线段的垂直平分线练习题与角平分线练习题.doc
5.3线段的垂直平分线性质和角平分线性质(基础题)
![5.3线段的垂直平分线性质和角平分线性质(基础题)](https://img.taocdn.com/s3/m/eb0282f7d1f34693dbef3e4c.png)
线段的垂直平分线性质一、选择题(共8小题)1、(2011•绍兴)如图,在△ABC中,分别以点A和点B为圆心,大于的AB的长为半径画孤,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC的周长为()A、7B、14C、17D、202、(2010•义乌市)如图,直线CD是线段AB的垂直平分线,P为直线CD上的一点,已知线段PA=5,则线段PB的长度为()A、6B、5C、4D、33、(2010•烟台)如图,等腰△ABC中,AB=AC,∠A=20°.线段AB的垂直平分线交AB于D,交AC于E,连接BE,则∠CBE等于()A、80°B、70°C、60°D、50°4、(2010•台湾)如图,直线CP是AB的中垂线且交AB于P,其中AP=2CP.甲、乙两人想在AB上取两点D、E,使得AD=DC=CE=EB,其作法如下:(甲)作∠ACP、∠BCP之角平分线,分别交AB于D、E,则D、E即为所求;(乙)作AC、BC之中垂线,分别交AB于D、E,则D、E即为所求.对于甲、乙两人的作法,下列判断何者正确()A、两人都正确B、两人都错误C、甲正确,乙错误D、甲错误,乙正确5、(2010•三明)如图,在Rt△ABC中,∠C=90°,∠B=30°.AB的垂直平分线DE交AB于点D,交BC于点E,则下列结论不正确的是()A、AE=BEB、AC=BEC、CE=DED、∠CAE=∠B6、(2010•巴中)如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()A、△ABC的三条中线的交点B、△ABC三边的中垂线的交点C、△ABC三条角平分线的交点D、△ABC三条高所在直线的交点7、(2009•钦州)如图,AC=AD,BC=BD,则有()A、AB垂直平分CDB、CD垂直平分ABC、AB与CD互相垂直平分D、CD平分∠ACB二、填空题(共12小题)8、(2010•黄石)如图,等腰三角形ABC中,已知AB=AC,∠A=30°,AB的垂直平分线交AC于D,则∠CBD的度数为_________°.9、(2009•泉州)如图,在△ABC中,BC边上的垂直平分线DE交边BC于点D,交边AB于点E.若△EDC的周长为24,△ABC与四边形AEDC的周长之差为12,则线段DE的长为_________.10、(2008•孝感)如图,AB=AC,∠BAC=120°,AB的垂直平分线交BC于点D,那么∠ADC=_________度.11、(2007•陕西)如图,∠ABC=50°,AD垂直且平分BC于点D,∠ABC的平分线BE交AD于点E,连接EC,则∠AEC 的度数是_________度.12、(2004•陕西)如图,有一腰长为5cm,底边长为4cm的等腰三角形纸片,沿着底边上的中线将纸片剪开,得到两个全等的直角三角形纸片,用这两个直角三角形纸片拼成的平面图形中有_________个不同的四边形.13、(2004•湖州)已知如图,在△ABC中,BC=8,AB的中垂线交BC于D,AC的中垂线交BC与E,则△ADE的周长等于_________.14、(2002•广西)如图,△ABC的周长为19cm,AC的垂直平分线DE交BC于D,E为垂足,AE=3cm,则△ABD的周长为_________cm.角的平分线性质1.如图,已知BQ是∠ABC的内角平分线,CQ是∠ACB的外角平分线,由Q出发,作点Q到BC、AC和AB的垂线QM、QN和QK,垂足分别为M、N、K,则QM、QN、QK的关系是.2.如图,在△ABC中,∠B=300,∠C=900,AD平分∠CAB,交CB于D,DE⊥AB于E,则∠BDE= = .3.如图,已知AB∥CD,PE⊥AB,PF⊥BD,PG⊥CD,垂足分别为E、F、G,且PF=PG=PE,则∠BPD= .4.如图,已知AB∥CD,0为∠CAB、∠ACD的平分线的交点.OE⊥AC,且OE=2,则两平行线AB、CD间的距离等于.5.已知Rt△ABC中,∠C=900,AD平分∠BAC交BC于D,若BC=32,且BD:CD=9:7,则D到AB边的距离为( ).(A)18 (B)16 (c)14 (D)126.如图,MP⊥NP,MQ为∠NMP的角平分线,MT=MP,连结TQ,则下列结论不正确的是( ).(A)TQ=PQ (B) ∠MQT=∠MQP (c) ∠QTN=900 (D) ∠NQT=∠MQT7.如图是一个平分角的仪器,其中AB=AD,BC=DC.将点A 放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是角平分线.说明它的道理.8.如图,AD是∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,且DB=DC.求证:BE=CF.9.如图,C、D是∠AOB平分线上的点,CE⊥OA于E,CF⊥OB于F.求证:∠CDE=∠CDF.10.如图,AD⊥DC,BC⊥DC:,E是DC上一点,AE平分∠DAB.(1)如果BE平分∠ABC,求证:点E是DC的中点;11.如图,∠C=900,AC=BC,AD是∠BAC的角平分线.求证:AC+CD=AB.。
线段的垂直平分线和角平分线重难点专练
![线段的垂直平分线和角平分线重难点专练](https://img.taocdn.com/s3/m/761c2a6abb1aa8114431b90d6c85ec3a86c28b7e.png)
专题02线段的垂直平分线和角平分线重难点专练(解析版)学校:___________姓名:___________班级:___________考号:___________一、单选题1.(2020·上海市曹杨第二中学附属学校八年级期中)如图,D 为BAC Ð的外角平分线上一点,过D 作DE AC ^于E ,DF AB ^交BA 的延长线于F ,且满足FDE BDC Ð=Ð,则下列结论:①CDE V ≌BDF V ;②CE AB AE =+;③BDC BAC Ð=Ð;④DAF CBD Ð=Ð.其中正确的结论有( ).A .1个B .2个C .3个D .4个【答案】D【分析】根据角平分线上的点到角的两边距离相等可得DE=DF ,再证明FDB EDC Ð=Ð,即可证明Rt △CDE 和Rt △BDF 全等;根据全等三角形对应边相等可得CE=BF ,利用“HL”证明Rt △ADE 和Rt △ADF 全等,可得AE=AF ,然后求出CE=AB+AE ;∠FDE 与∠BAC 都与∠FAE 互补,可得∠FDE=∠BAC ,于是可证BDC BAC Ð=Ð;利用外角定理得2∠DAF=∠ABC+∠ACB=∠ABD+∠DBC +∠ACB ,由Rt △CDE ≌Rt △BDF 可得∠ABD=∠DCE ,BD=DC ,故∠DBC=∠DCB ,于是可证明∠DAF=∠CBD .【详解】解:∵AD 平分∠CAF ,DE ⊥AC ,DF ⊥AB ,∴DE=DF ,DFB DEC Ð=Ð=90o∵FDE BDC Ð=Ð,∴FDB EDC Ð=Ð,在Rt △CDE 和Rt △BDF 中FDB CDE DFB DEC Ð=ÐìïÐ=Ðí,∴Rt △CDE ≌Rt △BDF ,故①正确;∴CE=BF ,在Rt △ADE 和Rt △ADF 中,,AD AD DE DF =ìí=î∴Rt △ADE ≌Rt △ADF ,∴AE=AF ,∴CE=AB+AF=AB+AE ,故②正确;∵DFA DEA Ð=Ð=90o ,∴∠EDF+∠FAE=180o ,∵∠BAC+∠FAE=180o ,∴∠FDE=∠BAC ,∵∠FDE=∠BDC ,∴∠BDC =∠BAC ,故③正确;∵∠FAE 是△ABC 的外角,∴2∠DAF=∠ABC+∠ACB=∠ABD+∠DBC +∠ACB ,∵Rt △CDE ≌Rt △BDF ,∴∠ABD=∠DCE ,BD=DC ,∴∠DBC=∠DCB ,∴2∠DAF=∠DCE +∠DBC +∠ACB=∠DBC +∠DCB=2∠DBC ,∴∠DAF=∠CBD ,故④正确;综上所述,正确的结论有①②③④共4个.故选:D .【点睛】要二次证明三角形全等.2.(2021·上海金山区·八年级期末)下列命题中,是假命题的是()A .两条直角边对应相等的两个直角三角形全等 ;B .每个命题都有逆命题;C .每个定理都有逆定理;D .在一个角的内部(包括顶点)且到角的两边距离相等的点,在这个角的平分线上.【答案】C【分析】根据全等三角形的判定,命题与定理及角平分线的判定等知识一一判断即可.【详解】解:A .两条直角边对应相等的两个直角三角形,符合两三角形的判定定理“SAS”;故本选项是正确;B 、每个命题都有逆命题,所以B 选项正确;C 、每个定理不一定有逆定理,所以C 选项错误;D 、在一个角的内部(包括顶点)且到角的两边距离相等的点,在这个角的平分线上,正确.故选C .【点睛】本题考查了全等三角形的判定,命题与定理以及角平分线的判定方法,熟练利用这些判定定理是解题关键.3.(2021·上海市康城学校八年级期末)下列命题的逆命题是真命题的是( ).A .若a b =,则a b=B .同位角相等,两直线平行C .对顶角相等D .若0a >,0ba >,则0a b +>【答案】B【分析】分别写出各选项中命题的逆命题,然后判断其真假即可.【详解】解:A 、逆命题为:若∣a ∣=∣b ∣,则a=b ,是假命题;B 、逆命题为:两直线平行,同位角相等,是真命题;故选:B.【点睛】本题考查了互逆命题的知识,会判断命题的真假,正确写出原命题的逆命题是解答的关键.4.(2021·上海八年级期末)下列命题中,是真命题的是()A.三角形的外角大于三角形的任何一个内角B.线段的垂直平分线上的任一点与该线段两个端点能构成等腰三角形C.三角形一边的两个端点到这边上的中线所在的直线的距离相等D.面积都相等的两个三角形一定全等【答案】C【分析】A、B、D均可举反例说明错误,C选项可构造图形证明.【详解】解:A.钝角三角形与钝角相邻的外角小于该角,原命题是假命题,故该选项不符合题意;B.如果该点在线段上,那么不能构成等腰三角形,原命题是假命题,故该选项不符合题意;C.当该中线为等腰三角形底边上的中线时,根据三线合一即可得出这两个端点到这边上的中线所在的直线的距离相等,当三角形不是等腰三角形或中线不是等腰三角形底边上的中线时,如图所示,AD为△ABC的中线,BF⊥AD,CE⊥AD,∵AD为△ABC的中线,∴BD=CD,∵BF⊥AD,CE⊥AD,∴∠BFD=∠CED=90°,∵∠ADB=∠EDC,∴△BDF≌△CDE(AAS),∴BF=CE,综上,三角形一边的两个端点到这边上的中线所在的直线的距离相等,原命题是真命题,故该选项符合题意;D.如果是一个钝角三角形和锐角三角形,某边相等且该边上的高相等,但它们不全等,原命题是假命题,故该选项不符合题意;故选:C.【点睛】本题考查判断命题的真假,主要考查三角形外角的性质,等腰三角形的性质和判定,垂直平分线的性质,全等三角形的判定与性质.说明一个命题是假命题只需要举一个反例,判断一个命题是真命题需要证明它.5.(2020·上海市曹杨第二中学附属学校八年级期中)下列定理中,没有逆定理的是().A.两直线平行,同旁内角互补B.线段垂直平分线上的任意一点到这条线段两个端点的距离相等C.等腰三角形两个底角相等D.同角的余角相等【答案】D【分析】把一个命题的条件和结论互换就得到它的逆命题.再分析逆命题是否为真命题.【详解】解:A、逆命题是:同旁内角互补,两直线平行,是真命题,故本选项不符合题意;B、逆命题是:到线段两个端点的距离相等的点在这条线段的垂直平分线上,是真命题,故本选项不符合题意;C、逆命题是:如果三角形有两个角相等,那么这个三角形是等腰三角形,是真命题,故本选项不符合题意;项符合题意.故选:D.【点睛】本题主要考查了互逆定理的知识,如果一个定理的逆命题是假命题,那这个定理就没有逆定理.6.(2019·上海全国·八年级课时练习)如图,在△ABC中,AD平分∠BAC,DE⊥AB 于E,ABCS V=15,DE=3,AB=6,则AC长是( )A.4B.5C.6D.7【答案】A【分析】根据角平分线上的点到角的两边的距离相等可得AC边上的高,再利用S△ABD+S△ACD=S△ABC,即可得解.【详解】解:作DF⊥AC于F,如图:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF=3,∵S△ABD+S△ACD=S△ABC,∴1163AC315 22´´+´´=,∴AC=4.故选:A.【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.7.(2020·上海闵行区·八年级期中)如图,在△ABC中,∠ACB=90°,CH⊥AB,垂足E ,那么下列结论中一定正确的是( )A .DA=DEB .AC=EC C .AH =EHD .CD =ED【答案】D【分析】根据题意可以分析出A 、B 、C 三个选项要成立同时成立,所以D 选项一定正确,可以通过证明()ACD AED AAS @V V ,验证D 选项正确.【详解】解:可以分析出A 、B 、C 选项任何一个成立,那么都可以得到CH 是AE 的垂直平分线,那么就可以推出其他两个选项也都成立,但这是不可能的,所以A 、B 、C 都不一定正确,D 选项一定正确,证明如下:∵//DE BC ,∴AED ABC Ð=Ð,∵CH AB ^,∴90ABC BCH Ð+Ð=°,∵90ACB Ð=°,∴90ACD BCH Ð+Ð=°,∴ABC ACD AED Ð=Ð=Ð,∵AD 平分BAC Ð,∴CAD EAD Ð=Ð,在ACD △和AED V 中,CAD EAD ACD AED AD AD Ð=ÐìïÐ=Ðíï=î,∴()ACD AED AAS @V V ,∴CD ED =.本题考查全等三角形的性质和判定,垂直平分线的性质,解题的关键是掌握这些性质定理进行证明.8.(2019·上海市市西初级中学八年级期末)下列命题中,逆命题是真命题的是( )A .全等三角形的对应角相等;B .同旁内角互补,两直线平行;C .对顶角相等;D .如果0,0a b >>,那么0a b +>【答案】B【分析】先分别写出各命题的逆命题,再分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】解:A.全等三角形的对应角相等的逆命题为对应角相等的三角形全等是假命题,所以A 选项不符合题意;B.同旁内角互补,两直线平行的逆命题为两直线平行,同旁内角互补是真命题,所以B 选项符合题意;C.“对顶角相等”的逆命题是“相等的角是对顶角”是假命题,所以C 选项不符合题意;D. 如果0,0a b >>,那么0a b +>的逆命题为如果0a b +>,那么0,0a b >>是假命题,所以D 选项不符合题意.故选:B .【点睛】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.9.(2019·上海七年级期末)如图,下面是利用尺规作∠AOB 的角平分线OC 的作法,在用尺规作角平分线过程中,用到的三角形全等的判定方法是( )A .ASAB .SASC .SSSD .AAS如图,根据题意可得:OE=OD,EG=DG,OG=OG,进一步即可根据SSS判定△OEG≌△ODG,可得∠BOC=∠AOC,从而可得答案.【详解】解:如图,由作图可知:OE=OD,EG=DG,OG=OG,所以△OEG≌△ODG(SSS),所以∠BOC=∠AOC,即OC是∠AOB的平分线.所以用到的三角形全等的判定方法是SSS.故选:C.【点睛】本题考查了尺规作角平分线以及全等三角形的判定与性质,属于基本题型,正确理解题意、熟练掌握基础知识是解题的关键.10.(2020·上海市静安区实验中学八年级课时练习)如果三角形二条边的中垂线的交点在第三条边上,那么,这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形【答案】A【分析】根据题意,画出图形,用线段垂直平分线的性质结合等腰三角形的性质,三角形内角和定理解答.【详解】如图,CA、CB的中点分别为D、E,CA、CB的垂直平分线OD、OE相交于点O,且点O落在AB边上,连接CO,∵OD 是AC 的垂直平分线,∴OC=OA ,∠A=∠ACO ,同理OC=OB ,∠B=∠BCO ,∵∠A+∠ACO+∠B+∠BCO=180°,∴∠ACO +∠BCO=12´180°=90°,∴∠C 是直角.故选:A .【点睛】本题主要考查了线段的垂直平分线的性质,等腰三角形的性质,三角形内角和定理.熟记线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.11.(2020·上海市云岭实验中学八年级月考)如图,已知ABC V ,求作一点P ,使P 点到CAB Ð的两边的距离相等,且PA PB =.下列确定P 点的方法正确的是( )A .P 为CAB Ð,ABC Ð两角平分线的交点B .P 为CAB Ð的平分线与AB 的垂直平分线的交点C .P 为AC ,AB 两边上的高的交点D .P 为AC ,AB 两边的垂直平分线的交点【答案】B【分析】根据角平分线及线段垂直平分线的判定定理作答.【详解】∵P 点到CAB Ð的两边的距离相等,∴P 在CAB Ð的平分线上.∵PA PB =,∴P 在AB 的垂直平分线上.即P 为CAB Ð的平分线与AB 的垂直平分线的交点.故选:B .【点睛】线及线段垂直平分线的性质是解答此题的关键.12.(2019·上海全国·八年级课时练习)如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在( )A.△ABC的三条中线的交点B.△ABC三边的中垂线的交点C.△ABC三条角平分线的交点D.△ABC三条高所在直线的交点.【答案】C【分析】由于凉亭到草坪三条边的距离相等,所以根据角平分线上的点到边的距离相等,可知是△ABC三条角平分线的交点.由此即可确定凉亭位置.【详解】解:∵凉亭到草坪三条边的距离相等,∴凉亭选择△ABC三条角平分线的交点.故选:C.【点睛】本题主要考查的是角平分线的性质在实际生活中的应用.主要利用了利用了角平分线上的点到角两边的距离相等.13.(2020·上海虹口区·九年级二模)已知在ABC中,小明按照下列作图步骤进行尺规作图(示意图与作图步骤如表),那么交点O是△ABC的()示意图作图步骤(1)分别以点B、C为圆心,大于12BC长为半径作圆弧,两弧分别交于点M、N,联结MN 交BC于点D;(2)分别以点A、C为圆心,大于12AC长为半径作圆弧,两弧分别交于点P、Q,联结PQ 交AC于点E;(3)联结AD、BE,相交于点OA .外心B .内切圆的圆心C .重心D .中心【答案】C【分析】根据尺规作图得到AD 、BE 是△ABC 的中线,根据重心的概念判断即可.【详解】解:由尺规作图可知,MN 、PQ 分别是线段BC 、AC 的垂直平分线,∴点D 、E 分别是BC 、AC 的中点,∴AD 、BE 是△ABC 的中线,∴点O 是△ABC 的重心,故选:C .【点睛】本题考查的是中线的尺规作图及三角形重心的概念:三角形的重心是三角形三条中线的交点,掌握三角形重心的概念是解题的关键.14.(【新东方】初中数学1234初二上)如图在ABC V 中,ABC Ð和ACB Ð的平分线交于点G ,过点G 作//EF BC 交AB 于E ,交AC 于F ,过点G 作GD AC ^于D ,下列四个结论:其中正确的结论有( )个.①EF BE CF =+;②90BGC A Ð=°+Ð;③点G 到ABC V 各边的距离相等;④设GD m =,AE AF n +=,则AEF S mn =△;⑤AEF V 的周长等于+AB AC 的和.A .1B .2C .3D .4【答案】C【分析】①根据∠ABC 和∠ACB 的平分线相交于点G 可得出∠EBG =∠CBG ,∠BCG =∠FCG ,再由EF ∥BC 可知∠CBG =∠EGB ,∠BCG =∠CGF ,故可得出BE =EG ,GF =CF ,由此可得出结论;②先根据角平分线的性质得出∠GBC +∠GCB =12(∠ABC +∠ACB ),再由三角形内角和定理即可得出结论;③根据三角形角平分线的性质即可得出结论;④连接AG ,由三角形的面积公式即可得出结论;⑤根据BE=EG,GF=CF,进行等量代换可得结论.【详解】解:①∵∠ABC和∠ACB的平分线相交于点G,∴∠EBG=∠CBG,∠BCG=∠FCG.∵EF∥BC,∴∠CBG=∠EGB,∠BCG=∠CGF,∴∠EBG=∠EGB,∠FCG=∠CGF,∴BE=EG,GF=CF,∴EF=EG+GF=BE+CF,故①正确;②∵∠ABC和∠ACB的平分线相交于点G,∴∠GBC+∠GCB=12(∠ABC+∠ACB)=12(180°-∠A),∴∠BGC=180°-(∠GBC+∠GCB)=180°-12(180°-∠A)=90°+12∠A,故②错误;③∵∠ABC和∠ACB的平分线相交于点G,∴点G也在∠BAC的平分线上,∴点G到△ABC各边的距离相等,故③正确;④连接AG,作GM⊥AB于M,如图所示:∵点G是△ABC的角平分线的交点,GD=m,AE+AF=n,∴GD=GM=m,∴S△AEF=12AE•GM+12AF•GD=12(AE+AF)•GD=12nm,故④错误.⑤∵BE=EG,GF=CF,∴AE+AF+EF=AE+AF+EG+FG=AE+AF+BE+CF=AB+AC,即△AEF的周长等于AB+AC的和,故⑤正确,故选:C.【点睛】本题考查了等腰三角形的判定与性质、角平分线的性质、平行线的性质、三角形内角和定理等知识;熟练掌握角平分线的性质、三角形内角和定理及三角形内心的性质是解题的关键.15.(【新东方】初中数学1222初二上)如图,在ABC V 中,45,ABC AD BEÐ=°,分别为,BC AC 边上的高,,AD BE 相交于点F ,连接CF ,则下列结论:①BF AC =;②FCD DAC Ð=Ð;③CF AB ^;④若2BF EC =,则FDC △周长等于AB 的长.其中正确的有( )A .①②B .①③④C .①③D .②③④【答案】B【分析】证明△BDF ≌△ADC ,可判断①;求出∠FCD =45°,∠DAC <45°,延长CF 交AB 于H ,证明∠AHC =∠ABC +∠FCD =90°,可判断③;根据①可以得到E 是AC 的中点,然后可以推出EF 是AC 的垂直平分线,最后由线段垂直平分线的性质可判断④.【详解】解:∵△ABC 中,AD ,BE 分别为B C 、AC 边上的高,∠ABC =45°,∴AD =BD ,∠DAC 和∠FBD 都是∠ACD 的余角,而∠ADB =∠ADC =90°,∴△BDF ≌△ADC (ASA ),∴BF =AC ,FD =CD ,故①正确,∵∠FDC =90°,∴∠DFC =∠FCD =45°,∵∠DAC =∠DBF <∠ABC=45°,∴∠FCD ≠∠DAC ,故②错误;延长CF 交AB 于H ,∵∠ABC =45°,∠FCD =45°,∴∠AHC =∠ABC +∠FCD =90°,∴CH⊥AB,即CF⊥AB,故③正确;∵BF=2EC,BF=AC,∴AC=2EC,∴AE=EC=12 AC,∵BE⊥AC,∴BE垂直平分AC,∴AF=CF,BA=BC,∴△FDC的周长=FD+FC+DC=FD+AF+DC=AD+DC=BD+DC=BC=AB,即△FDC的周长等于AB,故④正确,综上:①③④正确,故选B.【点睛】本题考查了全等三角形的性质与判定,也考查了线段的垂直平分线的性质与判定,也利用了三角形的周长公式解题,综合性比较强,对学生的能力要求比较高.<二、解答题16.(2020·上海市曹杨第二中学附属学校八年级期中)如图,在ABCV中,2ACB BÐ=Ð,BACÐ平分线AO交BC于点D,点H为AO上一动点,过H作直线l AO^于H,分别交直线AB、AC、BC于点N、E、M.=;(1)当直线l经过点C时(如图2),求证:BN CD(2)当M是线段BC的中点时,写出线段CE和线段CD之间的数量关系,并证明;(3)请直接写出BN、CE和CD之间的数量关系.【答案】(1)见解析;(2)CD=2CE,证明见解析;(3)当点M在线段BC上时,CD=BN+CE;当点M在BC的延长线上时,CD=BN-CE;当点M在CB的延长线上时,CD=CE-BN.【分析】(1)连接ND,先由已知条件证明DN=DC,再证明BN=DN即可;(2)当M是BC中点时,CE和CD之间的等量关系为CD=2CE,过点C作CN'⊥AO交AB于N'.过点C作CG∥AB交直线l于G,再证明△BNM≌△CGM问题得证;(3)BN、CE、CD之间的等量关系要分三种情况讨论:①当点M在线段BC上时;②当点M在BC的延长线上时;③当点M在CB的延长线上时;由(2)即可得出结论.【详解】(1)证明:连接ND,如图2所示:∵AO平分∠BAC,∴∠BAD=∠CAD,∵直线l⊥AO于H,∴∠AHN=∠AHE=90°,∴∠ANH=∠AEH ,∴AN=AC ,∴NH=CH ,∴AH 是线段NC 的中垂线,∴DN=DC ,∴∠DNH=∠DCH ,∴∠AND=∠ACB ,∵∠AND=∠B+∠BDN ,∠ACB=2∠B ,∴∠B=∠BDN ,∴BN=DN ,∴BN=DC ;(2)解:当M 是BC 中点时,CE 和CD 之间的数量关系为CD=2CE ,理由如下:过点C 作CN'⊥AO 交AB 于N',过点C 作CG ∥AB 交直线l 于点G ,如图3所示:由(1)得:BN'=CD ,AN'=AC ,AN=AE ,∴∠ANE=∠AEN ,NN'=CE ,∵CG ∥AB ,∴∠ANE=∠CGE ,∠B=∠BCG ,∴∠CGE=∠AEN ,∴CG=CE ,∵M 是BC 中点,∴BM=CM ,在△BNM 和△CGM 中,B BCG BM CM NMB GMC Ð=Ðìï=íïÐ=Ðî∴△BNM ≌△CGM (ASA ),∴BN=CG,∴CD=BN'=NN'+BN=2CE;(3)解:BN、CE、CD之间的等量关系:当点M在线段BC上时,CD=BN+CE;理由如下:过点C作CN'⊥AO交AB于N',如图3所示:由(2)得:NN'=CE,CD=BN'=BN+CE;当点M在BC的延长线上时,CD=BN-CE;理由如下:过点C作CN'⊥AO交AB于N',如图4所示:同(2)得:NN'=CE,CD=BN'=BN-CE;当点M在CB的延长线上时,CD=CE-BN;理由如下:过点C作CN'⊥AO交AB于N',如图5所示:同(2)得:NN'=CE,CD=BN'=CE-BN.【点睛】本题是三角形综合题目,考查了全等三角形的判定与性质,线段垂直平分线的性质,等腰三角形的判定与性质、平行线的性质等知识;熟练掌握等腰三角形的判定与性质是解17.(2020·上海同济大学附属实验中学)如图,△ABC 中,AB =AC ,∠BAC +∠BDC=180°.(1)求证:AD 为∠BDC 的平分线;(2)若∠DAE=12∠BAC ,且点E 在BD 上,直接写出BE 、DE 、DC 三条线段之间的等量关系_______.【答案】(1)见解析;(2)DE= B E+DC.【分析】(1)过A 作AG ⊥BD 于G ,AF ⊥DC 于F ,先证明∠BAG=∠CAF ,然后证明△BAG ≌△CAF得到AG=AF ,最后由角平分线的判定定理即可得到结论;(2)过A 作∠CAH=∠BAE ,证明△EAD ≌△HAD ,得到AE=AH ,再证明△EAB ≌△HAC 中,即可得出BE 、DE 、DC 三条线段之间的等量关系.【详解】证明:(1)如图1,过A 作AG ⊥BD 于G ,AF ⊥DC 于F ,∵AG ⊥BD ,AF ⊥DC ,∴∠AGD=∠F=90°,∴∠GAF+∠BDC=180°,∵∠BAC+∠BDC=180°,∴∠GAF=∠BAC ,∴∠GAF-∠GAC=∠BAC-∠GAC ,∴∠BAG=∠CAF ,在△BAG 和△CAF 中90AGB F BAG CAFAB AC ìÐ=Ð=ïÐ=Ðíï=îo∴△BAG ≌△CAF (AAS ),∴AG=AF ,∴∠BDA=∠CDA ,(2)BE 、DE 、DC 三条线段之间的等量关系是DE= B E+DC ,理由如下:如图2,过A 作∠CAH=∠BAE 交DC 的延长线于H ,∵∠DAE=12∠BAC ,∴∠DAE=∠BAE+∠CAD ,∵∠CAH=∠BAE ,∴∠DAE=∠CAH+∠CAD=∠DAH ,在△EAD 和△HAD 中EAD HAD AD ADADE ADH Ð=Ðìï=íïÐ=Ðî,∴△EAD ≌△HAD (ASA ),∴DE=DH ,AE=AH ,在△EAB 和△HAC 中AB AC BAE CAH AE AH =ìïÐ=Ðíï=î,∴△EAB ≌△HAC (SAS ),∴BE=CH ,∴DE=DH=DC+CH=DC+BE ,∴DE=DC+BE.故答案是:DE=DC+BE.【点睛】本题考查了全等三角形的性质和判定,角平分线的判定定理,线段和差的证明,掌握截长法和补短法是解答此题的突破口.18.(2019·上海外国语大学秀洲外国语学校八年级期中)如图,A、B两村在一条小河的同一侧,要在河边建一水厂向两村供水(1)若要使自来水厂到两村的距离相等,厂址应选在哪个位置?(2)若要使自来水厂到两村的输水管用料最省,厂址应选在哪个位置?请用尺规作图,将上述两种情况下的自来水厂厂址分别在图(1)(2)中标出,并保留作图痕迹.【答案】(1)见解析;(2)见解析.【分析】(1)作出AB的垂直平分线与河岸交于点P,则点P满足到AB的距离相等.(2)作出点A关于河岸的对称点C,连接CB,交于河岸于点P,连接AP,则点P能满足AP+PB最小.【详解】(1)根据垂直平分线的性质:垂直平分线上的点到线段两个端点的距离相等知,作出AB的垂直平分线与河岸交于点P,则点P满足到AB的距离相等.(2)作出点A关于河岸的对称点C,连接CB,交于河岸于点P,连接AP,则点P能满足AP+PB最小,理由:AP=PC,三角形的任意两边之和大于第三边,当点P在CB的连线上时,CP+BP是最小的.【点睛】本题考查了垂直平分线的性质,轴对称的性质和距离之和最短问题,熟悉性质及距离之和最短问题的作法是关键.19.(2019·上海外国语大学附属大境初级中学八年级月考)如图,在△ABC中,如果BD,CE分别是∠ABC,∠ACB的平分线且他们相交于点P,设∠A=n°.(1)求∠BPC的度数(用含n的代数式表示),写出推理过程.(2)当∠BPC=125°时,∠A= .(3)当n=60°时,EB=7,BC=12,DC的长为.【答案】(1)∠BPC=90°+12n,推理过程见解析;(2)70°;(3)5.【分析】(1)根据角平分线的性质得∠ABC=2∠PBC,∠ACB=2∠PCB,再根据三角形内角和定理求得∠A=-180°+2∠BPC,即可求证∠BPC=90°+12 n;(2)根据(1)可知∠BPC=90°+12n,把∠BPC=125°代入原式求出n即为∠A的度数;(3)当n=60°时,即可求出∠BPC=120°,作辅助线在CB上截取CG=CD,可证出△CPG≌△PCD(SAS),即可得出∠DPO=∠GPC,PD=PG,再可证出△BEP≌△BGP,即可得出BE=BG,即可求出DC.【详解】解:(1)∵DB 、CE 分别为∠ABC ,∠ACB 的平分线,∴∠ABC=2∠PBC ,∠ACB=2∠PCB.∵∠A=180°-(∠ABC+∠ACB),∴∠A=180°-2(∠PBC+∠PCB),∴∠A=180°-2(180°-∠BPC),∴∠A=-180°+2∠BPC ,∴2∠BPC=180°+∠A ,∴∠BPC=90°+ 12∠A,∴∠BPC=90°+12n (2)由(1)知∠BPC=90°+12∠A ∴当∠BPC=125°时,∠A =2×(125°-90°)= 70°;(3)在CB 上截取CG=CD ,连接GP ,Q CE 平分BCA Ð∴∠GCP=∠PCD ,在△PCD 和△PCG 中,CD CG GCP PCD PC PC ìïÐÐíïî===∴△PCD ≌△CGP (SAS ),∴∠GPC=∠CPD ,PG=PD ,由∠BPG+∠GPC=120°,又∵∠BPG+2∠GPC=180°,解得:∠BPG=∠GPC=∠FPC=60°在△BEP 和△BGP 中,EBP GBP BP BPBPE BPG ÐÐìï=íïÐÐî== ∴△BEP ≌△BGP (ASA ),∴BE=BG ,∴CG=BC-BG=BC-BE=12-7=5∴CD=CG=5.【点睛】本题考查了三角形的内角和定理,角平分线的定义以及三角形全等的判定与性质,难度较大.20.(2021·上海浦东新区·七年级期末)如图,AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,垂足分别为点E ,F ,DB =DC .(1)求证:BE =CF ;(2)如果BD//AC ,∠DAF =15°,求证:AB =2DF .【答案】(1)见解析;(2)见解析.【分析】(1)证明DE DF =,90E DFC Ð=Ð=°;进而证明 Rt BDE Rt DFC D @D ,即可解决问题;(2)根据平行线的性质和含30°的直角三角形的性质解答即可.【详解】证明:(1)AD Q 平分BAC Ð,DE AB ^, DF AC ^,DE DF \=,90BED DFC Ð=Ð=°;在Rt BDE D 和Rt DFC D 中,BD CD DE DF =ìí=î,Rt BDE Rt DFC(HL)\D @D,BE CF \=;(2)AD Q 平分BAC Ð,15DAF Ð=°,30BAC \Ð=°,BAD DAF Ð=Ð,//BD AC Q ,30DBE BAC \Ð=Ð=°,DAF BDA Ð=Ð,BAD BDA \Ð=Ð,AB BD \=,在Rt BDE D 中,30DBE Ð=°,2BD DE \=,2AB DE \=,AD Q 平分BAC Ð,DE AB ^, DF AC ^,DE DF \=,2AB DF \=.【点睛】本题主要考查了全等三角形的判定、角平分线的性质及其应用等几何知识点,熟悉相关性质是解题的关键.21.(2021·上海金山区·八年级期末)已知:如图,ABC D 中,,,AB AC BD CE =分别是,AC AB 上的中线,,BD CE 相交于点O ,联结OA DE ,.求证:(1)OB OC =;(2)OA 垂直平分DE .【答案】(1)见解析;(2)见解析.【分析】(1)利用三角形的全等,得到一对对应角,后利用等角对等边证明即可;(2)逆用线段垂直平分线的判定证明即可.【详解】(1)∵,,AB AC BD CE =分别是,AC AB 上的中线,∴BE=CD ,∠EBC=∠DCB ,∵BC=CB ,∴△EBC ≌△DCB ,∴∠ECB=∠DBC ,∴OB=OC ;(2)设AO 与DE 的交点为F ,∵△EBC ≌△DCB ,∴EC=DB ,∵OB=OC ;∴OD=OE ,∴点O 在线段DE 的垂直平分线上,∵AE=AD ,∴点A 在线段DE 的垂直平分线上,∴直线AO 是线段DE 的垂直平分线,∴OA 垂直平分DE .【点睛】本题考查了等腰三角形的性质,三角形的全等,中线的定义,垂直平分线的判定和性质,同一个三角形中,等角对等边,熟练掌握线段垂直平分线的逆定理是解题的关键.22.(2019·上海七年级单元测试)如图,直线AB 、CD 交于点O ,∠AOM =90°(1)如图1,若OC 平分∠AOM ,求∠AOD 的度数;(2)如图2,若∠BOC =4∠NOB ,且OM 平分∠NOC ,求∠MON 的度数【答案】(1)135°;(2)54°【分析】(1)根据角平分线的定义求出∠AOC =45°,然后根据邻补角的定义求解即可;(2)设∠NOB =x °,∠BOC =4x °,根据角平分线的定义表示出∠COM =∠MON =12∠CON ,再根据∠BOM 列出方程求解x ,然后求解即可.【详解】解(1)∵∠AOM =90°,OC 平分∠AOM ,∴∠AOC =12∠AOM =12×90°=45°,∵∠AOC +∠AOD =180°,∴∠AOD =180°-∠AOC =180°-45°=135°,即∠AOD 的度数为135°;(2)∵∠BOC =4∠NOB∴设∠NOB =x °,∠BOC =4x °,∴∠CON =∠COB -∠BON =4x °-x °=3x °,∵OM 平分∠CON ,∴∠COM =∠MON =12∠CON =32x °,∵∠BOM =32x +x =90°,∴x =36°,∴∠MON =32x °=32×36°=54°,即∠MON 的度数为54°.【点睛】本题考查了对顶角、邻补角,角平分线的定义,此类题目熟记概念并准确识图是解题的关键,(2)难点在于根据∠BOM 列出方程.23.(2021·上海八年级期末)作图:已知ABC V 和线段r ,请在ABC V 内部作点P ,使得点P 到AC 和BC 的距离相等,并且点A 到点P 的距离等于定长r .(不写作法,保留痕迹)【答案】图见解析.【分析】根据题意点P 到AC 和BC 的距离相等,可知点P 在ACB Ð的角平分线上,点A 到点P 的距离等于定长r ,可知点P 在以点A 为圆心,以定长r 为半径的圆上,由此作图即可.【详解】如图,先作ACB Ð的角平分线,再以点A 为圆心,以定长r 为半径作圆弧,圆弧与ACB Ð角平分线的交点即为点P .【点睛】本题主要考查角平分线的画法,属于基础题,需要有一定的画图能力,熟练掌握角平分线的画法是解题的关键.24.(2020·上海市松江区民办茸一中学八年级月考)已知:如图,在△EBC 中,作∠EBA =∠C ,AB 交EC 于点A ,作BD 平分∠ABC 交AC 于点B ,F 是BD 上一点,联结EF ,点G 是EF 上一点,且有GB =GD .求证:EF ⊥BD .【答案】证明见解析.【分析】先利用三角形外角的性质和角平分线的定义得出EBD EDB Ð=Ð,从而得出BE DE =,再根据GB =GD 可得E 、G 在BD 的垂直平分线上,从而可得结论.证明:∵BD 平分∠ABC ,∴ABD DBC Ð=Ð,∵EBA C Ð=Ð,∵,EBD ABD EDB D EB C BC A Ð+=ÐÐ=Ð+ÐÐ,∴EBD EDB Ð=Ð,∴BE DE =,∵GB =GD ,∴E 、G 在BD 的垂直平分线上,即EF ⊥BD .【点睛】本题考查线段垂直平分线的判定,三角形外角的性质,等角对等边.理解到线段两端距离相等的点到线段的垂直平分线上是解题关键.25.(2019·上海同济大学实验学校八年级月考)已知点P 是ABC V 的BAC Ð平分线上一点,连接PB ,PC .(1)如图1,若AB AC =,证明:PB PC=(2)如图2,若PB PA =,45ABC Ð=°,2Ð=ÐPBC PAC ,证明:BP BC =(3)如图,若AB BC AC ==,点E 是AC 的中点,当PC PE +的最小时PE CP 值为______.【答案】(1)见解析;(2)见解析;(3)12【分析】(1)要求证PB PC =,根据全等三角形的判定证明≌BAP CAP △△即可;(2)根据等腰三角形的性质以及角平分线的性质可得出3ABC ABP Ð=Ð,可得:30CBP Ð=°,要证BP BC =,继续做辅助线求证三角形全等,即可求解;(3)根据AB BC AC ==可知ABC V 是等边三角形,由题意PC PE +的最小时,即BE 为直线时,根据正三角形重心的性质求解.(1)证明:∵AP 平分BAC Ð∴BAP CAP Ð=Ð∴在BAP △和CAP V 中AB AC BAP CAP AP AP =ìïÐ=Ðíï=î∴≌BAP CAP △△(SAS )∴PB PC=(2)令2Ð=PBC α,PAC a Ð=∵45ABC Ð=°∴452Ð=-ABP α°∵AP BP=∴452Ð=Ð=-ABP BAP α°∵AP 平分BAC Ð∴BAP PAC Ð=Ð即452-=αα°15a =°∴15Ð=Ð==ÐBAP PAC ABP °,30CBP Ð=°在75=Rt KPB △°作PK AC ^于G连BG∵有等腰ABP△∴PK ^平分AB∴AG BG =,Ð=ÐBAC APG∵30Ð==Ð+ÐBAC ABP GBP °∴15Ð=GBP °∴在Rt AKG △中,60Ð=AGK °Rt KGB △中,60Ð=KGB °∴60BGC Ð=°∴BG 平分ÐKGC作BQ AC ^延长线于Q ,∴=BK BQ∴在Rt CBQ V 中,30Ð==Ð+ÐGBC GBC CBQ°∵15Ð=GBC °∴15Ð=CBQ °在Rt QBC V 中75Ð=BCQ °∴在BKP △和QBC V 中KPB BCQ KBP CBQBK BQ Ð=ÐìïÐ=Ðíï=î∴≌BKP QBC△△∴BP BC=成立得证.(3)∵AB BC AC ==,∴ABC V 是等边三角形,∵AP 是BAC Ð的平分线,∴延长AP 交BC 于点D ,则AD 是BC 垂直平分线,∴PB CP =,∴PC PE +最小即为PB PE +最小,∴BE 为一条线段时PB PE +最小,∵BE 、AD 是BAC V 的中线交于点P ,∴P 为BAC V 的重心,。
线段的垂直平分线和角平分线专题训练及答案
![线段的垂直平分线和角平分线专题训练及答案](https://img.taocdn.com/s3/m/c35b951cd4d8d15abe234ef0.png)
线段的垂直平分线和角平分线专题训练及答案一、选择题(本大题共7小题,共21.0分)1.如图是一块三角形草坪,现要在草坪上建一个凉亭供大家休息.若要使凉亭到草坪三条边的距离都相等,则凉亭应建在三角形草坪()A. 三条角平分线的交点处B. 三条中线的交点处C. 三条高的交点处D. 三条边的垂直平分线的交点处2.下列说法错误的是()A. 等腰三角形底边上的高所在的直线是它的对称轴B. 等腰三角形底边上的中线所在的直线是它的对称轴C. 等腰三角形顶角的平分线所在的直线是它的对称轴D. 等腰三角形一个内角的平分线所在的直线是它的对称轴3.如图,在Rt△ABC中,∠A=90°,BD是角平分线,DE垂直平分BC,AD=3,则AC的长为()A. 9B. 5C. 4D. 3√34.如图,在△ABC中,AB的垂直平分线交BC于D,AC的垂直平分线交BC于E,∠BAC=124°,则∠DAE的度数为()A. 68°B. 62°C. 66°D. 56°5.如图,在△ABC中,CD平分∠ACB,交AB于点D,DE⊥AC于点E,若BC=2m+6,DE=m+3,则△BCD的面积为()A. 2m2−18B. 2m2+12m+18C. m2+9D. m2+6m+96.如图,P是∠BAC平分线上的点,PM⊥AB于M,PN⊥AC于N,则下列结论:①PM=PN;②AM=AN;③△APM≌△APN;④∠PAN+∠APM=90°.其中正确结论的个数是()A. 4个B. 3个C. 2个D. 1个7.如图所示,在△ABC中,AB=AC,AD是BC边上的高线,E,F是AD的三等分点,若△ABC的面积为12,则图中△BEF的面积为()A. 2B. 3C. 4D. 6二、解答题(本大题共10小题,共80.0分)8.直线OA,OB表示两条相互交叉的公路,点M,N表示两个蔬菜种植基地.现要建一个蔬菜批发市场P,要求它到两条公路的距离相等,且到两个蔬菜基地的距离也相等,请用尺规作图说明市场的位置.9.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠BAC,交BC于点D,DE⊥AB于点E.已知AB=10cm,求△DEB的周长.10.如图,已知AD是∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F,且BE=CF,试判断BD和CD的数量关系,并说明理由.11.如图,要在街道旁修建一个奶站,向居民区A,B提供牛奶.奶站应建在什么地方才能使A,B到它的距离相等?12.A,B,C这3个村庄的位置如图所示,每两个村庄之间有公路相连,村民希望共同投资建一个货运中转站,使中转站的位置到3个村庄的距离相等.请你利用尺规作图确定中转站的位置.13.如图,四边形ABCD为矩形台球桌面,现有一白球M和黑球N,应怎样去打白球M,才能使白球M撞击桌边AB后反弹击中黑球N?请你画出白球M经过的路线.14.如图,在△ABC中,AB=AC,M是BC的中点,D,E分别是AB,AC边上的点,且BD=CE.试说明MD=ME.15.如图,在Rt△ABC中,∠C=90°,BC=3.∠CAB的平分线交BC于点D,DE是AB的垂直平分线,垂足为E.(1)求∠B度数.(2)求DE的长.16.如图,已知∠ABC,射线BC上一点D.求作:等腰三角形PBD,使线段BD为等腰三角形PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等(保留作图痕迹,但不要求写作法).17.如图,在Rt△ABC中,∠ACB=90°.(1)请用直尺和圆规按下列步骤作图,保留作图痕迹:①作∠ACB的平分线,交斜边AB于点D;②过点D作AC的垂线,垂足为点E.(2)在(1)作出的图形中,若CB=4,CA=6,则DE=______.答案和解析1.【答案】A【解析】[分析]本题主要考查的是角平分线的性质在实际生活中的应用.由于凉亭到草坪三条边的距离相等,所以根据角平分线上的点到角两边的距离相等,可知是三角形三条角平分线的交点.由此即可确定凉亭位置.[详解]解:∵凉亭到草坪三条边的距离相等,∴凉亭应建在三角形草坪的三条角平分线的交点处.故选A.2.【答案】D【解析】[分析]本题考查了等腰三角形的性质,属于基础题,解题的关键是了解对称轴是一条直线,难度不大.根据等腰三角形性质分别判断后即可确定正确的选项.[详解]解:A.等腰三角形底边上的高所在的直线是对称轴,正确;B.等腰三角形底边上的中线所在的直线是对称轴,正确;C.等腰三角形顶角的平分线所在的直线是对称轴,正确;D.等腰三角形顶角的平分线所在的直线是对称轴,如果这个内角是底角,不一定是它的对称轴,错误.故选D.3.【答案】A【解析】[分析]根据角平分线性质得出AD=DE,证明Rt△ADB≌Rt△EDB(HL),得BE=AB,由DE 是BC的垂直平分线,得BC=2AB,所以∠C=30°,可得CD的长,从而得AC的长.本题考查了直角三角形的性质,线段垂直平分线的性质,角平分线性质的应用,注意:角平分线上的点到角两边的距离相等.[详解]解:∵BD是角平分线,DE⊥BC,∠A=90°,∴DE=AD=3,在Rt△ADB和Rt△EDB中,∵{AD=DEBD=BD,∴Rt△ADB≌Rt△EDB(HL),∴BE=AB,∵DE是BC的垂直平分线,∴CE=BE,∴BC=2AB,∴∠C=30°,∴CD=2DE=6,∴AC=CD+AD=6+3=9,故选:A.4.【答案】A【解析】[分析]根据三角形内角和定理求出∠B+∠C,根据线段垂直平分线的性质得到DA=DB,得到∠DAB=∠B,同理可得,∠EAC=∠C,结合图形计算,得到答案.本题考查的是线段的垂直平分线的性质、三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.[详解]解:∠B+∠C=180°−∠BAC=56°,∵AB的垂直平分线交BC于D,∴DA=DB,∴∠DAB=∠B,∵AC的垂直平分线交BC于E,∴EA=EC,∴∠EAC=∠C,∴∠DAE=∠BAC−(∠DAB+∠EAC)=124°−56°=68°.故选A.5.【答案】D【解析】[分析]过点D作DF⊥BC交CB的延长线于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据三角形面积公式列式,然后根据多项式乘多项式法则进行计算即可得解.本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质并作辅助线构造出BC边上的高线是解题的关键.[详解]解:如图,过点D作DF⊥BC交CB的延长线于F,∵CD平分∠ACB,DE⊥AC,∴DE=DF,∴△BCD的面积=12·BC·DF=12(2m+6)(m+3)=m2+6m+9.故选D.6.【答案】A【解析】[分析]利用角平分线的性质结合全等三角形的判定与性质分析得出答案.此题主要考查了角平分线的性质,全等三角形的判定与性质,正确得出△APM≌△APN 是解题关键.[详解]解:∵P是∠BAC平分线上的点,PM⊥AB于M,PN⊥AC于N,∴∠MAP=∠NAP,∠AMP=∠ANP=90°,PM=PN,故①正确在△APM和△APN中{∠MAP=∠NAP ∠AMP=∠ANP AP=AP,∴△APM≌△APN(AAS),故③正确,∴AM=AN,故②正确,∠APM=∠APN,∵∠PAN+∠APN=90°,∴∠PAN+∠APM=90°,故④正确,综上所述:正确的有4个.故选A.7.【答案】A【解析】[分析]本题考查了等腰三角形的性质及轴对称性质;利用对称发现并利用△ABD和△ACD的面积相等是正确解答本题的关键.由图,根据等腰三角形是轴对称图形知,△ABD和△ACD的面积相等,再根据点E、F,依此即可求解.是AD的三等分点,可得△BEF的面积为△ACD的面积的13[详解]解:∵在△ABC中,AB=AC,AD是BC边上的高,S△ABC=12,BC,S△ABD=6,∴BD=CD=12∵点E、F是AD的三等分点,AD,∴EF=13S△BEF=1S△ABD=2.2故选A.8.【答案】解:如图:P为所求做的点.【解析】本题考查了基本作图,理解角的平分线以及线段的垂直平分线的作图是关键.连接MN,先画出∠AOB的角平分线,然后再画出线段MN的中垂线.这两条直线的交点即为所求.9.【答案】解:∵AD平分∠BAC交BC于D,DE⊥AB,∠C=90°,∴CD=DE.又∵AD=AD,∴Rt△ACD≌△RtAED.∴AE=AC,∴△DEB的周长=DE+DB+EB=CD+DB+BE=BC+BE=AC+BE=AE+BE=AB=10cm.【解析】本题主要考查的是全等三角形的判定及性质,角平分线的性质等有关知识,由题意根据AD平分∠BAC交BC于D,DE⊥AB,∠C=90°,得到CD=DE,然后利用全等三角形的判定及性质得到AE=AC,最后利用三角形的周长公式进行求解即可.10.【答案】解:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∠E=∠DFC=90°.在△BED和△DFC中,DE=DF,∠E=∠DFC,BE=CF,∴△BED≌△DFC(SAS),∴BD=CD.【解析】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即对应边、对应角相等)是解题的关键.由角平分线的性质可得DE=DF,再结合条件可证明Rt△BED≌Rt△CFD,即可求得BE=CF.11.【答案】解:连接AB,作AB的垂直平分线,与街道的交点为P,点P即为所求作的点.【解析】本题考查线段垂直平分线的性质,根据线段垂直平分线上的点到线段两端点的距离相等,可知此点P在AB的垂直平分线上即可解答,12.【答案】解:如图,【解析】此题主要考查了应用设计与作图,正确掌握线段垂直平分线的性质是解题关键.利用线段垂直平分线的性质进而得出AB,AC的垂直平分线进而得出交点,得出M即可.13.【答案】解:如图所示,作点N于AB的对称点N′,连接N′M,与AB相交于点O,连接MO,NO,就是白球路线.【解析】此题考查了轴对称作图,作点N于AB的对称点N′,连接N′M,与AB相交于点O,连接MO,NO,就是白球路线.14.【答案】证明:△ABC中,∵AB=AC,∴∠DBM=∠ECM.∵M是BC的中点,∴BM=CM.在△BDM和△CEM中,,∴△BDM≌△CEM(SAS),∴MD=ME.【解析】本题主要考察等腰三角形的性质和全等三角形的判定与性质.根据等腰三角形的性质可证∠DBM=∠ECM,可证△BDM≌△CEM,可得MD=ME,即可解题.15.【答案】解:(1)∵DE是AB的垂直平分线,∴DA=DB,∴∠B=∠DAB.∵AD平分∠CAB,∴∠CAD=∠DAB.∵∠C=90°,∴3∠CAD=90°,∴∠CAD=30°,∴∠B=30°;(2)∵AD平分∠CAB,DE⊥AB,CD⊥AC,BD,∴CD=DE=12∵BC=3,∴CD=DE=1.【解析】本题主要考查线段垂直平分线的性质,熟悉掌握是关键.(1)由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°;(2)根据角平分线的性质即可得到结论.16.【答案】解:如图,△PBD即为所求作的三角形【解析】【分析】本题考查尺规作图.根据角平分线的性质及线段垂直平分线的性质作图即可.作∠ABC的平分线与线段BD的垂直平分线交于点P,则△PBD为所求作的等腰三角形.作∠ABC的平分线与线段BD的垂直平分线交于点P,则△PBD为所求作的等腰三角形.【解答】解:∵点P到∠ABC两边的距离相等,∴点P在∠ABC的平分线上,∵线段BD为等腰△PBD的底边,∴PB=PD,∴点P在线段BD的垂直平分线上,∴点P是∠ABC的平分线与线段BD的垂直平分线的交点.17.【答案】解:(1)如图所示;(2)解:∵DC是∠ACB的平分线,∴∠BCD=∠ACD,∵DE⊥AC,BC⊥AC,∴DE//BC,∴∠EDC=∠BCD,∴∠ECD=∠EDC,∴DE=CE,∵DE//BC,∴△ADE∽△ABC,∴DEBC =AEAC,设DE=CE=x,则AE=6−x,∴x4=6−x6,解得:x=125,即DE=125,故答案为:12.5【解析】本题考查了角的平分线的性质,平行线的性质,等腰三角形的性质,相似三角形的判定和性质,基本作图,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.(1)以C为圆心,任意长为半径画弧,交BC,AC两点,再以这两点为圆心,大于这两点的线段的一半为半径画弧,过这两弧的交点与C在直线交AB于D即可,根据过直线外一点作已知直线的垂线的方法可作出垂线即可;(2)根据平行线的性质和角平分线的性质推出∠ECD=∠EDC,进而证得DE=CE,由DE//BC,推出△ADE∽△ABC,根据相似三角形的性质即可推得结论.。
垂直平分线和角平分线典型题
![垂直平分线和角平分线典型题](https://img.taocdn.com/s3/m/f75328bf02020740bf1e9b35.png)
知识要点详解1、线段垂直平分线的性质(1)垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等.定理的数学表示:如图1,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若点C 在直线m 上,则AC =BC.定理的作用:证明两条线段相等 (2)线段关于它的垂直平分线对称.2、线段垂直平分线性质定理的逆定理(1)线段垂直平分线的逆定理:到一条线段两个端点距离相等的点在这条线段的垂直平分线上.定理的数学表示:如图2,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若AC =BC ,则点C 在直线m 上.定理的作用:证明一个点在某线段的垂直平分线上.3、关于三角形三边垂直平分线的定理(1)关于三角形三边垂直平分线的定理:三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.定理的数学表示:如图3,若直线,,i j k 分别是△ABC 三边AB 、BC 、CA 的垂直平分线,则直线,,i j k 相交于一点O ,且OA =OB =OC.定理的作用:证明三角形内的线段相等.(2)三角形三边垂直平分线的交点位置与三角形形状的关系:若三角形是锐角三角形,则它三边垂直平分线的交点在三角形内部;若三角形是直角三角形,则它三边垂直平分线的交点是其斜边的中点;若三角形是钝角三角形,则它三边垂直平分线的交点在三角形外部.反之,三角形三边垂直平分线的交点在三角形内部,则该三角形是锐角三角形;三角形三边垂直平分线的交点在三角形的边上,则该三角形是直角三角形;三角形三边垂直平分线的交点在三角形外部,则该三角形是钝角三角形.图1图2经典例题:例1 如图1,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18cm ,则AC 的长等于( )A .6cmB .8cmC .10cmD .12cm课堂笔记:针对性练习::1)如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交AC 于点 E ,如果△EBC 的周长是24cm ,那么BC= 2) 如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交AC 于点E ,如果BC=8cm ,那么△EBC 的周长是3) 如图,AB=AC,AB 的垂直平分线交AB 于点D ,交AC 于点E ,如果∠A=28 度,那么∠EBC 是例2. 已知: AB=AC ,DB=DC ,E 是AD 上一点,求证:BE=CE 。
垂直平分线与角平分线典型题
![垂直平分线与角平分线典型题](https://img.taocdn.com/s3/m/5285405dcf84b9d528ea7ab1.png)
线段的垂直平分线与角平分线(1)知识要点详解1、线段垂直平分线的性质(1)垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等.定理的数学表示:如图1,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若点C 在直线m 上,则AC =BC.定理的作用:证明两条线段相等 (2)线段关于它的垂直平分线对称. 2、线段垂直平分线性质定理的逆定理 (1)线段垂直平分线的逆定理:到一条线段两个端点距离相等的点在这条线段的垂直平分线上.定理的数学表示:如图2,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若AC =BC ,则点C 在直线m 上.定理的作用:证明一个点在某线段的垂直平分线上. 3、关于三角形三边垂直平分线的定理 (1)关于三角形三边垂直平分线的定理:三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.定理的数学表示:如图3,若直线,,i j k 分别是△ABC 三边AB 、BC 、CA 的垂直平分线,则直线,,i j k 相交于一点O ,且OA =OB =OC.定理的作用:证明三角形内的线段相等.(2)三角形三边垂直平分线的交点位置与三角形形状的关系:若三角形是锐角三角形,则它三边垂直平分线的交点在三角形内部;若图1图2三角形是直角三角形,则它三边垂直平分线的交点是其斜边的中点;若三角形是钝角三角形,则它三边垂直平分线的交点在三角形外部.反之,三角形三边垂直平分线的交点在三角形内部,则该三角形是锐角三角形;三角形三边垂直平分线的交点在三角形的边上,则该三角形是直角三角形;三角形三边垂直平分线的交点在三角形外部,则该三角形是钝角三角形. 经典例题:例1 如图1,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18cm ,则AC 的长等于( ) A .6cm B .8cm C .10cm D .12cm针对性练习:已知:1)如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交AC 于点E ,如果△EBC 的周长是24cm ,那么BC=2) 如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交AC 于点E ,如果BC=8cm ,那么△EBC 的周长是3) 如图,AB=AC,AB 的垂直平分线交AB 于点D ,交AC 于点E ,如果∠A=28 度,那么∠EBC 是例2. 已知: AB=AC ,DB=DC ,E 是AD 上一点,求证:BE=CE 。
角平分线与垂直平分线经典例题
![角平分线与垂直平分线经典例题](https://img.taocdn.com/s3/m/0e2207f70066f5335b8121d7.png)
沪教版八年级第一学期角平分线角平分线性质定理:角平分线上的点到这个角两边的距离相等。
角平分线的判定: 到一个叫两边的距离相等的点在这个角的平分线上。
例1.如图,在ABC △中,90C ∠=,AD 平分CAB ∠,8cm 5cm BC BD ==,,那么D 点到直线AB 的距离是 cm .例2.如图,已知在Rt △ABC 中,∠C =90°, BD 平分∠ABC , 交AC 于D .(1) 若∠BAC =30°, 则AD 与BD 之间有何数量关系,说明你的理由; (2) 若AP 平分∠BAC ,交BD 于P , 求∠BPA 的度数.3、考点深入练习例3:如图:在△ABC 中,BE 、CF 分别是AC 、AB 两边上的高,在BE 上截取BD=AC ,在CF 的延长线上截取CG=AB ,连结AD 、AG 。
求证:(1)AD=AG ,(2)AD 与AG 的位置关系如何。
BPABCD GHFEDCBA例4:两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.(8分)(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:DC⊥BE图1 图2例5:△DAC, △EBC均是等边三角形,AE,BD分别与CD,CE交于点M,N.求证:(1)AE=BD (2)CM=CN (3) △CMN为等边三角形(4)MN∥BCC B垂直平分线的性质与判定强化练习1如图1,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18cm ,则AC 的长等于 ( ) A .6cm B .8cm C .10cm D .12cm2题2如图,在Rt ABC △中,90ACB D E ∠=,,分别为AC AB ,的中点,连DE CE ,. 下列结论中不一定正确的是 ( ) A .ED BC ∥B .ED AC ⊥C .ACE BCE ∠=∠D .AE CE =3、△ABC 中,∠C=90°,AB 的中垂线交直线BC 于D ,若∠BAD -∠DAC=22.5°,则∠B 等于 ( ) A.37.5° B.67.5° C.37.5°或67.5° D.无法确定4、线段的垂直平分线上的点_____________________________________.5、到一条线段的两个端点的距离相等的点,______________________.6、如图,在△ABC 中,AC 的垂直平分线交AC 于E ,交BC 于D ,△ABD 的周长是12 cm ,AC=5cm ,则AB+BD+AD= cm ;AB+BD+DC= cm ;△ABC 的周长是 cm 。
线段的垂直平分线与角平分线练习题
![线段的垂直平分线与角平分线练习题](https://img.taocdn.com/s3/m/dfe07b6a1ed9ad51f01df2e6.png)
线段的垂直平分线与角平分线一、例1、如图1,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18cm ,则AC 的长等于( )A .6cmB .8cmC .10cmD .12cm 针对性练习:1)如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交BC 于点 E ,如果△EBC 的周长是24cm ,那么BC=2) 如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交BC 于点E ,如果BC=8cm , 那么△EBC 的周长是3)如图,AB=AC,AB 的垂直平分线交AB 于点D ,交AC 于点E ,如果∠A=28度, 那么∠EBC 是4、如图,△ABC 中,DE 、FG 分别是边AB 、AC 的垂直平分线,则∠B∠BAE ,∠C ∠GAF , 若∠BAC=1260,则∠EAG= 。
例2. 已知:如图所示,AB=AC ,DB=DC ,E 是AD 上一点,求证:BE=CE 。
针对性练习:已知:在△ABC 中,ON 是AB 的垂直平分线,OA=OC 求证:点O 在BC 的垂直平分线例3. 在△ABC 中,AB=AC ,AB 的垂直平分线与边AC 所在的直线相交所成锐角为50°,△ABC 的底角∠B 的大小为_______________。
针对性练习:1. 在△ABC 中,AB=AC ,AB 的垂直平分线与AC 所在直线相交所得的锐角为40°,则底角B 的大小为________________。
例4、如图8,已知AD 是△ABC 的BC 边上的高,且∠C =2∠B ,证:BD =AC +CD.BACON图1课堂练习:1.如图,AC =AD ,BC =BD ,则( ) A.CD 垂直平分AD B.AB 垂直平分CD C.CD 平分∠ACB D.以上结论均不对2.如果三角形三条边的中垂线的交点在三角形的外部, 那么,这个三角形是( )A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形 3.如图,△ABC 中,AB 的垂直平分线交AC 于D ,如果AC =5 cm ,BC =4cm ,那么△DBC 的周长是( ) A.6 cm B.7 cm C.8 cm D.9 cm4.如图,在△ABC 中,AB =AC ,∠A =120°,AB 的垂直平分线 MN 分别交BC 、AB 于点M 、N . 求证:CM =2BM .二、角平分线例1、 已知:如图,点B 、C 在∠A 的两边上,且AB=AC ,P 为∠A 内一点,PB=PC , PE ⊥AB ,PF ⊥AC ,垂足分别是E 、F 。
初中数学 习题:线段的垂直平分线
![初中数学 习题:线段的垂直平分线](https://img.taocdn.com/s3/m/0b6dc3156294dd88d1d26bb9.png)
线段的垂直平分线练习 -、选择题 1.在三角形内部,有一点P 到三角形三个顶点的距离相等,则点P 一定是( ) A .三角形三条角平分线的交点 B .三角形三条垂直平分线的交点C .三角形三条中线的交点D .三角形三条高的交点2.已知△ABC 的三边的垂直平分线交点在△ABC 的边上,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定3.如图,FD ⊥AO 于D ,FE ⊥BO 于E ,下列条件:①OF 是∠AOB 的平分线;②DF=EF ;③DO=EO ; ④∠OFD=∠OFE .其中能够证明△DOF ≌△EOF 的条件的个数有( )个 个 个 个二、填空题4.已知:如图,∠BAC=1200,AB=AC,AC 的垂直平分线交BC 于D 则∠ADC= 5.如图,△ABC 中,DE 、FG 分别是边AB 、AC 的垂直平分线,则∠B=∠BAE ,∠C=∠GAF ,若∠BAC=1260,则∠EAG= .6.如图,△ABC 中,AB=AC=17,BC=16,DE 垂直平分AB ,则△BCD 的周长是 .7.如图,已知点C 是∠AOB 的平分线上一点,点P 、P’分别在边OA 、OB 上.如果要得到OP=OP’, 需要添加条件____________(一个即可)8.△ABC 中,∠C=90°,AD 平分∠BAC ,交BC 于点D .若DC=7,则D 到AB 的距离是 .9.如图,在ΔABC 中,BC =5 cm ,BP 、CP 分别是∠ABC 和∠ACB 的角平分线,且PD ∥AB ,PE ∥AC , 则ΔPDE 的周长是___________ cm.10.在△ABC 中,AB=AC, ∠B=580,AB 的垂直平分线交AC 于N,则∠NBC=11.如果等腰三角形的一个角是80°,那么顶角是 度12.如图:AB=AC ,BD=CE .求证:OA 平分∠BAC .A OBC P P ’ A P BDE C E D B A C (4) (5) (6) (7) (8) (9) O ED C B A三、解答题13.已知:如图,DE是△ABC的AB边的垂直平分线,分别交AB、BC于D、E,AE平分∠BAC,若∠B=300,求∠C的度数.14.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.15.如图,在△ABC中,AB=AC,∠A=36°,线段AB的垂直平分线交AB于D,交AC于E,连接BE.(1)求证:∠CBE=36°;(2)求证:AE2=AC•EC.16.如图,在△ABC中,AD是∠BAC平分线,AD的垂直平分线分别交AB、BC延长线于F、E求证:(1)∠EAD=∠EDA ;(2)DF∥AC(3)∠EAC=∠B。
线段的垂直平分线、角平分线经典习题及答案#精选、
![线段的垂直平分线、角平分线经典习题及答案#精选、](https://img.taocdn.com/s3/m/37737e3ca45177232f60a2a8.png)
3.线段的垂直平分线4.角平分线例1:(1)在△ABC 中,AB =AC ,AB 的垂直平分线交AB 于N ,交BC 的延长线于M ,∠A =040,求∠NMB 的大小(2)如果将(1)中∠A 的度数改为070,其余条件不变,再求∠NMB 的大小(3)你发现有什么样的规律性?试证明之.(4)将(1)中的∠A 改为钝角,对这个问题规律性的认识是否需要加以修改例2:在△ABC 中,AB 的中垂线DE 交AC 于F ,垂足为D ,若AC=6,BC=4,求△BCF 的周长。
例3:如图所示,AC=AD ,BC=BD ,AB 与CD 相交于点E 。
求证:直线AB 是线段CD 的垂直平分线。
AC DEBA B C NM AB C N M AB CN M例4:如图所示,在△ABC中,AB=AC,∠BAC=1200,D、F分别为AB、AC的中点,,,E、G在BC上,BC=15cm,求EG的长度。
⊥⊥DE AB FG ACAB E G C例5::如图所示,Rt△ABC中,,D是AB上一点,BD=BC,过D作AB的垂线交AC于点E,CD交BE于点F。
求证:BE垂直平分CD。
CEFA D B例6::在⊿ABC中,点O是AC边上一动点,过点O作直线M N∥BC,与F,求证:OE=OF例7、如图所示,AB>AC,∠A的平分线与BC的垂直平分线相交于D,自D作DE AB⊥于,求证:BE=CF。
E,DF AC FAEB M CFD答案如下:例1:解:(1)∵∠B= 1/2(180°-∠A)=70°,∴∠M=20°;(2)同理得,∠M=35°;(3)规律是:∠M的大小为∠A大小的一半,即:AB的垂直平分线与底边BC 所夹的锐角等于∠A的一半.证明:设∠A=α,则有∠B= 1/2(180°-α),∠M=90°- 1/2(180°-α)= 1/2α.(4)改为钝角后规律成立.上述规律为:等腰三角形一腰的垂直平分线与底边相交所成的锐角等于顶角的一半.例2:解:连接BF,由线段的垂直平分线的性质可得,FB=FA又因为AC=AF+CF =6,所以BF+CF=6△BCF的周长=BC+CF+BF=4+6=10例3:证明:因为AC=AD所以A在线段CD的垂直平分线上又因为BC=BD所以B在线段CD的垂直平分线上所以直线AB是线段CD的垂直平分线例4:解:作AH⊥BC于H,HC=15/2∵等腰∴∠ACB=∠ABC=30°∴AC=2EC/根号3EC=5根号3∵F为AC中点∴FC=5/2根号3∵FG⊥AC∴CG=5同理,BE=5∴EG=5例5:证明:∵DE⊥AB,∠ACB=90∴∠BDE=∠ACB=90∵BD=BC,BE=BE∴△BCE≌△BDE (HL)∴∠CBE=∠DBE∵BF=BF∴△BCF≌△BDF (SAS)∴∠BFC=∠BFD,CF=DF∵∠BFC+∠BFD=180∴∠BFC=∠BFD=90∴BE⊥CD∴BE垂直平分CD例6:解:∵MN∥BC,∴∠OEC=∠BCE,∠OFC=∠GCF,又已知CE平分∠BCO,CF平分∠GCO,∴∠OCE=∠BCE,∠OCF═∠GCF,∴∠OCE=∠OEC,∠OCF=∠OFC,∴EO=CO,FO=CO,∴EO=FO.例7:证明:连接DC,DB∵点D在BC的垂直平分线上∴DB=DC∵D在∠BAC的平分线上∴DE=DF∵∠DFC=∠DEB∴△DCF≌△DEB∴CF=BE最新文件仅供参考已改成word文本。
垂直平分线与角平分线典型题[1]
![垂直平分线与角平分线典型题[1]](https://img.taocdn.com/s3/m/34ab6bc980eb6294dd886cd6.png)
线段的垂直平分线与角平分线(1)知识要点详解1、线段垂直平分线的性质(1)垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等.定理的数学表示:如图1,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若点C 在直线m 上,则AC =BC.定理的作用:证明两条线段相等 (2)线段关于它的垂直平分线对称.2、线段垂直平分线性质定理的逆定理(1)线段垂直平分线的逆定理:到一条线段两个端点距离相等的点在这条线段的垂直平分线上.定理的数学表示:如图2,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若AC =BC ,则点C 在直线m 上.定理的作用:证明一个点在某线段的垂直平分线上.3、关于三角形三边垂直平分线的定理(1)关于三角形三边垂直平分线的定理:三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.定理的数学表示:如图3,若直线,,i j k 分别是△ABC 三边AB 、BC 、CA 的垂直平分线,则直线,,i j k 相交于一点O ,且OA =OB =OC.定理的作用:证明三角形内的线段相等.(2)三角形三边垂直平分线的交点位置与三角形形状的关系:若三角形是锐角三角形,则它三边垂直平分线的交点在三角形内部;若三角形是直角三角形,则它三边垂直平分线的交点是其斜边的中点;若三角形是钝角三角形,则它三边垂直平分线的交点在三角形外部.反之,三角形三边垂直平分线的交点在三角形内部,则该三角形是锐角三角形;三角形三边垂直平分线的交点在三角形的边上,则该三角形是直角三角形;三角形三边垂直平分线的图1图2交点在三角形外部,则该三角形是钝角三角形.经典例题:例1如图1,在△ABC中,BC=8cm,AB的垂直平分线交AB于点D,交边AC于点E,△BCE的周长等于18cm,则AC的长等于()A.6cm B.8cm C.10cm D.12cm针对性练习::1)如图,AB=AC=14cm,AB的垂直平分线交AB于点D,交AC于点E,如果△EBC的周长是24cm,那么BC=2) 如图,AB=AC=14cm,AB的垂直平分线交AB于点D,交AC于点E,如果BC=8cm,那么△EBC的周长是3)如图,AB=AC,AB的垂直平分线交AB于点D,交AC于点E,如果∠A=28度,那么∠EBC是例2. 已知:AB=AC,DB=DC,E是AD上一点,求证:BE=CE。
中考数学复习----《角的平分线与线段的垂直平分线》知识点总结与专项练习题(含答案解析)
![中考数学复习----《角的平分线与线段的垂直平分线》知识点总结与专项练习题(含答案解析)](https://img.taocdn.com/s3/m/837e212ec381e53a580216fc700abb68a982ad32.png)
中考数学复习----《角的平分线与线段的垂直平分线》知识点总结与专项练习题(含答案解析)知识点总结1.角平分线的定义:角的内部把角平均分成两个相等的角的射线叫做角的平分线。
2.角平分线的性质:①平分角。
②角平分线上任意一点到角两边的距离相等。
3.角平分线的判定:角的内部到角两边相等的点一定在角平分线上。
4.角平分线的尺规作图:具体步骤:①以角的顶点O为圆心,一定长度为半径画圆弧,圆弧与角的两边分别交于两点M、N。
如图①。
②分别以点M与点N为圆心,大于MN长度的一半为半径画圆弧,两圆弧交于点P。
如图②。
③连接OP,OP即为角的平分线。
5.线段的垂直平分线的定义:过线段的中点且与线段垂直的直线是这条线段的垂直平分线。
6.垂直平分线的性质:①垂直且平分线段。
②垂直平分线上任意一点到这条线段两个端点的距离相等。
7.垂直平分线的判定:到线段两端点距离相等的点一定在线段的垂直平分线上。
8.垂直平分线的吃规作图:具体步骤:①以线段两个端点为圆心,大于线段长度的一半为半径画圆弧,两圆弧在线段的两侧别分交于M、N。
如图①②连接MN,过MN的直线即为线段的垂直平分线。
如图②练习题1、(2022•鄂尔多斯)如图,∠AOE=15°,OE平分∠AOB,DE∥OB交OA于点D,EC⊥OB,垂足为C.若EC=2,则OD的长为()A.2 B.2C.4 D.4+2【分析】过点E作EH⊥OA于点H,根据角平分线的性质可得EH=EC,再根据平行线的性质可得∠ADE的度数,再根据含30°角的直角三角形的性质可得DE的长度,再证明OD=DE,即可求出OD的长.【解答】解:过点E作EH⊥OA于点H,如图所示:∵OE平分∠AOB,EC⊥OB,∴EH=EC,∵∠AOE=15°,OE平分∠AOB,∴∠AOC=2∠AOE=30°,∵DE∥OB,∴∠ADE=30°,∴DE=2HE=2EC,∵EC=2,∴DE=4,∵∠ADE=30°,∠AOE=15°,∴∠DEO=15°,∴∠AOE=∠DEO,∴OD=DE=4,故选:C.2、(2022•北京)如图,在△ABC中,AD平分∠BAC,DE⊥AB.若AC=2,DE=1,则S △ACD=.【分析】过D点作DH⊥AC于H,如图,根据角平分线的性质得到DE=DH=1,然后根据三角形面积公式计算.【解答】解:过D点作DH⊥AC于H,如图,∵AD平分∠BAC,DE⊥AB,DH⊥AC,∴DE=DH=1,∴S△ACD=×2×1=1.故答案为:1.3、(2022•黑龙江)在Rt△ABC中,∠C=90°,AD平分∠CAB,AC=6,BC=8,CD=.【分析】过点D作DE⊥AB于E,利用勾股定理列式求出AB,再根据角平分线上的点到角的两边距离相等可得CD=DE,然后根据△ABC的面积列式计算即可得解.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AC=6,BC=8,∴AB===10,∵AD平分∠CAB,∴CD=DE,∴S△ABC=AC•CD+AB•DE=AC•BC,即×6•CD+×10•CD=×6×8,解得CD=3.故答案为:3.4、(2022•宜昌)如图,在△ABC中,分别以点B和点C为圆心,大于BC长为半径画弧,两弧相交于点M,N.作直线MN,交AC于点D,交BC于点E,连接BD.若AB=7,AC=12,BC=6,则△ABD的周长为()A.25 B.22 C.19 D.18【分析】根据题意可知MN垂直平分BC,即可得到DB=DC,然后即可得到AB+BD+AD =AB+DC+AD=AB+AC,从而可以求得△ABD的周长.【解答】解:由题意可得,MN垂直平分BC,∴DB=DC,∵△ABD的周长是AB+BD+AD,∴AB+BD+AD=AB+DC+AD=AB+AC,∵AB=7,AC=12,∴AB+AC=19,∴△ABD的周长是19,故选:C.5、(2022•湖北)如图,在矩形ABCD中,AB<BC,连接AC,分别以点A,C为圆心,大于AC的长为半径画弧,两弧交于点M,N,直线MN分别交AD,BC于点E,F.下列结论:①四边形AECF是菱形;②∠AFB=2∠ACB;③AC•EF=CF•CD;④若AF平分∠BAC,则CF=2BF.其中正确结论的个数是()A.4 B.3 C.2 D.1【分析】根据题意分别证明各个结论来判断即可.【解答】解:根据题意知,EF垂直平分AC,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴OE=OF,∴AE=AF=CF=CE,即四边形AECF是菱形,故①结论正确;∵∠AFB=∠FAO+∠ACB,AF=FC,∴∠FAO=∠ACB,∴∠AFB=2∠ACB,故②结论正确;∵S四边形AECF=CF•CD=AC•OE×2=AC•EF,故③结论不正确;若AF平分∠BAC,则∠BAF=∠FAC=∠CAD=90°=30°,∴AF=2BF,∵CF=AF,∴CF=2BF,故④结论正确;故选:B.33.(2022•鄂尔多斯)如图,在△ABC中,边BC的垂直平分线DE交AB于点D,连接DC,若AB=3.7,AC=2.3,则△ADC的周长是.【分析】根据线段垂直平分线的性质可得BD=CD,进一步即可求出△ADC的周长.【解答】解:∵边BC的垂直平分线DE交AB于点D,∴BD=CD,∵AB=3.7,AC=2.3,∴△ADC的周长为AD+CD+AC=AB+AC=6,故答案为:6.34.(2022•青海)如图,在Rt△ABC中,∠ABC=90°,ED是AC的垂直平分线,交AC 于点D,交BC于点E,∠BAE=10°,则∠C的度数是.【分析】根据线段垂直平分线的性质可得AE=EC,从而可得∠EAC=∠C,然后利用三角形内角和定理可得∠EAC+∠C=80°,进行计算即可解答.【解答】解:∵ED是AC的垂直平分线,∴AE=EC,∴∠EAC=∠C,∵∠ABC=90°,∠BAE=10°,∴∠EAC+∠C=180°﹣∠BAE﹣∠ABC=80°,∴∠EAC=∠C=40°,故答案为:40°.。
线段的垂直平分线、角平分线经典习题及答案
![线段的垂直平分线、角平分线经典习题及答案](https://img.taocdn.com/s3/m/572960427ed5360cba1aa8114431b90d6c8589ed.png)
线段的垂直平分线、角平分线经典习题及答案由于A、B都在CD的垂直平分线上,所以直线AB是CD的垂直平分线。
证毕。
例4:解:连接EF,由于AB=AC,所以∠BAC=60°,∴∠DEG=30°,∠GFC=60°,又因为DE⊥AB,FG⊥AC,所以DEGF是一个菱形,且DG=GF=7.5cm,所以EG=2DGsin30°=7.5cm。
例5:证明:因为BD=BC,所以∠XXX∠CBD,又因为BE⊥CD,CF⊥BD,所以∠BEC=∠BCF,所以BE平分∠XXX,CF平分∠CBD,又因为∠XXX∠CBD,所以BE和CF都平分∠BCD,即BE垂直平分CD。
证毕。
例6:证明:连接OF,OE,MN,∵MN∥BC,∴∠EOF=∠ACB,又∠XXX∠EOM+∠MOF,∠XXX∠EOM+∠EOF,∴∠MOF=∠ACB-∠EOF,又因为EF是AC的角平分线,∴∠XXX∠EAF,又因为EF是AC的外角平分线,∴∠XXX∠XXX,∴∠MOF=∠ACB-∠XXX,又因为OE⊥AC,OF⊥AC,所以OE=OF,证毕。
例7:证明:连接AD,因为AD是∠A的平分线,所以∠EAD=∠FAD,又因为BD=BC,所以∠XXX∠DCB,又因为AD⊥DE,所以∠EDB=90°-∠XXX,又因为DF⊥CF,所以∠XXX°-∠DCB,所以∠EDB=∠XXX,又因为∠EAD=∠FAD,所以三角形ADE与三角形ADF全等,所以DE=DF,又因为BE⊥DE,CF⊥DF,所以BE=DEsin∠EDB=DFsin∠FDC=CF,证毕。
例4:根据题意,作AH垂直BC于点H,可以得到HC 的长度为15/2.由于△ABC是等腰三角形,所以∠ACB=∠ABC=30°。
根据正弦定理,可以求得AC的长度为5√3.由于F是AC的中点,所以FC的长度为5/2√3.根据勾股定理,可以得到CG和BE的长度都为5.因此,EG的长度也为5.例5:由于DE垂直于AB,而∠ACB=90°,所以∠BDE=∠ACB=90°。
垂直平分线与角平分线综合 练习题(带答案))
![垂直平分线与角平分线综合 练习题(带答案))](https://img.taocdn.com/s3/m/892f90c2ee06eff9aff807da.png)
垂直平分线与角平分线综合 题集一、垂直平分线(1)(2)1.如图,中,,垂直平分,交于点,交于点,且.若,求的度数.若周长,,求长.【答案】(1)(2)..【解析】(1)(2)∵垂直平分,垂直平分,∴,∴,∵,∴,∴.∵周长,,∴,即,∴.【标注】【知识点】作三角形的高,中线和角平分线(1)(2)2.的两边和的垂直平分线分别交于点、.若,求的周长.若,求.【答案】(1)(2)..【解析】(1)(2)∵边、的垂直平分线分别交于、,∴,,∴的周长.∵的两边,的垂直平分线分别交于,,∴,,∴,.∵,①∴.∵,∴,即.②由①②组成的方程组.解得,故答案为:.【标注】【知识点】三角形的周长与面积问题3.在中,,,的垂直平分线交于,的垂直平分线交于.求证:.【答案】证明见解析.【解析】连接、,∵,,∴,∵的垂直平分线交于,的垂直平分线交于,∴,,∴,,,∵,∴,∴是等边三角形,∴,∴.【标注】【知识点】等边三角形的构造4.已知中,是的平分线,的垂直平分线交的延长线于.求证:.【答案】证明见解析.【解析】∵是的平分线,∴,∵是的垂直平分线,∴,,∵,,∴.【标注】【能力】推理论证能力【知识点】线段的垂直平分线的性质定理【知识点】角分线性质定理5.中,是线段的垂直平分线,垂足为点,是上一点,.求证:点在线段的垂直平分线上.【答案】(1)证明见解析.【解析】(1)连接,是线段的垂直平分线,,,,在的垂直平分线上.【标注】【知识点】线段的和差的证明【知识点】线段的垂直平分线的性质定理【知识点】线段的垂直平分线的判定定理【知识点】等边三角形的性质【思想】数形结合思想【能力】运算能力【能力】推理论证能力6.如图,四边形中,的垂直平分线与的垂直平分线交于点,且.求证:点一定在的垂直平分线上.【答案】证明见解析.【解析】连接、,∵点是、的垂直平分线的交点,∴,,又∵,∴,∴点一定在的垂直平分线上.【标注】【知识点】作线段的垂直平分线(1)(2)7.如图,已知等腰三角形中,,点、分别在边、上,且,连接、,交于点.判断与的数量关系,并说明理由.求证:过点、的直线垂直平分线段.【答案】(1)(2)相等,证明见解析.证明见解析.【解析】(1)(2).在和中,,∴≌,∴.∵,∴,由()可知,∴,∴,∵,∴点、均在线段的垂直平分线上,即直线垂直平分线段.【标注】【知识点】线段的垂直平分线的性质定理【知识点】SAS【知识点】全等三角形的对应边与角【能力】推理论证能力二、角平分线8.如图,平分,于,于,,.若,则.【答案】【解析】∵平分,,,∴,∵,,∴,即,解得.故答案为:.【标注】【知识点】角分线性质定理9.如图,在中,,平分,,,则点到的距离为.【答案】【解析】∵,,∴.∵平分,,∴点到的距离等于,即点到的距离等于.【标注】【知识点】角分线性质定理A. B. C. D.10.如图,的三边、、的长分别,,,是三条角平分线的交点,则( ).【答案】C 【解析】∵是三条角平分线的交点,∴点到各边的距离相等,即、、的高相等,∵、、的长分别,,,∴,故答案为.【标注】【知识点】与中线或等分线有关的等积变换A.B.C.D.11.如图,三条公路把、、三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,则这个集贸市场应建在( ).在、两边高线的交点处在、两边中线的交点处在、两内角平分线的交点处在、两边垂直平分线的交点处【答案】C 【解析】内角平分线上的点到,距离相等,内角平分线上的点到,距离相等,∴要到三条公路距离相等,应在,内角平分线交点处满足到,,距离相等.故选.【标注】【知识点】角分线性质定理A. B. C. D.12.如图,点是的两外角平分线的交点,下列结论:①;②点到、的距离相等;③点到的三边的距离相等;④点在的平分线上.以上结论正确的个数是().【答案】C【解析】如图,过点作于,作于,作于,∵点是的两外角平分线的交点,,,∴点在的平分线上,故②③④正确,只有点是的中点时,,故①错误,综上所述,正确的是②③④.【标注】【知识点】角分线性质定理【知识点】角平分线判定定理三、角分线的角度模型(1)(2)(3)(4)13.完成下列各题:如图 ,、分别是中和的平分线,则与的关系是 (直接写出结论).如图 ,、分别是两个外角和的平分线,则与的关系是 ,请证明你的结论.如图 ,、分别是一个内角和一个外角的平分线,则与的关系是 ,请证明你的结论.利用以上结论完成以下问题:如图,已知:,点 、 分别是射线、上的动点,的外角的平分线与角的平分线相交于点,猜想的大小是否变化?请证明你的猜想.图图图图【答案】(1)(2)(3)(4). ..的大小没有变化,证明见解析.【解析】(1)理由如下:如图 ,∵ ,,分别是,的角平分线,∴ ,∴.(2)(3)(4)图如图 ,∵ 平分 ,∴ ,同理可证: ,∴ ,∵ ,∴,∴ .图∵ 平分 , 平分 ,∴ ,∵ 是 的外角,∴ ,∵ 是 的外角,∴ ,∴.根据⑶可得: ,∵ ,∴ ,∴ 的大小不会变化始终为 .【标注】【知识点】三角形-内角角分线;三角形-外角角分线;三角形-内外角角分线(1)(2)(3)14.回答下列问题.探索发现:如图,在中,点是内角和外角的角平分线的交点,试猜想与之间的数量关系,并证明你的猜想.图迁移拓展:如图,在中,点是内角和外角的等分线的交点,即,,试猜想与之间的数量关系,并证明你的猜想.图应用创新:已知,如图,、相交于点,、、的角平分线交于点,,,则 .图【答案】(1),证明见解析.(2)(3),证明见解析.【解析】(1)(2)(3)∵点是内角和外角的角平分线的交点,∴,,∵是的外角,∴,∴∴∵是的外角,∴,∴.∵是的外角,∴,∴,∵,,∴,∵是的外角,∴,∴.∵、、的角平分线交于点,∴由()的结论知,,,∴,故答案为:.【标注】【知识点】三角形-内外角角分线(1)15.阅读下面的材料,并解决问题:已知在中,.如图(1),、的角平分线交于点,则可求得.如图(2),、的三等分线交于点、,则 .如图(3),、的等分线交于点、、……,则.;(用含的代数式)(2)(3)图图图如图,,、的三等分线交于点、,若,,求的度数;(要求写出解答过程)如图,,的三等分线分别与的平分线交于点,,若,,求的度数为 (不要求写出解答过程).【答案】(1)(2)(3); ;.【解析】(1)(2)(3)是的外角,,、是的三等分线,,在中,,又是的平分线,,.只需抓住加.则等分,下面两个小角之和为,.【标注】【知识点】三角形-内角角分线。
平面几何的垂直平分线与平行线与角平分线与相交角练习题
![平面几何的垂直平分线与平行线与角平分线与相交角练习题](https://img.taocdn.com/s3/m/e72e8ee6294ac850ad02de80d4d8d15abf230061.png)
平面几何的垂直平分线与平行线与角平分线与相交角练习题平面几何的垂直平分线、平行线、角平分线与相交角练习题一、垂直平分线1. 已知线段AB的中点为M,延长线段AB的垂直平分线相交于点O。
若AM = 4cm,MB = 6cm,求线段AO和线段OB的长度。
解析:由于垂直平分线将线段AB等分,所以线段AO和线段OB 的长度相等,设其长度为x,则有AO = OB = x。
又因为线段AM和线段MB的长度已知,根据线段分割定理可得,AM : MB = AO : OB。
代入已知数据可得4 : 6 = x : x,化简得2 : 3 = 1 : x,解得x = 3。
故线段AO和线段OB的长度均为3cm。
2. 已知四边形ABCD中,线段AB的中点为O,垂直平分线AC和BD相交于点E。
若AE = 6cm,DE = 10cm,求线段AB的长度。
解析:由于垂直平分线将线段AC和线段BD等分,所以线段AE和线段DE的长度相等,设其长度为x,则有AE = DE = x。
又因为线段AB的中点为O,根据线段分割定理可得,AE : EC = BO : OD。
代入已知数据可得6 : x = BO : 10,化简得6x = 10BO,再代入AE = DE = x得6x = 10x,解得x = 0,这显然不符合实际。
因此,题目中所给的条件是矛盾的,无解。
二、平行线1. 已知平行线l和m分别与线段AB相交于点C和点D,若AC =3cm,BC = 5cm,CD = 6cm,求BD的长度。
解析:由于平行线l和m与线段AB相交,根据平行线分割定理可得,AC : CB = CD : BD。
代入已知数据可得3 : 5 = 6 : BD,化简得3BD = 30,解得BD = 10。
故BD的长度为10cm。
2. 已知平行线l和m分别与线段AB相交于点C和点D,且AC =2BC,CD = 4cm,求BD的长度。
解析:由于平行线l和m与线段AB相交,根据平行线分割定理可得,AC : CB = CD : BD。
(2021年整理)线段的垂直平分线、角平分线经典习题及答案
![(2021年整理)线段的垂直平分线、角平分线经典习题及答案](https://img.taocdn.com/s3/m/d736f2aef242336c1eb95ef9.png)
线段的垂直平分线、角平分线经典习题及答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(线段的垂直平分线、角平分线经典习题及答案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为线段的垂直平分线、角平分线经典习题及答案的全部内容。
3。
线段的垂直平分线 4。
角平分线例1:(1)在△ABC 中,AB =AC ,AB 的垂直平分线交AB 于N ,交BC 的延长线于M ,∠A =040,求∠NMB 的大小(2)如果将(1)中∠A 的度数改为070,其余条件不变,再求∠NMB 的大小(3)你发现有什么样的规律性?试证明之.(4)将(1)中的∠A 改为钝角,对这个问题规律性的认识是否需要加以修改例2:在△ABC 中,AB 的中垂线DE 交AC 于F ,垂足为D,若AC=6,BC=4,求△BCF 的周长。
ECFA D B例3:如图所示,AC=AD ,BC=BD ,AB 与CD 相交于点E 。
求证:直线AB 是线段CD 的垂直平分线。
A BC NM A BC NM A B C N MAC DEB例4:如图所示,在△ABC 中,AB=AC ,∠BAC=1200,D 、F 分别为AB 、AC 的中点,DE AB FG AC ⊥⊥,,E 、G 在BC 上,BC=15cm ,求EG 的长度。
A例5::如图所示,Rt △ABC 中,,D 是AB 上一点,BD=BC,过D 作AB 的垂线交AC 于点E ,CD 交BE 于点F 。
求证:BE 垂直平分CD.CEA D BF例6::在⊿ABC 中,点O 是AC 边上一动点,过点O 作直线MN ∥BC ,与∠ACB 的角平分线交于点E ,与∠ACB 的外角平分线交于点F ,求证:OE=OF⊥于例7、如图所示,AB>AC,∠A的平分线与BC的垂直平分线相交于D,自D作DE AB⊥于,求证:BE=CF。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(第2题)E D C B A 线段的垂直平分线
一、基础知识: 1、线段垂直平分线的性质
因为 ,所以AB =AC.
理由:
2、线段垂直平分线的判定
因为 ,所以点A 在线段BC 的中垂线上.
理由:
1、
如图,△ABC 中,AD 垂直平分边BC ,AB =5,那么AC =_________.
2、如图,在△ABC 中,AB 的垂直平分线交BC 于点E ,若BE=2则A 、E 两点的距离是( ).
A.4
B.2
C.3
D.12
3、如图,AB 垂直平分CD ,若AC=1.6cm ,BC=2.3cm ,则四边形ABCD 的周长是( )cm.
A.3.9
B.7.8
C.4
D.4.6
4、如图,NM 是线段AB 的中垂线,下列说法正确的有: . (第1题) C D A B
l
C B A
①AB⊥MN,②AD=DB,③MN⊥AB,④MD=DN,⑤AB是MN的垂直平分线.
1、已知:如图,DE是△ABC的AB边的垂直平分线,分别交AB、BC于D、E,AE平分∠BAC,若∠B=300,求∠C的度数。
二.解答:
1、有特大城市A及两个小城市B、C,这三个城市共
建一个污水处理厂,使得该厂到B、C两城市的距离
相等,且使A市到厂的管线最短,试确定污水处理厂
的位置。
2.如下图,在直线AB上找一点P,使PC =PD.
3.如右图,△ABC中,AB=AC=16cm,AB的垂直平分线ED交AC于D点. (1)当AE=13cm时,BE= cm;
(2)当△BEC的周长为26cm时,则BC= cm;
(3)当BC=15cm,则△BEC的周长是cm.
角平分线练习题
1角平分线上的点到_________________距离相等;到一个角的两边距离相等的点都在_____________.
2、∠AOB的平分线上一点M,M到OA的距离为1.5 cm,则M到OB的距离为_________.
3、如图,∠AOB=60°,CD⊥OA于D,CE⊥OB于E,且CD=CE,则∠DOC=_________.
4、如图,在△ABC中,∠C=90°,AD是角平分线,DE⊥AB于E,且DE=3 cm,BD=5 cm,则BC=_____cm.
第3题第4题
5、三角形的三条角平分线相交于一点,并且这一点到________________相等。
6、点O是△ABC内一点,且点O到三边的距离相等,∠A=60°,则∠BOC的度数为_____________.
7、在△ABC中,∠C=90°,AD平分∠BAC交BC于D,若BC=32,且BD∶CD=9∶7,则D到AB的距离为.
8、三角形中到三边距离相等的点是()
A、三条边的垂直平分线的交点
B、三条高的交点
C、三条中线的交点
D、三条角平分线的交点
9、如图,∠1=∠2,PD⊥OA,PE⊥OB,垂足分别为D,E,下列结论错误的
是()
A、PD=PE
B、OD=OE
C、∠DPO=∠EPO
D、PD=OD
10、如图,直线l 1,l 2,l 3表示三条相互交叉的公路,现要建一个货物中转站,
要求它到三条公路的距离相等,则可供选择的地址有( )
A 、1处
B 、2处
C 、3处
D 、4处
11、如图,△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB 交BC 于D ,DE ⊥AB
于E ,且AB =6㎝,则△DEB 的周长为( )
A 、4㎝
B 、6㎝
C 、10㎝
D 、不能确定
2
1D A P
O E
B
l 2l 1l 3
18、如图11.3—4,在△ABC 中∠C=900,AC=BC ,AD 平分
.交BC 于点D ,DE ⊥BE
求证:(1)DE+BD=AC
(2)若AB=6cm ,求△DBE 的周长
19、如图11.3—6,已知:AB=AC ,BD=CD ,
求证:DE=DF。