄吃的饺子数(y )在减少,但y 与x 是成反例吗(2)水池中有水若干吨,若单开一个出水口,水流速v 与全池水放光所用时t 如下表:①写出放光池中水用时t(小时)与放水速度v(吨/小时)之间的函数关系. ②这是一个反比例函数吗③与(1)的结论相比,可见并非反比例函数有可能“函数值随自变量增大而减小”,反之,所有的反比例函数都是“函数值随自变量的增大而减小吗这个问题,你可以提前探索、尝试,也可以预习下一课时”反比例函数的图象和性质,也可以等到下一节课我们共同解决.。

2024年中考数学高频考点专题复习——反比例函数的实际应用(含解析)

2024年中考数学高频考点专题复习——反比例函数的实际应用(含解析)

2024年中考数学高频考点专题复习——反比例函数的实际应用1.如图,利用已有的一面长为的墙,用篱笆围一个面积为的矩形花圃.设的长为,的长为.(1)求y 关于x 的函数表达式和自变量x 的取值范围.(2)边和的长都是整数,若围成的矩形花圃的三边篱笆的总长不超过,试求出满足条件且用料最省的方案.2.通过实验研究发现:初中生在数学课上听课注意力指标数随上课时间的变化而变化,上课开始时,学生兴趣激增,中间一段时间,学生的兴趣保持平稳状态,随后开始分散,学生注意力指标数y 随时间x (分)变化的函数图象如图所示,当和时,图象是线段;当时,图象是双曲线的一部分,根据函数图象回答下列问题:(1)点A 的注意力指标数是 ;(2)当时,求注意力指标数y 随时间x (分)的函数解析式;(3)张老师在一节课上讲解一道数学综合题需要21分钟,他能否经过适当的安排,使学生在听这道综合题的讲解时,注意力指标数都不低于36?请说明理由.5m 220m ABCD AB ()m x BC ()m y AB BC ABCD 20m 010x ≤<1020x ≤<2040x ≤≤010x ≤<3.如图,帆船A 和帆船B 在太湖湖面上训练,O 为湖面上的一个定点,教练船静候于O 点,训练时要求A 、B 两船始终关于O 点对称.以O 为原点,建立如图所示的坐标系,x 轴、y 轴的正方向分别表示正东、正北方向.设A 、B 两船可近似看成在双曲线y =上运动,湖面风平浪静,双帆远影优美,训练中当教练船与A 、B 两船恰好在直线y =x 上时,三船同时发现湖面上有一遇险的C 船,此时教练船测得C 船在东南45°方向上,A 船测得AC 与AB 的夹角为60°,B 船也同时测得C 船的位置(假设C 船位置不再改变,A 、B 、C 三船可分别用A 、B 、C 三点表示).(1)发现C 船时,A 、B 、C 三船所在位置的坐标分别为A( , )、B(  ,  )和C(  ,  );(2)发现C 船,三船立即停止训练,并分别从A 、O 、B 三点出发沿最短路线同时前往救援,设A 、B 两船的速度相等,教练船与A 船的速度之比为3:4,问教练船是否最先赶到?请说明理由.4.某气象研究中心观测到一场沙尘暴从发生到减弱的过程,开始一段时间风速平均每小时增加2千米,4小时后,沙尘暴经过开阔荒漠地,风速变为平均每小时增加4千米,然后风速不变,当沙尘暴遇到绿色植被区时,风速y (千米/小时),时间x (小时)成反比例关系地慢慢减弱,结合风速与时间的图象,回答下列问题:(1)这场沙尘暴的最高风速是多少?最高风速维持了多长时间;(2)求出当x≥20时,风速y (千米/小时)与时间x (小时)之间的函数关系?(3)在这次沙尘暴的形成过程中,当风速不超过10千米/小时称为“安全时刻”,其余时刻是“危险时刻”.问这次风暴的整个过程中,“危险时刻”一共有多长时间?4x5.为了做好新冠疫情防控工作,某学校要求全校各班级每天对各班教室进行消毒.现有一种备选药物,根据测定,教室内每立方米空气中的药含量y (单位:mg )随时间x (单位:h )的变化情况如图所示,根据图中提供的信息,解决下面的问题.(1)如图反映的是那两个变量之间的关系?哪个是自变量?哪个是因变量?(2)什么时刻每立方米空气中药含量最多?此时药含量是多少?(3)在什么时间范围内,每立方米空气中药含量在增加?在什么时间范围内,每立方米空气中药含量在减少?(4)据测定,当空气中每立方米的药物含量降低到mg 以下时,才能保证对人身无害,若该校课间操时间为40分钟,据此判断,学校能否选用这种药物用于教室消毒?请说明理由.6.水产公司有一种海产品共2104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:第1天第2天第3天第4天第5天第6天第7天第8天售价x(元/千克)400300250240200150125120销售量y(千克)30404850608096100观察表中数据,发现可以用反比例函数刻画这种海产品每天的销售量y(千克)与销售价格x(元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.(1)写出这个反比例函数的解析式;(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?(3)在按(2)中定价继续销售15天后,公司发现剩余的这些海产品必须在不超过2天内全部售出,此时需要重新确定一个销售价格,使后面两天都按新的价格销售,那么新确定的价格最高不超过每千克多少元才能完成销售任务?1167.某中学组织学生到商场参加社会实践活动,他们参与了某种品牌运动鞋的销售工作.已知该品牌运动鞋每双的进价为120元,为寻求合适的销售价格进行了4天的试销,试销情况如表所示: 第1天第2天第3天第4天售价x(元/双)150200250300销售量y(双)40302420(1)观察表中数据,x,y满足什么函数关系?写出用x表示y的函数表达式;(2)若商场计划每天的销售利润为3000元,则每双运动鞋的售价应定为多少元?8.心理学家研究发现,在一节45分钟的课中,学生的注意力随教师讲课的时间的变化而变化,开始学生的注意力逐渐增强,中间学生的注意力保持稳定的状态,随后开始分散,经实验学生的注意力指数y 随时间x(分钟)的变化规律如图所示.(1)一位教师为了达到最好的上课效果,准备课前复习,要求学生的注意力指数至少达到30时,开始上新课,问他应该复习多长时间?(2)如果(1)的这位教师本节新课内容需要22分钟,为了使学生的听课效果最好,问这位教师能否在学生听课效果最好时,讲完新课内容?9.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度 与时间 之间的函数关系,其中线段 ,表示恒温系统开启阶段,双曲线的一部分 表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求 与 ( )的函数表达式;(2)若大棚内的温度低于 时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多长时间,才能使蔬菜避免受到伤害?10.某小组进行漂洗实验,每次漂洗的衣服量和添加洗衣粉量固定不变实验发现,当每次漂洗用水量v(升)一定时,衣服中残留的洗衣粉量y (克)与漂洗次数x (次)满足y=(k 为常数),已知当使用5升水,漂洗1次后,衣服中残留洗衣粉2克.(1)求k 的值.(2)如果每次用水5升,要求漂洗后残留的洗衣粉量小于0.8克,求至少漂洗多少次?(3)现将20升水等分成x 次(x>1)漂洗,要使残留的洗衣粉量降到0.5克,求每次漂洗用水多少升?()C y ︒()h x AB BC CD y x 1024x ≤≤10C ︒ 2.5kv x+11.汛期到来,山洪暴发,下表记录了某水库 内水位的变化情况,其中 表示时间(单位:), 表示水位高度(单位: ),当 ( )时,达到警戒水位,开始开闸放水. 02468101214161820141516171814.41210.3987.2(1)在给出的平面直角坐标系中,根据表格中的数据画出水位变化图象,并写出水位高出16米的时间 的取值范围 ▲ .(精确到0.1)(2)请分别求出开闸放水前和放水后最符合表中数据的函数解析式.(3)据估计,开闸放水后,水位的这种变化规律还会持续一段时间,预测何时水位达到 .12.如图,直线与双曲线交于A ,两点,点A 的坐标为,点是双曲线第一象限分支上的一点,连结并延长交轴于点,且.(1)求的值,并直接写出点的坐标;(2)点是轴上的动点,连结,,求的最小值和点坐标;(3)是坐标轴上的点,是平面内一点,是否存在点,,使得四边形是矩形?若存20h x h y m 8x =h /h x /my x 6m 32y x =(0)ky k x=≠B (3)m -,C BC xD 2BC CD =k B G y GB GC GB GC +G P Q P Q ABPQ在,请求出所有符合条件的点的坐标;若不存在,请说明理由.13.泡茶需要将电热水壶中的水先烧到100℃,然后停止烧水,等水温降低到适合的温度时再泡茶,烧水时水温y(℃)与时间x(min)成一次函数关系;停止加热过了1分钟后,水壶中水的温度y(℃)与时间x(min)近似于反比例函数关系(如图).已知水壶中水的初始温度是20℃,降温过程中水温不低于20℃.(1)分别求出图中所对应的函数关系式,并且写出自变量x 的取值范围:(2)从水壶中的水烧开(100℃)降到90℃就可以泡茶,问从水烧开到泡茶需要等待多长时间?14.某种商品上市之初采用了大量的广告宣传,其销售量与上市的天数之间成正比,当广告停止后,销售量与上市的天数之间成反比(如图),现已知上市30天时,当日销售量为120万件.(1)写出该商品上市以后销售量y (万件)与时间x (天数)之间的表达式;(2)求上市至第100天(含第100天),日销售量在36万件以下(不含36万件)的天数;(3)广告合同约定,当销售量不低于100万件,并且持续天数不少于12天时,广告设计师就可以拿到“特殊贡献奖”,那么本次广告策划,设计师能否拿到“特殊贡献奖”?P答案解析部分1.【答案】(1)解:由题意得:,,已有的一面墙长为,,,y 关于x 的函数表达式为(2)解:边和的长都是整数,且, 的值可以为4、5、10、20,围成的矩形花圃的三边篱笆的总长不超过,,的值可以为4、5,当时,,则,当时,,则,满足条件且用料最省的方案为,.2.【答案】(1)24(2)解:设线段(0≤x <10)∵,,∴{b =2410k +b =48 解之:{k =125b =24∴当0≤x <10时的函数解析式为(3)解:当时,代入和得 和∵,20xy =20y x∴=5m 205x∴≤4x ∴≥∴()204y x x=≥ AB BC ()204y x x=≥x ∴ ABCD 20m 220x y ∴+≤x ∴4x =5y =224513x y +=⨯+=5x =4y =225414x y +=⨯+=∴4m AB =5m BC =AB y kx b =+:(024)A ,(1048)B ,12245y x =+36y =12245y x =+960y x=15x =2803x =806552133-=>∴他能经过适当的安排,使学生在听这道综合题的讲解时,注意力指标数都不低于36.3.【答案】(1)2;2;-2;-2;22 ;(2)解:作AD ⊥x 轴于D,连AC 、BC 和OC,∵A (2,2),∴∠AOD=45°,AO=2,∵C 在O 的东南45°方向上,∴∠AOC=45°+45°=90°,∵AO=BO ,∴AC=BC ,又∵∠BAC=60°,∴△ABC 为正三角形,∴AC=BC=AB=2AO=4,∴ ,由条件设教练船的速度为3m ,A、B 两船的速度都为4m ,则教练船所用时间为,A 、B 两船所用时间均为 = ,= , =,> ;∴教练船没有最先赶到.4.【答案】(1)解:0~4时,风速平均每小时增加2千米,所以4时风速为8千米/时;4~10时,风速变为平均每小时增加4千米,10时达到最高风速,为8+6×4=32千米/时,OC ==10~20时,风速不变,最高风速维持时间为20﹣10=10小时;答:这场沙尘暴的最高风速是32千米/时,最高风速维持了10小时(2)解:设y =, 将(20,32)代入,得32= ,解得k =640.所以当x≥20时,风速y (千米/小时)与时间x (小时)之间的函数关系为y =(3)解:∵4时风速为8千米/时,而4小时后,风速变为平均每小时增加4千米, ∴4.5时风速为10千米/时,将y =10代入y = ,得10=,解得x =64,64﹣4.5=59.5(小时).故沙尘暴的风速从开始形成过程中的10千米/小时到最后减弱过程中的10千米/小时,共经过59.5小时.答:这次风暴的整个过程中,“危险时刻”一共经过59.5小时.5.【答案】(1)解:图象反应的是时间x 和每立方米空气中的药含量y 之间的关系;自变量为时间x ;因变量为每立方米空气中的药含量y ;(2)解:从函数图象可得:当x=h 时,空气中药含量最多,最多为1mg ;(3)解:从图象可得:当0<x<h 时,每立方米空气中药含量在增加;当x≥h 时,每立方米空气中药含量在减少(4)解:不能选用这种药物消毒,理由如下:由图象可得,当x=1时,y=,∴,∴学校不能选用这种药物用于教室消毒.6.【答案】(1)解:设 , ∵当x=400时y=30,∴k=400×30=12000,kxk 20640x640x640x151515116116048405⎛⎫-⨯=> ⎪⎝⎭ky x=∴函数解析式为 .(2)解:2104-(30+40+48+50+60+80+96+100)=1600.即8天试销后,余下的海产品还有1 600千克.当x=150时, =80.1600÷80=20(天).答:余下的这些海产品预计再用20天可以全部售出.(3)解:1600-80×15=400(千克),设新确定的价格为每千克x 元. ,解得:x≤60,答:新确定的价格最高不超过60元/千克才能完成销售任务.7.【答案】(1)解:由表中数据得: ∴∴y 是x 的反比例函数,故所求函数关系式为 (2)解:由题意得: 把 代入得: 解得: 经检验, 是原方程的根;∴单价应定为240元8.【答案】(1)解:设DA 的函数关系式为y=kx+b (x≠0),∵y=kx+b 过(0,20),(10,40),∴{b =2010k +b =40,∴{b =20k =2,∴y=2x+20(0≤x≤10);当y=30时,30=2x+20,∴x=5;答:他应该复习5分钟;12000y x=12000150y =120002400x⨯≥6000xy =6000y x=6000y x =()1203000x y -=6000y x =()60001203000x x-=240x =240x =(2)解:设BC 的函数关系式(k 1≠0)(21≤x≤45),∵过B (21,40),∴,∴K 1=840,∴(21≤x≤45),当x=30时,,28﹣5=23,∵23>22,∴这位老师能在学生听课效果最好时讲完新课内容.9.【答案】(1)解:当 时,设 把 代入 得: 所以: (2)解:当 时,经检验: 是原方程的解,且符合题意,所以恒温系统最多可以关闭 小时,才能使蔬菜避免受到伤害.10.【答案】(1)解:∵使用5升水,漂洗1次后,衣服中残留洗衣粉2克,∴v=5,x=1,y=2,∴2=,∴k=-0.1.(2)解:∵v=5,∴y=, ∵反比例函数y=,在x>0的范围内y 随x 的增大而减少,∴当y<0.8时,漂洗的次数x>2.5,∴至少漂洗3次,衣服中残留的洗衣粉量小于0.8克.(3)解:由(1)得y=, 1k y x =14021k =840y x=8402830y ==1024x ≤≤k y x=()1020,k y x =,1020200k =⨯=,200.y x=10y =20010x =,20x ∴=,20x =201010∴-=,105 2.51k +0.15 2.52x x-⨯+=2x 0.1 2.5v x-+∴xy=-0.1v+2.5,即x 2y=-0.1vx+2.5x ,∵将20升水等分成x 次,∴vx=20,∴x 2y=-2+2.5x ,∵y=0.5,∴0.5x 2=-2+2.5x ,即x 2-5x+4=0,∴x 1=4,x 2=1(舍去,x >1),∴当x=4时,每次漂洗用水v=20÷4=5升.答:每次漂洗用水5升.11.【答案】(1)解:在平面直角坐标系中,根据表格中的数据水位变化图象如图所示,;4≤x <8.8(2)解:观察图象当0<x <8时,y 与x 可能是一次函数关系:设y=kx+b ,把(0,14),(8,18)代入得 {b =148k +b =18 解得: {k =12b =14 , y 与x 的关系式为: ,经验证(2,15),(4,16),(6,17)都满足 因此放水前y 与x 的关系式为: (0<x <8).观察图象当x >8时,y 与x 就不是一次函数关系:通过观察数据发现:8×18=10×14.4=12×12=16×9=18×8=144.1142y x =+1142y x =+1142y x =+因此放水后y 与x 的关系最符合反比例函数,关系式为:设 ,则 ,y 与x 的关系式为: .( )所以开闸放水前和放水后最符合表中数据的函数解析式为: (0<x <8)和 .( )(3)解:当y=6时, ,解得: , 因此预计24h 水位达到6m.12.【答案】(1)解:将点A 的坐标为代入直线中,得,解得:,,,B 的坐标为(2)解:如图,作轴于点E ,轴于点F ,则,,,,, ,,,,k y x =144k =144=y x8x ≥1142y x =+144=y x 8x ≥1446=x24x =()-3A m ,32y x =332m =﹣-2m =()2-3A ∴-,=-2(3)=6k ∴⨯-()23,BE x ⊥CF x ⊥BE CF BE CF DCF DBE ∴ ∽DC CF DB BE∴=2BC CD = 13DC CF DB BE ∴==()23B ,3BE ∴=1CF ∴=,作点B 关于y 轴的对称点,连接交y 轴于点G ,则即为的最小值,,设的解析式为,,,解得: ,解析式为,当时,,;(3)解:存在.理由如下:当点P 在x 轴上时,如图,设点 的坐标为 ,过点B 作轴于点M ,四边形是矩形,,()61C ∴,B 'B C 'B C 'BG GC +()()2361B C -' ,,,B C ∴=='=BG GC B C '∴+B C 'y kx b =+()()2361B C -' ,,,3216k b k b =-+⎧⎨=+⎩1452k b ⎧=-⎪⎪⎨⎪=⎪⎩∴B C '1542y x =-+0x =52y =502G ⎛⎫∴ ⎪⎝⎭,1P ()0a ,BM x ⊥ 11ABPQ 190OBP ∴∠=︒,,,,,,,,,经检验符合题意,∴点 的坐标为;当点P 在y 轴上时,过点B 作轴于点N ,如图2,设点 的坐标为,四边形是矩形,,,,,,,经检验符合题意,∴点的坐标为,1==90OMB OBP ∴∠∠︒1=BOM POB ∠∠1OBM OPB ∴ ∽1OB OM OP OB ∴=()23B ,OB ∴==2OM ==132a ∴=1P 1302⎛⎫ ⎪⎝⎭,BN y ⊥2P ()0b , 22ABP Q 290OBP ∴∠=︒2==90ONB P BO ∠∠︒ 2BON P OB ∠=∠2BON P OB ∴ ∽2OB ON OP OB∴==133b ∴=2P 1303⎛⎫⎪⎝⎭,综上所述,点P 的坐标为或.13.【答案】(1)解:停止加热 分钟后,设 , 由题意得: , 解得: ,, 当 时,解得: ,当 时, ,点坐标为 , 点坐标为 , 当加热烧水时,设 ,由题意将 点坐标 代入上式得 , 解得: ,当加热烧水时,函数关系式为 ;当停止加热时 与 的函数关系式为 ; ;(2)解:把 代入 ,得 , 因此从水壶中的水烧开 降到 可以泡茶需要等待 分钟.14.【答案】(1)解:根据题意可知:当时,设y 与x 的函数解析式为,∴,解得:,∴;当时,设y 与x 的函数解析式为,∴,解得:1302⎛⎫ ⎪⎝⎭,1303⎛⎫ ⎪⎝⎭,1k y x =5018k =900k =900y x∴=100y =9x =20y =45x =C ∴()9100,B ∴()8100,20y ax =+B ()8100,100820a =+10a =∴()102008y x x =+≤≤y x 100(89)y x =<≤900(945)y x x =<≤90y =900y x=10x =()100℃90℃1082-=030x ≤≤1y k x =112030k =14k =()4030y x x =≤≤30x ≥2k y x =212030k =23600k =∴综上所述,该商品上市以后销售量y (万件)与时间x (天数)之间的表达式为:;.(2)解:当时,令,解得:,∴,∴销量不到36万件的天数为8天;当时,令,解得: (不符合题意),∴上市至第100天(含第100天),日销售量在36万件以下(不含36万件)的天数为8天;(3)解:当时,令,解得:∴,∴销量超过100万件的天数为6天,当时,令,解得:∴,销量超过100万件的天数为6天,综上所述,销售量不低于100万件,并且持续天数为12天,广告设计师可以拿到“特殊贡献奖”.()360030y x x=≥()4030y x x =≤≤()360030y x x=≥030x ≤≤436x <9x <09x ≤<30x ≥360036x<100x >030x ≤≤4100x ≥25x ≥2530x ≤≤30x ≥3600100x≥36x ≤3036x ≤≤。

反比例函数的应用专项练习30题(有答案)ok

反比例函数的应用专项练习30题(有答案)ok

反比例函数的应用专项练习30题(有答案)1.如图所示,楠溪江引水工程蓄水池每小时的放水量q(万m3/h)与时间t(h)之间的函数关系图象.(1)求此蓄水池的蓄水量,并写出此图象的函数解析式;(2)当每小时放水4万m3时,需几小时放完水?2.经科学研究人的大脑中的记忆随时间的变化有一定的函数关系,其规律可以用如下图象来说明;现有一个同学在学习某知识点一天后经估计记忆中有80%没有忘记,那么请你用学过的数学知识说明:8天后该同学在不复习的前提下,大脑中尚存有多少记忆没有忘记?3.在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度P是体积V的反比例函数,它的图象如图所示①求密度P(单位:kg/m3)与体积V(单位:m3)之间的函数表达式;②求当V=9m3时二氧化碳的密度P.4.某运输公司承担一项运送总量为100万立方米土石方的任务,计划安排若干辆同类型的卡车运输,每辆卡车每天的运载量为100立方米.(1)求安排卡车的数量y(辆)与完成运送任务所需的时间t(天)的函数关系式;(2)若所有的运输任务必须在90天内完成,则至少需要安排多少辆卡车运输?5.某石油公司要修建一个容积为10 000m3的圆柱形地下油库.(1)请写出油库的底面积s(m2)与其深度d(m)之间的函数关系.(2)当底面积为500m2时,施工队施工时应向下掘进多深?.6.甲加工A型零件60个所用时间和乙加工B型零件80个所用时间相同,每天甲、乙两人共加工35个零件,设甲每天加工x个.(1)直接写出乙每天加工的零件个数(用含x的代数式表示);(2)求甲、乙每天各加工多少个;(3)根据市场预测估计,加工A型零件所获得的利润为m元/件(3≤m≤5),加工B型零件所获得的利润每件比A 型少1元.求每天甲、乙加工的零件所获得的总利润P(元)与m的函数关系式,并求P的最大值、最小值.7.某车队有1辆大车和5辆小车,同时运送一批货物,大车每小时运送货物xt,大车每小时运送的货物是每辆小车每小时运送货物的3倍、设该车队运送货物800t需yh.(1)写出y与x的函数关系式:_________;(2)当x=12时,y的值是_________;(3)按(2)的工作效率运送800t货物,若要提前10h完成任务,问该车队在不增加大车的情况下,至少要增加几辆小车?8.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)求P与V的函数关系式;(2)当气球内气体的体积是0.96m3时,气球内气体的气压是多少?9.矩形面积为4,试写出矩形的长y与宽x之间的函数关系式,并在直角坐标系中画出它的图象.10.某新建的大楼楼体外表需贴磁砖,楼体外表总面积为4800m2.(1)设所需磁砖的块数为n(块),每块磁砖的面积为S(m2),试求n与S的函数关系式;(2)如果每块磁砖的面积均为80cm2,每箱磁砖有120块,需买磁砖多少箱?11.某工厂计划生产1.2万吨化工产品:(1)生产时间t(天)与生产速度v(吨∕天)有怎样的函数关系?(2)若工厂平均每天可生产60吨化工产品,那么该厂完成生产任务需要多长时间?(3)若工厂有12个车间,每个车间的生产速度相同,当以问题(2)中的生产速度正常生产80天后,由于受到金融危机的影响,市场需求量下降,该厂决定关闭4个车间,其余车间正常生产,那么工厂实际完成任务的时间将比原来推迟多少天?12.某小区新建成的住宅楼主体工程已经竣工,只剩下楼外体表需贴瓷砖,已知楼体外表的面积为5×103(m2).(1)写出每块瓷砖的面积S(m2)与所需的瓷砖块数m(块)之间的函数关系式;(2)为了使住宅楼的外观更漂亮,开发商决定采用灰、白和蓝三种颜色的瓷砖,每块瓷砖的面积都是80(cm2),灰、白、蓝瓷砖使用比例是1:2:2,则需要三种瓷砖各多少块?13.设△ABC中BC边的长为x(cm),BC上的高AD为y(cm),△ABC的面积为常数.已知y关于x的函数图象过点(3,2).(1)求y关于x的函数解析式和△ABC的面积;(2)求当4<x<9时y的取值范围.14.一个水池的容积是8m2,如果从进水管中每小时流进x m2,那么经过y小时就可以把水池注满.(1)求y与x的函数关系式;(2)当x=2m2时,求y的值;(3)画出函数的图象.15.某车间承包一项生产1800个零件的任务,计划用t天完成.(1)每天生产零件s(个)与生产时间t(天)有怎样的函数关系;(2)车间有工人60名,每天最多生产300个零件,预计最快可在几天内完成任务?(3)如果由于特殊原因,必须提前两天完成任务,车间需要增加多少工人才能按要求完成任务?16.某司机驾驶汽车从甲地去乙地购买货物,他以80(千米/时)的平均速度用3小时到达目的地.(1)当他按原路匀速返回时,汽车的速度v与时间t有怎样的函数关系;(2)如果该司机必须在4小时之内回到甲地,则返程时的速度不能低于多少?17.一定量的气体的压强P与它的体积V成反比例,已知当V=200时,P=50.(1)试用V表示P;(2)当P=100时,求V的值.18.近视眼镜的度数y(度)与镜片的焦距x(米)满足函数关系为y=(k为常数),若100度镜片的焦距比500度镜片的焦距多0.8米,求k的值.19.某蓄水池的排水管每小时排水8立方米,6小时可将满池的水全部排空.求:(1)蓄水池的容积是多少?(2)如果增加排水管,使每小时的排水量达到x(立方米),将满池水排空所需的时间t(小时),试写出t关于x 的函数解析式,并指出定义域.(3)如果准备在5小时内将满池水排空,那么每小时的排水量至少为多少?(4)已知排水管的最大排水量为每小时12立方米,那么最少多长时间可将满池水全部排空?20.如图所示是某一蓄水池每小时的排水量V(m3/h)与排完水池中的水所用的时间t(h)之间的函数关系图象.(1)请你根据图象提供的信息求出此蓄水池的蓄水量;(2)求出此函数的解析式;(3)若要6h排完水池中的水,那么每小时的排水量应该是多少?(4)如果每小时排水量不超过5 000m3,那么水池中的水至少要多少小时排完?21.汽车匀速行驶在相距S千米的甲、乙两地之间,下图是行驶时间t(h)与行驶速度v(km/h)函数图象的一部分.(1)行驶时间t(h)与行驶速度v(km/h)之间的函数关系是:_________.(2)若该函数图象的两个端点为A(40,1)和B(m,0.5).求这个函数的解析式和m的值;(3)若规定在该段公路上汽车的行驶速度不得超过50km/h,则汽车通过该路段最少需要多少时间?22.近视眼的度数y(度)与镜片焦距x(米)成反比例函数关系,已知200度近视眼镜镜片焦距0.5米,求眼镜度数y与镜片焦距x之间的函数关系式,并画出该函数示意图.23.某工程队接受一项开挖水渠的工程,所需天数y(天)与每天完成的工程量x(m/天)的函数关系图象如图所示.(1)共需开挖水渠多少米?(2)求y与x之间的函数表达式;(3)如果为了防汛工作的紧急需要,必须在一个月内(按30天计算)完成任务,那么每天至少要完成多少米?24.如图,是一辆小汽车沿一条高速公路匀速前进的时间y(小时)与速度x(千米/时)关系的图象,根据图象提供的信息,解答下列问题:(1)这条公路的全长是多少千米;(2)写出速度与时间之间的函数关系式;(3)汽车最大速度可以达到多少;(4)汽车最慢用几个小时可以达到?如果要在3小时内达到,汽车的速度应不少于多少?25.某汽车油箱的容积为50升,司机加满油后准备从利川到100千米处的机场接客人,在接到客人后立即原路返回,请回答下列问题.(1)油箱加满油后,汽车能够行使的总路程y(千米)与平均耗油量x(升/千米)之间有怎样的函数关系?(2)司机驾驶汽车去机场时的平均耗油量为x升/千米.返回时司机降低车速,此时每行驶1千米的平均耗油量增加了1倍,司机一直以此速度行使,返回利川时邮箱里的油还能以此速度行驶100千米,求汽车去机场的平均耗油量是多少?26.为了提高某农作物的产量,有关部门选取了7500千克新产品供某地区使用.(1)写出可播种的亩数y(亩)与每亩所需的新品种的数量x(千克)之间的函数关系式;(2)若每亩需新品种15千克,这些新品种可供多少亩土地播种?27.为了预防流感,某校对教室进行“药熏消毒”.已知药物燃烧阶段室内每立方米空气中的含药量y(mg)与燃烧时间x(min)成正比例.燃烧完毕后,y与x成反比例(如图).根据图中信息解答下列问题:(1)求药物燃烧时,y与x函数关系式及自变量的取值范围;(2)求药物燃烧后,y与x函数关系式及自变量的取值范围;(3)当每立方米空气中含药量低于1.6mg时,对人体方能无毒副作用.那么从有人开始消毒,经多长时间后学生才可以回教室.28.我们学过反比例函数,如:当矩形面积S一定时,长a是宽b的反比例函数,其函数关系式.请你仿照上例另举一个在日常生活中具有函数关系的量的实例,并写出它的函数关系式.29.汽车在高速公路上行驶,从如皋驶往上海.已知汽车到上海所需时间t(h)与行驶速度v (km/h)满足函数关系式:t=,其图象为如图所示的一段曲线,且端点为A(60,4),B(120,m).根据给出的图象,解答下列问题.(1)汽车在高速公路上行驶的速度不低于_________km/h;(2)求如皋到上海的路程;(3)若汽车上午6:40从如皋出发,中途在服务区休息10分钟,则最快上午几点到达上海?30.在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之变化,密度ρ是体积v的反比例函数,当它的体积v=5m3时,密度ρ=1.98kg/m3.(1)求密度ρ(单位:kg/m3)与体积v(单位:m3)之间的函数关系式;(2)当二氧化碳的密度ρ=4.5kg/m3时,求v的值.参考答案:1.(1)设y关于x的函数解析式为q=,∵函数图象经过点(12,3),∴=3,解得k=36,∴函数解析式为q=;(2)当q=4万m3时,=4,解得t=9.答:当每小时放水4m3时,需9小时放完水2.设y=k/x当x=1时,y=0.8则k=0.8(3分)所以y=x(2分)当x=8,y=0.1(3分)答:大脑中尚存有10%的记忆没有忘记.3.(1)由题意可设P=(m为常量,m≠0),把点(3,1.98)代入,1.98=,解得:m=5.94;∴P=.(2)当v=9m3时,P==0.66,∴当V=9m3时二氧化碳的密度为0.66kg/m34.(1)由题意得:yt×100=1000000,解得y=;(2)当t=90时,y=≈112.答:至少需要安排112辆卡车运输.故答案为:y=;1125.(1)由容积=底面积×深度,可得:sd=10000所以:;(2)当底面积为500m2,即S=500时,将之代入第一问的函数关系式可得:解得d=20(米)答:施工队施工时应向下掘进20米.6.(1)根据题意,每天甲、乙两人共加工35个零件,易得解得x=15经检验,x=15是原方程的解,且符合题意.35﹣15=20答:甲每天加工15个,乙每天加工20个;(3)P=15m+20(m﹣1)即P=35m﹣20∵在P=35m﹣20中,P是m的一次函数,k=35>0,P 随m的增大而增大又由已知得:3≤m≤5∴当m=5时,P最大值=155当m=3时,P最小值=85.7.(1)根据题意,小车每小时可运送吨货物,易得这个车队车每小时运送货物为x+x=x,故有y ×x=800,化简可得;(3分)(2)由(1)的解析式,当x=12时,y==25;(6分)(3)根据题意,若要提前10h完成任务,即要求y≤15,代入解析式可得≤15,解可得x≥20,而此时的工作效率为12吨/时,故至少要增加=6辆小车(8分).故答案为:(1);(2)25.8.(1)设P与V的函数关系式为P=,则=60,解得k=96,∴函数关系式为P=;(2)当气球内气体的体积是0.96m3时,P=,∴气球内气体的气压是100kPa.画图10.(1)所需磁砖的块数=楼体外表总面积÷每块磁砖的面积所以由此可得出,n与S 的函数关系式是:;(2)当s=80时,,需买磁砖的箱数=所需磁砖的块数÷每箱磁砖的块数所以由此可得出,需买磁砖的箱数是=5000(箱)答:需买磁砖的箱数5000箱11.(1)∵vt=12000,∴,即t与v 的函数关系为.(2)当v=60时,,即工厂完成生产1.2万吨化工产品需200天.(3)(12000﹣80×60)÷[]=180(天),由180+80﹣200=60(天),知工厂实际完成任务时间将比原来推迟60天.12.(1)∵每块瓷砖的面积Sm2=楼体外表的总面积÷所需的瓷砖块数m块,由此可得出S与n的函数关系式是:S=;(2)当S=80×10﹣4=8×10﹣3时,n==625000,设用灰瓷砖x块,则白瓷砖、蓝瓷砖分别为2x块、2x 块,依据题意得出:x+2x+2x=625000,解得:x=125000,∴需要灰瓷砖125000块,白瓷砖250000块、蓝瓷砖为250000块13.(1)设△ABC的面积为S,则S=xy,所以y=.所以2=,解得S=3(cm2),所以y与x 的函数解析式为,△ABC的面积为3cm2;(2)因为x>0,所以反比例函数的图象在第一象限,且y随x的增大而减小.当x=4时,y=;当x=9时,.所以y的取值范围为<y <.14.(1)∵水量×进水时间=容积,∴xy=8∴y=(2)令x=2,y===4,;(3)∵x>0,∴图象为:15.(1)∵某车间承包一项生产1800个零件的任务,计划用t天完成,∴每天生产零件s(个)与生产时间t(天)的函数关系为:s=;(2)1800÷300=6(天)故预计最快需要6天内完成任务;(3)设需要增加x人才能完成任务,则(x+60)××(6﹣2)=1800,解得x=30,答:需要增加30人才能按要求完成任务16.(1)∵s=80千米/时×3小时=240米,∴v=.(2)当t=4时,v==60,答:返回时的速度不低于60千米/小时.∵V=200时,P=50∴k=200×50=10000,∴p=;(2)当p=100时,v=10000÷100=100,故v的值是100.18.设100度镜片的焦距为x米,则500度镜片的焦距为(x﹣0.8)米.因为近视眼镜的度数y(度)与镜片的焦距x(米)满足函数关系为y=(k为常数),所以100=,500=,即k=100x,k=500(x﹣0.8),解得x=1,k=100.故k的值为10019.(1)v=8×6=48m3,答:蓄水池的容积是48m3.(2)(0≤x≤6);(3)当t=5时,,x=9.6(m3),答:每小时的排水量至少为9.6m3.(4)当x=12时,(小时)答:最少4小时可将满池水全部排空20.(1)设V=.∵点(12,4000)在此函数图象上,∴蓄水量为12×4000=48000m3;(2)∵点(12,4000)在此函数图象上,∴4000=,k=48000,∴此函数的解析式V=;(3)当t=6时,V==8000m3;∴每小时的排水量应该是8000m3;(4)∵V≤5000,∴≤5000,∴t≥9.6.∴水池中的水至少要9.6小时排完21.(1)把(40,1)代入t=,得k=40,∴行驶时间t(h)与行驶速度v(km/h)之间的函数关系是:t=,故答案为:t=.(2)由(1)得出:函数的解析式为:t=,把(m,0.5)代入t=,0.5=,解得:m=80;(3)把v=50代入t=,得t=0.8,答:汽车通过该路段最少需要0.8小时22.由题意设y=,由于点(0.5,200)适合这个函数解析式,则k=0.5×200=100,∴y=.故眼镜度数y与镜片焦距x之间的函数关系式为:y=.其图象为:23.(1)由图象,知共需开挖水渠24×50=1200(m);(3分)(2)设.∵点(24,50)在其图象上,故所求函数表达式为;(6分)(3)1200÷30=40(m).故每天至少要完成40m.24.(1)以150千米/时行驶了两小时,则路程=150×2=300千米.(2)由速度=,路程为300千米,则有y=;(3)据图象用1小时可以行驶完全程,所以汽车最大速度可以达到300千米/小时;(4)据图象,最低速度为50千米/小时,需要6时行完全程,汽车的速度应不少于每小时100千米25.(1)∵耗油量×行驶里程=50升;∴xy=50∴y=(x>0);(2)设平均耗油量为x升,根据题意得:解得:x=0.1.答:平均耗油量为0.1升/公里26.(1)∵一共有7500千克种子,∴xy=7500,即:y=;(2)当x=15时,y==500,答:若每亩需新品种15千克,这些新品种可供500亩土地播种27.(1)设药物燃烧阶段函数解析式为y=k1x(k1≠0),由题意得:8=10k1,∴k1=,∴此阶段函数解析式为y=x(0≤x<10).(2)设药物燃烧结束后函数解析式为y=(k2≠0),由题意得:8=,∴k2=80,∴此阶段函数解析式为y=(x≥10).(3)当y<1.6时,得<1.6,∵x>0,∴1.6x>80,x>50.∴从消毒开始经过50分钟学生才可返回教室28.当路程s一定时,速度v是时间t的反比例函数;函数关系式为:v=(s为常数).答案不唯一.29.(1)∵图象端点A的坐标为(60,4),∴汽车在高速公路上行驶的速度不低于60km/h;(2)将(60,4)代入t=,得k=240.答:如皋到上海的路程为240km;(3)由(2)可知,函数解析式为:t=.由图象可知,汽车在高速公路上行驶的速度不得超过120km/h.则当v=120时,t==2.答:汽车最快上午8:50到达上海.30.(1)设密度ρ与体积v 之间的函数解析式为:(k≠0),依题意得:,∴k=9.9,∴密度ρ与体积v 之间的函数解析式为:;(2)由(1)求得:,当二氧化碳的密度ρ=4.5时,,=2.2(m3).。

反比例函数综合应用真题训练

反比例函数综合应用真题训练

反比例函数综合应用知识回顾1. 反比例函数k 的集合意义:①过反比例函数图像上任意一点作坐标轴的垂线,两垂线与坐标轴构成一个矩形,矩形的面积等于k 。

②过反比例函数图像上任意一点作其中一条坐标轴的垂线,并连接这个点与原点,则构成一个三角形。

这个三角形的面积等于2k。

2. 待定系数法求反比例函数解析式:在反比例函数中只有一个系数k ,所以只需要在图像上找一个对应的点即可求出k 的值,从而求出反比例函数解析式。

3. 反比例函数与一次函数的不等式问题:若反比例函数()0≠=k xky 与一次函数()0≠+=k b kx y 有交点,则不等式b kx xk+>的解集取反比例函数图像在一次函数图像上方的部分所对应的自变量取值范围;等式b kx xk +<的解集取反比例函数图像在一次函数图像下方的部分所对应的自变量取值范围。

反比例函数与一次函数的交点把自变量分成三部分。

真题训练1.(2022•日照)如图,矩形OABC 与反比例函数y 1=xk1(k 1是非零常数,x >0)的图象交于点M ,N ,与反比例函数y 2=xk2(k 2是非零常数,x >0)的图象交于点B ,连接OM ,ON .若四边形OMBN 的面积为3,则k 1﹣k 2=( ) A .3 B .﹣3C .23D .﹣232.(2022•牡丹江)如图,等边三角形OAB ,点B 在x 轴正半轴上,S △OAB =43,若反比例函数y =xk(k ≠0)图象的一支经过点A ,则k 的值是( )第26题 第27题 A .233 B .23C .433 D .433.(2022•郴州)如图,在函数y =x2(x >0)的图象上任取一点A ,过点A 作y 轴的垂线交函数y =﹣x8(x <0)的图象于点B ,连接OA ,OB ,则△AOB 的面积是( ) A .3B .5C .6D .104.(2022•邵阳)如图是反比例函数y =x1的图象,点A (x ,y )是反比例函数图象上任意一点,过点A 作AB ⊥x 轴于点B ,连接OA ,则△AOB 的面积是( )第30题 第31题 A .1B .C .2D .5.(2022•内江)如图,在平面直角坐标系中,点M 为x 轴正半轴上一点,过点M 的直线l ∥y 轴,且直线l 分别与反比例函数y =x 8和y =xk的图象交于P 、Q 两点.若S △POQ =15,则k 的值为( ) A .38B .22C .﹣7D .﹣226.(2022•黑龙江)如图,在平面直角坐标系中,点O 为坐标原点,平行四边形OBAD 的顶点B 在反比例函数y =x 3的图象上,顶点A 在反比例函数y =xk的图象上,顶点D 在x轴的负半轴上.若平行四边形OBAD 的面积是5,则k 的值是( )第28题 第29题 A .2B .1C .﹣1D .﹣27.(2022•十堰)如图,正方形ABCD 的顶点分别在反比例函数y =xk 1(k 1>0)和y =xk2(k 2>0)的图象上.若BD ∥y 轴,点D 的横坐标为3,则k 1+k 2=( ) A .36B .18C .12D .98.(2022•攀枝花)如图,正比例函数y =k 1x 与反比例函数y =xk 2的图象交于A (1,m )、B 两点,当k 1x ≤xk2时,x 的取值范围是( )第36题 第37题 A .﹣1≤x <0或x ≥1 B .x ≤﹣1或0<x ≤1C .x ≤﹣1或x ≥1D .﹣1≤x <0或0<x ≤19.(2022•东营)如图,一次函数y 1=k 1x +b 与反比例函数y 2=xk2的图象相交于A ,B 两点,点A 的横坐标为2,点B 的横坐标为﹣1,则不等式k 1x +b <xk2的解集是( )A .﹣1<x <0或x >2B .x <﹣1或0<x <2C .x <﹣1或x >2D .﹣1<x <210.(2022•朝阳)如图,正比例函数y =ax (a 为常数,且a ≠0)和反比例函数y =xk(k 为常数,且k ≠0)的图象相交于A (﹣2,m )和B 两点,则不等式ax >xk的解集为( )A .x <﹣2或x >2B .﹣2<x <2C .﹣2<x <0或x >2D .x <﹣2或0<x <211.(2022•无锡)一次函数y =mx +n 的图象与反比例函数y =xm的图象交于点A 、B ,其中点A 、B 的坐标为A (﹣m 1,﹣2m )、B (m ,1),则△OAB 的面积是( ) A .3 B .413 C .27 D .415 12.(2022•荆州)如图是同一直角坐标系中函数y 1=2x 和y 2=x2的图象.观察图象可得不等式2x >x2的解集为( )第40题 第41题 A .﹣1<x <1 B .x <﹣1或x >1 C .x <﹣1或0<x <1D .﹣1<x <0或x >113.(2022•怀化)如图,直线AB 交x 轴于点C ,交反比例函数y =xa 1−(a >1)的图象于A 、B 两点,过点B 作BD ⊥y 轴,垂足为点D ,若S △BCD =5,则a 的值为( ) A .8B .9C .10D .1114.(2022•盐城)已知反比例函数的图象经过点(2,3),则该函数表达式为 . 15.(2022•东营)如图,△OAB 是等腰直角三角形,直角顶点与坐标原点重合,若点B 在反比例函数y =x1(x >0)的图象上,则经过点A 的函数图象表达式为 .16.(2022•湖北)在反比例函数y =xk 1−的图象的每一支上,y 都随x 的增大而减小,且整式x 2﹣kx +4是一个完全平方式,则该反比例函数的解析式为 .17.(2022•陕西)已知点A (﹣2,m )在一个反比例函数的图象上,点A '与点A 关于y 轴对称.若点A '在正比例函数y =21x 的图象上,则这个反比例函数的表达式为 .18.(2022•宜昌)已知经过闭合电路的电流I (单位:A )与电路的电阻R (单位:Ω)是反比例函数关系.根据下表判断a 和b 的大小关系为( )19.(2022•丽水)已知电灯电路两端的电压U 为220V ,通过灯泡的电流强度I (A )的最大限度不得超过0.11A .设选用灯泡的电阻为R (Ω),下列说法正确的是( ) A .R 至少2000ΩB .R 至多2000ΩC .R 至少24.2ΩD .R 至多24.2Ω20.(2022•山西)根据物理学知识,在压力不变的情况下,某物体承受的压强p (Pa )是它的受力面积S (m 2)的反比例函数,其函数图象如图所示.当S =0.25m 2时,该物体承受的压强p 的值为 Pa .21.(2022•郴州)科技小组为了验证某电路的电压U (V )、电流I (A )、电阻R (Ω)三者之间的关系:I =RU,测得数据如下:= A。

反比例函数考试题(含答案)

反比例函数考试题(含答案)

反比例函数考试题(含答案)1. 对于反比例函数 $y = \frac{k}{x}$,已知 $y = 3$ 时,$x = 6$,求 $k$ 的值。

解答:当 $y=3$,$x=6$ 时,代入原函数得:$$3 = \frac{k}{6}$$解出 $k=18$,因此反比例函数为 $y=\frac{18}{x}$。

2. 已知反比例函数 $y=\frac{6}{x}$ 的图像和 $y=-12$ 的水平渐近线,求该反比例函数图像的方程和垂直渐近线方程。

解答:由于已知 $y=-12$ 是反比例函数的水平渐近线,因此 $y$ 趋向于 $0$ 时,$x$ 的值趋近于无穷大或负无穷大,即垂直于 $x$ 轴。

反比例函数的图像为双曲线,因此垂直渐近线分别为 $x=0$ 和$y=0$。

同时,已知 $y=\frac{6}{x}$,可得 $x=\frac{6}{y}$。

将其化简可得反比例函数的图像方程为 $xy=6$。

因此该反比例函数的图像方程为 $xy=6$,垂直渐近线方程为$x=0$ 和 $y=0$。

3. 已知反比例函数 $y=\frac{12}{x-1}$ 的图像和点 $P(5, 2)$,求 $P$ 点在反比例函数图像上的对称点 $Q$ 的坐标。

解答:首先,求出点$P$ 关于直线$x=1$ 的对称点$P'(p,q)$ 的坐标。

由于直线 $x=1$ 为反比例函数 $y=\frac{12}{x-1}$ 的渐近线,因此$P$ 点到该直线的距离为 $0$。

点 $P$ 到直线 $x=1$ 的距离公式为:$$d(P, x=1)=\frac{|\ ax+by+c\ |}{\sqrt{a^2+b^2}}$$将反比例函数化为标准形式 $y=\frac{12}{x-1}$,可得:$$d(P, x=1)=\frac{|\ x-1\ |}{\sqrt{1+0}}=5-1=4$$因此,点 $P$ 到直线 $x=1$ 的距离为 $4$。

点 $P'$ 在直线$x=1$ 上,因此其 $x$ 坐标为 $1$,根据点 $P$ 和 $P'$ 的对称性,其 $y$ 坐标应该等于 $2-4=-2$。

2023年中考数学高频考点训练——反比例函数的实际运用

2023年中考数学高频考点训练——反比例函数的实际运用

2023年中考数学高频考点训练——反比例函数的实际运用一、综合题1.如图,在物理知识中,压强p 与受力面积S 成反比例,点()27.5,在该函数图象上.(1)试确定P 与S 之间的函数解析式;(2)求当4P Pa =时,S 是多少2m 2.教师办公室有一种可以自动加热的饮水机,该饮水机的工作程序是:放满水后接通电源,则自动开始加热,每分钟水温上升10C ︒,待加热到100C ︒,饮水机自动停止加热,水温开始下降.水温()C y ︒和通电时间()min x 成反比例函数关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温均为20C ︒,接通电源后,水温()C y ︒和通电时间()min x 之间的关系如图所示,回答下列问题:(1)分别求出当08x ≤≤和8x a <≤时,y 和x 之间的函数关系式;(2)求出图中a 的值;(3)李老师这天早上730:将饮水机电源打开,若他想在810:上课前喝到不低于40C ︒的开水,则他需要在什么时间段内接水?3.一辆客车从甲地出发前往乙地,平均速度v (千米/小时)与所用时间t (小时)的函数关系如图所示,其中60≤v≤120.(1)求出v与t的函数关系式;(2)若一辆货车同时从乙地出发前往甲地,客车比货车平均每小时多行驶20千米,3小时后两车相遇.①求两车的平均速度;②甲、乙两地间有两个加油站A、B,它们相距200千米,当客车进入B加油站时,货车恰好进入A加油站(两车加油的时间忽略不计),求甲地与B加油站的距离. 4.如图,帆船A和帆船B在太湖湖面上训练,O为湖面上的一个定点,教练船静候于O点,训练时要求A、B两船始终关于O点对称.以O为原点,建立如图所示的坐标系,x轴、y轴的正方向分别表示正东、正北方向.设A、B两船可近似看成在双曲线y=4x上运动,湖面风平浪静,双帆远影优美,训练中当教练船与A、B两船恰好在直线y=x上时,三船同时发现湖面上有一遇险的C船,此时教练船测得C船在东南45°方向上,A船测得AC与AB的夹角为60°,B船也同时测得C船的位置(假设C船位置不再改变,A、B、C三船可分别用A、B、C三点表示).(1)发现C船时,A、B、C三船所在位置的坐标分别为A(,)、B(,)和C(,);(2)发现C船,三船立即停止训练,并分别从A、O、B三点出发沿最短路线同时前往救援,设A、B两船的速度相等,教练船与A船的速度之比为3:4,问教练船是否最先赶到?请说明理由.5.某学校要修建一个占地面积为64平方米的矩形体育活动场地,四周要建上高为1米的围挡.学校准备了可以修建45米长的围挡材料(可以不用完).设矩形地面的边长AB x=米,BC y=米.(1)求y关于x的函数关系式(不写自变量的取值范围);(2)能否建造20AB=米的活动场地?请说明理由;(3)若矩形地面的造价为1千元/平方米,侧面围挡的造价为0.5千元/平方米,建好矩形场地的总费用为80.4千元,求出x 的值.(总费用=地面费用+围挡费用)6.通过实验研究发现:初中生在数学课上听课注意力指标随上课时间的变化而变化,上课开始时,学生兴趣激增,中间一段时间,学生的兴趣保持平稳状态,随后开始分散.学生注意力指标y 随时间x (分钟)变化的函数图象如图所示,当010x ≤<和1020x ≤<时,图象是线段:当2045x ≤≤时,图象是反比例函数的一部分.(1)求出点A 对应的指标值及AB 段所对应的函数解析式.(2)张老师在一节课上讲解一道数学综合题需要17分钟,他能否经过适当的安排,使学生在听这道综合题的讲解时,注意力指标都不低于36?请说明理由.7.某燃气公司计划在地下修建一个容积为V (V 为定值,单位:m 3)的圆柱形天然气储存室,储存室的底面积S (单位:m 2)与其深度d (单位:m )是反比例函数关系,它的图象如图所示.(1)求储存室的容积V 的值;(2)受地形条件限制,储存室的深度d 需要满足16≤d≤25,求储存室的底面积S 的取值范围.8.某种消毒药喷洒释放完毕开始计时,药物浓度()3mg/m y 与时间()x min 之间的关系如下:时间()x min 2412药物浓度()3mg/m y 1893(1)求y 关于x 的关系式;(2)当药物浓度不低于36mg/m 并且持续时间不少于5min 时消毒算有效,问这次消毒是否有效?.9.五一黄金周,小张一家自驾去某景点旅行.已知汽车油箱的容积为50L ,小张爸爸把油箱加满油后到了离加油站200km 的某景点,第二天沿原路返回.(1)油箱加满油后,求汽车行驶的总路程s (单位:km )与平均耗油量b(单位L/km)的函数关系式;(2)小张爸爸以平均每千米耗油0.1L 的速度驾驶到达目的地,返程时由于下雨,降低了车速,此时平均每千米的耗油量增加了一倍.如果小张爸爸始终以此速度行驶,不需要加油能否返回原加油站?如果不能,至少还需加多少油?10.码头工人每天往一艘轮船上装载货物,装载速度y (吨/天)与装完货物所需时间x (天)之间的函数关系如图.(1)求y 与x 之间的函数表达式,并写出自变量x 的取值范围;(2)由于遇到紧急情况,要求船上的货物不超过5天卸货完毕,那么平均每天至少要卸多少吨货物?11.工匠制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料煅烧到800℃,然后停止煅烧进行锻造操作.经过8min 时,材料温度降为600℃.煅烧时,温度y(℃)与时间x(min)成一次函数关系;锻造时,温度y(℃)与时间x(min)成反比例函数关系(如图,已知该材料初始温度是32℃.(1)分别求出材料煅烧和锻造时y 与x 的函数关系式,并写出自变量工的取值范围;(2)根据工艺要求,当材料温度低于480℃时,须停止操作,那么锻造的操作时间有多长?12.近年来随着科技的发展,药物制剂正朝着三效,即高效、速效、长效;以及三小,即毒性小、副作用小、剂量小的方向发展.缓释片是通过一些特殊的技术和手段,使药物在体内持续释放,从而使药物在体内能长时间的维持有效血药浓度,药物作用更稳定持久.某医药研究所研制了一种具有缓释功能的新药,在试验药效时发现:成人按规定剂量服用后,检测到从第0.5小时起开始起效,第2小时达到最高12微克/毫升,并维持这一最高值直至第4小时结束,接着开始衰退,血液中含药量y (微克)与时间x (小时)的函数关系如图,并发现衰退时y 与x 成反比例函数关系.(1)分别求①当0.5≤x≤2时,y 与x 之间的函数表达式为;②当x >4时,y 与x 之间的函数表达式为.(2)如果每毫升血液中含药量不低于4微克时有效,求一次服药后的有效时间是多少小时.13.通过实验研究发现:初中生在体育课上运动能力指标(后简称指标)随上课时间的变化而变化.上课开始时,学生随着运动,指标开始增加,中间一段时间,指标保持平稳状态,随后随着体力的消耗,指标开始下降.指标y 随时间x (分钟)变化的函数图象如图所示,当010x ≤<和1020x ≤<时,图象是线段;当2040x ≤≤时,图象是反比例函数的一部分.(1)求这个分段函数的表达式;(2)杨老师想在一节课上进行某项运动的教学需要18分钟,这项运动需要学生的运动能力指标不低于48才能达到较好的效果,他的教学设计能实现吗?请说明理由.14.市政府计划建设一项惠民工程,工程需要运送的土石方总量为105m 3,经招投标后,先锋运输公司承担了运送土石方的任务.(1)直接写出运输公司平均每天运送速度v (单位:m 3/天)与完成任务所需时间t (单位:天)之间的函数关系式;(2)如果每辆车每天平均运送102m 3的土石方,要求不超过50天完成任务,求运输公司平均每天至少安排多少辆车.15.某疫苗生产企业于2021年1月份开始技术改造,其月生产数量y (万支)与月份x 之间的变化如图所示,技术改造完成前是反比例函数图象的一部分,技术改造完成后是一次函数图象的一部分,请根据图中数据解答下列问题:(1)该企业4月份的生产数量为多少万支?(2)该企业有几个月的月生产数量不超过90万支?16.如图,在平面直角坐标系中,O 为坐标原点,点A 坐标为(3,0),四边形OABC为平行四边形,反比例函数y=kx (x >0)的图象经过点C ,与边AB 交于点D ,若,tan ∠AOC=1.(1)求反比例函数解析式;(2)点P(a,0)是x轴上一动点,求|PC-PD|最大时a的值;(3)连接CA,在反比例函数图象上是否存在点M,平面内是否存在点N,使得四边形CAMN为矩形,若存在,请直接写出点M的坐标;若不存在,请说明理由.17.某小组进行漂洗实验,每次漂洗的衣服量和添加洗衣粉量固定不变实验发现,当每次漂洗用水量v(升)一定时,衣服中残留的洗衣粉量y(克)与漂洗次数x(次)满足y=2.5kvx(k为常数),已知当使用5升水,漂洗1次后,衣服中残留洗衣粉2克.(1)求k的值.(2)如果每次用水5升,要求漂洗后残留的洗衣粉量小于0.8克,求至少漂洗多少次?(3)现将20升水等分成x次(x>1)漂洗,要使残留的洗衣粉量降到0.5克,求每次漂洗用水多少升?18.解题方法回顾:在求某边上的高之类问题时,常常利用同一个图形面积不变或等底等高面积不变或多个图形面积之和不变的原理来解决,称为“等积法”.解题方法应用:(1)已知:如图1,矩形ABCD中,AB=5,BC=12,对角线AC、BD相交于点O,点P是线段AD上任意一点,且PE⊥AC于点E,PF⊥BD于点F,求PE+PF的值.小陈同学想到了利用“等积法”解决本题,过程如下:(如图2)解:连接PO,∵矩形ABCD的两边AB=5,BC=12,∴60ABCD S AB BC =⋅=矩形,OA =OC ,OB =OD ,AC =BD ,∴13AC ==,∴1154AOD ABCD S S == 矩形,11322OA OD AC ===,∴()111222AOD AOP DOP S S S OA PE OD PF OA PE PF =+=⋅+⋅=+ ()1131522PE PF =⨯⨯+=,∴PE +PF =.(请你填上小陈计算的正确答案)(2)如图,正方形ABCD 的边长为2,点P 为边BC 上任意一点(可与B 点或C 点重合),分别过B 、C 、D 作射线AP 的垂线,垂足分别是B ',C ',D '.①设AP =x ,BB CC DD y ''++'=,求y 与x 的函数关系式,并求出x 取值范围;②直接写出y 的最大值为▲,最小值为▲.19.王老师驾驶小汽车从A 地行驶到B 地,行驶里程为480千米,设小汽车的行驶时间为t (单位:小时),行驶的平均速度为v (单位:千米/小时),且全程速度限定为不超过120千米/小时.(1)求v 关于t 的函数表达式;(2)王老师上午8点驾驶小汽车从A 地出发.①王老师需要在当天13点至14点(含13点和14点)间到达B 地,求小汽车行驶的平均速度v 需达到的范围;②王老师能否在当天11点30分前到达B 地?说明理由.20.某一农家计划利用已有的一堵长为8m 的墙,用篱笆圈成一个面积为12m 2的矩形ABCD 花园,现在可用的篱笆总长为11m.(1)若设AB x =,BC y =.请写出y 关于x 的函数表达式;(2)若要使11m 的篱笆全部用完,能否围成面积为15m 2的花园?若能,请求出长和宽;若不能,请说明理由;(3)若要使11m 的篱笆全部用完,请写出y 关于x 的第二种函数解析式.请在坐标系中画出两个函数的图象,观察图象,满足条件的围法有几种?请说明理由.答案解析部分1.【答案】解:设kP S =,把()27.5,代入得27.515k =⨯=,∴15P S =,()2求当4P Pa =时,S 是多少2m 解:当4P =Pa 时,有154S =,∴2154S m =.(1)解:设kP S =,把()27.5,代入得27.515k =⨯=,∴15P S =,(2)解:当4P =Pa 时,有154S =,∴2154S m =.【解析】【分析】(1)设P=kS ,将(2,7.5)代入求解可得k ,进而可得P 与S 之间的函数解析式;(2)将P=4代入(1)中的关系式中求解就可得到S.2.【答案】(1)解:当08x ≤≤1y k x b =+,将(020),,(8100),的坐标分别代入1y k x b =+得1208100b k b =⎧⎨+=⎩,解得110k =,20b =.∴当08x ≤≤时,1020y x =+.当8x a <≤时,设2k y x =,将(8100),的坐标代入2k y x =,得2800k =.∴当8x a <≤时,800y x =.综上,当08x ≤≤时,1020y x =+;当8x a <≤时,800y x =;(2)解:将20y =代入800y x=,解得40x =,即40a =;(3)解:当40y =时,8002040x ==.∴要想喝到不低于40C ︒的开水,x 需满足820x ≤≤,即李老师要在7:38到7:50之间接水.【解析】【分析】(1)直接利用反比例函数解析式和一次函数解析式求法得出答案;(2)利用(1)中所求解析式,当y=20时,得出答案;(3)当y=40时,代入反比例函数解析式,结合水温的变化得出答案.3.【答案】(1)解:设函数关系式为v=kt,∵t=5,v=120,∴k=120×5=600,∴v 与t 的函数关系式为v=600t(5≤t≤10);(2)解:①依题意,得3(v+v-20)=600,解得v=110,经检验,v=110符合题意.当v=110时,v-20=90.答:客车和货车的平均速度分别为110千米/小时和90千米/小时;②当A 加油站在甲地和B 加油站之间时,110t-(600-90t )=200,解得t=4,此时110t=110×4=440;当B 加油站在甲地和A 加油站之间时,110t+200+90t=600,解得t=2,此时110t=110×2=220.答:甲地与B 加油站的距离为220或440千米.【解析】【分析】(1)利用时间t 与速度v 成反比例可以得到反比例函数的解析式;(2)①由客车的平均速度为每小时v 千米,得到货车的平均速度为每小时(v-20)千米,根据一辆客车从甲地出发前往乙地,一辆货车同时从乙地出发前往甲地,3小时后两车相遇列出方程,解方程即可;②分两种情况进行讨论:当A 加油站在甲地和B 加油站之间时;当B加油站在甲地和A加油站之间时;都可以根据甲、乙两地间有两个加油站A、B,它们相距200千米列出方程,解方程即可.4.【答案】(1)2;2;-2;-2;2;-2;(2)解:作AD⊥x轴于D,连AC、BC和OC,∵A(2,2),∴∠AOD=45°,AO=2,∵C在O的东南45°方向上,∴∠AOC=45°+45°=90°,∵AO=BO,∴AC=BC,又∵∠BAC=60°,∴△ABC为正三角形,∴AC=BC=AB=2AO=4,∴2OC=⋅=,由条件设教练船的速度为3m,A、B两船的速度都为4m,则教练船所用时间为263m,A、B两船所用时间均为424m=2m,∵263m=243m,2m=183m,∴3m>m;∴教练船没有最先赶到.【解析】【解答】解:(1)CE ⊥x 轴于E ,解方程组4y x y x =⎧⎪⎨=⎪⎩得1122x y =⎧⎨=⎩,2222x y =-⎧⎨=-⎩∴A (2,2),B (-2,-2),在等边△ABC 中可求OA=2,则OC=OA=2,在Rt △OCE中,sin 45OE CE OC ==⋅︒=,∴C (2,-2);【分析】(1)A 、B 两点直线y=x 上和双曲线y=4x,列方程组可求A 、B 两点坐标,在依题意判断△ABC 为等边三角形,OA=2,则OC=OA=2,过C 点作x 轴的垂线CE ,垂足为E ,利用OC 在第四象限的角平分线上求OE ,CE ,确定C 点坐标;(2)分别求出AC 、OC 的长,分别表示教练船与A 、B 两船的速度与时间,比较时间的大小即可.5.【答案】(1)解:∵矩形体育场占地面积为64平方米,∴64y x=.(2)解:不能.理由:把20x =代入64y x=,得3.2y =.周长为2(20 3.2)46.445+=>.∴不能建造20AB =米的活动场地.(3)解:活动场地造价为646410.5280.4x x ⎛⎫⨯+⨯+= ⎪⎝⎭.整理得216.4640x x -+=,解得110x =,2 6.4x =.经检验,110x =,2 6.4x =均为原分式方程的解,且符合题意.当110x =时,总周长为64232.845x x ⎛⎫+=≤ ⎪⎝⎭;当2 6.4x =时,总周长为64232.845x x ⎛⎫+=≤ ⎪⎝⎭.综上可得,x 的值为10或6.4.【解析】【分析】(1)根据矩形的面积是64平方米,即可得到xy=64,即64y x=;(2)把x=12代入干壁立函数解析式求出y ,然后计算周长是否超过45即可得到答案;(3)根据题意列出总费用关于x 的方程求解,然后检验周长是否超过45即可得到答案。

反比例函数的综合(含答案)

反比例函数的综合(含答案)

反比例函数的综合要点一、确定反比例函数的关系式确定反比例函数关系式的方法仍是待定系数法,由于反比例函数中y=kx,只有一个待定系数k,因此只需要知道一对x,y的对应值或图象上的一个点的坐标,即可求出k的值,从而确定其解析式.用待定系数法求反比例函数关系式的一般步骤是:(1)设所求的反比例函数为:y=kx(k≠0);(2)把已知条件(自变量与函数的对应值)代入关系式,得到关于待定系数的方程;(3)解方程求出待定系数k的值;(4)把求得的k值代回所设的函数关系式y=kx中.要点二、反比例函数的图象和性质1.反比例函数的图象特征:反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限;反比例函数的图象关于原点对称,永远不会与x轴、y轴相交,只是无限靠近两坐标轴.要点诠释:(1)若点(a,b)在反比例函数y=kx的图象上,则点(-a,-b)也在此图象上,所以反比例函数的图象关于原点对称;(2)在反比例函数y =k x(k 为常数,k ≠0)中,由于x ≠0且y ≠0,所以两个分支都无限接近但永远不能达到x 轴和y 轴.2.反比例函数的性质(1)如图1,当k >0时,双曲线的两个分支分别位于第一、三象限,在每个象限内,y 值随x 值的增大而减小.(2)如图2,当k <0时,双曲线的两个分支分别位于第二、四象限,在每个象限内,y 值随x 值的增大而增大.要点诠释:反比例函数的增减性不是连续的,它的增减性都是在各自的象限内的增减情况,反比例函数的增减性都是由反比例系数k 的符号决定的;反过来,由双曲线所在的位置和函数的增减性,也可以推断出k 的符号.要点三、反比例函数y =k x(k ≠0)中的比例系数k 的几何意义过双曲线y =k x (k ≠0)上任意一点作x 轴、y 轴的垂线,所得矩形的面积为|k|.过双曲线y =k x (k ≠0)上任意一点作一坐标轴的垂线,连接该点和原点,所得三角形的面积为||2k .要点诠释:只要函数式已经确定,不论图象上点的位置如何变化,这一点与两坐标轴的垂线和两坐标轴围成的面积始终是不变的.例1.两个反比例函数y =3x ,y =6x在第一象限内的图象如图所示,点P 1,P 2,P 3……P 2020在反比例函数y =6x 图象上,它们的横坐标分别是x 1,x 2,x 3……x 2020,纵坐标分别是1,3,5,…,共2020个连续奇数,过点P 1,P 2,P 3……P 2020分别作y 轴的平行线,与反比例函数y =3x的图象交点依次是Q 1(x 1,y 1),Q 2(x 2,y 2),Q 3(x 3,y 3)……Q 2020(x 2020,y 2020),则y 2020等于()A .2019.5B .2020.5C .2019D .4039例2.如图,直线y =k 1x +b 与双曲线y =2k x A ,B 两点,其横坐标分别为1和5,则不等式k 1x <2k x +b 的解集是.1.一次函数y 1=k 1x +b 和y 2=2k x (k 2>0)相交于A (1,m ),B (3,n )两点,则不等式k 1x +b >2k x的解集为()A.1<x<3B.x<1或x>3C.x<0或x>3D.1<x<3或x<02.反比例函数y=kx和正比例函数y=mx的图象如图.由此可以得到方程kx=mx的实数根为()A.x=﹣2B.x=1C.x1=2,x2=﹣2D.x1=1,x2=﹣2例3.如图,点A在双曲线y=kx的第一象限的那一支上,AB垂直y轴于点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为3,则k的值为.1.如图,在反比例函数y=4x的图象上有一点A向x轴作垂线交x轴于点C,B为线段AC的中点,又D点在x轴上,且OD=3OC,则△OBD的面积为.例4.在平面直角坐标系xOy中,反比例函数y=kx(k≠0,x>0)的图象经过点A(1,-4),直线y=-2x+m与x轴交于点B(1,0).(1)求k,m的值;(2)已知点P(n,-2n)(n>0),过点P作平行于x轴的直线,交直线y=-2x+m于点C,过点P作平行于y轴的直线交反比例函数y=kx(k≠0,x>0)的图象于点D,当PD=2PC时,结合函数的图象,求出n的值.1.如图,正比例函数y1=mx,一次函数y2=ax+b和反比例函数y3=kx的图象在同一直角坐标系中,若y3>y2>y1,则自变量x的取值范围是()A.x<﹣1B.﹣1<x<0或x>1.6C.﹣1<x<0D.x<﹣1或0<x<12.设函数y1=kx,y2=kx (k>0),当2≤x≤3时,函数的y1最大值是a,函数y2的最小值是a﹣4,则ak=()A.4B.6C.8D.103.已知反比例函数y=8x和y=3x在第一象限内的图象如图所示,则△AMN的面积为.4.如图,P1是反比例函数y=kx(k>0)图象在第一象限上的一点,点A1的坐标为(2,0).(1)当点P1的横坐标逐渐增大时,△P1OA1的面积将如何变化?逐渐减少.(2)若点P2在反比例函数图象上,点A2在x轴上,△P1OA1与△P2A1A2均为等边三角形,①求次反比例函数的解析式;②求点A2的坐标.5.如图,反比例函数y=kx图象和一次函数y=ax+b经过M(1,6)和N(2,a).(1)求一次函数解析式;(2)一次函数y=ax+b与x轴交于点B,与y轴交于点A,求证:AM=BN.6.已知:A (a ,y 1).B (2a ,y 2)是反比例函数y =k x (k >0)图象上的两点.(1)比较y 1与y 2的大小关系;(2)若A 、B 两点在一次函数y =43x+b 第一象限的图象上(如图所示),分别过A 、B 两点作x 轴的垂线,垂足分别为C 、D ,连接OA 、OB ,且S △OAB =8,求a 的值;(3)在(2)的条件下,如果3m =-4x +24,3n =32x ,求使得m >n 的x 的取值范围.7.如图,在平面直角坐标系xOy 中,函数y =k x(x <0)的图象经过点A (﹣1,6),直线y =mx ﹣2与x 轴交于点B (﹣1,0).(1)求k ,m 的值;(2)过第二象限的点P (n ,﹣2n )作平行于x 轴的直线,交直线y =mx ﹣2于点C ,交函数y =k x(x <0)的图象于点D .①当n =﹣1时,判断线段PD 与PC 的数量关系,并说明理由;②若PD ≥2PC ,结合函数的图象,直接写出n 的取值范围.8.在平面直角坐标系xOy中,函数y=mx(x>0)的图象G与直线l:y=kx-4k+1交于点A(4,1),点B(1,n)(n≥4,n为整数)在直线l上.(1)求m的值;(2)横、纵坐标都是整数的点叫做整点.记图象G与直线l围成的区域(不含边界)为W.①当n=5时,求k的值,并写出区域W内的整点个数;②若区域W内恰有5个整点,结合函数图象,求k的取值范围.【经典例题1】A【解析】解:∵P n 的纵坐标为:2n -1,∴P 2020的纵坐标为2×2020-1=4039.∵y =与y =在横坐标相同时,y =的纵坐标是y =的纵坐标的2倍,∴y 2020=×4039=2019.5.∴A 答案正确.【经典例题2】-5<x <-1或x >0【解析】解:根据一次函数平移和反比例函数的对称性可得,直线y =k 1x -b 与双曲线y =2k x 交于第三象限点的坐标为(-5,-1)和(-1,-5),如下图所示,∴不等式k 1x <2k x +b ,即k 1x -b <2k x 的解集,即当直线y =k 1x -b 的图象在反比例函数y =2k x 图象的下方对应的自变量x 的取值范围为:-5<x <-1或x >0.【举一反三1】D【解析】解:如图,由图象可得:不等式k 1x +b >2k x 的解集是1<x <3或x <0.故选:D .【举一反三2】C【解析】解:如图,反比例函数y =和正比例函数y =mx 相交于点A (﹣2,1),∴另一个交点为:(2,﹣1),∴方程=mx 的实数根为:x 1=2,x 2=﹣2.故选:C .【经典例题3】163【解析】解:连DC ,∵AE =3EC ,S △ADE =3,∴S △CDE =1.∴S △ADC =4.设A (a ,b ),则AB =a ,OC =2AB =2a .∵D 为OB 的中点,∴BD =OD =12b .∵S 梯形OBAC =S △ABD +S △ADC +S △ODC ,12(a +2a )·b =12a ·12b +4+12·2a ·b ,∴ab =163.把A (a ,b )代入y =,得k =ab =163.【举一反三1】3【解析】解:设A (x 、y ),由反比例函数y =4x可知xy =4,BC =AC =y ,OD =3OC =3x ,∴S △OBD =BC ×OD =×y ×3x =xy =×4=3.故答案为:3.【经典例题4】【解析】解:(1)把A(1,-4)代入y=k x,得k=1×(-4)=-4;把B(1,0)代入y=-2x+m,得-2+m=0,解得m=2;(2)反比例函数解析式为y=-(x>0),一次函数解析式为y=-2x+2,如图,当y=-2n时,-2x+2=-2n,解得x=n+1,则C(n+1,-2n),∴PC=n+1-n=1,当y=-2n时,y=-=,∴D(n,-),∴PD=|-2n+|,∵PD=2PC,∴|-2n+|=2,当-2n+=2时,解得n1=-2(舍去),n2=1,当-2n+=-2时,解得n1=-1(舍去),n2=2,综上所述,当PD=2PC时,n=1或n=2.【自我检测1】B【解析】解:由图象可知,当﹣1<x<0或x>1.6时,双曲线y3落在直线y2上方,且直线y2落在直线y1上方,即y3>y2>y1,所以若y3>y2>y1,则自变量x的取值范围是﹣1<x<0或x>1.6.故选:B.【自我检测2】C【解析】解:∵k>0,2≤x≤3,∴y1随x的增大而减小,y2随x的增大而增大,∴当x=2时,y1取最大值,最大值为=a①;当x=2时,y2取最小值,最小值为﹣=a﹣4②;由①②得a=2,k=4,∴ak=8,故选:C.【自我检测3】25 16【解析】解:设A(a,),则M(a,),N(,),∴AN=a﹣=,AM=﹣=,∴△AMN的面积=AN×AM=××=25 16,故答案为:25 16.【自我检测4】【解析】解:(1)△P1OA1的面积逐渐减少;(2)作P1C⊥OA1于C,∵△P1OA1为等边三角形,A1(2,0),∴OC=1,P1C3P1(1,3).∴反比例函数的解析式为y=3 x.(3)作P2D⊥A1A2于D,如上图,设A1D=x,则OD=2+x,P2D3x,∴P2(2+x3x).将点P2代入y=3x,得y332x=+.x2+2x-1=0,解得x1=-2,x2=-12<0(舍).∴x=-2,OA2=2+x+x=2+2x=2+2(-2)=22.∴A2(22,0).【自我检测5】【解析】解:(1)∵点M(1,6)在反比例函数y=图象上,∴k=1×6=6,∴反比例函数的关系式为y=,把N(2,a)代入得,a==3,∴N(2,3).∵点M(1,6)和N(2,3)在一次函数y=ax+b的图象上,∴a+b=6,2a+b=3,解得a=﹣3,b=9,∴一次函数的关系式为y=﹣3x+9;(2)过点M、N分别作MC⊥OA,ND⊥OB,垂足分别为C、D,当x=0时,y=9,当y=0时,x=3,∴一次函数y=﹣3x+9与x轴的交点B(3,0),与y轴的交点A(0,9),由于A(0,9),B(3,0),M(1,6),N(2,3),∴MC=1,AC=9﹣6=3,ND=3,BD=3﹣2=1,∴MC=BD=1,AC=ND=3,又∵∠ACM=∠NDB=90°,∴△ACM≌△NDB(SAS),∴AM=BN.【自我检测6】【解析】解:(1)∵A、B是y=kx(k>0)图象上的两点,∴a≠0.当a>0时,A、B在第一象限,a<2a,∴此时y1>y2,同理,a<0时,y1<y2.(2)∵A(a,y1)、B(2a,y2)在y=kx(k>0)图象上,∴AC=y1=,BD=y2=.∴y1=2y2.又A (a ,y 1)、B (2a ,y 2)在y =a +b 图象上,∴y 1=a +b ,y 2=a +b .∴a +b =2(a +b ),得b =4a .∵S △AOC +S 梯形ACDB =S △AOB +S △BOD ,又S △AOC =S △BOD ,∴S 梯形ACDB =S △AOB ,即[(a +b )+(a +b )]•a =8.∴a 2=4,由a >0,得a =2.(3)由(2)知,一次函数y =x +8,反比例函数y =.∵A 、B 两点的横坐标分别为2,4,且m =x +8,n =,∴使得m >n 的x 的范围,是反比例函数的图象在一次函数图象下方的点的横坐标取值范围.∴由图可知,2<x <4或x <0.【自我检测7】【解析】解:(1)∵函数y =k x (x <0)的图象经过点A (﹣1,6),∴k =﹣6.∵直线y =mx ﹣2与x 轴交于点B (﹣1,0),∴m =﹣2.(2)①判断:PD =2PC .理由如下:当n =﹣1时,点P 的坐标为(﹣1,2),∵y =﹣2x ﹣2交于于点C ,且点P (﹣1,2)作平行于x 轴的直线,∴点C 的坐标为(﹣2,2),∵函数y =k x(x <0)的图象于点D ,且点P (﹣1,2)作平行于x 轴的直线,点D 的坐标为(﹣3,2).∴PC =1,PD =2.∴PD =2PC .②当PD=2PC时,有两种情况,分别为:y=2,或者y=6.若PD≥2PC,0<y≤2,或y≥6即0<﹣2n≤2,或﹣2n≤6解得﹣1≤n<0.或n≤﹣3【自我检测8】【解析】(1)解:把A(4,1)代入y=mx(x>0),得m=4×1=4;(2)①当n=5时,把B(1,5)代入直线l:y=kx-4k+1得,5=k-4k+1,解得k=4 3-,如图所示,区域W内的整点有(2,3),(3,2),有2个;(3)直线l:y=kx-4k+1过(1,6)时,k=53-,区域W内恰有4个整点,直线l:y=kx-4k+1过(1,7)时,k=-2,区域W内恰有5个整点,∴区域W内恰有5个整点时,k的取值范围是-2≤k<5 3-.。

反比例函数的应用专题练习(含答案)

反比例函数的应用专题练习(含答案)

初二数学反比例函数的应用课后练习(答题时间:60分钟)一、选择题1. 某厂现有300吨煤,这些煤能烧的天数y 与平均每天烧的吨数x 之间的函数关系是( )A . x y 300=(x >0)B . xy 300=(x≥0) C . y =300x (x≥0) D . y =300x (x >0)2. 根据物理学家波义耳1662年的研究结果:在温度不变的情况下,气球内气体的压强p (Pa )与它的体积V (m 3)的乘积是一个常数k ,即pV =k (k 为常数,k >0),下列图象能正确反映p 与V 之间函数关系的是( )3. 小华以每分钟x 字的速度书写,y 分钟写了300字,则y 与x 的函数关系为( )A . x=300yB . y=300x (0>x )C . x+y=300D . y=300x x- 二、解答题4. 王大爷家需要建一个面积为2 500米2的长方形养鸡厂.(1)养鸡厂的长y 米与宽x 米有怎样的函数关系?(2)王大爷决定把养鸡厂的长确定为250米,那么宽应是多少?(3)由于受厂地限制,养鸡厂的宽最多为20米,那么养鸡厂的长至少应为多少米?5. 一个圆台形物体的上底面积是下底面积的23,如图所示,放在桌面上,对桌面的压强是200Pa ,翻过来放,对桌面的压强是多少?6. 一定质量的二氧化碳,当它的体积V=5m 3时,它的密度ρ=1.98kg/m 3.(ρ、V 成反比例)(1)求ρ与V 的函数关系式;(2)求当V=9m 3时ρ的值.7. 某地上年度电价为0.8元,年用电量为1亿度,•本年度计划将电价调至0.55~0.75元之间.经测算,若电价调至x 元,则本年度新增用电量y (亿度)与(x-0.4)元成反比例,又当x=0.65元时,y=0.8.求y 与x 之间的函数关系式.8. 为预防“手足口病”,某校对教室进行“药熏消毒”.已知药物燃烧阶段,室内每立方米空气中的含药量y (mg )与燃烧时间x (min )成正比例;燃烧后,y 与x 成反比例(如图所示).现测得药物10分钟燃完,此时教室内每立方米空气含药量为8mg.据以上信息解答下列问题:(1)求药物燃烧时y与x的函数关系式.(2)求药物燃烧后y与x的函数关系式.(3)当每立方米空气中含药量低于1.6mg时,对人体方能无毒害作用,那么从消毒开始,经多长时间学生才可以回教室?一、选择题1. A ;xy=300,注意自变量的取值范围2. C ;解题思路:vk p =,如果不与实际相结合,图象分布在一、三象限,但事实上,自变量的取值范围应为y>0.3. B二、解答题4. (1)y=2500x(2)y=250,x=10米 (3)125,20y 2500,2500≥≤==y x xy ,长至少为125米 5. •300Pa6. (1)V=5m 3时,ρ=1.98kg/m 3 ,ρ=9.9V(2)V=9m 3 ,ρ=1.1kg/m 3 7. 设4.0y -=x k ,当 x=0.65元时,y=0.8. k=0.2,化简得y=152x - 8. 解:(1)设药物燃烧阶段函数解析式为11(0)y k x k =≠,由题意得:1810k = 145k =.∴此阶段函数解析式为45y x = (2)设药物燃烧结束后的函数解析式为22(0)k y k x=≠, 由题意得:2810k = 280k =.∴此阶段函数解析式为80y x= (3)当 1.6y <时,得80 1.6x< 0x >1.680x >50x >∴从消毒开始经过50分钟后学生才可以回教室.。

反比例函数测试题及答案

反比例函数测试题及答案

反比例函数测试题及答案一、选择题1. 反比例函数y= \frac{k}{x}(k≠0)的图象是双曲线,下列说法正确的是()A. 函数图象在一、三象限内,k>0B. 函数图象在二、四象限内,k<0C. 函数图象在一、三象限内,k<0D. 函数图象在二、四象限内,k>0答案:A2. 若点(2,3)在反比例函数y= \frac{k}{x}(k≠0)的图象上,则k的值是()A. 6B. -6C. 2D. -2答案:A二、填空题3. 反比例函数y= \frac{k}{x}(k≠0)的图象经过点(1,-2),则k的值为______。

答案:-24. 反比例函数y= \frac{k}{x}(k≠0)的图象是中心对称图形,若点(a,b)在函数图象上,则点(-a,-b)也在函数图象上,且k=ab,若点(2,-1)在函数图象上,则点(-2,1)也在函数图象上,且k=______。

答案:-2三、解答题5. 已知反比例函数y= \frac{k}{x}(k≠0)的图象经过点(3,-1),求k的值,并判断图象在哪个象限。

解:将点(3,-1)代入反比例函数y= \frac{k}{x}得,-1=\frac{k}{3},解得k=-3。

因为k=-3<0,所以图象在第二、四象限。

6. 已知反比例函数y= \frac{k}{x}(k≠0)的图象经过点(2,3),求k的值,并写出函数的表达式。

解:将点(2,3)代入反比例函数y= \frac{k}{x}得,3=\frac{k}{2},解得k=6。

因此,函数的表达式为y= \frac{6}{x}。

结束语:通过以上题目的练习,可以检验你对反比例函数性质和图象特征的掌握程度,希望同学们能够通过这些题目加深对反比例函数的理解。

2024年中考数学真题汇编专题13 反比例函数及其应用+答案详解

2024年中考数学真题汇编专题13 反比例函数及其应用+答案详解

2024年中考数学真题汇编专题13 反比例函数及其应用+答案详解(试题部分)一、单选题1.(2024·安徽·中考真题)已知反比例函数()0ky k x=≠与一次函数2y x =−的图象的一个交点的横坐标为3,则k 的值为( ) A .3−B .1−C .1D .32.(2024·重庆·中考真题)反比例函数10y x=−的图象一定经过的点是( ) A .()1,10B .()2,5−C .()2,5D .()2,83.(2024·天津·中考真题)若点()()()123,1,,1,,5A x B x C x −都在反比例函数5y x=的图象上,则123,,x x x 的大小关系是( ) A .123x x x << B .132x x x << C .321x x x <<D .213x x x <<4.(2024·广西·中考真题)已知点()11,M x y ,()22,N x y 在反比例函数2y x=的图象上,若120x x <<,则有( )A .120y y <<B .210y y <<C .120y y <<D .120y y <<5.(2024·浙江·中考真题)反比例函数4y x=的图象上有()1,P t y ,()24,Q t y +两点.下列正确的选项是( )A .当4t <−时,210y y <<B .当40t −<<时,210y y <<C .当40t −<<时,120y y <<D .当0t >时,120y y <<6.(2024·河北·中考真题)节能环保已成为人们的共识.淇淇家计划购买500度电,若平均每天用电x 度,则能使用y 天.下列说法错误的是( ) A .若5x =,则100y = B .若125y =,则4x =C .若x 减小,则y 也减小D .若x 减小一半,则y 增大一倍7.(2024·四川泸州·中考真题)已知关于x 的一元二次方程2210x x k ++−=无实数根,则函数y kx =与函数2y x=的图象交点个数为( ) A .0 B .1 C .2 D .38.(2024·重庆·中考真题)已知点()3,2−在反比例函数()0ky k x=≠的图象上,则k 的值为( ) A .3−B .3C . 6−D .69.(2024·黑龙江牡丹江·中考真题)矩形OBAC 在平面直角坐标系中的位置如图所示,反比例函数k y x=的图象与AB 边交于点D ,与AC 边交于点F ,与OA 交于点E ,2OE AE =,若四边形ODAF 的面积为2,则k 的值是( )A .25B .35C .45D .8510.(2024·黑龙江大兴安岭地·中考真题)如图,双曲线()120y x x=>经过A 、B 两点,连接OA 、AB ,过点B 作BD y ⊥轴,垂足为D ,BD 交OA 于点E ,且E 为AO 的中点,则AEB △的面积是( )A .4.5B .3.5C .3D .2.511.(2024·江苏扬州·中考真题)在平面直角坐标系中,函数42=+y x 的图像与坐标轴的交点个数是( )A .0B .1C .2D .412.(2024·吉林长春·中考真题)如图,在平面直角坐标系中,点O 是坐标原点,点()4,2A 在函数()0,0ky k x x=>>的图象上.将直线OA 沿y 轴向上平移,平移后的直线与y 轴交于点B ,与函数()0,0ky k x x=>>的图象交于点C .若BC B 的坐标是( )A .(B .()0,3C .()0,4D .(0,13.(2024·四川宜宾·中考真题)如图,等腰三角形ABC 中,AB AC =,反比例函数()0ky k x=≠的图象经过点A 、B 及AC 的中点M ,BC x ∥轴,AB 与y 轴交于点N .则ANAB的值为( )A .13B .14C .15D .25二、填空题14.(2024·北京·中考真题)在平面直角坐标系xOy 中,若函数()0ky k x=≠的图象经过点()13,y 和()23,y −,则12y y +的值是 .15.(2024·云南·中考真题)已知点()2,P n 在反比例函数10y x=的图象上,则n = . 16.(2024·山东威海·中考真题)如图,在平面直角坐标系中,直线()10y ax b a =+≠与双曲线()20ky k x=≠交于点()1,A m −,()2,1B −.则满足12y y ≤的x 的取值范围 .17.(2024·湖南·中考真题)在一定条件下,乐器中弦振动的频率f 与弦长l 成反比例关系,即kf l=(k 为常数.0k ≠),若某乐器的弦长l 为0.9米,振动频率f 为200赫兹,则k 的值为 .18.(2024·陕西·中考真题)已知点()12,A y −和点()2,B m y 均在反比例函数5y x=−的图象上,若01m <<,则12y y + 0.19.(2024·湖北武汉·中考真题)某反比例函数ky x=具有下列性质:当0x >时,y 随x 的增大而减小,写出一个满足条件的k 的值是 .20.(2024·黑龙江齐齐哈尔·中考真题)如图,反比例函数(0)ky x x=<的图象经过平行四边形ABCO 的顶点A ,OC 在x 轴上,若点()1,3B −,3ABCOS=,则实数k 的值为 .21.(2024·内蒙古包头·中考真题)若反比例函数12y x =,23y x=−,当13x ≤≤时,函数1y 的最大值是a ,函数2y 的最大值是b ,则b a = . 22.(2024·四川遂宁·中考真题)反比例函数1k y x−=的图象在第一、三象限,则点()3k −,在第 象限. 23.(2024·江苏扬州·中考真题)如图,在平面直角坐标系中,点A 的坐标为(1,0),点B 在反比例函数(0)ky x x=>的图像上,BC x ⊥轴于点C ,30BAC ∠=︒,将ABC 沿AB 翻折,若点C 的对应点D 落在该反比例函数的图像上,则k 的值为 .24.(2024·内蒙古呼伦贝尔·中考真题)如图,在平面直角坐标系中,点A ,B 的坐标分别为()5,0,()2,6,过点B 作BC x ∥轴交y 轴于点C ,点D 为线段AB 上的一点,且2BD AD =.反比例函数(0)ky x x=>的图象经过点D 交线段BC 于点E ,则四边形ODBE 的面积是 .25.(2024·四川广元·中考真题)已知y =与()0ky x x=>的图象交于点()2,A m ,点B 为y 轴上一点,将OAB 沿OA 翻折,使点B 恰好落在()0ky x x=>上点C 处,则B 点坐标为 .26.(2024·广东深圳·中考真题)如图,在平面直角坐标系中,四边形AOCB 为菱形,4tan 3AOC ∠=,且点A 落在反比例函数3y x=上,点B 落在反比例函数()0ky k x=≠上,则k = .27.(2024·广东广州·中考真题)如图,平面直角坐标系xOy 中,矩形OABC 的顶点B 在函数(0)k y x x=>的图象上,(1,0)A ,(0,2)C .将线段AB 沿x 轴正方向平移得线段A B ''(点A 平移后的对应点为A '),A B ''交函数(0)ky x x=>的图象于点D ,过点D 作DE y ⊥轴于点E ,则下列结论:①2k =;②OBD 的面积等于四边形ABDA '的面积;③A E ' ④B BD BB O ''∠=∠.其中正确的结论有 .(填写所有正确结论的序号)28.(2024·四川乐山·中考真题)定义:函数图象上到两坐标轴的距离都小于或等于1的点叫做这个函数图象的“近轴点”.例如,点()0,1是函数1y x =+图象的“近轴点”. (1)下列三个函数的图象上存在“近轴点”的是 (填序号); ①3y x =−+;②2y x=;③221y x x =−+−. (2)若一次函数3y mx m =−图象上存在“近轴点”,则m 的取值范围为 .三、解答题29.(2024·甘肃·中考真题)如图,在平面直角坐标系中,将函数y ax =的图象向上平移3个单位长度,得到一次函数y ax b =+的图象,与反比例函数()0ky x x=>的图象交于点()24A ,.过点()02B ,作x 轴的平行线分别交y ax b =+与()0ky x x=>的图象于C ,D 两点.(1)求一次函数y ax b =+和反比例函数ky x=的表达式; (2)连接AD ,求ACD 的面积.30.(2024·青海·中考真题)如图,在同一直角坐标系中,一次函数y x b =−+和反比例函数9y x=的图象相交于点()1,A m ,(),1B n .(1)求点A ,点B 的坐标及一次函数的解析式; (2)根据图象,直接写出不等式9x b x−+>的解集. 31.(2024·吉林·中考真题)已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示.(1)求这个反比例函数的解析式(不要求写出自变量R 的取值范围). (2)当电阻R 为3Ω时,求此时的电流I .32.(2024·山东·中考真题)列表法、表达式法、图像法是三种表示函数的方法,它们从不同角度反映了自变量与函数值之间的对应关系.下表是函数2y x b =+与ky x=部分自变量与函数值的对应关系:(1)求a 、b 的值,并补全表格; (2)结合表格,当2y x b =+的图像在ky x=的图像上方时,直接写出x 的取值范围. 33.(2024·湖北·中考真题)一次函数y x m =+经过点()3,0A −,交反比例函数ky x=于点(),4B n .(1)求m n k ,,; (2)点C 在反比例函数ky x=第一象限的图象上,若AO OB C A S S <△△,直接写出C 的横坐标a 的取值范围. 34.(2024·四川凉山·中考真题)如图,正比例函数112y x =与反比例函数()20ky x x=>的图象交于点()2A m ,.(1)求反比例函数的解析式; (2)把直线112y x =向上平移3个单位长度与()20ky x x=>的图象交于点B ,连接,AB OB ,求AOB 的面积. 35.(2024·贵州·中考真题)已知点()1,3在反比例函数ky x=的图象上. (1)求反比例函数的表达式;(2)点()3,a −,()1,b ,()3,c 都在反比例函数的图象上,比较a ,b ,c 的大小,并说明理由.36.(2024·河南·中考真题)如图,矩形ABCD 的四个顶点都在格点(网格线的交点)上,对角线AC ,BD 相交于点E ,反比例函数()0ky x x=>的图象经过点A .(1)求这个反比例函数的表达式.(2)请先描出这个反比例函数图象上不同于点A 的三个格点,再画出反比例函数的图象. (3)将矩形ABCD 向左平移,当点E 落在这个反比例函数的图象上时,平移的距离为________. 37.(2024·四川乐山·中考真题)如图,已知点()1,A m 、(),1B n 在反比例函数()30y x x=>的图象上,过点A 的一次函数y kx b =+的图象与y 轴交于点()0,1C .(1)求m 、n 的值和一次函数的表达式;(2)连接AB ,求点C 到线段AB 的距离.38.(2024·四川眉山·中考真题)如图,在平面直角坐标系xOy 中,一次函数y kx b =+与反比例函数()0my x x=>的图象交于点()1,6A ,(),2B n ,与x 轴,y 轴分别交于C ,D 两点.(1)求一次函数和反比例函数的表达式;(2)若点P 在y 轴上,当PAB 的周长最小时,请直接写出点P 的坐标;(3)将直线AB 向下平移a 个单位长度后与x 轴,y 轴分别交于E ,F 两点,当12EF AB =时,求a 的值. 39.(2024·甘肃临夏·中考真题)如图,直线y kx =与双曲线4y x=−交于A ,B 两点,已知A 点坐标为(),2a .(1)求a ,k 的值;(2)将直线y kx =向上平移()0m m >个单位长度,与双曲线4y x=−在第二象限的图象交于点C ,与x 轴交于点E ,与y 轴交于点P ,若PE PC =,求m 的值. 40.(2024·四川广元·中考真题)如图,已知反比例函数1ky x=和一次函数2y mx n =+的图象相交于点()3,A a −,3,22B a ⎛⎫+− ⎪⎝⎭两点,O 为坐标原点,连接OA ,OB .(1)求1ky x=与2y mx n =+的解析式;(2)当12y y >时,请结合图象直接写出自变量x 的取值范围; (3)求AOB 的面积.41.(2024·内蒙古赤峰·中考真题)在平面直角坐标系中,对于点()11,M x y ,给出如下定义:当点()22,N x y ,满足1212x x y y +=+时,称点N 是点M 的等和点.(1)已知点()1,3M ,在()14,2N ,()23,1N −,()30,2N −中,是点M 等和点的有_____; (2)若点()3,2M −的等和点N 在直线y x b =+上,求b 的值; (3)已知,双曲线1ky x=和直线22y x =−,满足12y y <的x 取值范围是4x >或20x −<<.若点P 在双曲线1ky x=上,点P 的等和点Q 在直线22y x =−上,求点P 的坐标.2024年中考数学真题汇编专题13 反比例函数及其应用+答案详解(答案详解)一、单选题1.(2024·安徽·中考真题)已知反比例函数()0ky k x=≠与一次函数2y x =−的图象的一个交点的横坐标为3,则k 的值为( ) A .3− B .1− C .1 D .32.(2024·重庆·中考真题)反比例函数10y x=−的图象一定经过的点是( ) A .()1,10 B .()2,5− C .()2,5 D .()2,83.(2024·天津·中考真题)若点()()()123,1,,1,,5A x B x C x −都在反比例函数5y x=的图象上,则123,,x x x 的大小关系是( )A .123x x x <<B .132x x x <<C .321x x x <<D .213x x x <<【详解】解:50k =>5y x=的图象分布在第一、三象限,在每一象限点()3,5C x ,都在反比例函数(),1x −在反比例函数4.(2024·广西·中考真题)已知点()11,M x y ,()22,N x y 在反比例函数2y x=的图象上,若120x x <<,则有( )A .120y y <<B .210y y <<C .120y y <<D .120y y <<【详解】解: 5.(2024·浙江·中考真题)反比例函数4y x=的图象上有()1,P t y ,()24,Q t y +两点.下列正确的选项是( )A .当4t <−时,210y y <<B .当40t −<<时,210y y <<C .当40t −<<时,120y y <<D .当0t >时,120y y <<6.(2024·河北·中考真题)节能环保已成为人们的共识.淇淇家计划购买500度电,若平均每天用电x 度,则能使用y 天.下列说法错误的是( ) A .若5x =,则100y = B .若125y =,则4x =C .若x 减小,则y 也减小D .若x 减小一半,则y 增大一倍7.(2024·四川泸州·中考真题)已知关于x 的一元二次方程2210x x k ++−=无实数根,则函数y kx =与函数2y x=的图象交点个数为( ) A .0 B .1 C .2 D .38.(2024·重庆·中考真题)已知点()3,2−在反比例函数()0ky k x=≠的图象上,则k 的值为( ) A .3− B .3C . 6−D .69.(2024·黑龙江牡丹江·中考真题)矩形OBAC 在平面直角坐标系中的位置如图所示,反比例函数ky x=的图象与AB 边交于点D ,与AC 边交于点F ,与OA 交于点E ,2OE AE =,若四边形ODAF 的面积为2,则k 的值是( )A .25B .35C .45D .85EM AC ,设,由OME OCA ∽,可得O O F OBDCFA D SSS ++四边形,列方程,即可得出k 的值.【详解】过点E 作EM OC ⊥,则EM AC ,∴OME OCA ∽, ∴OM EM OEOC AC OA== 设k E a a ⎛⎫ ⎪⎝⎭,,∵2OE AE = 2OM EM ==, OBDOCFS SS ++四边形3322k a a⋅⋅,解得:10.(2024·黑龙江大兴安岭地·中考真题)如图,双曲线()120y x x=>经过A 、B 两点,连接OA 、AB ,过点B 作BD y ⊥轴,垂足为D ,BD 交OA 于点E ,且E 为AO 的中点,则AEB △的面积是( )A .4.5B .3.5C .3D .2.5,证明AFE ODE ∽,有OD 1122DF a ==,AF =【详解】如图,过点A 作AF BD ⊥设12,A a a ⎛⎫⎪⎝⎭,0a >,∵BD y ⊥轴,AF BD ⊥∴AF y ∥轴,DF =∴AFE ODE ∽, AF AE EFOD OE DE==, E 为AO 的中点, AE OE =, 1AF AE EFOD OE DE===ABES=故选:A .11.(2024·江苏扬州·中考真题)在平面直角坐标系中,函数42=+y x 的图像与坐标轴的交点个数是( )A .0B .1C .2D .412.(2024·吉林长春·中考真题)如图,在平面直角坐标系中,点O 是坐标原点,点()4,2A 在函数()0,0ky k x x=>>的图象上.将直线OA 沿y 轴向上平移,平移后的直线与y 轴交于点B ,与函数()0,0ky k x x=>>的图象交于点C .若BC B 的坐标是( )A .(B .()0,3C .()0,4D .(0,∵()4,2A ,∴4OE =,222425OA =+=∴42sin 525OE OAE OA ∠===∵()4,2A 在反比例函数的图象上,13.(2024·四川宜宾·中考真题)如图,等腰三角形ABC 中,AB AC =,反比例函数()0ky k x=≠的图象经过点A 、B 及AC 的中点M ,BC x ∥轴,AB 与y 轴交于点N .则ANAB的值为( )A .13B .14C .15D .25【答案】B【分析】本题考查反比例函数的性质,平行线分线段成比例定理,等腰三角形的性质等知识,找到坐标之间的关系是解题的关键.作辅助线如图,利用函数表达式设出A 、B 两点的坐标,利用D ,M 是中点,找到坐标之间的关系,利用平行线分线段成比例定理即可求得结果.【详解】解:作过A 作BC 的垂线垂足为D ,BC 与y 轴交于E 点,如图,二、填空题14.(2024·北京·中考真题)在平面直角坐标系xOy 中,若函数()0ky k x=≠的图象经过点()13,y 和()23,y −,则12y y +的值是 . 【答案】0【分析】本题考查了反比例函数图象上点的坐标特征,已知自变量求函数值,熟练掌握反比例函数的性质是解题的关键.15.(2024·云南·中考真题)已知点()2,P n 在反比例函数10y x=的图象上,则n = . 【详解】解:点16.(2024·山东威海·中考真题)如图,在平面直角坐标系中,直线()10y ax b a =+≠与双曲线()20ky k x=≠交于点()1,A m −,()2,1B −.则满足12y y ≤的x 的取值范围 .【答案】10x −≤<或2x ≥【分析】本题考查了一次函数与反比例函数的交点问题,根据图象解答即可求解,利用数形结合思想解答是解题的关键.【详解】解:由图象可得,当10x −≤<或2x ≥时,12y y ≤, ∴满足12y y ≤的x 的取值范围为10x −≤<或2x ≥, 故答案为:10x −≤<或2x ≥.17.(2024·湖南·中考真题)在一定条件下,乐器中弦振动的频率f 与弦长l 成反比例关系,即kf l=(k 为常数.0k ≠),若某乐器的弦长l 为0.9米,振动频率f 为200赫兹,则k 的值为 . 【答案】18018.(2024·陕西·中考真题)已知点()12,A y −和点()2,B m y 均在反比例函数5y x=−的图象上,若01m <<,则12y y + 0.19.(2024·湖北武汉·中考真题)某反比例函数ky x=具有下列性质:当0x >时,y 随x 的增大而减小,写出一个满足条件的k 的值是 . 【答案】1(答案不唯一)【分析】本题考查的是反比例函数的性质,反比例函数的图象是双曲线,当0k >,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x 的增大而减小,当0k <,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大.直接根据反比例函数的性质写出符合条件的的值即可. 【详解】解:∵当0x >时,y 随x 的增大而减小, ∴0k >故答案为:1(答案不唯一).20.(2024·黑龙江齐齐哈尔·中考真题)如图,反比例函数(0)ky x x=<的图象经过平行四边形ABCO 的顶点A ,OC 在x 轴上,若点()1,3B −,3ABCOS=,则实数k 的值为 .ABCOS =【详解】ABCO 是平行四边形纵坐标相同()1,3B − A ∴的纵坐标是3 A 在反比例函数图象上∴将3y =,33k A ⎛⎫∴ ⎪⎝⎭AB ∴=−ABCOS=3AB ∴⨯即:1⎛−− ⎝解得:k =故答案为:21.(2024·内蒙古包头·中考真题)若反比例函数12y x =,23y x=−,当13x ≤≤时,函数1y 的最大值是a ,函数2y 的最大值是b ,则b a = . 【详解】解:函数23y x =−12b a −∴=故答案为:22.(2024·四川遂宁·中考真题)反比例函数1k y x−=的图象在第一、三象限,则点()3k −,在第 象限.23.(2024·江苏扬州·中考真题)如图,在平面直角坐标系中,点A 的坐标为(1,0),点B 在反比例函数(0)ky x x=>的图像上,BC x ⊥轴于点C ,30BAC ∠=︒,将ABC 沿AB 翻折,若点C 的对应点D 落在该反比例函数的图像上,则k 的值为 .24.(2024·内蒙古呼伦贝尔·中考真题)如图,在平面直角坐标系中,点A ,B 的坐标分别为()5,0,()2,6,过点B 作BC x ∥轴交y 轴于点C ,点D 为线段AB 上的一点,且2BD AD =.反比例函数(0)ky x x=>的图象经过点D 交线段BC 于点E ,则四边形ODBE 的面积是 .OCEOADSS−即可求解,熟练掌握知识点的应用是解题的关键.x ⊥轴于M ,作12OCEOADS S−=⨯25.(2024·四川广元·中考真题)已知y =与()0ky x x=>的图象交于点()2,A m ,点B 为y 轴上一点,将OAB 沿OA 翻折,使点B 恰好落在()0ky x x=>上点C 处,则B 点坐标为 .Rt tan AHO ,130=︒,B 为y 轴上一点,将OAB 沿OA 2130=∠=OB , 390=︒−∠︒, 3m m,26.(2024·广东深圳·中考真题)如图,在平面直角坐标系中,四边形AOCB 为菱形,4tan 3AOC ∠=,且点A 落在反比例函数3y x=上,点B 落在反比例函数()0ky k x=≠上,则k = .27.(2024·广东广州·中考真题)如图,平面直角坐标系xOy 中,矩形OABC 的顶点B 在函数(0)k y x x=>的图象上,(1,0)A ,(0,2)C .将线段AB 沿x 轴正方向平移得线段A B ''(点A 平移后的对应点为A '),A B ''交函数(0)k y x x=>的图象于点D ,过点D 作DE y ⊥轴于点E ,则下列结论:①2k =;②OBD 的面积等于四边形ABDA '的面积;③A E ' ④B BD BB O ''∠=∠.其中正确的结论有 .(填写所有正确结论的序号) 的几何意义可得OBD 的面积等于四边形为矩形,可得当OD 合题意;如图,设平移距离为n ,可得,证明B BD A OB '''∽,可得,(0,2)C ,四边形∵1212AOBA ODS S'==⨯=, ∴BOKAKDA SS '=四边形,BOK BKD BKD AKDA S S S S '+=+四边形,∴OBD 的面积等于四边形ABDA '的面积;故②符合题意;如图,连接A E ',∵DE y ⊥轴,DA O EOA '∠=∠∴四边形A DEO '为矩形,∴A E OD '=,∴当OD 最小,则A E '最小,设()2,0D x x x ⎛⎫> ⎪⎝⎭,∴B BD A OB '''∽,∴B BD B OA '''∠=∠,∵B C A O ''∥,∴CB O A OB '''∠=∠,∴B BD BB O ''∠=∠,故④符合题意;故答案为:①②④【点睛】本题考查的是反比例函数的图象与性质,平移的性质,矩形的判定与性质,相似三角形的判定与性质,勾股定理的应用,作出合适的辅助线是解本题的关键.28.(2024·四川乐山·中考真题)定义:函数图象上到两坐标轴的距离都小于或等于1的点叫做这个函数图象的“近轴点”.例如,点()0,1是函数1y x =+图象的“近轴点”.(1)下列三个函数的图象上存在“近轴点”的是 (填序号);①3y x =−+;②2y x=;③221y x x =−+−. (2)若一次函数3y mx m =−图象上存在“近轴点”,则m 的取值范围为 .三、解答题29.(2024·甘肃·中考真题)如图,在平面直角坐标系中,将函数y ax =的图象向上平移3个单位长度,得到一次函数y ax b =+的图象,与反比例函数()0k y x x =>的图象交于点()24A ,.过点()02B ,作x 轴的平行线分别交y ax b =+与()0k y x x=>的图象于C ,D 两点.(1)求一次函数y ax b =+和反比例函数k y x=的表达式; (2)连接AD ,求ACD 的面积.30.(2024·青海·中考真题)如图,在同一直角坐标系中,一次函数y x b =−+和反比例函数9y x=的图象相交于点()1,A m ,(),1B n .(1)求点A ,点B 的坐标及一次函数的解析式;(2)根据图象,直接写出不等式9x b x−+>的解集.31.(2024·吉林·中考真题)已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.(1)求这个反比例函数的解析式(不要求写出自变量R的取值范围).(2)当电阻R为3Ω时,求此时的电流I.32.(2024·山东·中考真题)列表法、表达式法、图像法是三种表示函数的方法,它们从不同角度反映了自变量与函数值之间的对应关系.下表是函数2y x b =+与k y x=部分自变量与函数值的对应关系:(1)求a 、b 的值,并补全表格;(2)结合表格,当2y x b =+的图像在k y x=的图像上方时,直接写出x 的取值范围.∴当2y x b =+的图像在k y x =的图像上方时,33.(2024·湖北·中考真题)一次函数y x m =+经过点()3,0A −,交反比例函数k y x =于点(),4B n .(1)求m n k ,,;(2)点C 在反比例函数k y x=第一象限的图象上,若AO OB C A S S <△△,直接写出C 的横坐标a 的取值范围. 【答案】(1)3m =,1n =,4k =;(2)1a >.34.(2024·四川凉山·中考真题)如图,正比例函数112y x =与反比例函数()20k y x x=>的图象交于点()2A m ,.(1)求反比例函数的解析式;(2)把直线112y x =向上平移3个单位长度与()20k y x x=>的图象交于点B ,连接,AB OB ,求AOB 的面积. AOB ADO SS =,代入)解:点(4,2)A 在反比例函数图象上,8k ∴=,∴反比例函数解析式为(2)解:把直线35.(2024·贵州·中考真题)已知点()1,3在反比例函数ky x=的图象上. (1)求反比例函数的表达式;(2)点()3,a −,()1,b ,()3,c 都在反比例函数的图象上,比较a ,b ,c 的大小,并说明理由.36.(2024·河南·中考真题)如图,矩形ABCD 的四个顶点都在格点(网格线的交点)上,对角线AC ,BD 相交于点E ,反比例函数()0ky x x=>的图象经过点A .(1)求这个反比例函数的表达式.(2)请先描出这个反比例函数图象上不同于点A的三个格点,再画出反比例函数的图象.(3)将矩形ABCD向左平移,当点E落在这个反比例函数的图象上时,平移的距离为________.37.(2024·四川乐山·中考真题)如图,已知点()1,A m 、(),1B n 在反比例函数()30y x x=>的图象上,过点A 的一次函数y kx b =+的图象与y 轴交于点()0,1C .(1)求m 、n 的值和一次函数的表达式; (2)连接AB ,求点C 到线段AB 的距离.ABCS=)点又一次函数C 点Rt ADB 中,又12ABCSBC =1322⨯⨯=⨯322CE =,即点38.(2024·四川眉山·中考真题)如图,在平面直角坐标系xOy 中,一次函数y kx b =+与反比例函数()0my x x=>的图象交于点()1,6A ,(),2B n ,与x 轴,y 轴分别交于C ,D 两点.(1)求一次函数和反比例函数的表达式;(2)若点P在y轴上,当PAB的周长最小时,请直接写出点P的坐标;(3)将直线AB向下平移a个单位长度后与x轴,y轴分别交于E,F两点,当12EF AB=时,求a的值.,则此时,PAB的周长最小,根据轴对称5,于是得到点8a+−,得到)解:一次函数(此时,PAB 的周长最小,点()1,6A ,()1,6E ∴−,BE 的解析式为12EF AB =39.(2024·甘肃临夏·中考真题)如图,直线y kx =与双曲线4y x=−交于A ,B 两点,已知A 点坐标为(),2a .(1)求a ,k 的值;(2)将直线y kx =向上平移()0m m >个单位长度,与双曲线4y x=−在第二象限的图象交于点C ,与x 轴交于点E ,与y 轴交于点P ,若PE PC =,求m 的值. ∴FCP OEP ∴∠=∠,CFP ∠PE PC =,(AAS CFP EOP ∴≌CF OE =,OP PF =∵直线y x =−向上平移令0x =,得y m =,令(),0E m ∴,()0,P m ,双曲线40.(2024·四川广元·中考真题)如图,已知反比例函数1ky x=和一次函数2y mx n =+的图象相交于点()3,A a −,3,22B a ⎛⎫+− ⎪⎝⎭两点,O 为坐标原点,连接OA ,OB .(1)求1ky x=与2y mx n =+的解析式; (2)当12y y >时,请结合图象直接写出自变量x 的取值范围; (3)求AOB 的面积.12AOBAOCBOCS SSOC =+=12AOBAOCBOCSSSOC =+=41.(2024·内蒙古赤峰·中考真题)在平面直角坐标系中,对于点()11,M x y ,给出如下定义:当点()22,N x y ,满足1212x x y y +=+时,称点N 是点M 的等和点.(1)已知点()1,3M ,在()14,2N ,()23,1N −,()30,2N −中,是点M 等和点的有_____; (2)若点()3,2M −的等和点N 在直线y x b =+上,求b 的值; (3)已知,双曲线1ky x=和直线22y x =−,满足12y y <的x 取值范围是4x >或20x −<<.若点P 在双曲线1ky x=上,点P 的等和点Q 在直线22y x =−上,求点P 的坐标.。

反比例函数综合应用(习题及答案)

反比例函数综合应用(习题及答案)

反比例函数综合运用(习题)1.如图,点A ,C 分别是正比例函数y =x 的图象与反比例函数4y x=的图象的交点,过A 点作AD ⊥x 轴于点D ,过C 点作CB ⊥x 轴于点B ,则四边形ABCD 的面积为________.2.如图,矩形OABC 的顶点A ,C 分别在y 轴、x 轴的正半轴上,D 为AB 的中点,反比例函数k y x=(k >0)的图象经过点D ,且与BC 交于点E ,连接OD ,OE ,DE ,若△ODE 的面积为3,则k 的值为________.3.如图,在平面直角坐标系中,O 为坐标原点,□ABCD 的边AB 在x 轴上,顶点D 在y 轴的正半轴上,点C 在第一象限,将△AOD 沿y 轴翻折,使点A 落在x 轴上的点E 处,点B恰好为OE 的中点,DE 与BC 交于点F .若k y x=(k ≠0)的图象经过点C ,且S △BEF =1,则k 的值为_____.4.如图,在平面直角坐标系xOy 中,菱形ABCD 的顶点A 与原点O 重合,顶点B 落在x 轴的正半轴上,对角线AC ,BD 交于点M ,点D ,M 恰好都在反比例函数k y x=(x >0)的图象上,则AC BD的值为()A .2B .3C .2D .55.如图,一次函数y =mx +n (m ≠0)的图象与反比例函数ky x=(k ≠0)的图象交于第二、四象限内的点A (a ,4)和点B (8,b ).过点A 作x 轴的垂线,垂足为点C ,△AOC 的面积为4.(1)分别求出a 和b 的值;(2)结合图象直接写出k mx n x+<的解集;(3)在x 轴上取点P ,使PA -PB 取得最大值时,求出点P 的坐标.【参考答案】1.82.43.244.A5.(1)a的值为-2;b的值为-1;(2)-2<x<0或x>8;(3)点P的坐标为(343,0).。

中考数学反比例函数综合经典题及答案

中考数学反比例函数综合经典题及答案

中考数学反比例函数综合经典题及答案一、反比例函数1.已知一次函数y=kx+b与反比例函数y= 交于A(﹣1,2),B(2,n),与y轴交于C 点.(1)求反比例函数和一次函数解析式;(2)如图1,若将y=kx+b向下平移,使平移后的直线与y轴交于F点,与双曲线交于D,E两点,若S△ABD=3,求D,E的坐标.(3)如图2,P为直线y=2上的一个动点,过点P作PQ∥y轴交直线AB于Q,交双曲线于R,若QR=2QP,求P点坐标.【答案】(1)解:点A(﹣1,2)在反比例函数y= 的图象上,∴m=(﹣1)×2=﹣2,∴反比例函数的表达式为y=﹣,∵点B(2,n)也在反比例函数的y=﹣图象上,∴n=﹣1,即B(2,﹣1)把点A(﹣1,2),点B(2,﹣1)代入一次函数y=kx+b中,得,解得:k=﹣1,b=1,∴一次函数的表达式为y=﹣x+1,答:反比例函数的表达式是y=﹣,一次函数的表达式是y=﹣x+1;(2)解:如图1,连接AF,BF,∵DE∥AB,∴S△ABF=S△ABD=3(同底等高的两三角形面积相等),∵直线AB的解析式为y=﹣x+1,∴C(0,1),设点F(0,m),∴AF=1﹣m,∴S△ABF=S△ACF+S△BCF= CF×|x A|+ CF×|x B|= (1﹣m)×(1+2)=3,∴m=﹣1,∴F(0,﹣1),∵直线DE的解析式为y=﹣x+1,且DE∥AB,∴直线DE的解析式为y=﹣x﹣1①.∵反比例函数的表达式为y=﹣②,联立①②解得,或∴D(﹣2,1),E(1,﹣2);(3)解:如图2由(1)知,直线AB的解析式为y=﹣x﹣1,双曲线的解析式为y=﹣,设点P(p,2),∴Q(p,﹣p﹣1),R(p,﹣),PQ=|2+p+1|,QR=|﹣p﹣1+ |,∵QR=2QP,∴|﹣p﹣1+ |=2|2+p+1|,解得,p= 或p= ,∴P(,2)或(,2)或(,2)或(,2).【解析】【分析】(1)把A的坐标代入反比例函数的解析式可求得m的值,从而可得到反比例函数的解析式;把点A和点B的坐标代入一次函数的解析式可求得一次函数的解析式;(2)依据同底等高的两个三角形的面积相等可得到S△ABF=S△ABD=3,再利用三角形的面积公式可求得点F的坐标,即可得出直线DE的解析式,即可求出交点坐标;(3)设点P(p,2),则Q(p,﹣p﹣1),R(p,﹣),然后可表示出PQ与QR的长度,最后依据QR=2QP,可得到关于p的方程,从而可求得p的值,从而可得到点P的坐标.2.如图,一次函数y=kx+b的图象分别与反比例函数y= 的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y= 的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M 的坐标.【答案】(1)解:把点A(4,3)代入函数y= 得:a=3×4=12,∴y= .OA= =5,∵OA=OB,∴OB=5,∴点B的坐标为(0,﹣5),把B(0,﹣5),A(4,3)代入y=kx+b得:解得:∴y=2x﹣5.(2)解:∵点M在一次函数y=2x﹣5上,∴设点M的坐标为(x,2x﹣5),∵MB=MC,∴解得:x=2.5,∴点M的坐标为(2.5,0).【解析】【分析】(1)先求反比例函数关系式,由OA=OB,可求出B坐标,再代入一次函数解析式中求出解析式;(2)M点的纵坐标可用x 的式子表示出来,可套两点间距离公式,表示出MB、MC,令二者相等,可求出x .3.如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,将直线在x轴下方的部分沿x轴翻折,得到一个新函数的图象(图中的“V形折现”)(1)类比研究函数图象的方法,请列举新函数的两条性质,并求新函数的解析式;(2)如图2,双曲线y= 与新函数的图象交于点C(1,a),点D是线段AC上一动点(不包括端点),过点D作x轴的平行线,与新函数图象交于另一点E,与双曲线交于点P.①试求△PAD的面积的最大值;②探索:在点D运动的过程中,四边形PAEC能否为平行四边形?若能,求出此时点D的坐标;若不能,请说明理由.【答案】(1)解:如图1,新函数的性质:1.函数的最小值为0;2.函数图象的对称轴为直线x=3.由题意得,点A的坐标为(-3,0),分两种情况:①当x-3时,y=x+3;②当x<-3时,设函数解析式为y=kx+b,在直线y=x+3中,当x=-4时,y=-1,则点(-4,-1)关于x轴的对称点为(-4,1),把点(-4,1),(-3,0),代入y=kx+b中,得:,解得:,∴y=-x-3.综上,新函数的解析式为y=.(2)解:如图2,①∵点C(1,a)在直线y=x+3上,∴a=4,∵点C(1,4)在反比例函数y=上,∴k=4,∴反比例函数的解析式为y=.∵点D是线段AC上一动点,∴设点D的坐标为(m,m+3),且-3<m<1,∵DP∥x轴,且点P在双曲线上,∴点P的坐标为(,m+3),∴PD=-m,∴S△PAD=(-m)(m+3)=m2-m+2=(m+)2+,∵a=<0,∴当m=时,S有最大值,最大值为,又∵-3<<1,∴△PAD的面积的最大值为.②在点D的运动的过程中,四边形PAEC不能为平行四边形,理由如下:当点D为AC的中点时,其坐标为(-1,2),此时点P的坐标为(2,2),点E的坐标为(-5,2),∵DP=3,DE=4,∴EP与AC不能互相平分,∴四边形PAEC不能为平行四边形.【解析】【分析】(1)根据一次函数的性质,结合函数图象写出新函数的两条性质;利用待定系数法求新函数解析式,注意分两种情况讨论;(2)①先求出点C的坐标,再利用待定系数法求出反比例函数解析式,设出点D的坐标,进而得到点P的坐标,再根据三角形的面积公式得出函数解析式,利用二次函数的性质求解即可;②先求出A的中点D的坐标,再计算DP、DE的长度,如果对角线互相平分,则能成为平行四边形,如若对角线不互相平分,则不能成为平行四边形.4.如图,一次函数y=﹣x+3的图象与反比例y= (k为常数,且k≠0)的图象交于A(1,a),B两点.(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.【答案】(1)解:∵点A(1,a)在一次函数y=﹣x+3的图象上,∴a=﹣1+3=2,∴点A(1,2).∵点A(1,2)在反比例y= (k为常数,且k≠0)的图象上,∴k=1×2=2,∴反比例函数的表达式为y= .联立一次函数与反比例函数关系式成方程组,得:,解得:,,∴点B(2,1)(2)解:作B点关于x轴的对称点B′(2,﹣1),连接AB’,交x轴于点P,连接PB,如图所示.∵点B、B′关于x轴对称,∴PB=PB′.∵点A、P、B′三点共线,∴此时PA+PB取最小值.设直线AB′的函数表达式为y=mx+n(m≠0),将A(1,2)、B(2,﹣1)代入y=mx+n,,解得:,∴直线AB′的函数表达式为y=﹣3x+5.当y=﹣3x+5=0时,x= ,∴满足条件的点P的坐标为(,0).【解析】【分析】(1)将x=1代入直线AB的函数表达式中即可求出点A的坐标,由点A 的坐标利用反比例函数图象上点的坐标特征即可求出反比例函数的表达式,联立两函数表达式成方程组,通过解方程组即可求出点B的坐标;(2)作B点关于x轴的对称点B′(2,﹣1),连接AB’,交x轴于点P,连接PB,由两点之间线段最短可得出此时PA+PB 取最小值,根据点A、B′的坐标利用待定系数法可求出直线AB′的函数表达式,再利用一次函数图象上点的坐标特征即可求出点P的坐标.5.【阅读理解】我们知道,当a>0且b>0时,(﹣)2≥0,所以a﹣2 +≥0,从而a+b≥2 (当a=b时取等号),【获得结论】设函数y=x+ (a>0,x>0),由上述结论可知:当x= 即x= 时,函数y有最小值为2(1)【直接应用】若y1=x(x>0)与y2= (x>0),则当x=________时,y1+y2取得最小值为________.(2)【变形应用】若y1=x+1(x>﹣1)与y2=(x+1)2+4(x>﹣1),则的最小值是________(3)【探索应用】在平面直角坐标系中,点A(﹣3,0),点B(0,﹣2),点P是函数y= 在第一象限内图象上的一个动点,过P点作PC⊥x轴于点C,PD⊥y轴于点D,设点P的横坐标为x,四边形ABCD的面积为S①求S与x之间的函数关系式;②求S的最小值,判断取得最小值时的四边形ABCD的形状,并说明理由.【答案】(1)1;2(2)4(3)解:①设P(x,),则C(x,0),D(0,),∴AC=x+3,BD= +2,∴S= AC•BD= (x+3)( +2)=6+x+ ;②∵x>0,∴x+ ≥2 =6,∴当x= 时,即x=3时,x+ 有最小值6,∴此时S=6+x+ 有最小值12,∵x=3,∴P(3,2),C(3,0),D(0,2),∴A、C关于x轴对称,D、B关于y轴对称,即四边形ABCD的对角线互相垂直平分,∴四边形ABCD为菱形.【解析】【解答】解:(1)∵x>0,∴y1+y2=x+ ≥2 =2,∴当x= 时,即x=1时,y1+y2有最小值2,故答案为:1;2;(2)∵x>﹣1,∴x+1>0,∴ = =(x+1)+ ≥2 =4,∴当x+1= 时,即x=1时,有最小值4,故答案为:4;【分析】(1)直接由结论可求得其取得最小值,及其对应的x的值;(2)可把x+1看成一个整体,再利用结论可求得答案;(3)①可设P(x,),则可表示出C、D的坐标,从而可表示出AC和BD,再利用面积公式可表示出四边形ABCD的面积,从而可得到S 与x的函数关系式;②再利用结论可求得其最得最小值时对应的x的值,则可得到P、C、D的坐标,可判断A、C关于x轴对称,B、D关于y轴对称,可判断四边形ABCD为菱形.6.如图,过原点的直线y=k1x和y=k2x与反比例函数y= 的图象分别交于两点A,C和B,D,连接AB,BC,CD,DA.(1)四边形ABCD一定是________四边形;(直接填写结果)(2)四边形ABCD可能是矩形吗?若可能,试求此时k1,k2之间的关系式;若不能,说明理由;(3)设P(x1,y1),Q(x2,y2)(x2>x1>0)是函数y= 图象上的任意两点,a=,b= ,试判断a,b的大小关系,并说明理由.【答案】(1)平行(2)解:∵正比例函数y=k1x(k1>0)与反比例函数y= 的图象在第一象限相交于A,∴k1x= ,解得x= (因为交于第一象限,所以负根舍去,只保留正根)将x= 带入y=k1x得y= ,故A点的坐标为(,)同理则B点坐标为(,),又∵OA=OB,∴ = ,两边平方得: +k1= +k2,整理后得(k1﹣k2)(k1k2﹣1)=0,∵k1≠k2,所以k1k2﹣1=0,即k1k2=1;(3)解:∵P(x1, y1),Q(x2, y2)(x2>x1>0)是函数y= 图象上的任意两点,∴y1= ,y2= ,∴a= = = ,∴a﹣b= ﹣ = = ,∵x2>x1>0,∴>0,x1x2>0,(x1+x2)>0,∴>0,∴a﹣b>0,∴a>b.【解析】【解答】解:(1)∵直线y=k1x和y=k2x与反比例函数y= 的图象关于原点对称,∴OA=OC,OB=OD,∴四边形ABCD 是平行四边形;故答案为:平行;【分析】(1)由直线y=k1x和y=k2x与反比例函数y= 的图象关于原点对称,即可得到结论.(2)联立方程求得A、B点的坐标,然后根据OA=OB,依据勾股定理得出 = ,两边平分得 +k1= +k2,整理后得(k1﹣k2)(k1k2﹣1)=0,根据k1≠k2,则k1k2﹣1=0,即可求得;(3)由P(x1,y1),Q(x2,y2)(x2>x1>0)是函数y= 图象上的任意两点,得到y1= ,y2= ,求出a= = = ,得到a﹣b= ﹣ = = >0,即可得到结果.7.如图所示,在平面直角坐标系xoy中,直线y= x+ 交x轴于点B,交y轴于点A,过点C(1,0)作x轴的垂线l,将直线l绕点C按逆时针方向旋转,旋转角为α(0°<α<180°).(1)当直线l与直线y= x+ 平行时,求出直线l的解析式;(2)若直线l经过点A,①求线段AC的长;②直接写出旋转角α的度数;(3)若直线l在旋转过程中与y轴交于D点,当△ABD、△ACD、△BCD均为等腰三角形时,直接写出符合条件的旋转角α的度数.【答案】(1)解:当直线l与直线y= x+平行时,设直线l的解析式为y= x +b,∵直线l经过点C(1,0),∴0=+b,∴b=,∴直线l的解析式为y=x−(2)解:①对于直线y= x+,令x=0得y=,令y=0得x=−1,∴A(0,),B(−1,0),∵C(1,0),∴AC=,②如图1中,作CE∥OA,∴∠ACE=∠OAC,∵tan∠OAC=,∴∠OAC=30°,∴∠ACE=30°,∴α=30°(3)解:①如图2中,当α=15°时,∵CE∥OD,∴∠ODC=15°,∵∠OAC=30°,∴∠ACD=∠ADC=15°,∴AD=AC=AB,∴△ADB,△ADC是等腰三角形,∵OD垂直平分BC,∴DB=DC,∴△DBC是等腰三角形;②当α=60°时,易知∠DAC=∠DCA=30°,∴DA=DC=DB,∴△ABD、△ACD、△BCD均为等腰三角形;③当α=105°时,易知∠ABD=∠ADB=∠ADC=∠ACD=75°,∠DBC=∠DCB=15°,∴△ABD、△ACD、△BCD均为等腰三角形;④当α=150°时,易知△BDC是等边三角形,∴AB=BD=DC=AC,∴△ABD、△ACD、△BCD均为等腰三角形,综上所述:当α=15°或60°或105°或150°时,△ABD、△ACD、△BCD均为等腰三角形.【解析】【分析】(1)设直线l的解析式为y= x+b,把点C(1,0)代入求出b即可;(2)①求出点A的坐标,利用两点间距离公式即可求出AC的长;②如图1中,由CE∥OA,推出∠ACE=∠OAC,由tan∠OAC=,推出∠OAC=30°,即可解决问题;(3)根据等腰三角形的判定和性质,分情况作出图形,进行求解即可.8.综合实践问题情景:某综合实践小组进行废物再利用的环保小卫士行动. 他们准备用废弃的宣传单制作装垃圾的无盖纸盒.操作探究:(1)若准备制作一个无盖的正方体形纸盒,如图1,下面的哪个图形经过折叠能围成无盖正方体形纸盒?(2)如图2是小明的设计图,把它折成无盖正方体形纸盒后与“保”字相对的是哪个字?(3)如图3,有一张边长为20cm的正方形废弃宣传单,小华准备将其四角各剪去一个小正方形,折成无盖长方体形纸盒.①请你在图3中画出示意图,用实线表示剪切线,虚线表示折痕.②若四角各剪去了一个边长为xcm的小正方形,用含x的代数式表示这个纸盒的高为________cm,底面积为________cm2,当小正方形边长为4cm时,纸盒的容积为________cm3.【答案】(1)解:A.有田字,故A不能折叠成无盖正方体;B.只有4个小正方形,无盖的应该有5个小正方形,不能折叠成无盖正方体;C.可以折叠成无盖正方体;D.有6个小正方形,无盖的应该有5个小正方形,不能折叠成无盖正方体.故答案为:C.(2)解:正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,所以与“保”字相对的字是“卫”(3)x;(20﹣2x)2;576【解析】【解答】(3)解:①如图,②设剪去的小正方形的边长为x(cm),用含字母x的式子表示这个盒子的高为xcm,底面积为(20﹣2x)2cm2,当小正方形边长为4cm时,纸盒的容积为=x(20﹣2x)2=4×(20﹣2×4)2=576(cm3).故答案为:x,(20﹣2x)2, 576【分析】(1)由平面图形的折叠及正方体的展开图解答本题;(2)正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,据此作答;(3)①根据题意,画出图形即可;②根据正方体底面积、体积,即可解答.9.请完成下面题目的证明.如图,AB为⊙O的直径,AB=8,点C和点D是⊙O上关于直线AB 对称的两个点,连接OC,AC,且∠BOC<90°,直线BC与直线AD相交于点E,过点C作直线CG与线段AB的延长线相交于点F,与直线AD相交于点G,且∠GAF=∠GCE(1)求证:直线CG为⊙O的切线;(2)若点H为线段OB上一点,连接CH,满足CB=CH;①求证:△CBH∽△OBC;②求OH+HC的最大值.【答案】(1)证明:由题意可知:∠CAB=∠GAF,∵AB是⊙O的直径,∴∠ACB=90°∵OA=OC,∴∠CAB=∠OCA,∴∠OCA+∠OCB=90°,∵∠GAF=∠GCE,∴∠GCE+∠OCB=∠OCA+∠OCB=90°,∵OC是⊙O的半径,∴直线CG是⊙O的切线;(2)证明:①∵CB=CH,∴∠CBH=∠CHB,∵OB=OC,∴∠CBH=∠OCB,∴△CBH∽△OBC解:②由△CBH∽△OBC可知:∵AB=8,∴BC2=HB•OC=4HB,∴HB= ,∴OH=OB-HB=∵CB=CH,∴OH+HC=当∠BOC=90°,此时BC=∵∠BOC<90°,∴0<BC<令BC=x∴OH+HC= = =当x=2时,∴OH+HC可取得最大值,最大值为5【解析】【分析】(1)由题意可知:∠CAB=∠GAF,∠GAF=∠GCE,由圆的性质可知:∠CAB=∠OCA,所以∠OCA=∠GCE,从而可证明直线CG是⊙O的切线;(2)①由于CB=CH,所以∠CBH=∠CHB,易证∠CBH=∠OCB,从而可证明△CBH∽△OBC;②由△CBH∽△OBC可知:,所以HB= ,由于BC=HC,所以OH+HC=利用二次函数的性质即可求出OH+HC的最大值.10.如图1,抛物线y=ax2+bx﹣3经过点A,B,C,已知点A(﹣1,0),点B(3,0)(1)求抛物线的解析式(2)点D为抛物线的顶点,DE⊥x轴于点E,点N是线段DE上一动点①当点N在何处时,△CAN的周长最小?②若点M(m,0)是x轴上一个动点,且∠MNC=90°,求m的取值范围.【答案】(1)解:函数的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),故﹣3a=﹣3,解得:a=1,故函数的表达式为:y=x2﹣2x﹣3(2)解:①过点C作x轴的平行线交抛物线于点C'(2,﹣3),连接AC'交DE于点N,则此时△CAN的周长最小.设过点A、C'的一次函数表达式为y=kx+b,则:,解得:,故直线AC'的表达式为:y=﹣x﹣1,当x=1时,y=﹣2,故点N(1,﹣2);②如图2,过点C作CG⊥ED于点G.设NG=n,则NE=3﹣n.∵∠CNG+∠GCN=90°,∠CNG+∠MNE=90°,∴∠NCG=∠MNE,则tan∠NCG=n=tan∠MNE,故ME=﹣n2+3n,∴﹣1<0,故ME有最大值,当n时,ME,则m的最小值为:;如下图所示,当点N与点D重合时,m取得最大值.过C作CG⊥ED于G.∵y=x2﹣2x﹣3= y=(x-1)2﹣4,∴D(1,-4),∴CG=OE=1.∵EG=OC=3∴GD=4-3=1,∴CG=DG=1,∴∠CDG=45°.∵∠CDM=90°,∴∠EDM=45°,∴△EDM是等腰直角三角形,∴EM=ED=4,∴OM=OE+EM=1+4=5,∴m=5.故:m≤5.【解析】【分析】(1)函数的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),即可求解;(2)①过点C作x轴的平行线交抛物线于点C'(2,﹣3),连接AC'交DE于点N,则此时△CAN的周长最小,即可求解;②如图2,ME=﹣n2+3n,求出ME最大值,则可求出m的最小值;当点N与点D处时,m取得最大值,求解即可.11.已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A(﹣3,0),C(1,0),BC=AC.(1)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(2)在(1)的条件下,如P,Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,问是否存在这样的m,使得△APQ与△ADB相似?如存在,请求出m的值;如不存在,请说明理由.【答案】(1)解:如图1,过点B作BD⊥AB,交x轴于点D,∵∠A=∠A,∠ACB=∠ABD=90°,∴△ABC∽△ADB,∴∠ABC=∠ADB,且∠ACB=∠BCD=90°,∴△ABC∽△BDC,∴∵A(﹣3,0),C(1,0),∴AC=4,∵BC=AC.∴BC=3,∴AB===5,∵,∴,∴CD=,∴AD=AC+CD=4+ =,∴OD=AD﹣AO=,∴点D的坐标为:(,0);(2)解:如图2,当∠APC=∠ABD=90°时,∵∠APC=∠ABD=90°,∠BAD=∠PAQ,∴△APQ∽△ABD,∴,∴∴m=,如图3,当∠AQP=∠ABD=90°时,∵∠AQP=∠ABD=90°,∠PAQ=∠BAD,∴△APQ∽△ADB,∴,∴∴m=;综上所述:当m=或时,△APQ与△ADB相似.【解析】【分析】(1)如图1,过点B作BD⊥AB,交x轴于点D,可证△ABC∽△ADB,可得∠ABC=∠ADB,可证△ABC∽△BDC,可得,可求CD 的长,即可求点D坐标;(2)分两种情况讨论,由相似三角形的性质可求解.12.在平面直角坐标系xOy中,抛物线y=mx2-2mx+m-1(m>0)与x轴的交点为A,B.(1)求抛物线的顶点坐标;(2)横、纵坐标都是整数的点叫做整点.①当m=1时,求线段AB上整点的个数;②若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围.【答案】(1)解:将抛物线表达式变为顶点式,则抛物线顶点坐标为(1,-1);(2)解:①m=1时,抛物线表达式为,因此A、B的坐标分别为(0,0)和(2,0),则线段AB上的整点有(0,0),(1,0),(2,0)共3个;②抛物线顶点为(1,-1),则由线段AB之间的部分及线段AB所围成的区域的整点的纵坐标只能为-1或者0,所以即要求AB线段上(含AB两点)必须有5个整点;又有抛物线表达式,令y=0,则,得到A、B两点坐标分别为(,0),(,0),即5个整点是以(1,0)为中心向两侧分散,进而得到,∴.【解析】【分析】(1)将抛物线表达式变为顶点式,即可得到顶点坐标;(2)①m=1时,抛物线表达式为,即可得到A、B的坐标,可得到线段AB上的整点个数;②抛物线顶点为(1,-1),则由线段AB之间的部分及线段AB所围成的区域的整点的纵坐标只能为-1或者0,所以即要求AB线段上(含AB两点)必须有5个整点;令y=0,则,解方程可得到A、B两点坐标分别为(,0),(,0),即5个整点是以(1,0)为中心向两侧分散,进而得到,即可得到结论.。

2024年中考数学高频压轴题训练——反比例函数的实际应用含参考答案

2024年中考数学高频压轴题训练——反比例函数的实际应用含参考答案

2024年中考数学高频压轴题训练——反比例函数的实际应用1.某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为15﹣20℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y(℃)随时间x(h)变化的函数图象,其中AB段是恒温阶段,BC段是双曲线y=240x的一部分,请根据图中信息解答下列问题:(1)求0到2小时期间y随x的函数解析式;(2)恒温系统在一天内保持大棚内温度不低于15℃的时间有多少小时?2.A,B两地相距200千米,一辆汽车匀速从A地驶往B地,速度为v(单位:千米/小时),驶完全程的时间为t(单位:小时).(1)求v关于t的函数表达式,并写出自变量t取值范围.(2)若速度每小时不超过60千米,那么从A地行驶到B地至少要行驶多少小时?3.如图所示,制作一种产品的同时,需要将原材料加热,设该材料温度为y℃,从加热开始计算的时间为x分钟,据了解,该材料在加热过程中温度y与时间x成一次函数关系,已知该材料在加热前的温度为15℃,加热5分钟使材料温度达到60℃时停止加热.停止加热后,材料温度逐渐下降,这时温度y与时间x成反比例函数关系.(1)分别求出该材料加热过程中和停止加热后y与x之间的函数表达式,并写出x的取值范围;(2)根据工艺要求,在材料温度不低于30℃的这段时间内,需要对该材料进行特殊处理,那么对该材料进行特殊处理所用的时间是多少?4.某游泳池每次换水前后水的体积基本保持不变,当该游泳池以每小时300立方米的速度放水时,经3小时能将池内的水放完,设放水的速度为x立方米/时,将池内的水放完需y小时.已知该游泳池每小时的最大放水速度为350立方米.(1)求y关于x的函数表达式.(2)若该游泳池将放水速度控制在每小时200立方米至250立方米(含200立方米和250立方米),求放水时间y的范围.(3)该游泳池能否在2.5小时内将池内的水放完?请说明理由.5.一蓄水池每小时的排水量V(m3/h)与排完水池中的水所用的时间t(h)之间成反比例函数关系,其图象如图所示.(1)求V与t之间的函数表达式;(2)若要2h排完水池中的水,那么每小时的排水量应该是多少?(3)如果每小时排水量不超过4000m3,那么水池中的水至少要多少小时才能排完?6.你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度y(m)是面条的粗细(横截面积)S(mm2)的反比例函数,其图象如图所示.(1)写出y(m)与S(mm2)的函数关系式;(2)求当面条粗2mm2时,面条的总长度是多少米?7.近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主要成分是CO.在一次矿难事件的调查中发现:从零时起,井内空气中CO的浓度达到4mg/L,此后浓度呈直线型增加,在第7小时达到最高值46mg/L,发生爆炸;爆炸后,空气中的CO浓度成反比例下降.如图所示,根据题中相关信息回答下列问题:(1)求爆炸前后空气中CO 浓度y 与时间x 的函数关系式,并写出相应的自变量取值范围;(2)当空气中的CO 浓度达到34mg/L 时,井下3km 的矿工接到自动报警信号,这时他们至少要以多少km/h 的速度撤离才能在爆炸前逃生?(3)矿工只有在空气中的CO 浓度降到4mg/L 及以下时,才能回到矿井开展生产自救,求矿工至少在爆炸后多少小时才能下井?8.某养猪场对猪舍进行喷药消毒.在消毒的过程中,先经过5min 的药物集中喷洒,再封闭猪舍10min ,然后再打开窗户进行通风.已知室内每立方米空气中含药量y (3/mg m )与药物在空气中的持续时间x (min )之间的函数图象如图所示,其中在打开窗户通风前y 与x 分别满足两个一次函数,在通风后y 与x 满足反比例函数.(1)求反比例函数的关系式;(2)当猪舍内空气中含药量不低于35/mg m 且持续时间不少于21min ,才能有效杀死病毒,问此次消毒是否有效?9.大学生小张利用暑假50天在一超市勤工俭学,被安排销售一款成本为40元/件的新型商品,此类新型商品在第x 天的销售量p 件与销售的天数x 的关系如下表:x (天)123...50p (件)118116114 (20)销售单价q (元/件)与x 满足:当1≤x <25时q=x+60;当25≤x≤50时q=40+1125x .(1)请分析表格中销售量p 与x 的关系,求出销售量p 与x 的函数关系.(2)求该超市销售该新商品第x 天获得的利润y 元关于x 的函数关系式.(3)这50天中,该超市第几天获得利润最大?最大利润为多少?10.为适应日益激烈的市场竞争要求,某工厂从2016年1月且开始限产,并对生产线进行为期5个月的升降改造,改造期间的月利润与时间成反比例;到5月底开始恢复全面生产后,工厂每月的利润都比前一个月增加10万元.设2016年1月为第1个月,第x个月的利润为y万元,其图象如图所示,试解决下列问题:(1)分别求该工厂对生产线进行升级改造前后,y与x之间的函数关系式;(2)到第几个月时,该工厂月利润才能再次达到100万元?(3)当月利润少于50万元时,为该工厂的资金紧张期,问该工厂资金紧张期共有几个月?11.为了做好新冠肺炎疫情期间开学工作,我区某中学用药熏消毒法对教室进行消毒.已知一瓶药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例;药物释放完毕后,y与x成反比例,如图所示.根据图中提供的信息,解答下列问题:(1)写出倾倒一瓶药物后,从药物释放开始,y与x之间的两个函数关系式及相应的自变量取值范围;(2)据测定,当空气中每立方米的含药量不低于8毫克时,消毒有效,那么倾倒一瓶药物后,从药物释放开始,有效消毒时间是多少分钟?12.对于某一函数给出如下定义:若存在实数p,当其自变量的值为p时,其函数值等于p,则称p为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差q称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q为零.例如:下图中的函数有0,1两个不变值,其不变长度q等于1.(1)分别判断函数y=x-1,y=x-1,y=x2有没有不变值?如果有,直接写出其不变长度;(2)函数y=2x2-bx.①若其不变长度为零,求b的值;②若1≤b≤3,求其不变长度q的取值范围;(3)记函数y=x2-2x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2,函数G的图象由G1和G2两部分组成,若其不变长度q满足0≤q≤3,则m的取值范围为. 13.冬天即将到来,龙泉某中学的初三学生到某蔬菜生产基地作数学实验.在气温较低时,蔬菜生产基地用装有恒温系统的大棚栽培蔬菜,经收集数据,该班同学将大棚内温度和时间的关系拟合为一个分段函数,如图是某天恒温系统从开启到关闭后,大棚内的温度y(℃)与时间x(h)之间的函数关系,其中线段AB,BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;(2)若大棚栽种某种蔬菜,温度低于10℃时会受到伤害.问若栽种这种蔬菜,恒温系统最多可以关闭多少小时就必须再次启动,才能使蔬菜避免受到伤害?14.小黄准备给长8m,宽6m的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足PQ∥AD,如图所示.(1)若区域Ⅰ的三种瓷砖均价为300元/m2,面积为S(m2),区域Ⅱ的瓷砖均价为200元/m2,且两区域的瓷砖总价为不超过12000元,求S的最大值;(2)若区域Ⅰ满足AB:BC=2:3,区域Ⅱ四周宽度相等①求AB,BC的长;②若甲、丙两瓷砖单价之和为300元/m2,乙、丙瓷砖单价之比为5:3,且区域Ⅰ的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围.15.【合作学习】如图,矩形ABOD的两边OB,OD都在坐标轴的正半轴上,OD=3,另两边与反比例函数y=kx(k≠0)的图象分别相交于点E,F,且DE=2.过点E作EH⊥x轴于点H,过点F作FG⊥EH于点G.回答下面的问题:①该反比例函数的解析式是什么?②当四边形AEGF为正方形时,点F的坐标是多少?(1)阅读合作学习内容,请解答其中的问题;(2)小亮进一步研究四边形AEGF的特征后提出问题:“当AE>EG时,矩形AEGF与矩形DOHE能否全等?能否相似?”针对小亮提出的问题,请你判断这两个矩形能否全等?直接写出结论即可;这两个矩形能否相似?若能相似,求出相似比;若不能相似,试说明理由.答案解析部分1.【答案】(1)解:当x=12时,y=240x=20,B (12,20),∵AB 段是恒温阶段,∴A (2,12),设函数解析式为y=kx+b ,代入(0,10),和(2,20),得=102+=20,解得=5=10,0到2小时期间y 随x 的函数解析式y=5x+10(2)解:把y=15代入y=5x+10,即5x+10=15,解得x 1=1,把y=15代入y=240x ,即15=240x ,解得x 2=16,∴16﹣1=15,答:恒温系统在一天内保持大棚内温度不低于15℃的时间有15小时2.【答案】(1)解:由题意,可得v =200t(t >0);(2)解:∵v≤60,∴200t ≤60,解得t≥103.即从A 地行驶到B 地至少要行驶103小时.3.【答案】(1)解:设加热过程中一次函数表达式为y=kx+b (k≠0),∵该函数图象经过点(0,15),(5,60),∴15560b k b =⎧⎨+=⎩,解得915k b =⎧⎨=⎩,∴一次函数的表达式为y=9x+15(0≤x≤5),设加热停止后反比例函数表达式为y=a x (a≠0),∵该函数图象经过点(5,60),∴5a =60,解得:a=300,∴反比例函数表达式为y=300x (x≥5)(2)解:∵y=9x+15,∴当y=30时,9x+15=30,解得x=53,∵y=300x ,∴当y=30时,300x =30,解得x=10,10﹣53=253,所以对该材料进行特殊处理所用的时间为253分钟4.【答案】(1)解:900y x =(0350x <≤)(2)解:由题知:200250x ≤≤∵900y x =在200250x ≤≤内随着x 的增大而减小,∵当200x =时,92y =,当250x =时,185y =;∴18952y ≤≤(3)解:不能;当350x =时,900183507y ==>2.5故该游泳池不能在2.5小时内将池内的水放完.5.【答案】(1)解:设函数表达式为V =k t ,把(6,3000)代入V =k t ,得3000=k 6.解得:k =18000,所以V 与t 之间的函数表达式为:V =18000t ;(2)解:把t =2代入V =18000t,得V =9000,答:每小时的排水量应该是9000m 3;(3)解:把V =4000代入V =18000t,得t =4.5,根据反比例函数的性质,V 随t 的增大而减小,因此水池中的水至少要4.5h 才能排完6.【答案】(1)解:设y 与s 的函数关系式为y =k s ,∵P (4,25),∴25=4k解得k =100,∴y 与s 的函数关系式是y =100s (2)解:x =2mm 2时,y =1002=50,求当面条粗2mm 2时,面条长为50米.7.【答案】(1)解:因为爆炸前浓度呈直线型增加,所以可设y 与x 的函数关系式为y=k 1x+b (k 1≠0),由图象知y=k 1x+b 过点(0,4)与(7,46),则=471+=46,解得1=6=4,则y=6x+4,此时自变量x 的取值范围是0≤x≤7.(不取x=0不扣分,x=7可放在第二段函数中)∵爆炸后浓度成反比例下降,∴可设y 与x 的函数关系式为2k y x=(k 2≠0).由图象知2k y x =过点(7,46),∴2467k =,∴k 2=322,∴322y x=,此时自变量x 的取值范围是x >7.(2)解:当y=34时,由y=6x+4得,6x+4=34,x=5.∴撤离的最长时间为7﹣5=2(小时).∴撤离的最小速度为3÷2=1.5(km/h ).(3)解:当y=4时,由y=322x 得,x=80.5,80.5﹣7=73.5(小时).∴矿工至少在爆炸后73.5小时才能下井.8.【答案】(1)解:设反比例函数关系式为k y x=.∵反比例函数的图象过点()158,,∴120k =.∴120y x =.(2)解:设正比例函数关系式为y kx =.把5x =,10y =代入上式,得2k =.∴2y x =.当5y =时,52x =.把5y =代入120y x =,得24x =.∴52421.5212-=>.答:此次消毒能有效杀死该病毒.9.【答案】(1)解:设销售量p 件与销售的天数x 的函数解析式为p=kx+b ,代入(1,118),(2,116)得+=1182+=116解得=−2=120因此销售量p 件与销售的天数x 的函数解析式为p=﹣2x+120(2)解:当1≤x <25时,y=(60+x ﹣40)(﹣2x+120)=﹣2x 2+80x+2400,当25≤x≤50时,y=(40+1125x ﹣40)(﹣2x+120)=135000x ﹣2250(3)解:当1≤x <25时,y=﹣2x 2+80x+2400,=﹣2(x ﹣20)2+3200,∵﹣2<0,∴当x=20时,y 有最大值y 1,且y 1=3200;当25≤x≤50时,y=135000x﹣2250;∵135000>0,∴135000x随x的增大而减小,当x=25时,135000x最大,于是,x=25时,y=135000x﹣2250有最大值y2,且y2=5400﹣2250=3150.∵y1>y2∴这50天中第20天时该超市获得利润最大,最大利润为3200元10.【答案】(1)解:由题意得,设前5个月中y与x的还是关系式为y=kx,把x=1,y=3代入得,k=100,∴y与x之间的函数关系式为y=100 x,把x=5代入得y=1005=20,由题意设5月份以后y与x的函数关系式为y=10x+b,把x=5,y=20代入得,20=10×5+b,∴b=﹣30,∴y与x之间的函数关系式为y=10x﹣30(2)解:由题意得,把y=100y=10x﹣30得100=10x﹣30,解得:x=13,∴到第13个月时,该工厂月利润才能再次达到100万元(3)解:对于y=100x,y=50时,x=2,∵k=100>0,y随x的增大而减小,∴x<2时,y<50,对于y=10x﹣30,当y=50时,x=8,∵k=10>0,y随x的增大而增大,∴x<8时,y<50,∴2<x<8时,月利润少于50万元,∴该工厂资金紧张期共有5个月11.【答案】(1)解:当0≤x≤15时,设y=ax(a≠0);当x>15时,设y=kx(k≠0).将(15,20)代入y=ax,20=15a,解得:a=4 3,∴y=43x(0≤x≤15).k20=15k ,解得:k=300,∴y=300x (x>15),∴=≤15)>15);(2)解:把y=8代入y=43x 得,x=6;把y=8代入y=300x 得,x=37.5,37.5-6=31.5(分钟).答:有效消毒时间是31.5分钟.12.【答案】(1)解:函数y=x-1没有不变值;∵函数1y x=有-1和1两个不变值,∴其不变长度为2;∵函数2y x =有0和1两个不变值,∴其不变长度为1;(2)解:① 函数y=2x 2-bx 的不变长度为0,∴方程2x 2-bx=x 有两个相等的实数根,∴△=(b+1)2=0,∴b=-1,②∵2x 2-bx=x ,∴12102b x x +==,, 1≤b≤3,∴1≤2x ≤2,∴函数y=2x 2-bx 的不变长度的取值范围为1≤q≤2.(3)1≤m≤3或m<-1813.【答案】(1)解:设线段AB 解析式为y =k 1x+b (k≠0)∵线段AB 过点(0,10),(2,14)代入得110214b k b =⎧⎨+=⎩,得1210k b =⎧⎨=⎩,AB 解析式为:y =2x+10(0≤x <5)∵B 在线段AB 上当x =5时,y =20∴B 坐标为(5,20)∴线段BC 的解析式为:y =20(5≤x <10)设双曲线CD 解析式为:y =200x (k 2≠0)∵C (10,20)∴双曲线CD 解析式为:y =200x(10≤x≤24)∴y 关于x 的函数解析式为:y =210(05)20(510)200(1024)x x x x x⎧⎪+⎪<⎨⎪⎪⎩(2)解:把y =10代入y =200x中,解得,x =20∴20﹣10=10答:恒温系统最多关闭10小时,蔬菜才能避免受到伤害.14.【答案】(1)解:依题可得:300S+200(48-S )≤12000,解得:S≤24,∴S max =24.(2)解:①设区域Ⅱ四周宽度为a ,依题可得:AB=6-2a ,BC=8-2a ,∵AB :BC=2:3,∴(6-2a ):(8-2a )=2:3,解得:a=1,∴AB=6-2a=4,BC=8-2a=6,②设乙、丙瓷砖单价分别为5x 元/m 2和3x 元/m 2,则甲的单价为(300-3x )元/m 2,∵PQ ∥AD ,∴S 甲=S 矩形ABCD ×12=4×6×12=12,设乙的面积为s ,则丙的面积为12-s (0<s <12),依题可得:12(300-3x )+5xs+3x (12-s )=4800,解得:s=600x,∵k=600>0,∴s 随着x 的增大而减少,∴当0<s <12时,∴x >50,又∵300-3x>0,∴3x<300,∴丙瓷砖单价的范围为:150<3x<300.15.【答案】(1)解:①∵四边形ABOD为矩形,EH⊥x轴,而OD=3,DE=2,∴E点坐标为(2,3),∴k=2×3=6,∴反比例函数解析式为y=6x(x>0);②设正方形AEGF的边长为a,则AE=AF=a,∴B点坐标为(2+a,0)),A点坐标为(2+a,3),∴F点坐标为(2+a,3﹣a),把F(2+a,3﹣a)代入y=6x得(2+a)(3﹣a)=6,解得a1=1,a2=0(舍去),∴F点坐标为(3,2)(2)解:①当AE>EG时,矩形AEGF与矩形DOHE不能全等.理由如下:假设矩形AEGF与矩形DOHE全等,则AE=OD=3,AF=DE=2,∴A点坐标为(5,3),∴F点坐标为(5,1),而5×1=5≠6,∴F点不在反比例函数y=6x的图象上,∴矩形AEGF与矩形DOHE不能全等;②当AE>EG时,矩形AEGF与矩形DOHE能相似.∵矩形AEGF与矩形DOHE能相似,∴AE:OD=AF:DE,∴AE OD=3,∴A点坐标为(2+3t,3),∴F点坐标为(2+3t,3﹣2t),把F(2+3t,3﹣2t)代入y=6x得(2+3t)(3﹣2t)=6,解得t1=0(舍去),t2=56,∴AE=3t=5 2,∴相似比=AEOD=523=56.。

2024年中考数学《反比例函数及其应用》真题含解析

2024年中考数学《反比例函数及其应用》真题含解析

专题反比例函数及其应用(41题)一、单选题1.(2024·安徽·中考真题)已知反比例函数y=kxk≠0与一次函数y=2-x的图象的一个交点的横坐标为3,则k的值为()A.-3B.-1C.1D.3【答案】A【分析】题目主要考查一次函数与反比例函数的交点问题,根据题意得出y=2-3=-1,代入反比例函数求解即可【详解】解:∵反比例函数y=kxk≠0与一次函数y=2-x的图象的一个交点的横坐标为3,∴y=2-3=-1,∴-1=k3,∴k=-3,故选:A2.(2024·重庆·中考真题)反比例函数y=-10x的图象一定经过的点是()A.1,10B.-2,5C.2,5D.2,8【答案】B【分析】本题考查了求反比例函数值.熟练掌握求反比例函数值是解题的关键.分别将各选项的点坐标的横坐标代入,求纵坐标,然后判断作答即可.【详解】解:解:当x=1时,y=-101=-10,图象不经过1,10,故A不符合要求;当x=-2时,y=-10-2=5,图象一定经过-2,5,故B符合要求;当x=2时,y=-102=-5,图象不经过2,5,故C不符合要求;当x=2时,y=-102=-5,图象不经过2,8,故D不符合要求;故选:B.3.(2024·天津·中考真题)若点A x1,-1,B x2,1,C x3,5都在反比例函数y=5x的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x1<x3<x2C.x3<x2<x1D.x2<x1<x3【答案】B【分析】本题主要考查了比较反比例函数值的大小,根据反比例函数性质即可判断.【详解】解:∵k=5>0,∴反比例函数y =5x的图象分布在第一、三象限,在每一象限y 随x 的增大而减小,∵点B x 2,1 ,C x 3,5 ,都在反比例函数y =5x的图象上,1<5,∴x 2>x 3>0.∵-1<0,A x 1,-1 在反比例函数y =5x的图象上,∴x 1<0,∴x 1<x 3<x 2.故选:B .4.(2024·广西·中考真题)已知点M x 1,y 1 ,N x 2,y 2 在反比例函数y =2x的图象上,若x 1<0<x 2,则有()A.y 1<0<y 2B.y 2<0<y 1C.y 1<y 2<0D.0<y 1<y 2【答案】A【分析】本题考查了反比例函数的图象,熟练掌握反比例函数图象上点的坐标特征是解题的关键.根据点M x 1,y 1 ,N x 2,y 2 在反比例函数图象上,则满足关系式y =2x,横纵坐标的积等于2,结合x 1<0<x 2即可得出答案.【详解】解:∵点M x 1,y 1 ,N x 2,y 2 在反比例函数y =2x的图象上,∴x 1y 1=2,x 2y 2=2,∵x 1<0<x 2,∴y 1<0,y 2>0,∴y 1<0<y 2.故选:A .5.(2024·浙江·中考真题)反比例函数y =4x的图象上有P t ,y 1 ,Q t +4,y 2 两点.下列正确的选项是()A.当t <-4时,y 2<y 1<0B.当-4<t <0时,y 2<y 1<0C.当-4<t <0时,0<y 1<y 2D.当t >0时,0<y 1<y 2【答案】A【分析】本题考查了反比例函数图象上的点的坐标特征,由于反比例函数y =4x,可知函数位于一、三象限,分情况讨论,根据反比例函数的增减性判断出y 1与y 2的大小.【详解】解:根据反比例函数y =4x,可知函数图象位于一、三象限,且在每个象限中,y 都是随着x 的增大而减小,反比例函数y =4x的图象上有P t ,y 1 ,Q t +4,y 2 两点,当t<t+4<0,即t<-4时,0>y1>y2;当t<0<t+4,即-4<t<0时,y1<0<y2;当0<t<t+4,即t>0时,y1>y2>0;故选:A.6.(2024·河北·中考真题)节能环保已成为人们的共识.淇淇家计划购买500度电,若平均每天用电x度,则能使用y天.下列说法错误的是()A.若x=5,则y=100B.若y=125,则x=4C.若x减小,则y也减小D.若x减小一半,则y增大一倍【答案】C【分析】本题考查的是反比例函数的实际应用,先确定反比例函数的解析式,再逐一分析判断即可.【详解】解:∵淇淇家计划购买500度电,平均每天用电x度,能使用y天.∴xy=500,∴y=500x,当x=5时,y=100,故A不符合题意;当y=125时,x=500125=4,故B不符合题意;∵x>0,y>0,∴当x减小,则y增大,故C符合题意;若x减小一半,则y增大一倍,表述正确,故D不符合题意;故选:C.7.(2024·四川泸州·中考真题)已知关于x的一元二次方程x2+2x+1-k=0无实数根,则函数y=kx与函数y=2x的图象交点个数为()A.0B.1C.2D.3【答案】A【分析】本题考查了根的判别式及一次函数和反比例函数的图象.首先根据一元二次方程无实数根确定k 的取值范围,然后根据一次函数和反比例函数的性质确定其图象的位置.【详解】解:∵方程x2+2x+1-k=0无实数根,∴Δ=4-41-k<0,解得:k<0,则函数y=kx的图象过二,四象限,而函数y=2x的图象过一,三象限,∴函数y=kx与函数y=2x的图象不会相交,则交点个数为0,故选:A.8.(2024·重庆·中考真题)已知点-3,2 在反比例函数y =kxk ≠0 的图象上,则k 的值为()A.-3B.3C.-6D.6【答案】C【分析】本题考查了待定系数法求反比例解析式,把-3,2 代入y =kxk ≠0 求解即可.【详解】解:把-3,2 代入y =kxk ≠0 ,得k =-3×2=-6.故选C .9.(2024·黑龙江牡丹江·中考真题)矩形OBAC 在平面直角坐标系中的位置如图所示,反比例函数y =kx的图象与AB 边交于点D ,与AC 边交于点F ,与OA 交于点E ,OE =2AE ,若四边形ODAF 的面积为2,则k 的值是()A.25B.35C.45D.85【答案】D【分析】本题考查了矩形的性质、三角形面积的计算、反比例函数的图象和性质、相似三角形的判定和性质;熟练掌握矩形的性质和反比例函数的性质是解决问题的关键.过点E 作EM ⊥OC ,则EM ∥AC ,设E a ,k a ,由△OME ∽△OCA ,可得OC =32a ,AC =32⋅ka,再由S 矩形OBAC =S △OBD +S △OCF +S 四边形ODAF ,列方程,即可得出k 的值.【详解】过点E 作EM ⊥OC ,则EM ∥AC ,∴△OME ∽△OCA ,∴OM OC =EM AC =OEOA设E a ,k a ,∵OE =2AE ∴OM OC =EM AC=23,∴OC =32a ,AC =32⋅ka∴S 矩形OBAC =S △OBD +S △OCF +S 四边形ODAF =32a ⋅32⋅ka即k 2+k 2+2=32a ⋅32⋅k a ,解得:k =85故选D10.(2024·黑龙江大兴安岭地·中考真题)如图,双曲线y =12xx >0 经过A 、B 两点,连接OA 、AB ,过点B 作BD ⊥y 轴,垂足为D ,BD 交OA 于点E ,且E 为AO 的中点,则△AEB 的面积是()A.4.5B.3.5C.3D.2.5【答案】A【分析】本题考查了反比例函数,相似三角形的判定与性质等知识,过点A 作AF ⊥BD ,垂足为F ,设A a ,12a ,证明△AFE ∽△ODE ,有AF OD =AE OE=EF DE ,根据E 为AO 的中点,可得AF =OD ,EF =DE ,进而有EF =DE =12DF =12a ,AF =OD =12y A =6a ,可得y B =OD =6a ,x B=2a ,则有BE =BD -DE=32a ,问题随之得解.【详解】如图,过点A 作AF ⊥BD ,垂足为F ,设A a ,12a,a >0,∵BD ⊥y 轴,AF ⊥BD ,∴AF ∥y 轴,DF =a ,∴△AFE ∽△ODE ,∴AF OD =AE OE=EFDE ,∵E 为AO 的中点,∴AE =OE ,∴AF OD =AE OE=EFDE =1,∴AF =OD ,EF =DE ∴EF =DE =12DF =12a ,AF =OD =12y A =6a,∵OD =y B ,∴y B =OD =6a,∴xB =2a ,∴BD=x B=2a,∴BE=BD-DE=32a,∴S△ABE=12×AF×BE=12×6a×32a=92=4.5,故选:A.11.(2024·江苏扬州·中考真题)在平面直角坐标系中,函数y=4x+2的图像与坐标轴的交点个数是()A.0B.1C.2D.4【答案】B【分析】根据函数表达式计算当x=0时y的值,可得图像与y轴的交点坐标;由于4x+2的值不可能为0,即y≠0,因此图像与x轴没有交点,由此即可得解.本题主要考查了函数图像与坐标轴交点个数,掌握求函数图像与坐标轴交点的计算方法是解题的关键.【详解】当x=0时,y=42=2,∴y=4x+2与y轴的交点为0,2;由于4x+2是分式,且当x≠-2时,4x+2≠0,即y≠0,∴y=4x+2与x轴没有交点.∴函数y=4x+2的图像与坐标轴的交点个数是1个,故选:B.12.(2024·吉林长春·中考真题)如图,在平面直角坐标系中,点O是坐标原点,点A4,2在函数y=k xk>0,x>0的图象上.将直线OA沿y轴向上平移,平移后的直线与y轴交于点B,与函数y=k xk>0,x>0的图象交于点C.若BC=5,则点B的坐标是()A.0,5B.0,3C.0,4D.0,25【答案】B【分析】本题主要考查反比例函数、解直角三角形、平移的性质等知识点,掌握数形结合思想成为解题的关键.如图:过点A作x轴的垂线交x轴于点E,过点C作y轴的垂线交y轴于点D,先根据点A坐标计算出sin∠OAE、k值,再根据平移、平行线的性质证明∠DBC=∠OAE,进而根据sin∠DBC=CDBC=sin∠OAE求出CD,最后代入反比例函数解析式取得点C的坐标,进而确定CD=2,OD=4,再运用勾股定理求得BD,进而求得OB即可解答.【详解】解:如图,过点A作x轴的垂线交x轴于点E,过点C作y轴的垂线交y轴于点D,则AE∥y轴,∵A4,2,∴OE=4,OA=22+42=25,∴sin∠OAE=OEOA =425=255.∵A4,2在反比例函数的图象上,∴k=4×2=8.∴将直线OA向上平移若干个单位长度后得到直线BC,∴OA∥BC,∴∠OAE=∠BOA,∵AE∥y轴,∴∠DBC=∠BOA,∴∠DBC=∠OAE,∴sin∠DBC=CDBC =sin∠OAE=255,∴CD5=255,解得:CD=2,即点C的横坐标为2,将x=2代入y=8x,得y=4,∴C点的坐标为2,4,∴CD=2,OD=4,∴BD=BC2-CD2=1,∴OB=OD-BD=4-1=3,∴B0,3故选:B.13.(2024·四川宜宾·中考真题)如图,等腰三角形ABC中,AB=AC,反比例函数y=kxk≠0的图象经过点A、B及AC的中点M,BC∥x轴,AB与y轴交于点N.则ANAB的值为()A.13B.14C.15D.25【答案】B【分析】本题考查反比例函数的性质,平行线分线段成比例定理,等腰三角形的性质等知识,找到坐标之间的关系是解题的关键.作辅助线如图,利用函数表达式设出A 、B 两点的坐标,利用D ,M 是中点,找到坐标之间的关系,利用平行线分线段成比例定理即可求得结果.【详解】解:作过A 作BC 的垂线垂足为D ,BC 与y 轴交于E 点,如图,在等腰三角形ABC 中,AD ⊥BC ,D 是BC 中点,设A a ,k a,B b ,kb ,由BC 中点为D ,AB =AC ,故等腰三角形ABC 中,∴BD =DC =a -b ,∴C 2a -b ,kb,∵AC 的中点为M ,∴M 3a -b 2,ka +kb 2 ,即3a -b 2,k a +b 2ab,由M 在反比例函数上得M 3a -b 2,k 3a -b2,∴k a +b 2ab=k3a -b 2,解得:b =-3a ,由题可知,AD ∥NE ,∴AN AB=DE BD =a a -b =a a +3a =14.故选:B .二、填空题14.(2024·北京·中考真题)在平面直角坐标系xOy 中,若函数y =kxk ≠0 的图象经过点3,y 1 和-3,y 2 ,则y1+y2的值是.【答案】0【分析】本题考查了反比例函数图象上点的坐标特征,已知自变量求函数值,熟练掌握反比例函数的性质是解题的关键.将点3,y1和-3,y2代入y=kxk≠0,求得y1和y2,再相加即可.【详解】解:∵函数y=kxk≠0的图象经过点3,y1和-3,y2,∴有y1=k3,y2=-k3,∴y1+y2=k3-k3=0,故答案为:0.15.(2024·云南·中考真题)已知点P2,n在反比例函数y=10x的图象上,则n=.【答案】5【分析】本题考查反比例函数图象上点的坐标特征,将点P2,n代入y=10x求值,即可解题.【详解】解:∵点P2,n在反比例函数y=10x的图象上,∴n=102=5,故答案为:5.16.(2024·山东威海·中考真题)如图,在平面直角坐标系中,直线y1=ax+b a≠0与双曲线y2=kxk≠0交于点A-1,m,B2,-1.则满足y1≤y2的x的取值范围.【答案】-1≤x<0或x≥2【分析】本题考查了一次函数与反比例函数的交点问题,根据图象解答即可求解,利用数形结合思想解答是解题的关键.【详解】解:由图象可得,当-1≤x<0或x≥2时,y1≤y2,∴满足y1≤y2的x的取值范围为-1≤x<0或x≥2,故答案为:-1≤x<0或x≥2.17.(2024·湖南·中考真题)在一定条件下,乐器中弦振动的频率f与弦长l成反比例关系,即f=kl(k为常数.k≠0),若某乐器的弦长l为0.9米,振动频率f为200赫兹,则k的值为.【答案】180【分析】本题考查了待定系数法求反比例函数解析式,把l=0.9,f=200代入f=kl求解即可.【详解】解:把l=0.9,f=200代入f=kl,得200=k0.9,解得k=180,故答案为:180.18.(2024·陕西·中考真题)已知点A-2,y1和点B m,y2均在反比例函数y=-5x的图象上,若0<m<1,则y1+y20.【答案】</小于【分析】本题主要考查了反比例函数的性质,先求出y1=52,y2=-5m,再根据0<m<1,得出y2<-5,最后求出y1+y2<0即可.【详解】解:∵点A-2,y1和点B m,y2均在反比例函数y=-5x的图象上,∴y1=52,y2=-5m,∵0<m<1,∴y2<-5,∴y1+y2<0.故答案为:<.19.(2024·湖北武汉·中考真题)某反比例函数y=kx具有下列性质:当x>0时,y随x的增大而减小,写出一个满足条件的k的值是.【答案】1(答案不唯一)【分析】本题考查的是反比例函数的性质,反比例函数的图象是双曲线,当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小,当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.直接根据反比例函数的性质写出符合条件的的值即可.【详解】解:∵当x>0时,y随x的增大而减小,∴k>0故答案为:1(答案不唯一).20.(2024·黑龙江齐齐哈尔·中考真题)如图,反比例函数y=kx(x<0)的图象经过平行四边形ABCO的顶点A,OC在x轴上,若点B-1,3,S▱ABCO=3,则实数k的值为.【答案】-6【分析】本题考查了反比例函数,根据A ,B 的纵坐标相同以及点A 在反比例函数上得到A 的坐标,进而用代数式表达AB 的长度,然后根据S ▱ABCO =3列出一元一次方程求解即可.【详解】∵ABCO 是平行四边形∴A ,B 纵坐标相同∵B -1,3∴A 的纵坐标是3∵A 在反比例函数图象上∴将y =3代入函数中,得到x =k 3∴A k 3,3∴AB =-1-k 3∵S ▱ABCO =3,B 的纵坐标为3∴AB ×3=3即:-1-k 3×3=3解得:k =-6故答案为:-6.21.(2024·内蒙古包头·中考真题)若反比例函数y 1=2x ,y 2=-3x,当1≤x ≤3时,函数y 1的最大值是a ,函数y 2的最大值是b ,则a b =.【答案】12/0.5【分析】此题主要考查了反比例函数的性质,负整数指数幂,正确得出a 与b 的关系是解题关键.直接利用反比例函数的性质分别得出a 与b ,再代入a b 进而得出答案.【详解】解:∵函数y 1=2x,当1≤x ≤3时,函数y 1随x 的增大而减小,最大值为a ,∴x =1时,y 1=2=a ,∵y 2=-3x ,当1≤x ≤3时,函数y 2随x 的增大而减大,函数y 2的最大值为y 2=-1=b ,∴a b =2-1=12.故答案为:12.22.(2024·四川遂宁·中考真题)反比例函数y =k -1x 的图象在第一、三象限,则点k ,-3 在第象限.【答案】四/4【分析】本题考查了反比例函数的性质,点所在的象限,根据反比例函数的性质得出k >1,进而即可求解.【详解】解:∵反比例函数y =k -1x的图象在第一、三象限,∴k -1>0∴k >1∴点k ,-3 在第四象限,故答案为:四.23.(2024·江苏扬州·中考真题)如图,在平面直角坐标系中,点A 的坐标为(1,0),点B 在反比例函数y =k x (x >0)的图像上,BC ⊥x 轴于点C ,∠BAC =30°,将△ABC 沿AB 翻折,若点C 的对应点D 落在该反比例函数的图像上,则k 的值为.【答案】23【分析】本题考查了反比例函数k 的几何意义,掌握求解的方法是解题的关键.如图,过点D 作DE ⊥x 轴于点E .根据∠BAC =30°,BC ⊥x ,设BC =a ,则AD =AC =3a ,由对称可知AC =AD ,∠DAB =∠BAC =30°,即可得AE =32a ,DE =32a ,解得B (1+3a ,a ),D 1+32a ,32a ,根据点B 的对应点D 落在该反比例函数的图像上,即可列方程求解;【详解】解:如图,过点D 作DE ⊥x 轴于点E .∵点A 的坐标为(1,0),∴OA =1,∵∠BAC =30°,BC ⊥x 轴,设BC =a ,则AD =AC =BC tan30°=3a ,由对称可知AC =AD ,∠DAB =∠BAC =30°,∴∠DAC =60°,∠ADE =30°,∴AE =32a ,DE =AD ·sin60°=32a ,∴B (1+3a ,a ),D 1+32a ,32a ,∵点B 的对应点D 落在该反比例函数的图像上,∴k =a 1+3a =32a ⋅1+32a,解得:a =233,∵反比例函数图象在第一象限,∴k =2331+233×3 =23,故答案为:23.24.(2024·内蒙古呼伦贝尔·中考真题)如图,在平面直角坐标系中,点A ,B 的坐标分别为5,0 ,2,6 ,过点B 作BC ∥x 轴交y 轴于点C ,点D 为线段AB 上的一点,且BD =2AD .反比例函数y =k x(x >0)的图象经过点D 交线段BC 于点E ,则四边形ODBE 的面积是.【答案】12【分析】本题主要考查了反比例函数的图象与性质,反比例函数图象上点的坐标特征,反比例函数k 的几何意义,作BM ⊥x 轴于M ,作DN ⊥x 轴于N ,则DN ∥BM ,由点A ,B 的坐标分别为5,0 ,2,6 得BC =OM =2,BM =OC =6,AM =3,然后证明△ADN ∽△ABM 得DN BM =AN AM =AD AB ,求出DN =2,则ON =OA -AN =4,故有D 点坐标为4,2 ,求出反比例函数解析式y =8x ,再求出E 43,6 ,最后根据S 四边形ODBE =S 梯形OABC -S △OCE -S △OAD 即可求解,熟练掌握知识点的应用是解题的关键.【详解】如图,作BM ⊥x 轴于M ,作DN ⊥x 轴于N ,则DN ∥BM ,∵点A ,B 的坐标分别为5,0 ,2,6 ,∴BC =OM =2,BM =OC =6,AM =3,∵DN ∥BM ,∴△ADN ∽△ABM ,∴DN BM =AN AM =AD AB,∵BD =2AD ,∴DN 6=AN 3=13,∴DN =2,AN =1,∴ON =OA -AN =4,∴D 点坐标为4,2 ,代入y =k x 得,k =2×4=8,∴反比例函数解析式为y =8x,∵BC ∥x 轴,∴点E 与点B 纵坐标相等,且E 在反比例函数图象上,∴E 43,6,∴CE =43,∴S 四边形ODBE =S 梯形OABC -S △OCE -S △OAD =12×2+5 ×6-12×6×43-12×5×2=12,故答案为:12.25.(2024·四川广元·中考真题)已知y =3x 与y =k x x >0 的图象交于点A 2,m ,点B 为y 轴上一点,将△OAB 沿OA 翻折,使点B 恰好落在y =k x x >0 上点C 处,则B 点坐标为.【答案】0,4【分析】本题考查了反比例函数的几何综合,折叠性质,解直角三角形的性质,勾股定理,正确掌握相关性质内容是解题的关键.先得出A 2,23 以及y =43xx >0 ,根据解直角三角形得∠1=30°,根据折叠性质,∠3=30°,然后根据勾股定理进行列式,即OB =OC =23 2+22=4.【详解】解:如图所示:过点A 作AH ⊥y 轴,过点C 作CD ⊥x 轴,∵y =3x 与y =k xx >0 的图象交于点A 2,m ,∴把A 2,m 代入y =3x ,得出m =3×2=23,∴A 2,23 ,把A 2,23 代入y =k xx >0 ,解得k =2×23=43,∴y =43xx >0 ,设C m ,43m,在Rt △AHO ,tan ∠1=AH OH =223=33,∴∠1=30°,∵点B 为y 轴上一点,将△OAB 沿OA 翻折,∴∠2=∠1=30°,OC =OB ,∴∠3=90°-∠1-∠2=30°,则CD OD=tan ∠3=33=43m m ,解得m =23(负值已舍去),∴C 23,2 ,∴OB =OC =23 2+22=4,∴点B 的坐标为0,4 ,故答案为:0,4 .26.(2024·广东深圳·中考真题)如图,在平面直角坐标系中,四边形AOCB 为菱形,tan ∠AOC =43,且点A 落在反比例函数y =3x 上,点B 落在反比例函数y =k x k ≠0 上,则k =.【答案】8【分析】本题主要考查反比例函数与几何的综合及三角函数;过点A 、B 作x 轴的垂线,垂足分别为D 、E ,然后根据特殊三角函数值结合勾股定理求得A 32,2 ,OA =52,再求得点B 4,2 ,利用待定系数法求解即可.【详解】解:过点A 、B 作x 轴的垂线,垂足分别为D 、E ,如图,∵tan ∠AOC =43,∴AD OD =43,∴设AD =4a ,则OD =3a ,∴点A 3a ,4a,∵点A 在反比例函数y =3x 上,∴3a ⋅4a =3,∴a =12(负值已舍),则点A 32,2,∴AD =2,OD =32,∴OA =OD 2+AD 2=52,∵四边形AOCB 为菱形,∴AB =OA =52,AB ∥CO ,∴点B 4,2 ,∵点B 落在反比例函数y =k x k ≠0 上,∴k =4×2=8,故答案为:8.27.(2024·广东广州·中考真题)如图,平面直角坐标系xOy 中,矩形OABC 的顶点B 在函数y =k x(x >0)的图象上,A (1,0),C (0,2).将线段AB 沿x 轴正方向平移得线段A B (点A 平移后的对应点为A ),A B 交函数y =k x (x >0)的图象于点D ,过点D 作DE ⊥y 轴于点E ,则下列结论:①k =2;②△OBD 的面积等于四边形ABDA 的面积;③A E 的最小值是2;④∠B BD =∠BB O .其中正确的结论有.(填写所有正确结论的序号)【答案】①②④【分析】由B 1,2 ,可得k =1×2=2,故①符合题意;如图,连接OB ,OD ,BD ,OD 与AB 的交点为K ,利用k 的几何意义可得△OBD 的面积等于四边形ABDA 的面积;故②符合题意;如图,连接A E ,证明四边形A DEO 为矩形,可得当OD 最小,则A E 最小,设D x ,2xx >0 ,可得A E 的最小值为2,故③不符合题意;如图,设平移距离为n ,可得B n +1,2 ,证明△B BD ∽△A OB ,可得∠B BD =∠B OA ,再进一步可得答案.【详解】解:∵A (1,0),C (0,2),四边形OABC 是矩形;∴B 1,2 ,∴k =1×2=2,故①符合题意;2如图,连接OB ,OD ,BD ,OD 与AB 的交点为K ,05∵S △AOB =S △A OD =12×2=1,∴S △BOK =S 四边形AKDA,∴S △BOK +S △BKD =S 四边形AKDA+S △BKD ,∴△OBD 的面积等于四边形ABDA 的面积;故②符合题意;如图,连接A E ,∵DE ⊥y 轴,∠DA O =∠EOA =90°,∴四边形A DEO 为矩形,∴A E =OD ,∴当OD 最小,则A E 最小,设D x ,2x x >0 ,∴OD 2=x 2+4x 2≥2⋅x ⋅2x =4,∴OD ≥2,∴A E 的最小值为2,故③不符合题意;如图,设平移距离为n ,∴B n +1,2 ,∵反比例函数为y =2x,四边形A B CO 为矩形,∴∠BB D =∠OA B =90°,D n +1,2n +1 ,∴BB =n ,OA =n +1,B D =2-2n +1=2n n +1,A B =2,∴BB OA =n n +1=2n n +12=B D A B,∴△B BD ∽△A OB ,∴∠B BD =∠B OA ,∵B C ∥A O ,∴∠CB O =∠A OB ,∴∠B BD =∠BB O ,故④符合题意;故答案为:①②④【点睛】本题考查的是反比例函数的图象与性质,平移的性质,矩形的判定与性质,相似三角形的判定与性质,勾股定理的应用,作出合适的辅助线是解本题的关键.28.(2024·四川乐山·中考真题)定义:函数图象上到两坐标轴的距离都小于或等于1的点叫做这个函数图象的“近轴点”.例如,点0,1 是函数y =x +1图象的“近轴点”.(1)下列三个函数的图象上存在“近轴点”的是(填序号);①y =-x +3;②y =2x;③y =-x 2+2x -1.(2)若一次函数y =mx -3m 图象上存在“近轴点”,则m 的取值范围为.【答案】③-12≤m <0或0<m ≤12【分析】本题主要考查了新定义--“近轴点”.正确理解新定义,熟练掌握一次函数,反比例函数,二次函数图象上点的坐标特点,是解决问题的关键.(1)①y =-x +3中,取x =y =1.5,不存在“近轴点”;②y =2x,由对称性,取x =y =±2,不存在“近轴点”;③y =-x 2+2x -1=-x -1 2,取x =1时,y =0,得到1,0 是y =-x 2+2x -1的“近轴点”;(2)y =mx -3m =m x -3 图象恒过点3,0 ,当直线过1,-1 时,m =12,得到0<m ≤12;当直线过1,1 时,m =-12,得到-12≤m <0.【详解】(1)①y =-x +3中,x =1.5时,y =1.5,不存在“近轴点”;②y =2x,由对称性,当x =y 时,x =y =±2,不存在“近轴点”;③y =-x 2+2x -1=-x -1 2,x =1时,y =0,∴1,0 是y =-x 2+2x -1的“近轴点”;∴上面三个函数的图象上存在“近轴点”的是③故答案为:③;(2)y =mx -3m =m x -3 中,x =3时,y =0,∴图象恒过点3,0 ,当直线过1,-1 时,-1=m 1-3 ,∴m =12,∴0<m ≤12;当直线过1,1 时,1=m 1-3 ,∴m =-12,∴-12≤m <0;∴m 的取值范围为-12≤m <0或0<m ≤12.故答案为:-12≤m <0或0<m ≤12.三、解答题29.(2024·甘肃·中考真题)如图,在平面直角坐标系中,将函数y =ax 的图象向上平移3个单位长度,得到一次函数y =ax +b 的图象,与反比例函数y =k x x >0 的图象交于点A 2,4 .过点B 0,2 作x 轴的平行线分别交y =ax +b 与y =k xx >0 的图象于C ,D 两点.(1)求一次函数y =ax +b 和反比例函数y =k x的表达式;(2)连接AD ,求△ACD 的面积.【答案】(1)一次函数y =ax +b 的解析式为y =12x +3;反比例函数y =k x x >0 的解析式为y =8xx >0 ;(2)6【分析】本题主要考查了一次函数与反比例函数综合:(1)先根据一次函数图象的平移规律y =ax +b =ax +3,再把点A 的坐标分别代入对应的一次函数解析式和反比例函数解析式中,利用待定系数法求解即可;(2)先分别求出C 、D 的坐标,进而求出CD 的长,再根据三角形面积计算公式求解即可.【详解】(1)解:∵将函数y =ax 的图象向上平移3个单位长度,得到一次函数y =ax +b 的图象,∴y =ax +b =ax +3,把A 2,4 代入y =ax +3中得:2a +3=4,解得a =12,∴一次函数y =ax +b 的解析式为y =12x +3;把A 2,4 代入y =k x x >0 中得:4=k 2x >0 ,解得k =8,∴反比例函数y =k x x >0 的解析式为y =8xx >0 ;(2)解:∵BC ∥x 轴,B 0,2 ,∴点C 和点D 的纵坐标都为2,在y =12x +3中,当y =12x +3=2时,x =-2,即C -2,2 ;在y =8x x >0 中,当y =8x =2时,x =4,即D 4,2 ;∴CD =4--2 =6,∵A 2,4 ,∴S △ACD =12CD ⋅y A -y C =12×6×4-2 =6.30.(2024·青海·中考真题)如图,在同一直角坐标系中,一次函数y =-x +b 和反比例函数y =9x 的图象相交于点A 1,m ,B n ,1 .(1)求点A ,点B 的坐标及一次函数的解析式;(2)根据图象,直接写出不等式-x +b >9x的解集.【答案】(1)A 1,9 ,B 9,1 ,y =-x +10(2)x <0或1<x <9【分析】本题主要考查了一次函数与反比函数的交点问题:(1)分别把点A 1,m ,点B n ,1 代入y =9x,可求出点A ,B 的坐标,即可求解;(2)直接观察图象,即可求解.【详解】(1)解:把点A 1,m 代入y =9x 中,得:m =91=9,∴点A 的坐标为1,9 ,把点B n ,1 代入y =9x 中,得:n =91=9,∴点B 的坐标为9,1 ,把x =1,y =9代入y =-x +b 中得:-1+b =9,∴b =10,∴一次函数的解析式为y =-x +10,(2)解:根据一次函数和反比例函数图象,得:当x <0或1<x <9时,一次函数y =-x +b 的图象位于反比例函数y =9x的图象的上方,∴-x +b >9x的解集为x <0或1<x <9.31.(2024·吉林·中考真题)已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示.(1)求这个反比例函数的解析式(不要求写出自变量R 的取值范围).(2)当电阻R 为3Ω时,求此时的电流I .【答案】(1)I =36R(2)12A【分析】本题主要考查了反比例函数的实际应用:(1)直接利用待定系数法求解即可;(2)根据(1)所求求出当R =3Ω时I 的值即可得到答案.【详解】(1)解:设这个反比例函数的解析式为I =URU ≠0 ,把9,4 代入I =U RU ≠0 中得:4=U9U ≠0 ,解得U =36,∴这个反比例函数的解析式为I =36R;(2)解:在I =36R中,当R =3Ω时,I =363=12A ,∴此时的电流I 为12A .32.(2024·山东·中考真题)列表法、表达式法、图像法是三种表示函数的方法,它们从不同角度反映了自变量与函数值之间的对应关系.下表是函数y =2x +b 与y =kx部分自变量与函数值的对应关系:x -72a12x +ba1________kx________________7(1)求a、b的值,并补全表格;(2)结合表格,当y=2x+b的图像在y=kx的图像上方时,直接写出x的取值范围.【答案】(1)a=-2b=5,补全表格见解析(2)x的取值范围为-72<x<0或x>1;【分析】本题考查的是一次函数与反比例函数的综合,利用图像法写自变量的取值范围;(1)根据表格信息建立方程组求解a,b的值,再求解k的值,再补全表格即可;(2)由表格信息可得两个函数的交点坐标,再结合函数图像可得答案.【详解】(1)解:当x=-72时,2x+b=a,即-7+b=a,当x=a时,2x+b=1,即2a+b=1,∴a-b=-72a+b=1,解得:a=-2b=5,∴一次函数为y=2x+5,当x=1时,y=7,∵当x=1时,y=kx=7,即k=7,∴反比例函数为:y=7x,当x=-72时,y=7÷-72=-2,当y=1时,x=a=-2,当x=-2时,y=-7 2,补全表格如下:x-72-212x+b-217kx-2-7 27(2)由表格信息可得:两个函数的交点坐标分别为-72,-2,1,7 ,∴当y=2x+b的图像在y=kx的图像上方时,x的取值范围为-72<x<0或x>1;33.(2024·湖北·中考真题)一次函数y=x+m经过点A-3,0,交反比例函数y=kx于点B n,4.(1)求m,n,k;(2)点C在反比例函数y=kx第一象限的图象上,若S△AOC<S△AOB,直接写出C的横坐标a的取值范围.【答案】(1)m=3,n=1,k=4;(2)a>1.【分析】本题主要考查了一次函数和反比例函数的综合,求反比例函数解析式,解题的关键是熟练掌握数形结合的思想.(1)利用一次函数y=x+m经过点A-3,0,点B n,4,列式计算求得m=3,n=1,得到点B1,4,再利用待定系数法求解即可;(2)利用三角形面积公式求得S△AOB=6,得到32y C<6,据此求解即可.【详解】(1)解:∵一次函数y=x+m经过点A-3,0,点B n,4,∴-3+m=0 n+m=4 ,解得m=3 n=1 ,∴点B1,4,∵反比例函数y=kx经过点B1,4,∴k=1×4=4;(2)解:∵点A-3,0,点B1,4,∴AO =3,∴S △AOB =12AO ×y B =12×3×4=6,S △AOC =12AO ×y C =32y C ,由题意得32y C<6,∴y C <4,∴x C >1,∴C 的横坐标a 的取值范围为a >1.34.(2024·四川凉山·中考真题)如图,正比例函数y 1=12x 与反比例函数y 2=kxx >0 的图象交于点A m ,2 .(1)求反比例函数的解析式;(2)把直线y 1=12x 向上平移3个单位长度与y 2=kxx >0 的图象交于点B ,连接AB ,OB ,求△AOB 的面积.【答案】(1)y 2=8x(2)6【分析】本题考查了一次函数与反比例函数的交点问题,待定系数法求函数解析式,一次函数的平移等知识,熟练掌握函数的平移法则是关键.(1)待定系数法求出反比例函数解析式即可;(2)先得到平移后直线解析式,联立方程组求出点B 坐标,根据平行线间的距离可得S △AOB =S △ADO ,代入数据计算即可.【详解】(1)解:∵点A (m ,2)在正比例函数图象上,∴2=12m ,解得m =4,∴A (4,2),∵A (4,2)在反比例函数图象上,∴k =8,∴反比例函数解析式为y 2=8x.(2)解:把直线y 1=12x 向上平移3个单位得到解析式为y =12x +3,令x =0,则y =3,∴记直线与y 轴交点坐标为D (0,3),连接AD ,联立方程组y =8xy =12x +3,解得x =2y =4,x =-8y =-1 (舍去),∴B (2,4),由题意得:BD ∥AO ,∴△AOB ,△AOD 同底等高,∴S △AOB =S △ADO =12OD ⋅x A =12×3×4=6.35.(2024·贵州·中考真题)已知点1,3 在反比例函数y =kx的图象上.(1)求反比例函数的表达式;(2)点-3,a ,1,b ,3,c 都在反比例函数的图象上,比较a ,b ,c 的大小,并说明理由.【答案】(1)y =3x(2)a <c <b ,理由见解析【分析】本题主要考查了反比例函数的性质,以及函数图象上点的坐标特点,待定系数法求反比例函数解析式,关键是掌握凡是函数图象经过的点必能满足解析式.(1)把点1,3 代入y =kx可得k 的值,进而可得函数的解析式;(2)根据反比例函数表达式可得函数图象位于第一、三象限,再根据点A 、点B 和点C 的横坐标即可比较大小.【详解】(1)解:把1,3 代入y =k x ,得3=k 1,∴k =3,∴反比例函数的表达式为y =3x;(2)解:∵k =3>0,∴函数图象位于第一、三象限,∵点-3,a ,1,b ,3,c 都在反比例函数的图象上,-3<0<1<3,∴a <0<c <b ,∴a <c <b .36.(2024·河南·中考真题)如图,矩形ABCD 的四个顶点都在格点(网格线的交点)上,对角线AC ,BD 相交于点E ,反比例函数y =kxx >0 的图象经过点A .(1)求这个反比例函数的表达式.(2)请先描出这个反比例函数图象上不同于点A 的三个格点,再画出反比例函数的图象.(3)将矩形ABCD 向左平移,当点E 落在这个反比例函数的图象上时,平移的距离为.【答案】(1)y =6x(2)见解析(3)92【分析】本题考查了待定系数法求反比例函数解析,画反比例函数图象,平移的性质等知识,解题的关键是:(1)利用待定系数法求解即可;(2)分别求出x =1,x =2,x =6对应的函数值,然后描点、连线画出函数图象即可;(3)求出平移后点E 对应点的坐标,利用平移前后对应点的横坐标相减即可求解.【详解】(1)解:反比例函数y =kx的图象经过点A 3,2 ,∴2=k3,∴k =6,∴这个反比例函数的表达式为y =6x;(2)解:当x =1时,y =6,当x =2时,y =3,当x =6时,y =1,∴反比例函数y =6x的图象经过1,6 ,2,3 ,6,1 ,画图如下:(3)解:∵E 6,4 向左平移后,E 在反比例函数的图象上,∴平移后点E 对应点的纵坐标为4,当y =4时,4=6x,解得x =32,∴平移距离为6-32=92.故答案为:92.37.(2024·四川乐山·中考真题)如图,已知点A 1,m 、B n ,1 在反比例函数y =3xx >0 的图象上,过点A 的一次函数y =kx +b 的图象与y 轴交于点C 0,1 .(1)求m 、n 的值和一次函数的表达式;(2)连接AB ,求点C 到线段AB 的距离.【答案】(1)m =3,n =3,y =2x +1(2)点C 到线段AB 的距离为322【分析】(1)根据点A 1,m 、B n ,1 在反比例函数y =3x图象上,代入即可求得m 、n 的值;根据一次函数y =kx +b 过点A 1,3 ,C 0,1 ,代入求得k ,b ,即可得到表达式;(2)连接BC ,过点A 作AD ⊥BC ,垂足为点D ,过点C 作CE ⊥AB ,垂足为点E ,可推出BC ∥x 轴,BC 、AD 、DB 的长度,然后利用勾股定理计算出AB 的长度,最后根据S △ABC =12BC ⋅AD =12AB ⋅CE ,计算得CE 的长度,即为点C 到线段AB 的距离.【详解】(1)∵点A 1,m 、B n ,1 在反比例函数y =3x图象上。

中考数学《反比例函数的实际应用》专项练习题及答案

中考数学《反比例函数的实际应用》专项练习题及答案

中考数学《反比例函数的实际应用》专项练习题及答案一、单选题1.某项工作,已知每人每天完成的工作量相同,且一个人完成需12天.若m个人共同完成需n天,选取6组数对(m,n),在坐标系中进行描点,则正确的是()A.B.C.D.2.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m 3)的反比例函数,其图象如图所示.当气球内的气压大于140kPa时,气球将爆炸,为了安全起见,气体体积应()A.不大于2435m3B.不小于2435m3C.不大于3524m 3D.不小于3524m 33.根据图1所示的程序,得到了y与x的函数图象,如图2.若点M是y轴正半轴上任意一点,过点M作PQ∥x轴交图象于点P,Q,连接OP,OQ.则以下结论:①x<0时,y=2x②∥OPQ的面积为定值.③x>0时,y随x的增大而增大.④MQ=2PM.⑤∥POQ可以等于90°.其中正确结论是()A.①②④B.②④⑤C.③④⑤D.②③⑤4.小明乘车从县城到怀化,行车的速度v(km/ℎ)和行车时间t(ℎ)之间函数图是()A.B.C.D.5.矩形的长为x,宽为y,面积为12,则y与x之间的函数关系用图象表示大致为()A.B.C.D.6.已知甲,乙两地相距s(单位:km),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t(单位:h)关于行驶速度v(单位:kmℎ⁄)的函数图象是()A.B.C.D.7.一个面积为20的矩形,若长与宽分别为x,y,则y与x之间的关系用图象可表示为()A.B.C.D.8.教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10∥,加热到100∥,停止加热,水温开始下降,此时水温(∥)与开机后用时(min)成反比例关系.直至水温降至30∥,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30∥时,接通电源后,水温y (∥)和时间(min)的关系如图,为了在上午第一节下课时(8:45)能喝到不超过50∥的水,则接通电源的时间可以是当天上午的()A.7:20B.7:30C.7:45D.7:509.已知力F所作的功是15焦,则力F与物体在力的方向上通过的距离S的图象大致是如图中的()A.B.C.D.10.如图,点P(3a,a)是反比例函y=(k>0)与∥O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()A.y=3x B.y=10x C.y=12x D.y=27x11.如图,在直角坐标系中,矩形ABCD的顶点A坐标为(﹣1,0),顶点B的坐标为(0,﹣2),经过顶点C的双曲线y=kx(k>0)与线段AD交于点E,且AE:DE=2:1,则k的值为()A.4B.6C.8D.1212.阿基米德说:“给我一个支点,我就能撬动整个地球”这句话精辟地阐明了一个重要的物理学知识——杠杆原理,即“阻力×阻力臂=动力×动力臂”.若已知某一杠杆的阻力和阻力臂分别为1200N和0.5m,则这一杠杆的动力F和动力臂l之间的函数图象大致是()A.B.C.D.二、填空题13.在温度不变的条件下,一定质量的气体的压强p与它的体积V成反比例,当V=200时,p=50,则当p=25时,V=.14.如图,矩形OABC的两条边在坐标轴上,OA=1,OC=2,现将此矩形向右平移,每次平移1个单位,若第1次平移得到的矩形的边与反比例函数图象有两个交点,它们的纵坐标之差的绝对值为0.6,则第n次(n>1)平移得到的矩形的边与该反比例函数图象的两个交点的纵坐标之差的绝对值为(用含n的代数式表示)15.如图,点A在双曲线y= k x的第一象限的那一支上,AB∥y轴于点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若∥ADE的面积为32,则k的值为.16.在对物体做功一定的情况下,力F(N)与此物体在力的方向上移动的距离s(m)成反比例函数关系,其图象如图所示.点P(4,3)在图象上,则当力达到10N时,物体在力的方向上移动的距离是m.17.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.如果以此蓄电池为电源的用电器的限制不能超过12A,那么用电器的可变电阻应控制的范围是.18.若12x m﹣1y2与3xy n+1是同类项,点P(m,n)在双曲线y=a−1x上,则a的值为.三、综合题19.在平面直角坐标系中,反比例函数y= mx(x>0)的图象上有一点A(a,3),过点A作AB∥x轴于点B,将点B沿x轴正方向平移2个单位长度得到点C,过点C作y轴的平行线交反比例函数于点D,CD= 32,直线AD与x轴交于点M,与y轴交于点N.(1)用含a的式子表示点D的横坐标为:;(2)求a的值和直线AD的函数表达式;(3)请判断线段AN与MD的数量关系,并说明理由;(4)若一次函数y1=k1x+b1经过点(10,9),与双曲线y= mx(x>0)交于点P,且该一次函数y1的值随x的增大而增大,请确定P点横坐标n的取值范围(不必写出过程)20.如图,在∥ABCD中,设BC边的长为x(cm),BC边上的高线AE长为y(cm),已知∥ABCD 的面积等于24cm2.(1)求y关于x的函数表达式;(2)求当3<y<6时x的取值范围.21.如图,在平面直角坐标系xOy中,∥ABC的边AC在x轴上,边BC∥x轴,双曲线y= k x(x>0)与边BC交于点D(4,m),与边AB交于点E(2,n).(1)求n关于m的函数关系式;(2)若BD=2,tan∥BAC= 12,求k的值和点B的坐标.22.某养猪场对猪舍进行喷药消毒.在消毒的过程中,先经过5min的药物集中喷洒,再封闭猪舍10min,然后再打开窗户进行通风.已知室内每立方米空气中含药量y(mg/m3)与药物在空气中的持续时间x(min)之间的函数图象如图所示,其中在打开窗户通风前y与x分别满足两个一次函数,在通风后y与x满足反比例函数.(1)求反比例函数的关系式;(2)当猪舍内空气中含药量不低于5mg m3⁄且持续时间不少于21min,才能有效杀死病毒,问此次消毒是否有效?23.某机床加工一批机器零件,如果每小时加工30个,那么12小时可以完成.(1)设每小时加工x个零件,所需时间为y小时,写出y与x之间的函数关系式,画出图象;(2)若要在一个工作日(8小时)内完成,每小时要比原来多加工几个?24.如图1,李老师设计了一个探究杠杆平衡条件的实验:在一个自制类似天平的仪器的左边固定托盘A中放置一个重物,在右边活动托盘B(可左右移动)中放置一定质量的砝码,使得仪器左右平衡.改变活动托盘B与点O的距离x(cm),观察活动托盘B中砝码的质量y(g)的变化情况.实验数据记录如表x(cm)1015202530y(g)3020151210(1)把表中(x,y)的各组对应值作为点的坐标,在图2的坐标系中描出相应的点,用平滑曲线连接这些点;(2)观察所画的图象,猜测y与x之间的函数关系,求出函数关系式;(3)当砝码的质量为24g时,活动托盘B与点O的距离是多少?参考答案1.【答案】C 2.【答案】B 3.【答案】B 4.【答案】B 5.【答案】C 6.【答案】B 7.【答案】C 8.【答案】A 9.【答案】B 10.【答案】C 11.【答案】B 12.【答案】A 13.【答案】40014.【答案】145n(n+1)或 65n(n+1 15.【答案】8316.【答案】1.2 17.【答案】R≥3W 18.【答案】3 19.【答案】(1)a+2(2)解:∵CD∥y 轴,且CD= 32∴D (a+2, 32 )∵A 、D 都在反比例函数图象上∴{m =3am =32(a +2) ,解得 {a =2m =6 ,即a 的值为2 ∴A (2,3),D (4, 32 )设直线AD 的函数表达式为y=kx+b把A 、D 的坐标代入可得 {2k +b =34k +b =32,解得 {k =−34b =92∴直线AD 的函数表达式为y=﹣ 34 x+ 92 ;(3)解:结论:AN=MD理由:在y=﹣ 34 x+ 92 中,令y=0可得x=6,令x=0可得y= 92∴M (6,0),N (0, 92)∵A (2,3),D (4, 32)∴AN= √(2−0)2+(3−92)2 = 52 ,MD= √(6−4)2+(0−32)2= 52∴AN=MD ;(4)解:如图,当直线与x 垂直时n 的值最大,当直线与x 轴平行时n 的值最小当直线垂直x 轴时,则可知E 点横坐标为10,即此时n 的值为10当直线平行x 轴时,则F 点的纵坐标为9,由(1)可得反比例函数解析式为y= 6x,当y=9时,可解得x= 23 ,即P 点的横坐标为 23 ,即此时n 的值为 23∵一次函数y 1的值随x 的增大而增大 ∴直线在直线P 1E 和直线P 2F 之间∴n 的取值范围为 23<n <10.20.【答案】(1)解:∵BC 边的长为x (cm ),BC 边上的高线AE 长为y (cm ),已知∥ABCD 的面积等于24cm 2.∴根据平行四边形的面积计算方法得:xy =24 ∴y =24x(x >0);(2)解:当y =3时x =8,当y =6时x =4 所以当3<y <6时x 的取值范围为4<x <8.21.【答案】(1)解:∵点D (4,m ),点E (2,n )在双曲线y= k x(x >0) 上∴4m=2n ,解得n=2m ;(2)解:过点E 作EF∥BC 于点F∵由(1)可知n=2m∴DF=m∵BD=2∴BF=2﹣m∵点D(4,m),点E(2,n)∴EF=4﹣2=2∵EF∥x轴∴tan∥BAC=tan∥BEF= BFEF=2−m2=12,解得m=1∴D(4,1)∴k=4×1=4,B(4,3).22.【答案】(1)解:设反比例函数关系式为y=k x. ∵反比例函数的图象过点(15,8)∴k=120.∴y=120 x.(2)解:设正比例函数关系式为y=kx. 把x=5,y=10代入上式,得k=2 .∴y=2x.当y=5时,x=52.把y=5代入y=120x,得x=24.∴24−52=21.5>21.答:此次消毒能有效杀死该病毒.23.【答案】(1)解:由题意可得y= 30×12x=360 x即y与x的函数关系式是y= 360x,函数图象如右图所示(2)解:由题意可得3608−30=45−30=15答:每小时要比原来多加工15个24.【答案】(1)解:如图所示:(2)解:由图象猜测y与x之间的函数关系为反比例函数∴设y= kx(k≠0)把x=10,y=30代入得:k=300∴y= 300 x将其余各点代入验证均适合∴y与x的函数关系式为:y= 300 x(3)解:把y=24代入y= 300x得:x=12.5∴当砝码的质量为24g时,活动托盘B与点O的距离是12.5cm。

反比例函数及其应用(共35道)—2023年中考数学真题(全国通用)(解析版)

反比例函数及其应用(共35道)—2023年中考数学真题(全国通用)(解析版)

反比例函数及其应用(35道)一、单选题A .1B .2C .3D .4【答案】B【分析】延长BA 交y 轴于点D ,根据反比例函数k 值的几何意义得到1212ADO S =⨯=△,3OCBD S =矩形,根据四边形ABCO 的面积等于ADOOCBD S S−矩形,即可得解.【详解】解:延长BA 交y 轴于点D ,∵AB x ∥轴, ∴DA y ⊥轴,∵点A 在函数2(0)y x x =>的图象上,∴1212ADO S =⨯=△,∵BC x ⊥轴于点C ,DB y ⊥轴,点B 在函数3(0)y x x =>的图象上,∴3OCBD S =矩形,∴四边形ABCO 的面积等于312ADOOCBD S S−=−=矩形;故选B .【点睛】本题考查反比例函数与几何图形的综合应用.熟练掌握反比例函数中k 的几何意义,是解题的关键.A .321y y y <<B .132y y y <<C .312y y y <<D .231y y y <<【答案】C【分析】先根据函数解析式中的比例系数k 确定函数图象所在的象限,再根据各象限内点的坐标特点及函数的增减性解答.【详解】解:在反比例函数(0)ky k x =<中,0k <,∴此函数图象在二、四象限,420−<−<,∴点()14,A y −,2(2,)B y −在第二象限,10y ∴>,20y >,函数图象在第二象限内为增函数,420−<−<, 120y y ∴<<.30>,3(3,)C y ∴点在第四象限,30y \<,1y ∴,2y ,3y 的大小关系为312y y y <<.故选:C .【点睛】此题考查的是反比例函数图象上点的坐标特点及平面直角坐标系中各象限内点的坐标特点,比较简单.A .当3x >时,12y y <B .当1x <−时,12y y <C .当03x <<时,12y y >D .当10x −<<时,12y y <【答案】B【分析】结合一次函数与反比例函数的图象,逐项判断即可得. 【详解】解:A 、当3x >时,12y y >,则此项错误,不符合题意; B 、当1x <−时,12y y <,则此项正确,符合题意; C 、当03x <<时,12y y <,则此项错误,不符合题意; D 、当10x −<<时,12y y >,则此项错误,不符合题意;故选:B .【点睛】本题考查了一次函数与反比例函数的图象,熟练掌握函数图象法是解题关键.A .123y y y <<B .312 y y y <<C .213y y y <<D .321y y y <<【答案】C【分析】根据反比例函数的图象与性质解答即可. 【详解】解:∵30k =>,∴图象在一、三象限,且在每个象限内y 随x 的增大而减小, ∵2101−<−<<, ∴2130y y y <<<.故选:C .【点睛】本题考查了反比例函数的图象与性质,反比例函数ky x =(k 是常数,0k ≠)的图象是双曲线,当0k >,反比例函数图象的两个分支在第一、三象限,在每一象限内,y 随x 的增大而减小;当 0k <,反比例函数图象的两个分支在第二、四象限,在每一象限内,y 随x 的增大而增大.【答案】A【分析】连接四边形ABCD 的对角线AC BD 、,过D 作DE x ⊥轴,过C 作CF x ⊥轴,直线1y x =−与x 轴交于点M ,如图所示,根据函数图像交点的对称性判断四边形ABCD 是平行四边形,由平行四边形性质及平面直角坐标系中三角形面积求法,确定()11142四边形△ABC COD D S S OM DE CF ===⋅+,再求出直线1y x =−与x 轴交于点()1,0M ,通过联立1y x k y x =−⎧⎪⎨=⎪⎩求出C D 、纵坐标,代入方程求解即可得到答案. 【详解】解:连接四边形ABCD 的对角线AC BD 、,过D 作DE x ⊥轴,过C 作CF x ⊥轴,直线1y x =−与x 轴交于点M ,如图所示:根据直线1y x =+、1y x =−与双曲线()0ky k x =>交点的对称性可得四边形ABCD 是平行四边形,()11142四边形△ABC O D C D S S OM DE CF ∴===⋅+, 直线1y x =−与x 轴交于点M , ∴当0y =时,1x =,即()1,0M ,1y x =−与双曲线()0ky k x =>分别相交于点C D 、,∴联立1y x k y x =−⎧⎪⎨=⎪⎩,即1k y y =−,则20y y k +−=,由0k >,解得y =,∴1112⎤⨯⨯−=⎥⎢⎥⎝⎭⎣⎦2=,解得34k =,故选:A .【点睛】本题考查一次函数与反比例函数综合,涉及平行四边形的判定与性质,熟练掌握平面直角坐标系中三角形面积求法是解决问题的关键.A .2:3:6B .6:3:2C .1:2:3D .3:2:1【答案】A【分析】首先根据长方体的性质,得出相对面的面积相等,再根据物体的压力不变,结合反比例函数的性质进行分析,即可得出答案.【详解】解:∵长方体物体的一顶点所在A 、B 、C 三个面的面积比是3:2:1, ∴长方体物体的A 、B 、C 三面所对的与水平地面接触的面积比也为3:2:1, ∵FP S =,0F >,且F 一定,∴P 随S 的增大而减小, ∴111::::2:3:6321A B C P P P ==.故选:A .【点睛】本题考查了反比例函数的性质,解本题的关键在熟练掌握反比例函数的性质.A .B .C .D .【答案】D【分析】先根据一次函数图象确定a 、b 的符号,进而求出ab 的符号,由此可以确定反比例函数图象所在的象限,看是否一致即可.【详解】解:A 、∵一次函数图象经过第一、二、三象限, ∴00a b >>,, ∴0ab >,∴反比例函数aby x =的图象见过第一、三象限,这与图形不符合,故A 不符合题意;B 、∵一次函数图象经过第一、二、四象限, ∴00a b <>,, ∴0ab <, ∴反比例函数aby x =的图象见过第二、四象限,这与图形不符合,故B 不符合题意;C 、∵一次函数图象经过第一、三、四象限, ∴00a b ><,, ∴0ab <, ∴反比例函数aby x =的图象见过第二、四象限,这与图形不符合,故C 不符合题意;D 、∵一次函数图象经过第一、二、四象限, ∴00a b <>,, ∴0ab <, ∴反比例函数aby x =的图象见过第二、四象限,这与图形符合,故D 符合题意;故选D .【点睛】本题主要考查了一次函数与反比例函数图象和性质,熟练掌握相关性质与函数图象的关系是解决本题的关键.A .B .C .D .【答案】B 【分析】根据题意11FL F L =代入数据求得245F L =,即可求解.【详解】解:∵11FL F L =,125cm L =,19.8NF =,∴259.8245FL =⨯=, ∴245F L =,函数为反比例函数,当35cm L =时,245735F ==,即245F L =函数图象经过点()35,7. 故选:B .【点睛】本题考查了反比例函数的应用以及函数图象,根据题意求出函数关系式是解题的关键.A .3B .4C .5D .6【答案】B【分析】由正方形的性质得2BC AB ==,可设2,2k C ⎛⎫ ⎪⎝⎭,1,22k E ⎛⎫+ ⎪⎝⎭,根据21222k k ⎛⎫⨯=⨯+ ⎪⎝⎭可求出k 的值. 【详解】解:∵四边形ABCD 是正方形, ∵2,AB BC CD AD ==== ∵点E 为AD 的中点, ∴11,2AE AD ==设点C 的坐标为2,2k ⎛⎫ ⎪⎝⎭,则,222k kBO AO AB BO ==+=+, ∴1,22k E ⎛⎫+ ⎪⎝⎭, ∵点C ,E 在反比例函数ky x =的图象上,∴21222k k ⎛⎫⨯=⨯+ ⎪⎝⎭,解得,4k =, 故选:B .【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数ky x =(k 为常数,0k ≠)的图象是双曲线,图象上的点()x y ,的横纵坐标的积是定值k ,即xy k =.为半径作圆,当A 与x 轴相切、B 与y 轴相切时,连结【答案】C【分析】过点,A B 分别作,y x 轴的垂线,垂足分别为,E D ,,AE BD 交于点C ,得出B 的横坐标为1,A 的纵坐标为1,设(),1A k ,()1,B k ,则1,1AC k BC k =−=−,根据AB =【详解】解:如图所示,过点A B ,分别作y x ,轴的垂线,垂足分别为E D ,,AE BD ,交于点C ,依题意,B 的横坐标为1,A 的纵坐标为1,设(),1A k ,()1,B k∴()1,1C ,则1,1AC k BC k =−=−,又∵90ACB ∠=︒,AB =∴()()(22211k k −+−=∴13k −=(负值已舍去) 解得:4k =, 故选:C .【点睛】本题考查了切线的性质,反比例函数的性质,勾股定理,掌握以上知识是解题的关键. 统考中考真题)如图,在平面直角坐标系中,OAB 三个顶点的坐标分别为与OAB 关于直线 A .23 【答案】A【分析】过点B 作BD x ⊥轴,根据题意得出1,BD OD ==和性质得出2OB AB ==,30BOA BAO ∠∠==︒,利用各角之间的关系180OBA OBD '∠+∠=︒,确定A ',B ,D 三点共线,结合图形确定)2C,然后代入反比例函数解析式即可.【详解】解:如图所示,过点B 作BD x ⊥轴,∵(0,0),O A B ,∴1,BD OD ==∴AD OD =tan BD BOA OD ∠==,∴2OB AB ==,30BOA BAO ∠∠==︒,∴60OBD ABD ∠∠==︒,120OBA ∠=︒, ∵OA B '与OAB 关于直线OB 对称, ∴120OBA '∠=︒, ∴180OBA OBD '∠+∠=︒, ∴A ',B ,D 三点共线, ∴2A B AB '==, ∵A C BC '=, ∴1BC =, ∴2CD =,∴)2C,将其代入(0,0)ky k x x =>>得:k =故选:A .【点睛】题目主要考查等腰三角形的判定和性质,特殊角的三角函数及反比例函数的确定,理解题意,综合运用这些知识点是解题关键.A .2B .2−C .1D .1−【答案】A【分析】证明四边形ANOM 是矩形,根据反比例函数的k 值的几何意义,即可解答. 【详解】解:AM x ⊥轴于点M ,AN y ⊥轴于直N ,90MON ∠=︒,∴四边形AMON 是矩形,四边形AMON 的面积为2, 2k ∴=,反比例函数在第一、三象限,2k ∴=,故选:A .【点睛】本题考查了矩形的判定,反比例函数的k 值的几何意义,熟知在一个反比例函数图像上任取一点,过点分别作x 轴,y 轴的垂线段,与坐标轴围成的矩形面积为k是解题的关键.二、填空题【答案】63y x =−【分析】函数图象的平移规则为:上加下减,左加右减,根据平移规则可得答案. 【详解】解:将反比例函数6y x =的图象向下平移3个单位可得平移后的解析式为:63y x =−,故答案为:63y x =−.【点睛】本题考查的是函数图象的平移,解题的关键是理解并熟记函数图象的平移规则为:上加下减,左加右减.14.(2023·陕西·统考中考真题)如图,在矩形OABC 和正方形CDEF 中,点A 在y 轴正半轴上,点C ,F 均在x 轴正半轴上,点D 在边BC 上,2BC CD =,3AB =.若点B ,E 在同一个反比例函数的图象上,则这个反比例函数的表达式是 .【答案】18y x =【分析】设正方形CDEF 的边长为m ,根据2BC CD =,3AB =,得到()3,2B m ,根据矩形对边相等得到3OC =,推出()3,E m m +,根据点B ,E 在同一个反比例函数的图象上,得到()323m m m⨯=+,得到3m =,推出18y x =.【详解】解:∵四边形OABC 是矩形, ∴3OC AB ==,设正方形CDEF 的边长为m , ∴CD CF EF m ===, ∵2BC CD =, ∴2BC m =, ∴()3,2B m ,()3,E m m +, 设反比例函数的表达式为ky x =,∴()323m m m⨯=+,解得3m =或0m =(不合题意,舍去), ∴()3,6B ,∴3618=⨯=k ,∴这个反比例函数的表达式是18y x =,故答案为:18y x =.【点睛】本题主要考查了反比例函数,解决问题的关键是熟练掌握矩形性质,正方形性质,反比例函数性质,k 的几何意义.统考中考真题)如图,在平面直角坐标系中,AOC 的边两点.若AOC 的面积是 【答案】4【分析】过B ,C 两点分别作y 轴的垂线,垂足分别为D ,E ,设B 点坐标为k m m ⎛⎫ ⎪⎝⎭,,则BD m =,由点B 为AC 的中点,推出C 点坐标为22k m m ⎛⎫ ⎪⎝⎭,,求得直线BC 的解析式,得到A 点坐标,根据AOC 的面积是6,列式计算即可求解.【详解】解:过B ,C 两点分别作y 轴的垂线,垂足分别为D ,E ,∴BD CE ∥, ∴ABD ACE ∽,∴BD ABCE AC =,设B 点坐标为k m m ⎛⎫ ⎪⎝⎭,,则BD m =, ∵点B 为AC 的中点, ∴12BD AB CE AC ==, ∴22CE BD m ==,∴C 点坐标为22k m m ⎛⎫ ⎪⎝⎭,, 设直线BC 的解析式为y ax b =+, ∴22k ma b mk ma b m ⎧+=⎪⎪⎨⎪+=⎪⎩,解得2232k a m k b m ⎧=−⎪⎪⎨⎪=⎪⎩, ∴直线BC 的解析式为2322k k y x m m =−+, 当0x =时,32ky m =,∴A 点坐标为302k m ⎛⎫ ⎪⎝⎭,, 根据题意得132622k m m ⋅⋅=,解得4k =, 故答案为:4.【点睛】本题考查了反比例函数的性质、相似三角形的判定及性质、求一次函数解析式、坐标与图形,解题关键是熟练掌握反比例函数的性质及相似三角形的性质.【答案】33【分析】过点B 作BC y ⊥轴于点C ,由旋转的性质得,AO AB =,120OAB ∠=︒,在Rt ABC 中求出BC 、AC 的长,即可得出点B 的坐标,代入反比例函数解析式即可求出k 的值.【详解】解∶过点B 作BC y ⊥轴于点C ,由旋转的性质得,AO AB =,120OAB ∠=︒, ∵点A 的坐标为(0,2), ∴2AO AB ==, ∵120OAB ∠=︒,∴180********BAC OAB ∠∠=︒−=︒−︒=︒, ∴9030ABC BAC ∠∠=︒−=︒, ∴AC =12AB =1221⨯=,由勾股定理得BC ==∴213OC AO AC =+=+=,∴点B 的坐标为(3), ∵点B 恰好落在反比例函数ky x =的图象上,∴3k =故答案为∶3【点睛】本题考查了反比例函数图象上点的坐标特征,坐标与图形的变化之旋转,解答本题的关键是求出点B 的坐标.【答案】>【分析】把2x =−和=1x −分别代入反比例函数2y x =中计算y 的值,即可做出判断.【详解】解:∵点()12,A y −和点()21,B y −都在反比例函数2y x =的图象上,∴令2x =−,则1212y ==−−;令=1x −,则2221y ==−−,12−>−,12y y ∴>,故答案为:>.【点睛】本题考查了反比例函数图像上点的坐标特征,计算y 的值是解题的关键. 若OAB 的面积为【答案】196/136【分析】由k 的几何意义可得19212k =,从而可求出k 的值. 【详解】解:AOB 的面积为||192212k k ==, 所以k =196. 故答案为:196.【点睛】本题主要考查了k 的几何意义.用k 表示三角形AOB 的面积是本题的解题关键.【答案】3【分析】先把点A 坐标代入求出反比例函数解析式,再把点B 代入即可求出m 的值. 【详解】解:∵函数()0ky k x =≠的图象经过点()3,2A −和(),2B m −∴把点()3,2A −代入得326k =−⨯=−,∴反比例函数解析式为6y x −=, 把点(),2B m −代入得:62m −−=,解得:3m =, 故答案为:3.【点睛】本题考查了待定系数法求反比例函数解析式,反比例函数图象上点的坐标特征,熟知反比例函数图象上的点的坐标一定满足函数解析式是解题的关键.【答案】1.5(满足12k <<都可以)【分析】先判断出一次函数7y x b =−+的图象必定经过第二、四象限,再根据120x x ⋅>判断出反比例函数图象和一次函数图象的两个交点在同一象限,从而可以得到反比例函数的图象经过第二、四象限,即630k −<,最终选取一个满足条件的值即可. 【详解】解:70−<,∴一次函数7y x b =−+的图象必定经过第二、四象限,120x x ⋅>,∴反比例函数图象和一次函数图象的两个交点在同一象限, ∴反比例函数63ky x −=(1k >且2k ≠)的函数图象经过第一、三象限,∴630k −>,∴2k <, ∵1k >, ∴12k <<,∴满足条件的k 值可以为1.5, 故答案为:1.5(满足12k <<都可以).【点睛】本题考查一次函数和反比例函数的图形性质,解题的关键是根据120x x ⋅>判断出反比例函数图象和一次函数图象的两个交点在同一象限.的正ABC 的顶点,现将ABC 绕原点【答案】6【分析】画出变换后的图像即可(画AOB 即可),当点A 在y 轴上,点B 、C 在x 轴上时,根据ABC 为等边三角形且AO BC ⊥,可得OB OA=A 、B 分别作x 轴垂线构造相似,则BFO OEA ∽,根据相似三角形的性质得出3AOE S =△,进而根据反比例函数k 的几何意义,即可求解.【详解】当点A 在y 轴上,点B 、C 在x 轴上时,连接AO ,ABC 为等边三角形且AO BC ⊥,则30BAO ∠=︒,∴tan tan30BAO ∠=︒=OB OA=, 如图所示,过点,A B 分别作x 轴的垂线,交x 轴分别于点,E F ,AO BO ⊥,90BFO AEO AOB ∠=∠=∠=︒,∴90BOF AOE EAO ∠=︒−∠=∠, ∴BFO OEA ∽,∴213BFO AOES OB S OA ⎛⎫== ⎪⎝⎭, ∴212BFOS−==,∴3AOE S =△, ∴6k =.【点睛】本题考查了反比例函数的性质,k 的几何意义,相似三角形的性质与判定,正确作出辅助线构造相似三角形是解题关键.【答案】2/2−+【分析】过点A 作CD y ⊥轴于点D ,过点B 作BC CD ⊥于点C ,证明DAO CBA ≌,进而根据全等三角形的性质得出,DA CB AC OD ==,根据点(),2A m ,进而得出()2,2B m m +−,根据点,A B 在反比例函数(0)ky x x =>的图象上.列出方程,求得m 的值,进而即可求解.【详解】解:如图所示,过点A 作CD y ⊥轴于点D ,过点B 作BC CD ⊥于点C ,∴90C CDO ∠=∠=︒, ∵,90OA AB OAB =∠=︒, ∴90DAO CAB CBA ∠=︒−∠=∠ ∴DAO CBA ≌ ∴,DA CB AC OD == ∵点A 的坐标为()m,2.∴2AC OD ==,AD BC m == ∴()2,2B m m +−∵,A B 在反比例函数(0)ky x x =>的图象上,∴()()222m m m =+−解得:1m =或1m =(舍去)∴22k m ==故答案为:2.【点睛】本题考查了反比例函数的图象和性质,全等三角形的判定和性质,求得点B 的坐标是解题的关键.【答案】4【分析】根据题意可设点P 的坐标为()22m m ,,则()2D m m ,,把()2D m m ,代入一次函数解析式中求出m 的值进而求出点P 的坐标,再求出k 的值即可.【详解】解:∵PA x ⊥轴于点,A PB y ⊥轴于点,B PA PB =, ∴点P 的横纵坐标相同, ∴可设点P 的坐标为()22m m ,,∵D 为PB 的中点, ∴()2D m m ,,∵()2D m m ,在直线1y x =+上,∴12m m +=, ∴1m =, ∴()22P ,,∵点P 在反比例函数()0ky k x =>的图象上,∴224k =⨯=, 故答案为:4.【点睛】本题主要考查了一次函数与反比例函数综合,正确求出点P 的坐标是解题的关键.【答案】6【分析】延长CD 交x 轴于点F ,设,k D a a ⎛⎫ ⎪⎝⎭,利用相似三角形的判定与性质可求得矩形的长与宽,再由矩形的面积即可求和k 的值.【详解】解:延长CD 交x 轴于点F ,如图,由点D 在反比例函数()0k y x x =>的图象上,则设,k D a a ⎛⎫ ⎪⎝⎭,∵矩形ABCD 的边AB 平行于x 轴,AB CD ∥,AD CD ⊥, ∴CD y ⊥轴,AD OF ∥, 则kDF a OF a ==,,∵AD OF ∥, ∴CDA CFO △∽△, ∴CD AD ACCF OF OC ==, ∵2AC AO =,∴23AC OC =, ∴2223CD CF DF a ===,2233k AD OF a ==, ∵8AD CD ⋅=,即2283k a a ⨯=,∴6k =, 故答案为:6.【点睛】本题考查了相似三角形的判定与性质,反比例函数图象上点的坐标特征,其中相似三角形的判定与性质是关键.则ABP 的面积是 【答案】152【分析】把()2,3A −代入到22k y x =可求得2k 的值,再把(),2Bm −代入双曲线函数的表达式中,可求得m 的值,进而利用三角形的面积公式进行求解即可. 【详解】∵直线11y k x b =+与双曲线22k y x =(其中120k k ⋅≠)相交于()2,3A−,(),2B m −两点,∴2232k m =−⨯=−∴263k m =−=,,∴双曲线的表达式为:26y x =−,()3,2B −,∵过点B 作BP x ∥轴,交y 轴于点P , ∴3BP =, ∴1153(32)22ABPS=⨯⨯+=,故答案为152.【点睛】本题是一次函数与反比例函数的交点问题,考查了待定系数法求反比例函数,反比例函数图象上点的坐标特征,三角形的面积,数形结合是解答此题的关键. 三、解答题26.(2023·四川绵阳·统考中考真题)如图,设反比例函数的解析式为(k >0).(1)若该反比例函数与正比例函数y=2x 的图象有一个交点的纵坐标为2,求k 的值;(2)若该反比例函数与过点M (﹣2,0)的直线l :y=kx+b 的图象交于A ,B 两点,如图所示,当△ABO 的面积为时,求直线l 的解析式.【答案】(1);(2).【详解】试题分析:(1)由题意可得A(1,2),利用待定系数法即可解决问题;(2)把M(﹣2,0)代入y=kx+b,可得b=2k,可得y=kx+2k,由消去y得到,解得x=﹣3或1,推出B(﹣3,﹣k),A(1,3k),根据△ABO的面积为,可得•23k+•2k=,解方程即可解决问题;试题解析:(1)由题意A(1,2),把A(1,2)代入,得到3k=2,∴.(2)把M(﹣2,0)代入y=kx+b,可得b=2k,∴y=kx+2k,由消去y得到,解得x=﹣3或1,∴B(﹣3,﹣k),A(1,3k),∵△ABO的面积为,∴×2×3k+•2k=,解得k=,∴直线l 的解析式为.考点:反比例函数与一次函数的交点问题.(1)2m =,4a =,求函数3y 的表达式及(2)当a 、m 在满足0a m >>的条件下任意变化时,(3)试判断直线PH 与BC 边的交点是否在函数【答案】(1)函数3y 的表达式为325y x =−+,PGH △的面积为12(2)不变,理由见解析 (3)在,理由见解析【分析】(1)由2m =,4a =,可得(20)A ,,()20B −,,12y x=,22y x −=,则4AB =,当2x =,1212y ==,则()21E ,;当14y =,24x =,解得12x =,则142G ⎛⎫ ⎪⎝⎭,;当24y =,24x −=,解得12x =−,则142H ⎛⎫− ⎪⎝⎭,;待定系数法求一次函数3y 的解析式为325y x =−+,当0x =,35y =,则()05P ,,根据()11154222PGH S ⎡⎤⎛⎫=⨯−−⨯− ⎪⎢⎥⎝⎭⎣⎦△,计算求解即可;(2)求解过程同(1);(3)设直线PH 的解析式为22y k x b =+,将()01P a +,,m a H a a −⎛⎫⎪⎝⎭,,代入22y k x b =+得,2221b am a k b a a =+⎧⎪−⎨+=⎪⎩,解得221b aa k a m =+⎧⎪⎨=⎪−⎩,即1a x a a m y +−=+,当x m a =−,()11y a m a a a m ⨯+=−+=−,则直线PH 与BC 边的交点坐标为()1m a −,,当x m a =−,21m ay m a −=−=,进而可得结论.【详解】(1)解:∵2m =,4a =,∴(20)A ,,()20B −,,12y x=,22y x −=,∴4AB =, 当2x =,1212y ==,则()21E ,;当14y =,24x =,解得12x =,则142G ⎛⎫ ⎪⎝⎭,; 当24y =,24x −=,解得12x =−,则142H ⎛⎫− ⎪⎝⎭,; 设一次函数3y 的解析式为3y kx b =+,将()21E ,,142G ⎛⎫⎪⎝⎭,,代入3y kx b =+得,21142k b k b +=⎧⎪⎨+=⎪⎩,解得25k b =−⎧⎨=⎩,∴325y x =−+, 当0x =,35y =,则()05P ,,∴()1111542222PGH S ⎡⎤⎛⎫=⨯−−⨯−=⎪⎢⎥⎝⎭⎣⎦△; ∴函数3y 的表达式为325y x =−+,PGH △的面积为12;(2)解:PGH △的面积不变,理由如下:∵(0)A m ,,(0)B m a −,,1m y x =,2m ay x −=,∴AB a =,当x m =,11m y m ==,则()1E m ,;当1y a =,m a x =,解得m x a =,则m G a a ⎛⎫⎪⎝⎭,; 当2y a =,m a a x −=,解得m a x a −=,则m a H a a−⎛⎫ ⎪⎝⎭,; 设一次函数3y 的解析式为113k x b y =+,将()1E m ,,m G a a ⎛⎫ ⎪⎝⎭,,代入113k x b y =+得,11111mk b m k b a a +=⎧⎪⎨+=⎪⎩,解得111a k m b a ⎧=−⎪⎨⎪=+⎩,∴31ax a m y =−++,当0x =,31y a =+,则()01P a +,,∴()11122PGH m m a S a a a a ⎡−⎤⎛⎫=⨯−⨯+−= ⎪⎢⎥⎝⎭⎣⎦△; ∴PGH △的面积不变;(3)解:直线PH 与BC 边的交点在函数2y 的图像上,理由如下:设直线PH 的解析式为22y k x b =+,将()01P a +,,m a H a a −⎛⎫⎪⎝⎭,,代入22y k x b =+得,2221b a m a k b a a =+⎧⎪−⎨+=⎪⎩,解得221b aa k a m =+⎧⎪⎨=⎪−⎩, ∴1ax a a m y +−=+,当x m a =−,()11y am a a a m ⨯+=−+=−,∴直线PH 与BC 边的交点坐标为()1m a −,,当x m a =−,21m ay m a −=−=,∴直线PH 与BC 边的交点在函数2y 的图像上.【点睛】本题考查了正方形的性质,一次函数解析式,反比例函数解析式,交点坐标.解题的关键在于对知识的熟练掌握与灵活运用.(1)求一次函数和反比例函数的表达式; (2)求OAB 的面积;(3)过动点()0T t ,作x 轴的垂线l ,l 与一次函数y x m =−+和反比例函数ky x=的图象分别交于当M 在N 的上方时,请直接写出t 的取值范围.【答案】(1)一次函数的解析式为3y x =−+,反比例函数的解析式为2y x =(2)32(3)0t <或12t << 【分析】(1)把()1,2A 分别代入一次函数和反比例函数求出m k 、的值即可得到答案;(2)联立32y x y x =−+⎧⎪⎨=⎪⎩求出点B 的坐标,令直线AB 与x 交于点C ,由直线AB 求出点C 的坐标,最后由1122AOBAOCBOCA B SSSOC y OC y =−=⋅⋅−⋅⋅,进行计算即可得到答案;(3)直接由函数图象即可得到答案. 【详解】(1)解:把()1,2A 代入一次函数y x m =−+,得12m −+=, 解得:3m =,∴一次函数的解析式为:3y x =−+,把()1,2A 代入反比例函数ky x =,得21k =,解得:2k =,∴反比例函数的解析式为:2y x =;(2)解:联立32y x y x =−+⎧⎪⎨=⎪⎩,解得:12x y =⎧⎨=⎩或21x y =⎧⎨=⎩,()21B ∴,,令直线AB 与x 交于点C ,如图,,当0y =时,30x −+=, 解得:3x =, ()30C ∴,,11113323122222AOBAOCBOCA B SS SOC y OC y ∴=−=⋅⋅−⋅⋅=⨯⨯−⨯⨯=(3)解:由图象可得:,当M 在N 的上方时,t 的取值范围为:0t <或12x <<.【点睛】本题考查了求反比例函数的解析式、求一次函数的解析式、反比例函数与一次函数的交点问题,熟练掌握反比例函数和一次函数的图象与性质,是解题的关键.(1)当气球内的气压超过150KPa 少时气球不会爆炸(球体的体积公式(2)请你利用p 与V 的关系试解释为什么超载的车辆容易爆胎.【答案】(1)气球的半径至少为0.2m 时,气球不会爆炸; (2)由于车辆超载,轮胎体积变小,胎内气压增大导致爆胎 【分析】(1)设函数关系式为k p =,用待定系数法可得 4.8p V =,即可得当150p =时, 4.80.032150V ==,从而求出0.2r =;(2)由于车辆超载,轮胎体积变小,胎内气压增大导致爆胎. 【详解】(1)设函数关系式为kp V =, 根据图象可得:1200.04 4.8k pV ==⨯=, ∴4.8p V =,∴当150p =时,4.80.032150V ==,∴3430.0323r ⨯=,解得:0.2r =,4.80k =>,p ∴随V 的增大而减小,∴要使气球不会爆炸,0.032V ≥,此时0.2r ≥, ∴气球的半径至少为0.2m 时,气球不会爆炸;(2)由于车辆超载,轮胎体积变小,胎内气压增大导致爆胎.【点睛】本题考查反比例函数的应用,涉及立方根等知识,解题的关键是读懂题意,掌握待定系数法求出反比例函数的解析式.轴的对称点,OAC 的面积是【答案】(1)y x =(2)(2P −++或(2P −−−【分析】(1)设,k A m m ⎛⎫ ⎪⎝⎭,可得,k C m m ⎛⎫− ⎪⎝⎭,结合OAC 的面积是8.可得()182k m m m +=,从而可得答案;(2)先求解()2,4A ,()2,4C −,可得直线为28y x =+,联立828y x y x ⎧=⎪⎨⎪=+⎩,再解方程组即可.【详解】(1)解:∵点A 在反比例函数(0)ky k x =≠的图象上,∴设,k A m m ⎛⎫⎪⎝⎭,∵点C 是点A 关于y 轴的对称点,∴,k C m m ⎛⎫− ⎪⎝⎭, ∵OAC 的面积是8.∴()182k m m m +=,解得:8k =;∴反比例函数解析式为:8y x =;(2)∵点A 的横坐标为2时, ∴842A y ==,即()2,4A ,则()2,4C −,∵直线2y x b =+过点C , ∴44b −+=, ∴8b =,∴直线为28y x =+, ∴828y x y x ⎧=⎪⎨⎪=+⎩,解得:24x y ⎧=−+⎪⎨=+⎪⎩或24x y ⎧=−−⎪⎨=−⎪⎩,经检验,符合题意;∴(2P −++或(2P −−−.【点睛】本题考查的是一次函数与反比例函数的综合应用,轴对称的性质,一元二次方程的解法,熟练的利用图形面积建立方程求解是解本题的关键.(1)求反比例函数的表达式;(2)点D 在反比例函数图象上,且横坐标大于3OBDS=【答案】(1)4y x =(2)132y x =−+【分析】(1)根据四边形OABC 是边长为2的正方形求出点B 的坐标,代入ky x =求出k ;(2)设4,D a a ⎛⎫ ⎪⎝⎭,过点D 作DH x ⊥轴,根据OBD OBH BHD ODH S S S S =+−V V V V 面积列方程,求出点D 坐标,再由待定系数法求出直线BD 的函数表达式.【详解】(1)解:四边形OABC 是边长为2的正方形, ∴4OABC S xy ==正方形, ∴4k =;即反比例函数的表达式为4y x =.(2)解:设4,D a a ⎛⎫ ⎪⎝⎭,过点D 作DH x ⊥轴,点()2,2B ,4,D a a ⎛⎫ ⎪⎝⎭,(),0H a ,∴12OBH S OH AB a=⋅=V 1144(2)(2)222BHD a S DH AH a a a −=⋅=⋅⋅−=V ,122ODH S OH DH =⋅=V3OBD OBH BHD ODH S S S S =+−=V V V V∴4(2)232a a a −+−=,解得:14a =,21a =−,经检验4a =,是符合题意的根,即点()4,1D ,设直线BD 的函数解析式为y kx b =+,得∶ 2241k b k b +=⎧⎨+=⎩,解得:123k b ⎧=−⎪⎨⎪=⎩,即:直线BD 的函数解析式为132y x =−+.【点睛】本题考查了反比例函数的几何意义和待定系数法求一次函数解析式,反比例函数ky x =图象上任意一点做x 轴、y 轴的垂线,组成的长方形的面积等于k,灵活运用几何意义是解题关键.2(1)求反比例函数的解析式;(2)点C 在这个反比例函数图象上,连接【答案】(1)8y x =(2)()4,2C【分析】(1)利用正切值,求出4OB =,进而得到()2,4A ,即可求出反比例函数的解析式;(2)过点A 作AE x ⊥轴于点E ,易证四边形ABOE 是矩形,得到2OE =,4AE =,再证明AED △是等腰直角三角形,得到4DE =,进而得到()6,0D ,然后利用待定系数法求出直线AD 的解析式为6y x =−+,联立反比例函数和一次函数,即可求出点C 的坐标. 【详解】(1)解:AB y ⊥轴,90ABO ∴∠=︒,1tan 2AOB =∠,12AB OB ∴=,2AB =,4OB ∴=,()2,4A ∴,点A 在反比例函数()0ky x x =>的图象上,248k ∴=⨯=,∴反比例函数的解析式为8y x =;(2)解:如图,过点A 作AE x ⊥轴于点E ,90ABO BOE AEO ∠=∠=∠=︒,∴四边形ABOE 是矩形,2OE AB ∴==,4OB AE ==,45ADO ∠=︒,AED ∴是等腰直角三角形, 4DE AE ∴==,246OD OE DE ∴=+=+=,()6,0D ∴,设直线AD 的解析式为y kx b =+,2460k b k b +=⎧∴⎨+=⎩,解得:16k b =−⎧⎨=⎩, ∴直线AD 的解析式为6y x =−+,点A 、C 是反比例函数8y x =和一次函数6y x =−+的交点,联立86y x y x ⎧=⎪⎨⎪=−+⎩,解得:24x y =⎧⎨=⎩或42x y =⎧⎨=⎩,()2,4A , ()4,2C ∴.【点睛】本题是反比例函数综合题,考查了锐角三角函数值,矩形的判定和性质,待定系数法求函数解析式,反比例函数和一次函数交点问题等知识,求出直线AD 的解析式是解题关键.(1)求反比例函数的表达式和点E 的坐标;(2)若一次函数y x m =+与反比例函数的部分时(点M 可与点,D E 重合)【答案】(1)反比例函数解析式为y x =,()22E ,(2)30m −≤≤【分析】(1)根据矩形的性质得到BC OAAB OA ∥,⊥,再由()4,1D 是AB 的中点得到()42B ,,从而得到点E的纵坐标为2,利用待定系数法求出反比例函数解析式,进而求出点E 的坐标即可; (2)求出直线y x m =+恰好经过D 和恰好经过E 时m 的值,即可得到答案. 【详解】(1)解:∵四边形OABC 是矩形,∴BC OAAB OA ∥,⊥, ∵()4,1D 是AB 的中点, ∴()42B ,,∴点E 的纵坐标为2,∵反比例函数()0ky x x =>的图象分别与,AB BC 交于点()4,1D 和点E ,∴14k =,∴4k =,∴反比例函数解析式为4y x =,在4y x =中,当42y x ==时,2x =, ∴()22E ,;(2)解:当直线 y x m =+经过点()22E ,时,则22m +=,解得0m =; 当直线 y x m =+经过点()41D ,时,则41m +=,解得3m =−;∵一次函数y x m =+与反比例函数()0ky x x =>的图象相交于点M ,当点M 在反比例函数图象上,D E 之间的部分时(点M 可与点,D E 重合), ∴30m −≤≤.【点睛】本题主要考查了求一次函数解析式,一次函数与反比例函数综合,矩形的性质等等,灵活运用所学知识是解题的关键.【答案】(1)反比例函数的表达式为y x =−;一次函数的表达式为22y x =−+(2)142BC =【分析】(1)利用待定系数法即可求解;(2)先求得直线BC 的表达式为1y =,再分别求得B C 、的坐标,据此即可求解.【详解】(1)解:∵反比例函数()0ky x x =<的图象经过点()1,4A −,∴144k =−⨯=−, ∴反比例函数的表达式为4y x =−;∵一次函数2y x m =−+的图象经过点()1,4A −,∴()421m=−⨯−+,∴2m =,∴一次函数的表达式为22y x =−+; (2)解:∵1OD =, ∴()01D ,,∴直线BC 的表达式为1y =, ∵1y =时,14x =−,解得4x =−,则()41B −,,∵1y =时,122x =−+,解得12x =,则112C ⎛⎫ ⎪⎝⎭,,∴()114422BC =−−=.【点睛】本题考查一次函数、反比例函数图象上点的坐标特征,待定系数法是求函数解析式的基本方法.(1)求反比例函数和一次函数的表达式;(2)求AOB 的面积; (3)请根据图象直接写出不等式【答案】(1)12y x =−,32y x =−+(2)9(3)<2x −或04x <<【分析】(1)把点B 代入反比例函数()0ky k x =≠,即可得到反比例函数的解析式;把点A 代入反比例函数,即可求得点A 的坐标;把点A 、B 的坐标代入一次函数一次函数()0y ax b a =+<即可求得a 、b 的值,从而得到一次函数的解析式;(2)AOB 的面积是AOC 和BOC 的面积之和,利用面积公式求解即可;(3)利用图象,找到反比例函数图象在一次函数图象下方所对应的x 的范围,直接得出结论. 【详解】(1)∵点()4,3B −在反比例函数ky x =的图象上,∴34k −=, 解得:12k =− ∴反比例函数的表达式为12y x =−.∵(),3A m m −在反比例函数12y x =−的图象上,∴123m m =−−,解得12m =,22m =−(舍去).∴点A 的坐标为()2,6−.∵点A ,B 在一次函数y ax b =+的图象上,把点()2,6A −,()4,3B −分别代入,得2643a b a b −+=⎧⎨+=−⎩,解得323a b ⎧=−⎪⎨⎪=⎩,∴一次函数的表达式为332y x =−+; (2)∵点C 为直线AB 与y 轴的交点,∴把0x =代入函数332y x =−+,得3y = ∴点C 的坐标为()0,3 ∴3OC =,∴AOB AOC BOC SS S =+ 1122A B OC x OC x =⋅⋅+⋅⋅11323422=⨯⨯+⨯⨯9=.(3)由图象可得,不等式k ax b x <+的解集是<2x −或04x <<.【点睛】此题是反比例函数与一次函数的交点问题,考查了待定系数法求函数的解析式,三角形面积,函数与不等式的关系,求出两个函数解析式是解本题的关键.。

【专项训练】反比例函数的实际应用(解析版)

【专项训练】反比例函数的实际应用(解析版)

【专项训练】反比例函数的实际应用1.某校初三年级在一次研学活动中,数学研学小组为了估计澧水河某段水域的宽度,在河的对岸选定一个目标点A,在近岸分别取点B、D、E、C,使点A、B、D在一条直线上,且AD⊥DE,点A、C、E也在一条直线上,且DE∥BC.经测量BC=25米,BD=12米,DE=35米,求河的宽度AB为多少米?【分析】先证明△ABC∽△ADE,利用相似比得到=,然后根据比例的性质求AB的长度.【解答】解:∵BC∥DE,∴△ABC∽△ADE,∴=,即=,∴AB=30.答:河的宽度AB为30米.【点评】本题考查的是相似三角形在实际生活中的应用,根据题意得出△ABC∽△ADE是解答此题的关键.2.如图,零件的外径为16cm,用卡钳(AD=BC,且OA:OD=OB:OC=3:1)测得CD=5cm,求零件的壁厚x.【分析】直接利用相似三角形的判定与性质得出AB:CD=OA:OD=3:1,进而得出零件的壁厚x.【解答】解:∵OA:OD=OB:OC=3:1,∠COD=∠AOB,∴△COD∽△BOA.∴AB:CD=OA:OD=3:1.∵CD=5cm,∴AB=15cm.∴2x+15=16.∴x=0.5,答:零件的壁厚x为0.5cm.【点评】此题主要考查了相似三角形的应用,解题的关键是将实际问题转化为数学问题解答.3.如图,要测量一池塘两端AB的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长至D,使CD=CA,连接BC,并延长至E,使CE=CB,连接ED,如果量出DE=25m,那么池塘宽AB等于多少?【分析】利用相似三角形的判定方法得出△ACB∽△DCE,进而利用相似三角形的性质得出AB的长.【解答】解:∵CD=CA,CE=CB,且∠ACB=∠ECD,∴△ACB∽△DCE,∴=,则=,故AB=125,答:池塘宽AB等于25m.【点评】此题主要考查了相似三角形的应用,根据题意得出△ACB∽△DCE是解题关键.4.为了测量一池塘的宽AB,在岸边找到了一点C,使AC⊥AB,在AC上找到一点D,在BC上找到一点E,使DE⊥AC,测出AD=25m,DC=30m,DE=30m,那么你能算出池塘的宽AB吗?【分析】根据题意得出△DCE∽△ACB,进而利用相似三角形的性质得出AB的长.【解答】解:由题意可得:AB∥DE,则△DCE∽△ACB,故=,∵AD=25m,DC=30m,DE=30m,∴=,解得:AB=55.答:池塘的宽AB为55m.【点评】此题主要考查了相似三角形的应用,根据题意得出△DCE∽△ACB是解题关键.5.某市护城河的某段是笔直的,在护城河的北岸边每隔35米就有一个垃圾箱,在护城河的南岸边每隔3米就有一棵树,张萌站在离南岸18米的点E处看北岸,发现北岸相邻的两个垃圾箱A,B恰好被南岸的两棵树C、D遮住,并且这两棵树之间还有6棵树.(1)求护城河的宽度;(2)若CE=24米,求AE的长度.【分析】(1)作EF⊥CD于F交AB于H,如图,EF=18m,CD=21m,AB=35m,证明△ECD∽△EAB,然后利用相似比计算HF即可;(2)由于△ECD∽△EAB,则利用相似比可计算出AE的长.【解答】解:(1)作EF⊥CD于F交AB于H,如图,EF=18m,CD=21m,AB=35m,∵CD∥AB,∴△ECD∽△EAB,∴=,即=,解得HF=12.答:护城河的宽度为12m;(2)∵△ECD∽△EAB,∴=,即=,解得EA=40.答:AE的长度为40m.【点评】本题考查了相似三角形的应用:利用视点和盲区的知识构建相似三角形,用相似三角形对应边的比相等的性质求物体的高度.6.一条河的两岸有一段是互相平行的,为了测量河宽,王刚先站在河边观察对岸的一目标B,然后在岸边做一标记D,使BD垂直于河岸,再沿河岸走到点C,接着垂直河岸走到点A,使A,B和岸边的一点F 在一条直线上.如果量得AC=5m,FD=20m,CF=4m,那么河宽BD有多少米?【分析】根据AC∥BD,得到△ACF∽△BDF,根据相似三角形的性质得到比例式,把已知数据代入计算即可得到答案.【解答】解:∵AC∥BD,∴△ACF∽△BDF,∴=,又∵AC=5m,FD=20m,CF=4m,∴BD=25cm.答:河宽BD有25米.【点评】本题考查的是相似三角形的应用,掌握相似三角形的性质定理:相似三角形的对应边的比相等是解题的关键.7.在A和B之间有一条河,在BA延长线上取一点C,作BC的垂线AD和CE,点D位于BE上,测得AC =5米,CE=3.3米,AD=3米,求AB之间的距离.这个问题源于古希腊海伦《Dioptra》中的间接测量问题.【分析】根据CE⊥BC,DA⊥BC可得出△ABD∽△CBE,再由相似三角形的对应边成比例即可得出结论.【解答】解:∵CE⊥BC,DA⊥BC,AC=5米,CE=3.3米,AD=3米,∴△ABD∽△CBE,∴=,即=,解得AB=50(米).【点评】本题考查的是相似三角形的应用,熟知相似三角形的对应边成比例是解答此题的关键.8.为了保障市民出行方便,某市在流经该市的河流上架起一座桥,小明和小颖想通过自己所学的数学知识计算该桥AF的长.如图,该桥两侧河岸平行,他们在河的对岸选定一个目标作为点A,再在河岸的这一边选出点B和点C,分别在AB、AC的延长线上取点D、E,使得DE∥BC.经测量,BC=80米,DE=140米,且点E到河岸BC的距离为75米.已知AF⊥BC于点F,请你根据提供的数据帮助他们计算桥AF的长度.【分析】过E作EG⊥BC于G,依据△ABC∽△ADE,即可得出=,依据△ACF∽△ECG,即可得到=,进而得出AF的长.【解答】解:如图所示,过E作EG⊥BC于G,∵DE//BC,∴△ABC∽△ADE,∴,∴,∵AF⊥BC,EG⊥BC,∴∠CFA=∠CGE=90°,∵∠ECG=∠ACF,∵∠ECG=∠ACF,∴△ACF∽△ECG,∴=,即=,解得:AF=100,∴桥AF的长度为100米.【点评】本题主要考查了利用相似测量距离.正确构造直角三角形相似是解题关键.9.如图,已知河宽AB=100m,在河的两岸各取一点A,E,AE与BC相交于点D,AB⊥BC于点B,EC⊥BC于点C,测得BC=180m,EC=50m,求BD的长.【分析】根据相似三角形的判定和性质定理即可得到结论.【解答】解:∵AB⊥BC于点B,EC⊥BC于点C,∴AB∥CE,∴△ABD∽△ECD,∴=,∴=,∴BD=120m,答:BD的长为120m.【点评】本题考查了相似三角形的应用,主要利用了相似三角形对应边成比例,确定出相似三角形是解题的关键.10.在一次数学活动课上,为了测量河宽AB,小聪采用了如下方法:如图,从A处沿与AB垂直的直线方向走45m到达C处,插一根标杆,然后沿同方向继续走15m到达D处,再右转90°走到E处,使点B,C,E恰好在一条直线上,量的DE=20m,这样就可以求出河宽AB.请说明理由,并计算出结果.【分析】根据题意得出△ACB∽△DCE,进而利用相似三角形的性质进而求出即可.【解答】解:由题意可得:AB∥DE,则△ACB∽△DCE,故=,∵AC=45m,DC=15m,DE=20m,∴=,∴AB=60m.答:河宽AB为60m.【点评】此题主要考查了相似三角形的应用,得出△ACB∽△DCE是解题关键.11.如图,利用标杆BE测量建筑物的高度,如果标杆BE高1.2m,测得AB=1.6m,BC=12.4m,楼高CD 是多少?【分析】先根据题意得出△ABE∽△ACD,再根据相似三角形的对应边成比例即可求出CD的值.【解答】解:∵EB⊥AC,DC⊥AC,∴EB∥DC,∴△ABE∽△ACD,∴=,∵BE=1.2,AB=1.6,BC=12.4,∴AC=14,∴=,∴CD=10.5.答:楼高CD是10.5m.【点评】本题考查的是相似三角形的应用,熟知相似三角形的对应边成比例的性质是解答此题的关键.12.利用镜面反射可以计算旗杆的高度,如图,一名同学(用AB表示),站在阳光下,通过镜子C恰好看到旗杆ED的顶端,已知这名同学的身高是1.60米,他到镜子的距离是2米,镜子到旗杆的距离是8米,求旗杆的高.【分析】过点E作镜面的法线EF,由入射角等于反射角可知∠ECF=∠ACF,进而可得出∠ACB=∠ECD,由相似三角形的判定定理可得出△ABC∽△EDC,再根据相似三角形的对应边成比例即可求出ED 的长.【解答】解:过点E作镜面的法线FC,由光学原理得∠ECF=∠ACF∵∠ACB=90°﹣∠FCA,∠ECD=90°﹣∠FCE,∴∠ACB=∠ECD,又∵∠EDC=∠ABC=90°,∴△ABC∽△EDC,∴,即=,解得ED=6.4(m).答:旗杆的高为6.4米.【点评】本题考查的是相似三角形在实际生活中的应用,根据题意得出△ABC∽△EDC是解答此题的关键.13.小强在地面E处放一面镜子,刚好能从镜子中看到教学楼的顶端B,此时EA=21米,CE=2.5米.已知眼睛距离地面的高度DC=1.6米,请计算出教学楼的高度.(根据光的反射定律,反射角等于入射角)【分析】根据反射角等于入射角可得∠AEB=∠CED,则可判断Rt△AEB∽Rt△CED,根据相似三角形的性质得=,然后利用比例性质求出AB即可.【解答】解:根据题意得∠AEB=∠CED,∵Rt△AEB∽Rt△CED,∴=,即=,解得:AB=13.44.答:教学楼的高度为13.44m.【点评】本题考查了相似三角形的应用:利用入射与反射构造相似三角形,然后利用相似三角形的性质即相似三角形的对应边的比相等解决问题.14.李明同学想利用影子测量旗杆的高度,他在某一时刻测得1m长的标杆影长为0.8m,当他测量教学楼前的旗杆的影长时,因旗杆靠近教学楼,有一部分影子在墙上,他测得旗杆到教学楼的距离EF=30m,旗杆在教学楼墙上的影长FG=1.5m,求旗杆DE的高.【分析】过点G作GH∥EF交DE于H,根据同时同地物高与影长成正比求出DH,再根据DE=DH+EH 计算即可得解.【解答】解:如图,过点G作GH∥EF交DE于H,则四边形EFGH是矩形,所以,GH=EF=30m,EH=FG=1.5m,由题意得,=,所以=,解得DH=37.5m,所以DE=DH+EH=37.5+1.5=39m.答:旗杆DE的高是39m.【点评】本题考查了相似三角形的应用,主要利用了同时同地物高与影长成正比,难点在于作辅助线.15.如图,在高5m的房顶A处望一楼的底部D,视线刚好过小树的顶端E,又从楼顶C处望房顶部B,视线也正好过小树的顶端E,测得小树高4m,求楼高CD.【分析】由EF∥AB可判断△DEF∽△DAB,利用相似比得到==①,同样可证明△BEF∽△BCD得到==②,然后把两式相加得到+=1,再解方程求出CD即可.【解答】解:∵EF∥AB,∴△DEF∽△DAB,∴==①,∵EF∥CD,∴△BEF∽△BCD,∴==②,①+②得+=+,∴+=1,∴CD=20(m).答:楼高CD为20m.【点评】本题考查了相似三角形的应用:利用视点和盲区的知识构建相似三角形,利用相似三角形对应边的比相等的性质求物体的高度.16.某中学数学实践小组决定利用所学知识去测量一古建筑的高度(如图1).如图2,在地面BC上取E,G两点,分别竖立两根高为2m的标杆EF和GH,两标杆间隔EG为23m,并且古建筑AB,标杆EF和GH在同一竖直平面内,从标杆EF后退2m到D处(即ED=2m),从D处观察A点,A、F、D三点成一线;从标杆GH后退4m到C处(即CG=4m),从C处观察A点,A、H、C三点也成一线.已知B、E、D、G、C在同一直线上,AB⊥BC,EF⊥BC,GH⊥BC,请根据以上测量数据,帮助实践小组求出该古建筑AB的高度.【分析】设BE=ym,由题意可知两组三角形相似,利用相似比找出关于y的方程,即可求出建筑物AB 的高度.【解答】解:设BE=ym,由题意可知,∵EF∥AB,GH∥AB,∴△ABD∽△FED,△ABC∽△HGC,∴=,=,∵EF=HG=2,∴=,∴=,解得:y=23(m),则=,即=,解得:AB=25(m),答:该古建筑AB的高度为25m.【点评】本题考查了相似三角形的应用,求出BE=y的值是解题的关键.17.《铁血红安》在中央一台热播后,吸引了众多游客前往影视基地游玩.某天小明站在地面上给站在城楼上的小亮照相时发现:他的眼睛、凉亭顶端、小亮头顶三点恰好在一条直线上(如图).已知小明的眼睛离地面1.6米,凉亭顶端离地面2米,小明到凉亭的距离为2米,凉亭离城楼底部的距离为40米,小亮身高1.7米.请根据以上数据求出城楼的高度.【分析】过点A作AM⊥EF于点M,交CD于点N,构造直角三角形,进而利用相似三角形的判定与性质求解即可.【解答】解:过点A作AM⊥EF于点M,交CD于点N,由题意可得:AN=2m,CN=2﹣1.6=0.4(m),MN=40m,∵CN∥EM,∴△ACN∽△AEM,∴,∴,解得:EM=8.4,∵AB=MF=1.6m,故城楼的高度为:8.4+1.6﹣1.7=8.3(米),答:城楼的高度为8.3m.【点评】此题主要考查了相似三角形的应用,构造直角三角形得出相似三角形是解题的关键.18.小丽想利用所学知识测量旗杆AB的高度,如图,小丽在自家窗边看见旗杆和住宅楼之间有一棵大树DE,小丽通过调整自己的位置,发现半蹲于窗边,眼睛位于C处时,恰好看到旗杆顶端A、大树顶端D 在一条直线上,小丽用测距仪测得眼睛到大树和旗杆的水平距离CH、CG分别为7米、28米,眼睛到地面的距离CF为3.5米,已知大树DE的高度为7米,CG∥BF交AB于点G,AB⊥BF于点B,DE⊥BF 于点E,交CG于点H,CF⊥BF于点F.求旗杆AB的高度.【分析】根据相似三角形的判定与性质得出比例式求解即可.【解答】解:由题意知BG=HE=CF=3.5米,∴DH=DE﹣CF=7﹣3.5=3.5(米),∵AB⊥BF,DE⊥BF,∴AG∥DH,∴△CDH∽△CAG,∴=,即,∴AG=14米,∴AB=AG+GB=14+3.5=17.5(米),∴旗杆AB的高度为17.5米.【点评】本题考查了相似三角形的应用,熟练掌握相似三角形的判定与性质是解题的关键.19.如图,直立在B处的标杆AB=2.4m,直立在F处的观测者从E处看到标杆顶A、树顶C在同一条直线上(点F,B,D也在同一条直线上).已知BD=8m,FB=1.8m,人高EF=1.5m,求树高CD.【分析】过E作EH⊥CD交CD于H点,交AB于点G,可证明四边形EFDH为长方形,可得HD的长;可证明△AEG∽△CEH,故可求得CH的长,所以树高CD的长即可知.【解答】解:过E作EH⊥CD交CD于H点,交AB于点G,如图所示:由已知得,EF⊥FD,AB⊥FD,CD⊥FD,∵EH⊥CD,EH⊥AB,∴四边形EFDH为矩形,∴EF=GB=DH=1.5米,EG=FB=1.8米,GH=BD=8米,∴AG=AB﹣GB=2.4﹣1.5=0.9米,∵EH⊥CD,EH⊥AB,∴AG∥CH,∴△AEG∽△CEH,∴∴,解得:CH=4.9米,∴DC=CH+DH=4.9+1.5=6.4米,即树高6.4米.【点评】本题考查了相似三角形在实际问题中的运用,关键是正确作出辅助线,构造出相似三角形.20.如图,小明用自制的直角三角形纸板DEF测量树的高度AB.他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=40cm.EF=30cm,测得边DF离地面的高度AC=1.5m,CD=10m,求树高AB.【分析】利用直角三角形DEF和直角三角形BCD相似求得BC的长后加上小明同学的身高即可求得树高AB.【解答】解:∵∠DEF=∠BCD=90°∠D=∠D∴△DEF∽△DCB∴,∵DE=40cm=0.4m,EF=30cm=0.3m,AC=1.5m,CD=10m,∴,∴BC=7.5米,∴AB=AC+BC=1.5+7.5=9米.【点评】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.21.如图,一根长2m的木棒EF在地面上的影子FG为3m,此时15m高的旗杆AB的影子有一部分恰好落在16m的墙DH上,求旗杆的影子在墙上的高CD的长是多少?(精确到0.1m)【分析】延长AC交BD于M,如图,利用“在同一时刻物高与影长的比相等”得到=,于是可计算出BM=22.5,则DM=BM﹣BD=6.5,再证明△MCD∽△MAB,然后利用相似比可计算出CD.【解答】解:延长AC交BD于M,如图,EF=2m,FG=3m,AB=15m,BD=16m,∵=,即=,∴BM=22.5,∴DM=BM﹣BD=22.5﹣16=6.5,∵CD∥AB,∴△MCD∽△MAB,∴=,即=,∴CD≈4.4(m).答:旗杆的影子在墙上的高CD的长是4.4m.【点评】本题考查了相似三角形的应用:利用影长测量物体的高度,通常利用相似三角形的性质即相似三角形的对应边的比相等和“在同一时刻物高与影长的比相等”的原理解决.22.小慧的眼睛离地面的距离为1.6m,她用一块含60°角的三角尺测量广场上的旗杆高度(如图).量得小慧与旗杆之间的距离为10.6m,求旗杆的高度(精确到1m).【分析】利用直角三角形的一边与AC平行得到∠ABC=60°,则根据含30度的直角三角形三边的关系得到AC≈18.36,然后计算AC+CD即可.【解答】解:根据题意得∠ABC=60°,在Rt△ABC中,AC=BC=1.732×10.6≈18.36,所以AD=AC+CD=18.36+1.6≈20(m).答:旗杆的高度约为20m.【点评】本题考查了相似三角形的应用:利用视点和盲区的知识构建相似三角形,用相似三角形对应边的比相等的性质求物体的高度.23.如图,一个人拿着一把厘米刻度尺,站山在距电线杆30m的地方,把甲臂向前伸直,刻度尺竖直,尺上0﹣12cm这一段恰好遮住电线杆.若手臂的长为60cm.求电线杆的高度.【分析】如图,FB=30m,CD=12cm=0.12m,DE=60cm=0.6m作OH⊥AB于H,交CD于M,易得OM=ED=0.6m,OH=FB=30m,再证明△OCD∽△OAB,然后利用相似比可计算出AB,从而得到电线杆的高度.【解答】解:如图,FB=30m,CD=12cm=0.12m,DE=60cm=0.6m.作OH⊥AB于H,交CD于M,则OM=ED=0.6m,OH=FB=30m,∵CD∥AB,∴△OCD∽△OAB,∴=,即=,解得AB=6(m).答:电线杆的高度为6m.【点评】本题考查了相似三角形的应用:利用影长测量物体的高度;利用相似测量河的宽度;借助标杆或直尺测量物体的高度.找出几何图形上相应线段的长是解题的关键.24.如图,直立在B处的标杆AB=2.9米,小爱站在F处,其中眼睛E,标杆顶A,树顶C在同一条直线上(人,标杆和树在同一平面内,且点F,B,D在同一条直线上).已知BD=6米,FB=2米,EF=1.6米,求树高CD.【分析】过E作EH⊥CD交CD于H点,交AB于点G,可证明四边形EFDH为长方形,可得HD的长;可证明△AEG∽△CEH,故可求得CH的长,所以树高CD的长即可知.【解答】解:如图,过点E作EH⊥CD于点H,交AB于点G,则四边形EFDH为矩形,∴EF=GB=DH=1.6米,EG=FB=2米,GH=BD=6米,∴AG=AB﹣GB=2.9﹣1.6=1.3(米),∵EH⊥CD,EH⊥AB,∴AG∥CH,∴△AEG∽△CEH,∴,∴,解得CH=5.2,∴CD=CH+DH=5.2+1.6=6.8(米).答:树高CD为6.8米.【点评】本题考查了相似三角形在实际问题中的运用,关键是正确作出辅助线,构造出相似三角形.25.学习完《相似形》一章之后,数学兴趣小组利用相似三角形的有关知识测量校园内一棵树高,他们的方法如下:如图,为了测量操场上一棵大树的高度,小英拿来一面镜子,平放在离树根部5m的地面上,然后她沿着树根和镜子所在的直线后退,当她后退1m时,正好在镜中看见树的顶端.小英估计自己的眼睛到地面的距离为1.6m,则可测得大树的高度.(1)请你根据上述方法求出树高;(2)请你设计一个其他的测量方案,并简述方案.【分析】(1)入射角等于反射角,两个直角相等,那么图中的两个三角形相似,利用对应边成比例可求得树高;(2)在距离树AB的a米的C处,用测角仪测得仰角α,测角仪为CD.再根据仰角的定义,构造直角三角形ADE,利用三角函数计算可得答案.【解答】解:(1)∵∠ABC=∠DBE,∠ACB=∠DEB=90°,∴△ABC∽△DBE,∴BC:BE=AC:DE,即1:5=1.6:DE,∴DE=8m,∴大树的高度为8m;(2)在距离树AB的a米的C处,用测角仪测得仰角α,测角仪为CD.再根据仰角的定义,构造直角三角形ADE,求得树高出测角仪的高度AE,则树高为AE+BE.【点评】本题考查相似三角形性质的应用.解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.26.如图,小明同学用自制的直角三角形DEF测量树的高度AB,他调整自己的位置,设斜边DF保持水平,并且边DE与点B在同一直线,DE=0.4m,EF=0.3m,测得边DF离地面高度AC=1.5m,CD=10m,求树高AB.【分析】利用Rt△DEF和Rt△BCD相似求得BC的长,加上小明同学的身高即可求得树高AB.【解答】解:∵∠DEF=∠DCB=90°,∠EDF=∠CDB,∴△DEF∽△DCB,∴=,∵EF=0.3,DE=0.4,DC=10∴=,∴BC=7.5m,∴AB=AC+BC=9(m),答:树高AB为9m.【点评】本题考查了相似三角形的应用,解题的关键是证得△DEF∽△DCB.27.为测量操场上旗杆的高度,小丽同学想到了物理学中平面镜成像的原理,她拿出随身携带的镜子和卷尺,先将镜子放在脚下的地面上,然后后退,直到她站直身子刚好能从镜子里看到旗杆的顶端E,标记好脚掌中心位置为B,测得脚掌中心位置B到镜面中心C的距离是40cm,镜面中心C距离旗杆底部D 的距离为5m,如图所示,已知小丽同学的身高是1.66m,眼睛位置A距离小丽头顶的距离是6cm,求出旗杆DE的高度.【分析】先证明△ABC∽△EDC,得出,即,即可求出DE的长度.【解答】解:∵∠ABC=∠EDC=90°,∠ACB=∠ECD,∴△ABC∽△EDC,∴,即,解得:DE=2000,2000cm=20m,答:旗杆DE的高度为20m.【点评】本题考查了相似三角形的应用,熟练掌握相似三角形的判定方法是解决问题的关键.28.如图,左右并排的两棵大树的高分别为AB=8米,CD=12米,两树底部的距离,BD=5米,一个人估计自己眼睛距地面1.6米,她沿着正对这两棵的一条水平直路l从左向右前进,当她与左边较低的树距离小于多少时,就看不到右边较高的树的顶端C了?【分析】从实际问题中抽象出相似三角形,利用相似三角形的性质进行求解即可.【解答】解;设此人来到点E时,F,A,C恰好在一条直线上,过点F作EG⊥CD于点K,交AB于点H,由题意得四边形EFHB,BHKD均为矩形,∵EF=1.6米,AB=8米,CD=12米,BD=5米,∴AH=6.4米,CK=10.4米,HK=5米,FH=EB,∵AB∥CD,∴△FHA∽△FKC,∴=,即=,解得:FH=8,∴EB=8米,答:当她与左边较低的树距离小于8米时,就不能看到右边较高的树的顶端C了.【点评】本题考查了相似三角形的应用,解题的关键是了解如何从实际问题中抽象出相似三角形,难度不大.29.如图1,长、宽均为3cm,高为8cm的长方体容器,放置在水平桌面上,里面盛有水,水面高为6cm,绕底面一棱进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度是多少厘米?将这个情景转化成几何图形,如图3所示,请同学们借助图3利用相似的知识解答CF的高是多少?【分析】设DE=x厘米,则AD=(8﹣x)厘米,由长方体容器内水的体积得出方程,解方程求出DE,再由勾股定理求出CD,过点C作CF⊥BG于F,由△CDE∽△CBF的比例线段求得结果即可.【解答】解:如图所示:设DE=x厘米,则AD=(8﹣x)厘米,根据题意得:(8﹣x+8)×3×3=3×3×6,解得:x=4,∴DE=4厘米,∵∠E=90°,由勾股定理得:CD===5(厘米),∵∠BCE=∠DCF=90°,∴∠DCE=∠BCF,∵∠DEC=∠BFC=90°,∴△CDE∽△CBF,∴=,即=,∴CF=(厘米),答:CF的高是厘米.【点评】本题考查了勾股定理的应用、长方体的体积、梯形的面积的计算方法;熟练掌握勾股定理,由长方体容器内水的体积得出方程是解决问题的关键.30.如图,△ABC是一块锐角三角形材料,BC=200mm,高AD=150mm,要把它加工成一矩形零件,使矩形一边在BC上,其余两个顶点分别在AB、AC上.(1)设PN=x,矩形PQMN的面积为S,求S关于x的函数表达式,并指出x的取值范围.(2)当x为何值时,矩形PQMN的面积最大?最大值是多少?【分析】(1)根据矩形的对边平行可以得到△APN∽△ABC,然后用相似三角形对应高的比等于相似比,可以得出S与x的关系.(2)根据矩形面积公式得到关于x的二次函数,根据二次函数求出矩形的最大值.【解答】解:(1)∵PN∥BC,∴△APN∽△ABC,∴=,∵QM=PN=x,MN=ED=y,AE=150﹣y,∴,∴y=150﹣x∴S=xy=﹣x2+150x;150﹣x>0,解得:x<200,则0<x<200;(2)设矩形的面积为S,则S=﹣x2+150x=﹣(x﹣100)2+7500.故当x=100时,此时矩形的面积最大,最大面积为7500mm2.【点评】本题考查的是相似三角形的判定与相似,利用矩形的面积公式得到关于x的二次函数,根据二次函数的性质,确定x的取值和面积的最大值是解题关键.31.如图,某校宣传栏BC后面12米处种有一排与宣传栏平行的若干棵树,即BC∥ED,且相邻两棵树的间隔为2米,一人站在距宣传栏前面的A处正好看到两端的树干,其余的树均被宣传栏挡住.已知AF⊥BC,AF=3米,BC=10米,求该宣传栏后DE处共有多少棵树?(不计宣传栏的厚度).【分析】由图中不难得出,△ABC∽△ADE,利用对应边成比例即可求解线段DE的长度,从而求得树的棵数.【解答】解:如图由图可知,∵BC∥ED,∴△ABC∽△ADE,∴,又BC=10米,AF=3,FG=12米,∴AG=AF+FG=15米即,∴DE=50,50÷2=25,25+1=26,答:DE处共有26棵树.【点评】考查了相似三角形的应用,熟练掌握相似三角形的应用,能够求解一些简单的计算问题.32.如图,阳光通过窗口照到室内,在地面上留下的亮区宽DE=2.7m,已知亮区一边到窗下的墙脚距离CE=8.7m,窗高AB=1.8m,那么窗口底边离地面的高度BC是多少?【分析】利用BD∥AE可判断△CBD∽△CAE,然后利用相似比可计算CB的长.【解答】解:∵BD∥AE,∴△CBD∽△CAE,∴=,即=,∴CB=4(m).答:窗口底边离地面的高度BC是4m.【点评】本题考查了相似三角形的应用:利用影长测量物体的高度,在同一时刻测量出参照物和被测量物体的影长来,再计算出被测量物的长度.33.在生产中,为了节约原材料,常利用一些边角余料加工零件.如图所示,△ABC为一块锐角三角形余料,BC=12cm,BC边上的高AD=8cm,在△ABC上截取矩形PQMN,使点Q,M在BC边上,点P,N 分别在边AB,AC上,设MN=x,PN=y.(1)用含x的代数式表示y;(2)当x和y分别取什么值时,矩形PQMN面积最大?最大面积是多少?【分析】(1)由四边形PNMQ为矩形,得到PN∥BC,证出△APN∽△ABC,列比例式DE得出答案;(2)列出二次函数关系式,求函数的最大值.【解答】解:(1)∵四边形PNMQ为矩形,∴PN∥BC,∴△APN∽△ABC,∴=,即PN=y=×12=12﹣x;(2)矩形PQMN面积=MN•PN=x(12﹣x)=12x﹣x2=﹣(x﹣4)2+24,∴当x=4,y=12﹣6=6时,矩形PNMQ的面积最大,最大为24.【点评】本题考查了相似三角形的判定和性质,矩形的性质,二次函数的最值,三角形的面积,根据面积公式列方程和函数解析式是解题的关键.34.现有一张等腰直角三角形彩色纸,AC=BC=40cm.要求裁出来的长方形纸条的宽度相等,且都为5 cm,则这3种裁法哪种裁出来的长方形纸条总长度最长.【分析】利用相似三角形的性质,等腰直角三角形的性质分别求出总长度即可比较.【解答】解:∵AC=BC=40,∠ACB=90°,∴AB=40,∵CD⊥AB,∴CD=,裁发一中:每张纸条宽度均为5,第一张纸条长度记作a,则,解得:a=30;第二张纸条宽度记作b,则,解得:b=20;第三张纸条宽度记作c,则,解得:c=10;故第一种裁法中纸条总长度为:60;裁法二中:纸条长度分别为40﹣5,40﹣2×,40﹣3×,40﹣4×,40﹣5×,故总长度为200﹣75;裁法三中,纸条长度有2个(20﹣5),2个(20﹣2×),2个(20﹣3×),故总长度为60;∵200﹣75>60.故裁法二中的纸条最长.【点评】本题考查相似三角形的性质、等腰直角三角形的性质、勾股定理等知识,利用等腰直角三角形的性质是解决问题的关键.。

(完整版)反比例函数综合测试题(含答案)

(完整版)反比例函数综合测试题(含答案)

反比例函数综合测试题一、选择题(每小题3分,共24分)1.已知点M (- 2,3 )在反比例函数xky=的图象上,下列各点也在该函数图象上的是( ).AA. (3,- 2)B. (- 2,- 3)C. (2,3)D. (3,2)2. 反比例函数(0)ky kx=≠的图象经过点(- 4,5),则该反比例函数的图象位于( ).BA. 第一、三象限B. 第二、四象限C. 第二、三象限D. 第一、二象限3. 在同一平面直角坐标系中,函数xy2-=与xy2=的图象的交点个数为( ). DA. 3个B. 2个C. 1个D. 0个4. 如图1,点A是y轴正半轴上的一个定点,点B是反比例函数y = 2 x(x> 0)图象上的一个动点,当点B的纵坐标逐渐减小时,△OAB的面积将( ). AA.逐渐增大B.逐渐减小C.不变D.先增大后减小5. (2009年恩施市)如图2,一张正方形的纸片,剪去两个一样的小矩形得到一个“E”图案,设小矩形的长和宽分别为x,y,剪去部分的面积为20,若2 ≤x≤ 10,则y与x的函数图象是( ). A6. 已知点A(x1,y1),B(x2,y2)是反比例函数xky=(k > 0)的图象上的两点,若x1 < 0 < x2,则( ).AA. y1 < 0 < y2B. y2 < 0 < y1C. y1 < y2 < 0D. y2 < y1 < 07. 如图3,反比例函数3yx=的图象与一次函数y = x + 2的图象交于A,B两点,那么△AOB 的面积是( ).CA. 2B. 3C. 4D. 68. 如图4,等腰直角三角形ABC位于第一象限,AB= AC = 2,直角顶点A在直线y = x上,1212图2图4A B C Dy xOP 1P 2P 3P 4 P 5A 1 A 2 A 3 A 4 A 5 图7其中点A 的横坐标为1,且两条直角边AB ,AC 分别平行于x 轴、y 轴,若反比例函数k y x=的图象与△ABC 有交点,则k 的取值范围是( ). C A.1 < k < 2B.1 ≤ k ≤ 3C.1 ≤ k ≤ 4D.1≤ k < 4二、填空题(每小题4分,共24分) 9. 已知反比例函数k y x =的图象经过点(23),,则此函数的关系式是 .6y x= 10. 在对物体做功一定的情况下,力F (N)与此物体在 力的方向上移动的距离s (m)成反比例函数关系,其图 象如图5所示,点P (5,1)在图象上,则当力达到10 N 时,物体在力的方向上移动的距离是 m. 0. 511. 反比例函数xky =)0(<k 的图象与经过原点的直线l 相交于A ,B 两点,若点A 坐标为(-2,1),则点B 的坐标为 . (2,-1).12.一次函数y = x + 1与反比例函数ky x=的图象都经过点(1,m ),则使这两个函数值都小于0时x 的取值范围是___________. x < - 113. (2009年兰州市)如图6,若正方形OABC 的顶点B 和正方形ADEF 的顶点E 都在函数 反比例函数1y x=(x > 0)的图象上,则点E 的坐标是_________. (215+,215-)14. (2009年莆田市)如图7,在x 轴的正半轴上依次截取OA 1 = A 1A 2 = A 2A 3 = A 3A 4 = A 4A 5,过点A 1,A 2,A 3,A 4,A 5,分别作x 轴的垂线与反比例函数()20y x x=≠的图象相交于点P 1,P 2,P 3,P 4,P 5,得直角三角形OP 1A 1,A 1P 2A 2,A 1P 2A 2,A 2P 3A 3,A 3P 4A 4,A 4P 5A 5,并设其面积分别为S 1,S 2,S 3,S 4,S 5,则S 5的值为 . 三、解答题(共30分)15.(6分) 已知点P (2,2)在反比例函数xky =(k ≠ 0)的图象上. (1)当x = - 3时,求y 的值; (2)当1 < x < 3时,求y 的取值范围.F / N图5s / mO图616.(8分)已知图8中的曲线是反比例函数5myx-=(m为常数)图象的一支. 若该函数的图象与正比例函数y = 2x的图象在第一象内限的交于点A,过点A作x轴的垂线,垂足为点B,当△OAB的面积为4时,求点A的坐标及反比例函数的解析式.17.(8分)如图9,点P的坐标为322⎛⎫⎪⎝⎭,,过点P作x轴的平行线交y轴于点A,交反比例函数kyx=(x > 0)于点点N,作PM ⊥AN交反比例函数kyx=(x > 0)的图象于点M,连接AM.若PN = 4,求:(1)k的值.(2)△APM的面积.18.(8分)为预防“手足口病”,某校对教室进行“药熏消毒”. 已知药物燃烧阶段,室内每立方米空气中的含药量y(mg)与燃烧时间x(min)成正比例;燃烧后,y与x成反比例(如图10所示). 现测得药物10 min燃烧完,此时教室内每立方米空气含药量为8 mg. 根据以上信息,解答下列问题:(1)求药物燃烧时y与x的函数关系式;(2)求药物燃烧后y与x的函数关系式;(3)当每立方米空气中含药量低于1.6 mg时,对人体无毒害作用. 那么从消毒开始,经多长时间学生才可以返回教室?四、探究题(共22分)19.(10分) 我们学习了利用函数图象求方程的近似解,例如,把方程2x – 1 = 3 - x 的解看成函数y = 2 x - 1的图象与函数y = 3 - x 的图象交点的横坐标. 如图11,已画出反比例函数1y x=在第一象限内的图象,请你按照上述方法,利用此图象求方程x 2 – x – 1 = 0的正数解(要求画出相应函数的图象,求出的解精确到0.1).20.(12分)一次函数y = ax + b 的图象分别与x 轴、y 轴交于点M ,N ,与反比例函数k y x=的图象相交于点A ,B .过点A 分别作AC ⊥x 轴,AE ⊥y 轴,垂足分别为点C ,E ;过点B 分别作BF ⊥x 轴,BD ⊥y 轴,垂足分别为点F ,D ,AC 与BC 相交于点K ,连接CD . (1)如图12,若点A ,B 在反比例函数ky x=的图象的同一分支上,试证明: ①A E D K C F B K S S =四边形四边形;②A N B M =. (2)若点AB ,分别在反比例函数ky x=的图象的不同分支上,如图13,则AN 与BM 还相等吗?试证明你的结论.反比例函数综合测试题参考答案一、选择题 1. A. 2. B. 3. D.4. A.5. A.6. A.7. C.8. C.二、填空题 9. 6y x=. 10. 0. 5. 11. (2,-1).12. x < - 1. 13. (215+,215-). 14.15. 三、解答题 15.(1)34-=y ;(2)y 的取值范围为434<<y . 16.∵第一象限内的点A 在正比例函数y = 2x 的图象上,∴设点A 的坐标为(m ,2m )(m > 0),则点B 的坐标为(m ,0). ∵S △OAB = 4,∴12m • 2m = 4. 解得m 1 = 2,m 2 = - 2(不符合题意,舍去).∴点A 的坐标为(2,4).又∵点A 在反比例函数5m y x -=的图象上,∴542m -=,即m – 5 = 8. ∴反比例函数的解析式为8y x=.17.(1)∵点P 的坐标为322⎛⎫ ⎪⎝⎭,,∴AP = 2,OA =32. ∵PN = 4,∴AN = 6. ∴点N 的坐标为362⎛⎫ ⎪⎝⎭,. 把点362N ⎛⎫ ⎪⎝⎭,代入ky x=中,得k = 9. (2)由(1)知k = 9,∴9y x =. 当x = 2时,92y =. ∴93322M P =-=. ∴12332A P MS =⨯⨯=△. 18.(1)设药物燃烧阶段函数关系式为y = k 1x (k 1 ≠ 0).根据题意,得8 = 10k 1,k 1 = 45. ∴此阶段函数关系式为45y x =(0 ≤ x < 10).(2)设药物燃烧结束后函数关系式为22(0)ky k x=≠.根据题意,得2810k=,280k =. ∴此阶段函数关系式为80y x=(x ≥ 10).(3)当y < 1.6时,801.6x<. ∵0x >,∴1.680x >,50x >. ∴从消毒开始经过50 min 学生才返可回教室. 四、探究题19. 方程x 2 – x – 1 = 0的正数解约为1.6.提示:∵x ≠ 0,将x 2 – x – 1 = 0两边同除以x ,得110x x --=.即11x x=-. 把x 2 – x – 1 = 0的正根视为由函数1y x=与函数y = x - 1的图象在第一象限交点的横坐标. 20.(1)①A C x ⊥轴,A E y ⊥轴,∴四边形AE O C 为矩形. BF x ⊥轴,B D y ⊥轴,∴四边形BD O F 为矩形.A C x ⊥轴,B D y ⊥轴,∴四边形A E D K D OC K C F B K ,,均为矩形.1111O C x A C y x y k ===,,,∴11A E O CS O C A C x y k ===矩形2222O F x F B y x yk ===,,,∴22B D O F S O F F B x y k ===矩形.∴A E O C B D O F S S =矩形矩形.A E D K A E O C D O C K S S S =-矩形矩形矩形,C FB K B D O F D OC K S S S =-矩形矩形矩形,∴A ED K C F B K S S =矩形矩形. ②由(1)知,AE D K CF B KS S =矩形矩形.∴A K D K B K C K =.∴AK BKCK DK=. 90A K B C K D ∠=∠=°,∴A K B C K D △∽△.∴C D K A B K ∠=∠.∴A B C D∥.A C y ∥轴,∴四边形AC D N 是平行四边形.∴A N C D =.同理可得B M C D =.A N B M∴=. (2)AN 与BM 仍然相等.A E D K A E O C O D K C S S S =+矩形矩形矩形,B KC F BD O F O D K CS S S =+矩形矩形矩形, 又A E O CB D O F S S k ==矩形矩形,∴A E D K B KC FS S =矩形矩形. ∴A K D K B K C K=.∴CK DKAK BK=. K K ∠=∠,∴C D K A B K △∽△.∴C D K A B K ∠=∠.∴A B C D∥.A C y ∥轴,∴四边形AN D C 是平行四边形.∴A N C D =.同理B M C D =.∴A N B M =【教学标题】反比例函数 【教学目标】1、 提高学生对反比例函数的学习兴趣2、 使学生掌握反比例函数基础知识3、让学生熟练地运用反比例知识【重点难点】图像及性质 【教学内容】反比例函数一、基础知识1. 定义:一般地,形如xk y =(k 为常数,o k ≠)的函数称为反比例函数。

(完整版)反比例函数练习题集锦(含答案)

(完整版)反比例函数练习题集锦(含答案)

反比例函数练习题集锦(含答案)一、选择题1. 反比例函数y=1/x的图像在()A. 第一、二象限B. 第一、三象限C. 第二、四象限D. 第一、四象限2. 反比例函数y=1/x的图像是()A. 一条直线B. 一条曲线C. 一条抛物线D. 一条双曲线3. 反比例函数y=1/x的图像经过()A. 原点B. x轴C. y轴4. 反比例函数y=1/x的图像与x轴、y轴的交点坐标分别是()A. (0,0),(0,0)B. (1,0),(0,1)C. (0,1),(1,0)D. (0,0),(1,1)5. 反比例函数y=1/x的图像在第一象限的每一点,其横坐标与纵坐标的乘积是()A. 1B. 1C. 06. 反比例函数y=1/x的图像在第二象限的每一点,其横坐标与纵坐标的乘积是()A. 1B. 1C. 07. 反比例函数y=1/x的图像在第三象限的每一点,其横坐标与纵坐标的乘积是()A. 1B. 1C. 08. 反比例函数y=1/x的图像在第四象限的每一点,其横坐标与纵坐标的乘积是()A. 1B. 1C. 09. 反比例函数y=1/x的图像在第一象限的每一点,其横坐标与纵坐标的比值是()A. 1B. 1C. 0纵坐标的比值是()A. 1B. 1C. 0答案:1.B 2.D 3.D 4.C 5.A 6.B 7.B 8.A 9.C 10.B反比例函数练习题集锦(含答案)二、填空题11. 反比例函数y=1/x的图像在第一、三象限,因为当x>0时,y<0,当x<0时,y>0,所以图像在第一、三象限。

12. 反比例函数y=1/x的图像是一条双曲线,因为它的图像是由两条互相渐近的曲线组成的。

13. 反比例函数y=1/x的图像与x轴、y轴的交点坐标分别是(0,0),(0,0),因为当x=0时,y=0,当y=0时,x=0。

14. 反比例函数y=1/x的图像在第一象限的每一点,其横坐标与纵坐标的乘积是1,因为y=1/x,所以xy=1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3 反比例函数的应用
教材跟踪训练
(一)填空题:(每空2分,共12分)
1.长方形的面积为60cm2,如果它的长是ycm,宽是xcm,那么y是x的
函数关系,y写成x 的关系式是。

2.A、B
途中是匀速直线运动,速度为v km/h,到达时所用的时间是t h,那么t是v的函数,t可以写成v的函数关系式是。

3.如图,根据图中提供的信息,可以写出正比例函数的关系式
是;反比例函数关系式是。

(二)选择题(5′×3=15′)
1.三角形的面积为8cm2,这时底边上的高y(cm)与底边x(cm)
之间的函数关系用图象来表示是。

2.下列各问题中,两个变量之间的关系不是反比例函数的是
A:小明完成100m赛跑时,时间t(s)与跑步的平均速度v(m/s)之间的关系。

B:菱形的面积为48cm2,它的两条对角线的长为y(cm)与x(cm)的关系。

C:一个玻璃容器的体积为30L
间的关系。

D:压力为600N时,压强p与受力面积S之间的关系。

3.如图,A、B、C为反比例函数图象上的三个点,分别从A、
B、C向xy轴作垂线,构成三个矩形,它们的面积分别是S1、
S2、S3,则S1、S2、S3的大小关系是
A:S1=S2>S3B:S1<S2<S3
C:S1>S2>S3D:S1=S2=S3x
y
-1O
2
x y
B
A
O
C
(三)解答题(共21分)
1.(12分)如图所示是某一蓄水池每小时的排水量V (m 3/h )与排完水池中的水所用的时间t(h)之间的函数关系图象。

①请你根据图象提供的信息求出此蓄水池的蓄水量。

②写出此函数的解析式
③若要6h 排完水池中的水,那么每小时的排水量应该是多少?
④如果每小时排水量是5m 3,那么水池中的水将要多少小时排完?
2.(9分)如图正比例函数y=k 1x 与反比例函数x
y 2
交于点A ,从A 向x 轴、y 轴分别作垂线,所构成的正方形的面积为4。

①分别求出正比例函数与反比例函数的解析式。

②求出正、反比例函数图象的另外一个交点坐标。

③求△ODC 的面积。

D
x
y
B A
O
C
综合应用创新 (一)学科内综合题
如图,Rt △ABO 的顶点A (a 、b )是一次函数y=x+m 的图象与反比例函数x
k y 的图象在第一象限的交点,且S △ABO =3。

①根据这些条件你能够求出反比例函数的解析式吗? 如果能够,请你求出来,如果不能,请说明理由。

②你能够求出一次函数的函数关系式吗?如果能,请你求出来,如果不能,请你说明理由。

(二)学科间渗透综合题(15分)
一封闭电路中,当电压是6V 时,回答下列问题:
(1)写出电路中的电流I(A)与电阻R(Ω)之间的函数关系式。

(2)画出该函数的图象。

(3)如果一个用电器的电阻是5Ω,其最大允许通过的电流为1A ,那么只把这个用电器接在这个封闭电路中,会不会烧坏?试通过计算说明理由。

(三)综合创新应用题(16分)
如图所示是某个函数图象的一部分,根据图象回答下列问题:
1)这个函数图象所反映的两个变量之间是怎样的函数关系?
2)请你根据所给出的图象,举出一个合乎情理且符合图象所给出的情形的实际例子。

3)写出你所举的例子中两个变量的函数关系式,并指出自变量的取值范围。

4)说出图象中A点在你所举例子中的实际意义。

(四)中考模拟题(9分)
小明在某一次实验中,测得两个变量之间的关系如下表所示:
自变量x 1 2 3 4 12
因变量y
①这两个变量之间可能是怎样的函数关系?你是怎样作出判断的?请你简要说明理由。

②请你写出这个函数的解析式。

③表格中空缺的数值可能是多少?请你给出合理的数值。

参考答案
教材跟踪训练 一、填空题 1.反比例函数x y 60
=; 2. 反比例函数v
t 300
=
; 3. 正比例函数y =-2x , 反比例函数x
y 2
-=
二、选择题
1.选择D 。

因为y 与x 成反比例函数关系,三角形的底与高都必须大于0,所以x >0的图象在第一象限。

2.选择C 。

因为m=ρV ,当V =30时,m =30ρ,故为正比例函数。

3.选择D 。

其中S 1=S 2=S 3=|k| 三、解答题
1. 1)由图象可知:4×12=48,因此蓄水池为48m 3。

2)设V =
t k ,由上题可知k =48,则函数V 与t 之间的函数关系式为V =t
48
3)当t =6时,V=48÷6=8,即若要6h 排完水,每小时的排水量为8m 3。

4)当V =5时,t =48÷5=,即若每小时排水5m 3,那要小时将水排完。

2. 1)由正方形面积可以知道反比例函数的解析式是x
y 4
=
,且A (), 正比例函数的解析式是y =x 。

2)通过解由正比例函数与反比例函数的解析式组成的方程组可得D (-2,-2),也可以由反比例函数的中心对称性得到。

3)根据△ODC 与△OAC 为同底等高的三角形,所以它们面积相等,△OAC 的面积为2,所以△ODC 的面积也为2平方单位。

综合应用创新 (一)学科内综合题
1.由△OAB 的面积为3,可以求出反比例函数的系数为6,所以函数解析式为
x
y 6
=
2.根据这些条件不足以求出一次函数的关系式。

由于点A 的坐标并不确定,所以无法确定一次函数中的m ,也就不能确定一次函数的关系式。

实际上一次函数与反比例函数的交点以及坐标原点所构成的三角形的面积应该是一个定值,从这点也可以看出一次函数的解析式不是唯一的。

(二)学科间的渗透综合题 1. R
I 6
=
2. 函数图象略
3. 当R=5时,I =6÷5=(A )>1(A),因此直接接入会烧坏用电器。

(三)综合创新应用题
1)由一个分支可知:两个变量成反比例函数关系
2)例如:压力一定时压强与受力面积之间;路程一定时,速度与时间之间等。

3)注意自变量的范围在1~6之间
4)结合自己的例子,当自变量为2时,函数值为3即可。

(四)中考模拟题
1)反比例函数 2)x
y 12
= 3)近似于6与4即可。

相关文档
最新文档