2020-2021重庆巴蜀中学七年级数学下期末模拟试卷(带答案)
2020-2021学年重庆市七年级(下)期末数学试卷(附答案详解)
![2020-2021学年重庆市七年级(下)期末数学试卷(附答案详解)](https://img.taocdn.com/s3/m/b4ac8afd4431b90d6d85c7a7.png)
2020-2021学年重庆市七年级(下)期末数学试卷一、选择题(本大题共12小题,共48.0分)1. √9的值是( )A. −3B. 3C. ±3D. −92. 在−1,−2,√3,0这四个数中,最大的数是( )A. 0B. −1C. −2D. √33. 下列各组数值中,是二元一次方程x −2y =5的解的是( )A. {x =7y =1B. {x =3y =−2C. {x =8y =1D. {x =9y =3 4. 下列调查中,最适合用全面调查方式的是( )A. 了解重庆市居民的年人均消费B. 了解某一天离开重庆市的人流量C. 了解我校初三1班每个学生的身高D. 了解全国中小学生校园消防安全意识5. 不等式组{x <2x +1≥0的解集在数轴上表示正确的是( ) A.B. C. D.6. 已知点M(−4,6),点N(2,2a),且MN//x 轴,则a 的值为( )A. −2B. 3C. 6D. −37. 如图所示,AB//CD ,射线AN 与CD 交于点M ,若∠A =40°,则∠CMN 等于( )A. 120°B. 130°C. 140°D. 110°8. 估计√26+2的值应在( )A. 5和6之间B. 6和7之间C. 7和8之间D. 8和9之间9. 根据以下运算程序,当输入x =−2时,输出的结果为( )A. −2B. −5C. 6D. −110. 古书《九章算术》有这样一个问题:“今有共买鸡,人出九,盈十一;人出六,不足十六,问人数、鸡价各几何?”大意是:有几个人共同出钱买鸡,每人出9钱,则多了11钱,每人出6钱,则少了16钱,那么有几个人共同买鸡?鸡的总价是多少?若有x 个人共同买鸡,鸡的总价是y 元,则可列方程组为( )A. {9x −y =116x −y =−16B. {9x −y =116x −y =16 C. {9x −y =−116x −y =−16 D. {9x −y =11y −6x =−16 11. 将大小相同的小圆按如图所示的规律摆放:第①个图形有5个小圆,第②个图形有10个小圆,第③个图形有17个小圆,…依此规律,第⑥个图形的小圆个数是( )A. 65B. 60C. 55D. 5012. 若关于x ,y 的二元一次方程组{x +y =a +1x +2y =8的解为正数,则满足条件的所有整数a 的和为( )A. 14B. 15C. 16D. 17二、填空题(本大题共6小题,共24.0分)13. 2021年4月6日,重庆某地区累计接种新冠疫苗突破200000剂次,人均接种数居全市前列,其中数字200000用科学记数法表示为______ .14. 计算:√83+(−1)2021×(3−π)0= ______ .15. 已知{x =2y =3是二元一次方程5x +my +2=0的解,则m =______. 16. 已知点M(m +3,2m +4)在x 轴上,那么点M 的坐标是______ .17. 如图,将一张长方形纸片ABCD(它的每一个角等于90°)沿EF 折叠,使点D 落在AB 边上的点M 处,折叠后点C 的对应点为点N.若∠AME =50°,则∠EFB =______ °.18. 若关于x 的不等式组{x ≤a x−12+1>x+13至少有4个整数解,则a 满足的条件是______ .三、解答题(本大题共8小题,共78.0分)19. (1)解方程组:{x +2y =52x +3y =8; (2)解不等式组:{x −3(x −2)≤41+2x 3>x −1.20. 如图,在平面直角坐标系中,△ABC 的三个顶点都在边长为1的小正方形网格的格点上,坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出将△ABC 向左平移4个单位长度后得到的图形△A 1B 1C 1;直接写出C 1的坐标是______ ;(2)请画出将△A 1B 1C 1向下平移5个单位长度后得到的图形△A 2B 2C 2,直接写出A 2的坐标是______ .21.为了弘扬民族音乐,丰富校园文化生活,提高同学们的演奏水平,某学校成立了民乐演奏队.数学兴趣小组的同学用两幅不完整的扇形统计图和条形统计图,收集了该校民乐演奏队队员的年龄分布情况.请根据扇形统计图和条形统计图提供的信息,解答下列问题:(1)该校有多少名同学参加了民乐演奏队?(2)将条形统计图补充完整;(3)求出扇形统计图中“13岁”队员的人数占该校民乐演奏队总人数的百分比.22.完成下列证明:已知:如图,△ABC中,AD平分∠BAC,E为线段BA延长线上一点,G为BC边上一点,连接EG交AC于点H,且∠ADC+∠EGD=180°,过点D作DF//AC交EG 的延长线于点F.求证:∠E=∠F.证明:∵AD平分∠BAC(已知),∴∠1=∠2(______ ),∴∠1=∠E(两直线平行,同位角相等),∠2=∠3(______ ).∴∠E=______ (等量代换).又∵AC//DF(已知),∴∠3=∠F(______ ).∴∠E=∠F(等量代换).23.“五一”小长假期间,某家庭准备参加某旅行社组织的去A地的旅游活动,这次去A地的旅游团报名人数共有46人,其中成人比儿童的3倍少2人.(1)该旅游团中儿童和成人各有多少人?(2)该旅行社为了回馈游客,打算给每位游客赠送一个背包,已知成人背包单价为75元,购买背包的总费用不超过3150元,请问儿童背包的单价最高是多少元?24.如图,在平面直角坐标系中,已知△ABC的顶点A(2,0),顶点B(0,3),顶点C(−1,2).(1)求△AOC的面积:(2)求△ABC的面积;(3)若点D在坐标轴上,且S△OCD=1,直接写出满足条件的D点坐标.25.对于一个三位数,若其十位上的数字是3、各个数位上的数字互不相等且都不为0,则称这样的三位数为“太极数”;如235就是一个太极数.将“太极数”m任意两个数位上的数字取出组成两位数,则一共可以得到6个两位数,将这6个两位数的和记为D(m)例如:D(235)=23+25+32+35+52+53=220.(1)最小的“太极数”是______ ,最大的“太极数”是______ ;(2)求D(432)的值;(3)把D(m)与22的商记为F(m),例如F(235)=D(235)22=22022=10.若“太极数”n满足n=100x+30+y(1≤x≤9,1≤y≤9,且x,y均为整数),即n的百位上的数字是x、十位上的数字是3、个位上的数字是y,且F(n)=8,请求出所有满足条件的“太极数”n.26.如图所示,已知∠BAC<90°,CD//AB,E是射线AB上一动点(不与端点重合).CM平分∠ACE交射线AB于点M,CN平分∠DCE交射线AB于点N.(1)若∠A=56°,求∠MCN的度数;(2)当点E运动时,猜想∠AEC与∠ANC之间存在的数量关系;请写出它们之间的关系,并说明理由;(3)点E运动过程中满足线段CM的长度最小时,过点E作EF⊥CN于点H,EF交CD于点F;设∠BAC=y°,请直接用含y的式子表示∠FEN的大小.答案和解析1.【答案】B【解析】解:因为32=9,所以√9=3,故选:B .根据√9表示9的算术平方根,而9的算术平方根是3,进而得出答案.本题考查算术平方根,理解算术平方根的意义是正确解答的前提.2.【答案】D【解析】解:∵−1,−2都是负数,∴−2<−1<0,∵√3是正数,∴√3>0,∴−2<−1<0<√3,∴最大的数是√3.故选:D .根据正实数都大于0,负实数都小于0,正实数大于一切负实数,据此判断即可. 本题主要考查了有理数大小比较,熟记有理数大小比较方法是解答本题的关键.3.【答案】A【解析】解:将{x =7y =1代入x −2y =5等式成立,∴A 符合题意; 将{x =3y =−2代入x −2y =5,得到7=5,等式不成立,∴B 不符题意; 将{x =8y =1代入x −2y =5,得到6=5,等式不成立,∴C 不符题意; 将{x =9y =3代入x −2y =5,得到3=5,等式不成立,∴D 不符题意; 故选:A .分别将选项中的解代入方程x −2y =5,检验方程是否成立,即可求解.关键.4.【答案】C【解析】解:A.了解重庆市居民的年人均消费,适合抽样调查,故A不符合题意;B.了解某一天离开重庆市的人流量,适合抽样调查,故B不符合题意;C.了解我校初三1班每个学生的身高,适合普查,故C符合题意;D.了解全国中小学生校园消防安全意识,适合抽样调查,故D不符合题意;故选:C.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.此题主要考查了全面调查与抽样调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.5.【答案】B【解析】解:{x<2①x+1≥0②,由①得,x<2,由②得,x≥−1,故此不等式组的解集为:故选:B.先求出此不等式组的解集,并在数轴上表示出来,找出符合条件的选项即可.本题考查的是在数轴上表示一元一次不等式组的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.【答案】B【解析】解:∵直线MN//x轴,点M(−4,6),点N(2,2a),解得a=3,故选:B.根据平行于x轴的直线上任意两点的纵坐标相同列出方程求出a的值,然后即可得解.本题考查了坐标与图形性质,掌握平行于x轴的直线的上的点的坐标特征是解题的关键.7.【答案】C【解析】解:∵AB//CD,∠A=40°,∴∠DMN=∠A=40°,∴∠CMN=180°−∠DMN=180°−40°=140°,故选:C.利用平行线的性质,由∠A=40°可得∠DMN=40°,由补角的定义可得∠CMN.本题主要考查了平行线的性质定理,熟练掌握定理是解答此题的关键.8.【答案】C【解析】解:∵25<26<36,∴√25<√26<√36,即5<√26<6,∴5+2<√26+2<6+2,即7<√26+2<8,∴√26+2的值在7和8之间.故选:C.先确定√26的范围,再确定出√26+2的取值范围即可.本题考查了无理数的估算,无理数的估算常用夹逼法,用有理数夹逼无理数是解题的关键.9.【答案】B【解析】解:∵x=−2<0,∴x−3=−2−3=−5,因为x =−2<0,所以在运算程序中将x =−2代入x −3的代数式即可求解.本题考查代数式求值,能理解运算流程图,根据x 的值确定符合哪个代数式是解题的关键.10.【答案】A【解析】解:设有x 人共同买鸡,鸡的价格为y 钱,依题意,得{9x −y =116x −y =−16, 故选:A .设有x 人共同买鸡,鸡的价格为y 钱,根据“每人出9钱,则多了11钱,每人出6钱,则少了16钱”,即可得出关于x ,y 的二元一次方程组.本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.11.【答案】D【解析】解:观察图形的变化可知:第①个图形有5个小圆,即5=1×2+3;第②个图形有10个小圆,即10=2×3+4;第③个图形有17个小圆,即17=3×4+5;…,依此规律,第⑥个图形的小圆个数是:6×7+8=50;故选:D .观察图形的变化先计算出前几个图形的小圆的个数,进而可得第⑥个图形的小圆个数. 本题考查了规律型:图形的变化类,解决本题的关键是先计算出前几个图形的小圆的个数.12.【答案】B【解析】解:解关于x ,y 的二元一次方程组{x +y =a +1x +2y =8得,{x =2a −6y =7−a , ∵关于x ,y 的二元一次方程组{x +y =a +1x +2y =8的解为正数,∴{2a −6>07−a >0, ∴3<a <7,∴满足条件的所有整数a 的和为4+5+6=15.故选:B .解方程组求出x ,y ,根据方程组的解为正数,求出整数a 的值.本题主要考查解一元一次不等式组和二元一次方程组的解,解题的关键是掌握解二元一次方程组和一元一次不等式组的能力,并结合题意得出整数a 的值.13.【答案】2×105【解析】解:将200000用科学记数法表示应为2×105,故答案是:2×105.用科学记数法表示较大的数时,一般形式为a ×10n ,其中1≤|a|<10,n 为整数,据此判断即可.此题主要考查了用科学记数法表示较大的数,一般形式为a ×10n ,其中1≤|a|<10,确定a 与n 的值是解题的关键.14.【答案】1【解析】解:原式=2+(−1)×1=2−1=1.故答案为:1.直接利用立方根以及有理数的乘方运算法则、零指数幂的性质分别化简得出答案. 此题主要考查了立方根以及有理数的乘方运算、零指数幂的性质,正确化简各数是解题关键.15.【答案】−4【解析】解:把{x =2y =3代入二元一次方程5x +my +2=0, 得10+3m +2=0,解得m=−4.故答案为:−4.知道了方程的解,可以把这对数值代入方程,得到一个含有未知数m的一元一次方程,从而可以求出m的值.考查了二元一次方程的解,解题关键是把方程的解代入原方程,使原方程转化为以系数m为未知数的方程,再求解.16.【答案】(1,0)【解析】解:∵点M(m+3,2m+4)在x轴上,∴2m+4=0,解得m=−2,∴m+3=−2+3=1,∴点M(1,0).故答案为:(1,0).根据x轴上点的纵坐标为0列出方程求出m的值,再求出横坐标即可得解.本题考查了点的坐标,熟记x轴上点的纵坐标为0是解题的关键.17.【答案】70【解析】解:∵长方形纸片ABCD(它的每一个角等于90°)沿EF折叠,∴∠DEF=∠MEF,∠A=90°,∠EFB=∠DEF,∵∠AME=50°,∴∠AEM=90°−∠AME=90°−50°=40°,∴∠DEM=180°−∠AEM=180°−40°=140°,∴∠DEF=∠MEF=12∠DEM=12×140°=70°,∴∠EFB=70°,故答案为:70.根据折叠性质得出∠DEM=2∠DEF,根据∠AME的度数求出∠AEM的度数,易得∠DEF,即可求出答案.本题考查了平行线的性质和翻折变换的性质,邻补角定义的应用,熟记折叠的性质是解题的关键.18.【答案】3≤a <4【解析】解:不等式组整理得{x ≤a x >−1, 关于x 的不等式组{x ≤a x−12+1>x+13至少有4个整数解,∴不等式组的整数解为0,1,2,3,所以3≤a <4,故答案为:3≤a <4.先求出不等式组中每个不等式的解集,求其整数解,进而求得a 的取值范围.本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小找不到.19.【答案】解:(1){x +2y =5①2x +3y =8②, ①×2−②得:y =2,把y =2代入①得:x =1,则方程组的解为{x =1y =2; (2){x −3(x −2)≤4①1+2x 3>x −1②, 由①得:x ≥1,由②得:x <4,则不等式组的解集为1≤x <4.【解析】(1)方程组利用加减消元法求出解即可;(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.此题考查了解一元一次不等式组,以及解一元一次方程,熟练掌握解二元一次方程组的方法和一元一次不等式组解集的求法是解本题的关键.20.【答案】(−1,4) (−3,−4)【解析】解:(1)如图所示:△A1B1C1即为所求,C1的坐标是(−1,4);故答案为:(−1,4);(2)如图所示:△A2B2C2即为所求,A2的坐标是(−3,−4).故答案为:(−3,−4).(1)直接利用平移的性质得出对应点位置,即可得出答案;(2)直接利用平移的性质得出对应点位置,即可得出答案.此题主要考查了平移变换,正确得出对应点位置是解题关键.21.【答案】解:(1)4÷25%=16(人),答:演奏队有16人;(2)16−2−5−4−1−1=3(人),补全条形统计图如下:(3)2÷16=12.5%,答:扇形统计图中“13岁”队员的人数占该校民乐演奏队总人数的12.5%.【解析】(1)从两个统计图中可知演奏队年龄是16岁的有4人,占演奏队人数的25%,可求出演奏队人数;(2)求出15岁的人数即可补全条形统计图;(3)演奏队中13岁的有2人,演奏队共16人,即可求出所占的百分比.本题考查扇形统计图、条形统计图,理解两个统计图中数量之间的关系是正确解答的关键.22.【答案】角平分线的定义AD两直线平行,同位角相等∠3两直线平行,内错角相等【解析】证明:∵AD平分∠BAC(已知),∴∠1=∠2(角平分线的定义),又∵∠ADC+∠EGD=180°(已知),∴EF//AD(同旁内角互补,两直线平行).∴∠1=∠E(两直线平行,同位角相等),∠2=∠3(两直线平行,同位角相等).∴∠E=∠3(等量代换).又∵AC//DF(已知),∴∠3=∠F(两直线平行,内错角相等).∴∠E=∠F(等量代换).故答案为:角平分线的定义;AD;两直线平行,同位角相等;∠3;两直线平行,内错角相等.先根据角平分线的定义求得∠1=∠2,再根据平行线的判定证得EF//AD,运用平行线的性质和等量代换得到∠E=∠3,继而由AC//DF证出∠3=∠F,从而得到最后结论.本题考查了平行线的性质和判定,能熟练地运用定理进行推理是解此题的关键.23.【答案】解:(1)设该旅游团中儿童有x人,则成人有(3x−2)人,依题意得:x+(3x−2)=46,解得:x=12,∴3x−2=3×12−2=34(人).答:该旅游团中儿童有12人,成人有34人.(2)设儿童背包的单价是m元,依题意得:75×34+12m≤3150,解得:m≤50.答:儿童背包的单价最高是50元.【解析】(1)设该旅游团中儿童有x人,则成人有(3x−2)人,根据去该旅游团共有46人,即可得出关于x的一元一次方程,解之即可得出结论;(2)设儿童背包的单价是m元,根据总价=单价×数量,结合购买背包的总费用不超过3150元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.本题考查了一元一次方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据各数量之间的关系,正确列出一元一次不等式.24.【答案】解:(1)S△AOC=12×x A×y C=12×2×2=2,(2)过点C作CD垂直x轴,S△ABC=S△AOB+S梯形OBCD−S△ACD,S△ABC=12×2×3+12(2+3)×1−12×3×2=52.(3)D点在y轴上时S△OCD=12×1×|y D|=1,y D=2或y D=−2,此时D点(0,2),(0,−2),D点在x轴上时S△OCD=12×2×|x D|=2,∴x D=1或x D=−1,此时D点(−1,0),(1,0).【解析】(1)(2)三角形的面积公式:S△=12×底×高,找到底和高求解即可,(3)需要分情况讨论,D点在x轴和y轴.本题主要考查坐标系内三角形面积的计算,关键是找对合适的三角形底和高.25.【答案】132 938【解析】解:(1)根据题意得:最小的“太极数”为132,最大的“太极数”为938;故答案为:132,938;(2)D(432)=43+42+34+32+24+23=198;(3)∵F(n)=8,∴F(n)=D(n)22=8,∵“太极数”n满足n=100x+30+y(1≤x≤9,1≤y≤9,且x,y均为整数),∴D(n)=10x+3+10x+y+30+x+30+y+10y+x+10y+3=22x+22y+ 66=22(x+y+3),∴22(x+y+3)22=8,则x+y+3=8,得x+y=5,∴当x=1时,y=4,此“太极数”为:134;当x=2时,y=3,不符合“太极数”;当x=3时,y=2,不符合“太极数”;当x=4时,y=1,此“太极数”是431.满足所有条件的“太极数”有134,431.(1)根据“太极数”的定义,不难得出最小的“太极数”为132,最大的“太极数”为938;(2)根据题意进行求解即可;(3)由F(n)=8,则D(n)22=8,可得出x+y+3=8,则x+y=5,再结合“太极数”的定义进行求解即可.本题主要考查了因式分解的应用,解答的关键是读懂题意,对因式分解的熟练应用.26.【答案】解:(1)∵CD//AB,∠A=56°,∴∠ACD=180°−∠A=124°,∵CM平分∠ACE,CN平分∠DCE,∴∠MCE=12∠ACE,∠NCE=12∠DCE,∴∠MCE+∠NCE=12(∠ACE+∠DCE)=12∠ACD=62°;(2)∠AEC=2∠ANC,理由如下:∵CD//AB,∴∠DCN=∠ANC,∵∠NCE=∠DCN,∴∠NCE=∠ANC,∵∠AEC是△ECN的一个外角,∴∠AEC=∠NCE+∠ANC=2∠ANC;(3)当CM⊥AB时,线段CM的长度最小,在△ACM和△ECM中,{∠ACM=∠ECMCM=CM∠AMC=∠EMC=90°,∴△ACM≌△ECM(ASA),∴∠CEA=∠BAC=y°,∴∠CEN=180°−∠CEA=180°−y°,∵CN平分∠DCE,EF⊥CN,∴CE=CF,∴∠CEF=∠CFE,∵CD//AB,∴∠CFE=∠FEN,∴∠FEN=∠CEF=12×(180°−y°)=90°−12y°.【解析】(1)根据平行线的性质求出∠ACD,根据角平分线的定义得到∠MCE+∠NCE=12∠ACD,计算即可;(2)根据三角形的外角性质解答;(3)根据垂线段最短得到CM⊥AB时,线段CM的长度最小,证明△ACM≌△ECM,根据全等三角形的性质得到∠CEA=∠BAC=y°,根据平行线的性质、邻补角的概念计算,得到答案.本题考查的是平行线的性质、全等三角形的判定和性质、角平分线的定义、垂线段最短以及邻补角的性质,根据全等三角形的判定定理证明△ACM≌△ECM是解题的关键.。
重庆市巴蜀中学2020-2021年人教版七年级下期末数学试卷含答案解析
![重庆市巴蜀中学2020-2021年人教版七年级下期末数学试卷含答案解析](https://img.taocdn.com/s3/m/217961796137ee06eef91830.png)
2020-2021学年重庆市巴蜀中学七年级(下)期末数学试卷一、选择题1.在,﹣1,0,这四个数中,属于无理数的是()A.B.﹣1 C.0 D.2.下列图形中,不是轴对称图形的是()A.B.C.D.3.如图,已知AB∥CD,若∠E=15°,∠C=55°,则∠A的度数为()A.25°B.40°C.35°D.45°4.下列说法中,正确的是()A.“明天降雨的概率是80%”表示明天有80%的时间降雨B.“抛一枚硬币正面朝上的概率是0.5”表示每抛硬币2次就有1次出现正面朝上C.“彩票中奖的概率是1%”表示买100张彩票一定有1张会中奖D.在同一年出生的367名学生中,至少有两人的生日是同一天5.如图,∠C=90°,AB的垂直平分线交BC于D,连接AD,若∠CAD=2021则∠B=()A.2021B.30°C.35°D.40°6.比较2,,的大小,正确的是()A.B.2C.2D.<27.如果的解也是2x+3y=6的解,那么k的值是()A.B.C.﹣D.﹣8.如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线是A→D→C→B→A,设P 点经过的路程为x,以点A、P、D为顶点的三角形的面积是y,则下列图象能大致反映y与x的函数关系的是()A. B.C.D.9.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是()A.B.C.D.10.如图,△ABC内角∠ABC和外角∠ACD的平分线交于点E,BE交AC于点F,过点E作EG∥BD 交AB于点G,交AC于点H,连接AE,有以下结论;①BG=EG;②△HEF≌△CBF;③∠AEB+∠ACE=90°;④BG﹣CH=GH;⑤∠AEC+∠ABE=90°其中正确的结论是()A.1个B.2个C.3个D.4个二、填空题包11.的算术平方根是.12.将一副三角板如图放置,使点A在DE上,∠B=45°,∠E=30°,BC∥DE,则∠EFB的度数为.13.如图,AD,AE分别是△ABC的角平分线和高线,且∠B=50°,∠C=70°,则∠EAD=.14.已知鞋子的“码”与“厘米”之间的对应关系如表所示:码34 35 36 37 38厘米22 22.5 23 23.5 24设鞋子的“码”为x(码),“厘米”为y(厘米),则y与x之间的函数关系式是.15.在一个不透明的布袋中,红色、黑色、白色的乒乓球共有2021除颜色外,形状、大小、质地等完全相同.小明通过多次摸球实验后发现其中投到红色、黑色球的频率稳定在5%和15%,则口袋中白色球的个数很可能是个.16.已知关于x,y的二元一次方程组的解互为相反数,则k的值是.17.若5﹣的小数部分为a,若2+的小数部分为b,则a+b=.18.一个装有进水管和出水管的容器,从某一时刻起只打开进水管进水,经过一段时间,再打开出水管放水,至12分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y(单位:升)与时间x(单位:分钟)之间的函数关系如图所示,关停进水管后,经过分钟,容器中的水恰好放完.19.已知实数m满足+=,则m=.2021图,△ABC中,∠ACB=90°,AC=8cm,BC=15cm,点M从A点出发沿A→C→B路径向终点运动,终点为B点,点N从B点出发沿B→C→A路径向终点运动,终点为A点,点M和N分别以每秒2m和3cm的运动速度同时开始运动,两点都要到达相应的终点时才能停止运动,分别过M 和N作ME⊥l于E,NF⊥l于F.设运动时间为t秒,要使以点M,E,C为顶点的三角形与以点N,F,C为顶点的三角形全等,则t的值为.三、解答题21.计算:(1)(2)(20).22.解方程组:(1)(2).23.已知:如图,∠B=∠D,∠DAB=∠EAC,AB=AD.求证:BC=DE.24.端午节至,甲、乙两队举行了一年一度的赛龙舟比赛,两队在比赛时的路程S(米)与时间t(分钟)之间的函数关系图象如图所示,请你根据图象,回答下列问题:(1)这次龙舟赛的全程是米,队先到达终点;(2)求乙与甲相遇时乙的速度;(3)求出在乙队与甲相遇之前,他们何时相距100米?25.列方程组解应用题:某服装店购进一批甲、乙两种款式时尚T恤衫,用142021恰好购进100件,已知甲种款型T恤进价为130元/件,且甲种款型的每件进价比乙种款型每件进价少30元.(1)求甲、乙两种款型的T恤各购进多少件?(2)商店按进价提高60%标价销售,销售一段时间后,甲款全部售完,乙款剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T恤商店共获得多少元?26.如图,在△ABC中,∠BAC=90°,过点B作BC的垂线交∠ACB的角平分线于点D,CD与AB 边交于点E,过D作DF⊥AB于点F.(1)若△BDE是边长为2的等边三角形,求AE的长;(2)求证:AE=BF.27.已知△ABC和△DEC都是等腰直角三角形,C为它们的公共直角顶点,D、E分别在BC、AC 边上.(1)如图1,F是线段AD上的一点,连接CF,若AF=CF;①求证:点F是AD的中点;②判断BE与CF的数量关系和位置关系,并说明理由;(2)如图2,把△DEC绕点C顺时针旋转α角(0<α<90°),点F是AD的中点,其他条件不变,判断BE与CF的关系是否不变?若不变,请说明理由;若要变,请求出相应的正确结论.2020-2021学年重庆市巴蜀中学七年级(下)期末数学试卷参考答案与试题解析一、选择题1.在,﹣1,0,这四个数中,属于无理数的是()A.B.﹣1 C.0 D.【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:是分数,是有理数;﹣1和0是整数,是有理数;是无理数.故选D.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.下列图形中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选A.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.如图,已知AB∥CD,若∠E=15°,∠C=55°,则∠A的度数为()A.25°B.40°C.35°D.45°【考点】平行线的性质;三角形的外角性质.【分析】根据两直线平行,同位角相等可得∠1=∠C,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:如图,∵AB∥CD,∴∠1=∠C=55°,∴∠A=∠1﹣∠E=55°﹣15°=40°.故选B.【点评】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质是解题的关键.4.下列说法中,正确的是()A.“明天降雨的概率是80%”表示明天有80%的时间降雨B.“抛一枚硬币正面朝上的概率是0.5”表示每抛硬币2次就有1次出现正面朝上C.“彩票中奖的概率是1%”表示买100张彩票一定有1张会中奖D.在同一年出生的367名学生中,至少有两人的生日是同一天【分析】根据概率的意义分析各个选项,找到正确选项即可.【解答】解:A、“明天降雨的概率是80%”表示明天有降雨的可能性,故错误;B、“抛一枚硬币正面朝上的概率是0.5”表示抛一枚硬币正面朝上与反面朝上的机会是一样的,故错误;C、“彩票中奖的概率是1%”表示在设计彩票时,有1%的机会中奖,但不一定买100张彩票一定有1张会中奖,故错误;D、在同一年出生的367名学生,而一年中至多有366天,因而至少有两人的生日是同一天.故选:D.【点评】本题解决的关键是理解概率只是反映事件发生机会的大小.5.如图,∠C=90°,AB的垂直平分线交BC于D,连接AD,若∠CAD=2021则∠B=()A.2021B.30°C.35°D.40°【考点】线段垂直平分线的性质;三角形内角和定理;等腰三角形的判定与性质.【分析】由已知条件,根据线段垂直平分线的性质得到线段及角相等,再利用直角三角形两锐角互余得到∠B=(180°﹣∠ADB)÷2答案可得.【解答】解:∵DE垂直平分AB,∴AD=DB∴∠B=∠DAB∵∠C=90°,∠CAD=2021∴∠B=(180°﹣∠C﹣∠CAD)÷2=35°故选C【点评】本题考查了线段垂直平分线的性质、等腰三角形的判定与性质及三角形内角和定理;解决本题的关键是利用线段的垂直平分线性质得到相应的角相等,然后根据三角形的内角和求解.6.比较2,,的大小,正确的是()A.B.2C.2D.<2【分析】首先根据2=,可得2;然后根据,可得,据此判断出2,,的大小关系即可.【解答】解:∵2=,∴2;∵,∴,∴<.故选:A.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是判断出2和的大小关系.7.如果的解也是2x+3y=6的解,那么k的值是()A.B.C.﹣D.﹣【考点】解二元一次方程组;二元一次方程的解.【分析】求出方程组的解x=7k,y=﹣2k,代入2x+3y=6得出关于k的方程,求出方程的解即可.【解答】解:,①+②得:2x=14k,x=7k,①﹣②得:2y=﹣4k,y=﹣2k,把x=7k和y=﹣2k代入2x+3y=6得:14k﹣6k=6,k=,故选A.【点评】本题考查了解二元一次方程组的应用,关键是得出关于k的方程.8.如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线是A→D→C→B→A,设P 点经过的路程为x,以点A、P、D为顶点的三角形的面积是y,则下列图象能大致反映y与x的函数关系的是()A. B.C.D.【考点】动点问题的函数图象.【分析】根据动点从点A出发,首先向点D运动,此时y不随x的增加而增大,当点P在DC上运动时,y随着x的增大而增大,当点P在CB上运动时,y不变,据此作出选择即可.【解答】解:当点P由点A向点D运动,即0≤x≤4时,y的值为0;当点P在DC上运动,即4<x≤8时,y随着x的增大而增大;当点P在CB上运动,即8<x≤12时,y不变;当点P在BA上运动,即12<x≤16时,y随x的增大而减小.故选B.【点评】本题考查了动点问题的函数图象,解决动点问题的函数图象问题关键是发现y随x的变化而变化的趋势.9.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是()A.B.C.D.【考点】概率公式;轴对称图形.【分析】由随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有5种等可能的结果,使与图中阴影部分构成轴对称图形的有3种情况,直接利用概率公式求解即可求得答案.【解答】解:∵在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有5种等可能的结果,使与图中阴影部分构成轴对称图形的有②④⑤,3种情况,∴使与图中阴影部分构成轴对称图形的概率是:3÷5=.故选C.【点评】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.也考查了轴对称图形的定义.10.如图,△ABC内角∠ABC和外角∠ACD的平分线交于点E,BE交AC于点F,过点E作EG∥BD 交AB于点G,交AC于点H,连接AE,有以下结论;①BG=EG;②△HEF≌△CBF;③∠AEB+∠ACE=90°;④BG﹣CH=GH;⑤∠AEC+∠ABE=90°其中正确的结论是()A.1个B.2个C.3个D.4个【考点】全等三角形的判定与性质;等腰三角形的判定与性质.【分析】①根据角平分线定义得出∠ABE=∠CBE,根据平行线性质得出∠CBE=∠BEG,从而得出∠ABE=∠BEG,由等腰三角形的判定定理即可得到结论;②根据相似三角形的判定定理得到两个三角形相似,不能得出全等;③由于E是两条角平分线的交点,根据角平分线的性质可得出点E到BA、AC、BC和距离相等,从而得出AE为∠BAC外角平分线这个重要结论,再利用三角形内角和性质与外角性质进行角度的推导即可轻松得出结论.④根据∠AEC=180﹣x﹣z,于是得到∠AEC=180﹣(y+90°),推出y+∠AEC=90°,即可得到结论;⑤由BG=GE,CH=EH,于是得到BG﹣CH=GE﹣EH=GH.即可得到结论.【解答】解:①∵BE平分∠ABC,π∴∠ABE=∠CBE,∵GE∥BC,∴∠CBE=∠GEB,∴∠ABE=∠GEB,∴BG=GE,故①正确.同理CH=HE.②△HEF与△CBF只有两个角是相等的,能得出相似,但不含相等的边,所有不能得出全等的结论,故②错误.③过点E作EN⊥AC于N,ED⊥BC于D,EM⊥BA于M,如图,∵BE平分∠ABC,∴EM=ED,∵CE平分∠ACD,∴EN=ED,∴EN=EM,∴AE平分∠CAM,设∠ACE=∠DCE=x,∠ABE=∠CBE=y,∠MAE=∠CAE=z,如图,则∠BAC=180°﹣2z,∠ACB=180﹣2x,∵∠ABC+∠ACB+∠BAC=180°,∴2y+180°﹣2z+180°﹣2x=180°,∴x+z=y+90°,∵z=y+∠AEB,∴x+y+∠AEB=y+90°,∴x+∠AEB=90°,即∠ACE+∠AEB=90°,故③正确.④∵∠AEC=180﹣x﹣z,∴∠AEC=180﹣(y+90°),∴y+∠AEC=90°,即∠ABE+∠AEC=90°,故④正确.⑤∵BG=GE,CH=EH,∴BG﹣CH=GE﹣EH=GH.故⑤正确.综上,①③④⑤正确,共4个.故选D.【点评】本题考查了平行线的性质,角平分线的定义,角平分线的性质与判定,等腰三角形的判定,三角形内角和定理、三角形外角性质等多个知识点,难度中等.判断出AE是∠BAC外角平分线是关键,事实上,点E就是△ABC的旁心.二、填空题包11.的算术平方根是2.【考点】算术平方根.【专题】计算题.【分析】首先根据算术平方根的定义求出的值,然后再利用算术平方根的定义即可求出结果.【解答】解:∵=4,∴的算术平方根是=2.故答案为:2.【点评】此题主要考查了算术平方根的定义,注意要首先计算=4.12.将一副三角板如图放置,使点A在DE上,∠B=45°,∠E=30°,BC∥DE,则∠EFB的度数为75°.【考点】平行线的性质.【分析】由平行线的性质得出内错角相等∠BCF=∠E=30°,再由三角形的外角性质得出∠EFB=∠B+∠BCF,即可得出结果.【解答】解:∵BC∥DE,∴∠BCF=∠E=30°,∴∠EFB=∠B+∠BCF=45°+30°=75°,故答案为75°.【点评】本题考查了平行线的性质、三角形的外角性质;熟练掌握平行线的性质,并能进行推理计算是解决问题的关键.13.如图,AD,AE分别是△ABC的角平分线和高线,且∠B=50°,∠C=70°,则∠EAD=10°.【考点】三角形内角和定理.【分析】根据三角形的内角和等于180°求出∠BAC,再根据角平分线的定义求出∠BAD,根据直角三角形两锐角互余求出∠BAE,然后根据∠EAD=∠BAE﹣∠BAD代入数据进行计算即可得解.【解答】解:∵∠B=50°,∠C=70°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣50°﹣70°=60°,∵AD是△ABC的角平分线,∴∠BAD=∠BAC=×60°=30°,∵AE是△ABC的高线,∴∠BAE=90°﹣∠B=90°﹣50°=40°,∴∠EAD=∠BAE﹣∠BAD=40°﹣30°=10°.故答案为:10°.【点评】本题考查了三角形的内角和定理,三角形的角平分线、高线的定义,是基础题,准确识图找出各角度之间的关系是解题的关键.14.已知鞋子的“码”与“厘米”之间的对应关系如表所示:码34 35 36 37 38厘米22 22.5 23 23.5 24设鞋子的“码”为x(码),“厘米”为y(厘米),则y与x之间的函数关系式是y=0.5x+5.【考点】根据实际问题列一次函数关系式.【分析】设鞋长用x表示,鞋码用y表示,利用待定系数法即可求解.【解答】解:设鞋子的“码”为x(码),“厘米”为y(厘米),则y与x之间的函数关系式是:y=kx+b,∴,解得:,∴y与x之间的函数关系式是:y=0.5x+5.故答案为:y=0.5x+5.【点评】本题考查了一次函数的应用,利用一次函数解决鞋的长度与鞋码之间的关系是解题关键.15.在一个不透明的布袋中,红色、黑色、白色的乒乓球共有2021除颜色外,形状、大小、质地等完全相同.小明通过多次摸球实验后发现其中投到红色、黑色球的频率稳定在5%和15%,则口袋中白色球的个数很可能是16个.【考点】利用频率估计概率.【专题】计算题.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,先求得白球的频率,再乘以总球数求解.【解答】解:白色球的个数是:20211﹣5%﹣15%)=20210%=16,故答案为:16,【点评】此题主要考查了利用频率估计概率,解答此题的关键是要计算出口袋中白色球所占的比例,再计算其个数.16.已知关于x,y的二元一次方程组的解互为相反数,则k的值是﹣1.【考点】二元一次方程组的解.【分析】将方程组用k表示出x,y,根据方程组的解互为相反数,得到关于k的方程,即可求出k 的值.【解答】解:解方程组得:,因为关于x,y的二元一次方程组的解互为相反数,可得:2k+3﹣2﹣k=0,解得:k=﹣1.故答案为:﹣1.【点评】此题考查方程组的解,关键是用k表示出x,y的值.17.若5﹣的小数部分为a,若2+的小数部分为b,则a+b=1.【考点】估算无理数的大小.【分析】先估算出的大小,再求出a、b的值即可.【解答】解:∵4<6<9,∴2<<3,∴2<5﹣<3,∴a=5﹣﹣2=3﹣.同理,b=﹣2.∴a+b=3﹣+﹣2=1.故答案是:1.【点评】本题主要考查了无理数的估算,解题关键是确定无理数的小数部分即可解决问题.18.一个装有进水管和出水管的容器,从某一时刻起只打开进水管进水,经过一段时间,再打开出水管放水,至12分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y(单位:升)与时间x(单位:分钟)之间的函数关系如图所示,关停进水管后,经过8分钟,容器中的水恰好放完.【考点】函数的图象;一次函数的应用.【分析】由0﹣4分钟的函数图象可知进水管的速度,根据4﹣12分钟的函数图象求出水管的速度,再求关停进水管后,出水经过的时间.【解答】解:进水管的速度为:2021=5(升/分),出水管的速度为:5﹣(30﹣2021(12﹣4)=3.75(升/分),∴关停进水管后,出水经过的时间为:30÷3.75=8分钟.故答案为:8.【点评】本题考查利用函数的图象解决实际问题.正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.19.已知实数m满足+=,则m=7.【考点】二次根式的性质与化简;二次根式有意义的条件.【分析】根据二次根式的性质和化简解答即可.【解答】解:因为实数m满足+=,可得:m﹣2+=m,可得:m﹣3=4,解得:m=7,故答案为:7【点评】此题考查二次根式问题,关键是根据二次根式的性质和化简分析.2021图,△ABC中,∠ACB=90°,AC=8cm,BC=15cm,点M从A点出发沿A→C→B路径向终点运动,终点为B点,点N从B点出发沿B→C→A路径向终点运动,终点为A点,点M和N分别以每秒2m和3cm的运动速度同时开始运动,两点都要到达相应的终点时才能停止运动,分别过M和N作ME⊥l于E,NF⊥l于F.设运动时间为t秒,要使以点M,E,C为顶点的三角形与以点N,F,C为顶点的三角形全等,则t的值为或7或8.【考点】全等三角形的判定.【专题】动点型.【分析】易证∠MEC=∠CFN,∠MCE=∠CNF.只需MC=NC,就可得到△MEC与△CFN全等,然后只需根据点M和点N不同位置进行分类讨论即可解决问题.【解答】解:①当0≤t<4时,点M在AC上,点N在BC上,如图①,此时有AM=2t,BN=3t,AC=8,BC=15.当MC=NC即8﹣2t=15﹣3t,解得t=7,不合题意舍去;②当4≤t<5时,点M在BC上,点N也在BC上,如图②,若MC=NC,则点M与点N重合,即2t﹣8=15﹣3t,解得t=;③当5≤t<时,点M在BC上,点N在AC上,如图③,当MC=NC即2t﹣8=3t﹣15,解得t=7;④当≤t<时,点N停在点A处,点M在BC上,如图④,当MC=NC即2t﹣8=8,解得t=8;综上所述:当t等于或7或8秒时,以点M,E,C为顶点的三角形与以点N,F,C为顶点的三角形全等.故答案为:或7或8.【点评】本题主要考查了全等三角形的判定以及分类讨论的思想,可能会因考虑不全面而出错,是一道易错题.三、解答题21.计算:(1)(2)(20).【考点】二次根式的混合运算.【专题】计算题.【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)先把各二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算.【解答】解:(1)原式=2﹣3+6﹣10=﹣5;(2)原式=(60﹣16﹣6)÷2=38÷2=19.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.22.解方程组:(1)(2).【考点】解二元一次方程组.【专题】计算题.【分析】(1)方程组利用代入消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1),把①代入②得:10y﹣42+3y=23,即y=5,把y=5代入①得:x=2,则方程组的解为;(2)方程组整理得:,①+②得:7x=14,即x=2,把x=2代入②得:y=﹣1,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.23.已知:如图,∠B=∠D,∠DAB=∠EAC,AB=AD.求证:BC=DE.【考点】全等三角形的判定与性质.【专题】证明题.【分析】因为∠DAB=∠EAC,从图上可以看出∠DAB+∠BAE=∠EAC+∠BAE,即∠DAE=∠BAC,又因为,∠B=∠D,AB=AD,所以很容易证明△DAE≌△BAC,从而得出结论.【解答】证明:∵∠DAB=∠EAC,∴∠DAB+∠BAE=∠EAC+∠BAE,即∠DAE=∠BAC,在△DAE和△BAC中,∴△DAE≌△BAC(ASA)∴BC=DE.【点评】本题考查全等三角形的判定定理,根据ASA可证明三角形全等,从而可得出结论.24.端午节至,甲、乙两队举行了一年一度的赛龙舟比赛,两队在比赛时的路程S(米)与时间t(分钟)之间的函数关系图象如图所示,请你根据图象,回答下列问题:(1)这次龙舟赛的全程是1000米,乙队先到达终点;(2)求乙与甲相遇时乙的速度;(3)求出在乙队与甲相遇之前,他们何时相距100米?【考点】函数的图象.【分析】(1)根据函数图象的纵坐标,可得比赛的路程,根据函数图象的横坐标,可得比赛的结果;(2)根据乙加速后行驶的路程除以加速后的时间,可得答案;(3)分类讨论,乙加速前,乙加速后,根据甲的路程减去乙的路程,可得关于t的方程,根据解方程,可得答案.【解答】解:(1)由纵坐标看出,这次龙舟赛的全程是1000米,由横坐标看出,乙队先到达终点,故答案为:1000,乙;(2)由图象看出,相遇是在乙加速后,加速后的路程是1000﹣400=600米,加速后的时间时3.8﹣2.2=1.6分钟,乙与甲相遇时乙的速度600÷1.6=375米/分钟;(3)①乙加速前,设行驶x秒时,甲乙相距100米,x﹣x=100.解得x=2;②乙加速后,设行驶x秒时,甲乙相距100米,∵×2.2=550,∴x﹣x=550﹣400﹣100.解得x=0.4,∴行驶了2.2+00.4=2.6,答:在乙队与甲相遇之前,他们行驶2或2.6分钟时相距100米.【点评】本题考查了函数图象,分类讨论是解题关键,乙加速前的速度,乙加速后的速度,注意相遇时的速度是加速后的速度.25.列方程组解应用题:某服装店购进一批甲、乙两种款式时尚T恤衫,用142021恰好购进100件,已知甲种款型T恤进价为130元/件,且甲种款型的每件进价比乙种款型每件进价少30元.(1)求甲、乙两种款型的T恤各购进多少件?(2)商店按进价提高60%标价销售,销售一段时间后,甲款全部售完,乙款剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T恤商店共获得多少元?【考点】二元一次方程组的应用.【分析】(1)可设甲种款型的T恤衫购进x件,则甲种款型的T恤衫购进y件,根据用142021恰好购进100件,甲种款型每件的进价比乙种款型每件的进价少30元,列出方程组即可求解;(2)先求出甲款型的利润,乙款型前面销售一半的利润,后面销售一半的亏损,再相加即可求解.【解答】解:(1)设甲种款型的T恤衫购进x件,则乙种款型的T恤衫购进y件,由题意得解得答:甲种款型的T恤衫购进60件,乙种款型的T恤衫购进40件.(2)130×60%×60+160×60%×(40÷2)﹣160×[1﹣(1+60%)×0.5]×(40÷2)=4680+19202140=5960(元).答:售完这批T恤衫商店共获利5960元.【点评】此题考查二元一次方程组的实际运用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.26.如图,在△ABC中,∠BAC=90°,过点B作BC的垂线交∠ACB的角平分线于点D,CD与AB 边交于点E,过D作DF⊥AB于点F.(1)若△BDE是边长为2的等边三角形,求AE的长;(2)求证:AE=BF.【考点】全等三角形的判定与性质.【分析】(1)由BD⊥BC,得到∠DBC=90°,由于△BDE是边长为2的等边三角形,于是得到∠DBA=∠BDE=60°,求得∠ABC=∠DCB=30°,得到CD=2BD=4,根据直角三角形的性质即可得到结果;(2)根据已知条件证得△BDF≌△ACE,即可得到AE=BF.【解答】解:(1)∵BD⊥BC,∴∠DBC=90°,∵△BDE是边长为2的等边三角形,∴∠DBA=∠BDE=60°,∴∠ABC=∠DCB=30°,∴CD=2BD=4,∴CE=2,∵∠A=90°∠AEC=∠DEB=60°,∴∠ACE=30°,∴AE=CE=1;(2)在△BDF与△ACE中,,∴△BDF≌△ACE,∴AE=BF.【点评】本题考查了全等三角形的判定和性质,直角三角形的性质,等边三角形的性质,熟练掌握各性质是解题的关键.27.已知△ABC和△DEC都是等腰直角三角形,C为它们的公共直角顶点,D、E分别在BC、AC 边上.(1)如图1,F是线段AD上的一点,连接CF,若AF=CF;①求证:点F是AD的中点;②判断BE与CF的数量关系和位置关系,并说明理由;(2)如图2,把△DEC绕点C顺时针旋转α角(0<α<90°),点F是AD的中点,其他条件不变,判断BE与CF的关系是否不变?若不变,请说明理由;若要变,请求出相应的正确结论.【考点】旋转的性质;全等三角形的判定与性质;等腰直角三角形.【专题】探究型.【分析】(1)①如图1,由AF=CF得到∠1=∠2,则利用等角的余角相等可得∠3=∠ADC,然后根据等腰三角形的判定定理得FD=FC,易得AF=FD;②先利用等腰直角三角形的性质得CA=CB,CD=CE,则可证明△ADC≌△BEC得到AD=BE,∠1=∠CBE,由于AD=2CF,∠1=∠2,则BE=2CF,再证明∠CBE+∠3=90°,于是可判断CF⊥BE;(2)延长CF到G使FG=CF,连结AG、DG,如图2,易得四边形ACDG为平行四边形,则AG=CD,AG∥CD,于是根据平行线的性质得∠GAC=180°﹣∠ACD,所以CD=CE=AG,再根据旋转的性质得∠BCD=α,所以∠BCE=∠DCE+∠BCD=90°+α=90°+90°﹣∠ACD=180°﹣∠ACD,得到∠GAC=∠ECB,接着可证明△AGC≌△CEB,得到CG=BE,∠2=∠1,所以BE=2CF,和前面一样可证得CF⊥BE.【解答】(1)①证明:如图1,∵AF=CF,∴∠1=∠2,∵∠1+∠ADC=90°,∠2+∠3=90°,∴∠3=∠ADC,∴FD=FC,∴AF=FD,即点F是AD的中点;②BE=2CF,BE⊥CF.理由如下:∵△ABC和△DEC都是等腰直角三角形,∴CA=CB,CD=CE,在△ADC和△BEC中,∴△ADC≌△BEC,∴AD=BE,∠1=∠CBE,而AD=2CF,∠1=∠2,∴BE=2CF,而∠2+∠3=90°,∴∠CBE+∠3=90°,∴CF⊥BE;(2)仍然有BE=2CF,BE⊥CF.理由如下:延长CF到G使FG=CF,连结AG、DG,如图2,∵AF=DF,FG=FC,∴四边形ACDG为平行四边形,∴AG=CD,AG∥CD,∴∠GAC+∠ACD=180°,即∠GAC=180°﹣∠ACD,∴CD=CE=AG,∵△DEC绕点C顺时针旋转α角(0<α<90°),∴∠BCD=α,∴∠BCE=∠DCE+∠BCD=90°+α=90°+90°﹣∠ACD=180°﹣∠ACD,∴∠GAC=∠ECB,在△AGC和△CEB中,∴△AGC≌△CEB,∴CG=BE,∠2=∠1,∴BE=2CF,而∠2+∠BCF=90°,∴∠BCF+∠1=90°,∴CF⊥BE.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了全等三角形的判定与性质和等腰直角三角形的性质.。
重庆巴蜀中学2020-2021学年七年级下学期 数学综合复习期末练习卷
![重庆巴蜀中学2020-2021学年七年级下学期 数学综合复习期末练习卷](https://img.taocdn.com/s3/m/75b83e154693daef5ef73dfc.png)
重庆巴蜀中学 初 2023 届综合复习练习卷一、《实数》 : _1 . 下列各数 :220.23,27π﹐, 0 . 303003 … ( 相邻两个 3 之间多一个 0 ) ,1中 , 无理数的个数为 ( )A . 2 个B . 3 个C . 4 个D . 5 个2 . 已知 a , b 是两个连续整数 , 1,a b <<, 则 a , b 分别是 ( ) A . -2 , -1 B . – 1 , 0 C . 0 , 1 D . 1 , 23 .49 的平方根是 4981的算术平方根是 的平方根为216 的立方根是 的平方根是 ;已知 2x = 64 , 则立方根是4 . 若99 与的小数部分分别为 a 和 b , 则 ( a +3 ) ( b -4 ) 的值是5 . ( 1 ) 已知实数 a , b 在数轴上的位置如图所示 , 化简 :||a b -=( 2 ) 已知 a , b 两数在数轴上的位置如图所示 , 化简=二、《平面直角坐标系》1 . 如图 , 已知 " 车 " 的坐标为 ( -2 , 2 ) , " 马 " 的坐标为 ( 1 , 2 ) , 则 " 炮 " 的坐标为 ( )A . ( 3 , 2 )B . ( 3 , 1 )C . ( 2 , 2 )D . ( -2 , 2 )2 . 若| a | = 5 ,2b= 16 , 且点M ( a , b ) 在第二象限, 则点M 的坐标是( )A . ( 5 , 4 )B . ( -5 , 4 )C . ( -5 , -4 )D . ( 5 , -4 )3、下列说法正确的是( )A . 平行于x 轴的直线上的所有点的横坐标相同B . 平行于y 轴的直线上的所有点的纵坐标相同C . 若点Р ( a , b ) 在x 轴上, 则a = 0D . 过点C ( -1 , -1 ) 和点D ( -1 , 5 ) 作直线平行于y 轴4 . 若点P ( 2 a , 1-3 a ) 是第二象限内的点, 且点Р到两坐标轴的距离的和为5 , 则点Р的坐标为5 . 在平面直角坐标系中点A ( m , n ) 经过平移后得到的对应点A' ( m +2 , n -5 ) 在第二象限, 则点A 在( )A . 第一象限B . 第二象限C . 第三象限D . 第四象限6如图在平面直角坐标系中, A 、B 、C 三点的坐标分别为( 0 , 1 ) (2 ,0 ), ( 2 , 15 )如果在第二象限内有一点P (P a, 试用含a 的式子表示四边形ABOP 的面积 .( 3 )在(2)的条件下是否存在点P使四边形ABOP 的面积与三角形ABC 的面积相等? 若存在, 请求出点P 的坐标? 若不存在, 请说明理由三、二元一次方程组1 . 已知x=-1,y=2是二元一次方程组321y mnx y⨯+=⎧⎨-=⎩的解, 则2 m - n 的值是( )A . 3B . 5C . -3D 、-52 . 若关于x , y 的二元一次方程组364myx y⨯+=⎧⎨+=⎩的解满足x - y = 2 , 则m 的值为( )A . 3B .2 C. -3 D . 0 .3 . <九章算术>是中国古代著名的数学专著 , 书里记数一道这样的题全各与衣 . 日已三分之一 , 主人乃觉 . 持衣追及 , 与之而述 , 至家视日四分乙二题目详文是 : 现有客人的马日行 300 里 . 客人离去时忘记带衣服 , 时间过了 13主人才发现 . 主人带上衣服追上 , 还衣服后再返回 . 到家时已是34日。
2020-2021学年重庆市七年级数学下学期期末模拟试题(四)及答案解析-精品试卷
![2020-2021学年重庆市七年级数学下学期期末模拟试题(四)及答案解析-精品试卷](https://img.taocdn.com/s3/m/2c14fa72910ef12d2bf9e726.png)
最新重庆市七年级(下)期末数学试卷一、选择题(共12小题,每小题4分,满分48分)1.实数的算术平方根等于()A.2 B.±C.D.2.点P(﹣3,2)在平面直角坐标系中所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,直线l1∥l2,直线l3与l1,l2分别交于A,B两点,若∠1=65°,则∠2=()A.65°B.75°C.115°D.125°4.二元一次方程组的解是()A.B.C.D.5.不等式组的解集在数轴上表示为()A.B.C.D.6.下列调查适合抽样调查的是()A.审核书稿中的错别字B.对某社区的卫生死角进行调查C.对八名同学的身高情况进行调查D.对中学生目前的睡眠情况进行调查7.实数,,0,﹣π,,,0.1010010001…(相连两个1之间依次多一个0),其中无理数有()个.A.1 B.2 C.3 D.48.k、m、n为三个整数,若=k,=20,=6,则下列有关k、m、n的大小关系中,正确的是()A.m<k<n B.m=n<k C.m<n<k D.k<m=n9.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为()A.B.C.D.10.关于x的不等式x﹣b>0恰有两个负整数解,则b的取值范围是()A.﹣3<b<﹣2 B.﹣3<b≤﹣2 C.﹣3≤b≤﹣2 D.﹣3≤b<﹣211.如图,在平面直接坐标系中,有若干个横坐标分别为整数的点,其顺序按图中(1,0)→(2,0)→(2,1)→(1,1)→(1,2)→(2,2)…根据这个规律,则第2016个点的横坐标为()A.44 B.45 C.46 D.4712.如图,AB∥CD,EF与AB、CD分别相交于点E、F,EP⊥EF,与∠EFD的平分线FP相交于点P,且∠BEP=20°,则∠EPF=()A.70°B.65°C.55°D.45°二、填空题(共6小题,每小题4分,满分24分)13.计算﹣3的结果是.14.在平面直角坐标系中,点P(m,m﹣3)在第四象限内,则m的取值范围是.15.如图,点A,C,F,B在同一直线上,CD平分∠ECB,FG∥CD,若∠ECA的度数为40°,则∠GFB的度数为.16.已知是二元一次方程组的解,则2m﹣n的算术平方根为.17.如图,直线l1∥l2,∠α=∠β,∠1=50°,则∠2= .18.为了节省空间,家里的饭碗一般是摆起来存放的,如果6只饭碗(注:饭碗的大小形状都一样,下同)摆起来的高度为15cm,9只饭碗摆起来的高度为20cm,李老师家的碗橱每格的高度为36cm,则李老师一摞碗最多只能放只.三、解答题(共8小题,满分78分)19.计算:0+()﹣1+|﹣|﹣(+1)20.解下列方程组:(1)(2).21.解下列不等式或不等式组,并将其解集在数轴上表示出来:(1)2(x+6)≥3x﹣18(2).22.某校为了了解初三年级800名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均取整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.根据统计图,解答下列问题:(1)这次抽样调查的样本容量是,并补全频数分布直方图;(2)D组学生的频率为,在扇形统计图中E组的圆心角是度;(3)请你估计该校初三年级体重低于54kg的学生大约有多少名?23.对于任意实数m,n定义一种新运算m※n=mn﹣m+3,等式的右边是通常的加减法和乘法运算,例如:3※5=3×5﹣3+3=15.请根据上述定义解决问题:若a<2※x<7,且解集中恰有两个整数解,求a的取值范围.24.如图,在平面直角坐标系中,四边形ABCD各顶点的坐标分别为A(0,1)、B(5,1)、C (7,3)、D(2,5).(1)填空:四边形ABCD内(边界点除外)一共有个整点(即横坐标和纵坐标都是整数的点);(2)求四边形ABCD的面积.25.(1)如图(1),已知任意三角形ABC,过点C作DE∥AB,求证:∠DCA=∠A;(2)如图(1),求证:三角形ABC的三个内角(即∠A、∠B、∠ACB)之和等于180°;(3)如图(2),求证:∠AGF=∠AEF+∠F;(4)如图(3),AB∥CD,∠CDE=119°,GF交∠DEB的平分线EF于点F,∠AGF=150°,求∠F.26.“全名阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1560元,20本文学名著比20本动漫书多360元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样).(1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于74本,总费用不超过2100,请求出所有符合条件的购书方案.参考答案与试题解析一、选择题(共12小题,每小题4分,满分48分)1.实数的算术平方根等于()A.2 B.±C.D.【考点】算术平方根.【分析】根据算术平方根的定义即可作答.【解答】解:实数的算术平方根等于.故选:C.2.点P(﹣3,2)在平面直角坐标系中所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据平面直角坐标系中点的坐标符号可得答案.【解答】解:点P(﹣3,2)在平面直角坐标系中所在的象限是第二象限,故选:B.3.如图,直线l1∥l2,直线l3与l1,l2分别交于A,B两点,若∠1=65°,则∠2=()A.65°B.75°C.115°D.125°【考点】平行线的性质.【分析】根据两直线平行,同位角相等可得∠3的度数,再根据邻补角互补可得答案.【解答】解:∵l1∥l2,∴∠1=∠3=65°,∵∠3+∠2=180°,∴∠2=180°﹣65°=115°,故选:C.4.二元一次方程组的解是()A.B.C.D.【考点】解二元一次方程组.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②得:2x=6,即x=3,把x=3代入①得:y=1,则方程组的解为,故选B5.不等式组的解集在数轴上表示为()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】根据不等式的基本性质来解不等式组,两个不等式的解集的交集,就是该不等式组的解集;然后把不等式的解集根据不等式解集在数轴上的表示方法画出图示.【解答】解:不等式组的解集为:﹣2≤x<1,其数轴表示为:故选B6.下列调查适合抽样调查的是()A.审核书稿中的错别字B.对某社区的卫生死角进行调查C.对八名同学的身高情况进行调查D.对中学生目前的睡眠情况进行调查【考点】全面调查与抽样调查.【分析】一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.【解答】解:A、审核书稿中的错别字,必须准确,故必须普查;B、此种情况数量不是很大,故必须普查;C、人数不多,容易调查,适合普查;D、中学生的人数比较多,适合采取抽样调查;故选D.7.实数,,0,﹣π,,,0.1010010001…(相连两个1之间依次多一个0),其中无理数有()个.A.1 B.2 C.3 D.4【考点】无理数.【分析】无理数就是无限不循环小数,根据定义即可作出判断.【解答】解:无理数有:,﹣π,0.1010010001…(相连两个1之间依次多一个0),共3个.故选C.8.k、m、n为三个整数,若=k,=20,=6,则下列有关k、m、n的大小关系中,正确的是()A.m<k<n B.m=n<k C.m<n<k D.k<m=n【考点】二次根式的性质与化简.【分析】已知二次根式化简确定出k,m,n的值,比较即可.【解答】解:=3,=20,=6,∴k=3,m=2,n=5,则m<k<n,故选A9.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】根据“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两”,得到等量关系,即可列出方程组.【解答】解:根据题意得:,故选A10.关于x的不等式x﹣b>0恰有两个负整数解,则b的取值范围是()A.﹣3<b<﹣2 B.﹣3<b≤﹣2 C.﹣3≤b≤﹣2 D.﹣3≤b<﹣2【考点】一元一次不等式的整数解.【分析】表示出已知不等式的解集,根据负整数解只有﹣1,﹣2,确定出b的范围即可.【解答】解:不等式x﹣b>0,解得:x>b,∵不等式的负整数解只有两个负整数解,∴﹣3≤b<﹣2故选D.11.如图,在平面直接坐标系中,有若干个横坐标分别为整数的点,其顺序按图中(1,0)→(2,0)→(2,1)→(1,1)→(1,2)→(2,2)…根据这个规律,则第2016个点的横坐标为()A.44 B.45 C.46 D.47【考点】规律型:点的坐标.【分析】观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,并且右下角的点的横坐标是奇数时最后以横坐标为该数,纵坐标为0结束,当右下角的点横坐标是偶数时,以横坐标为1,纵坐标为右下角横坐标的偶数减1的点结束,根据此规律解答即可.【解答】解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,1=12,右下角的点的横坐标为2时,共有4个,4=22,右下角的点的横坐标为3时,共有9个,9=32,右下角的点的横坐标为4时,共有16个,16=42,…右下角的点的横坐标为n时,共有n2个,∵452=2025,45是奇数,∴第2025个点是(45,0),第2016个点是(45,9),所以,第2016个点的横坐标为45.故选B.12.如图,AB∥CD,EF与AB、CD分别相交于点E、F,EP⊥EF,与∠EFD的平分线FP相交于点P,且∠BEP=20°,则∠EPF=()A.70°B.65°C.55°D.45°【考点】平行线的性质;垂线.【分析】根据平角等于180°求出∠AEF,再根据两直线平行,内错角相等求出∠EFD,然后根据角平分线的定义求出∠EFP,再根据三角形的内角和等于180°列式计算即可得解.【解答】解:∵EP⊥EF,∴∠PEF=90°,∵∠BEP=20°,∴∠AEF=180°﹣∠PEF﹣∠BEP=180°﹣90°﹣20°=70°,∵AB∥CD,∴∠EFD=∠AEF=70°,∵FP是∠EFD的平分线,∴∠EFP=∠EFD=×70°=35°,在△EFP中,∠EPF=180°﹣90°﹣35°=55°.故选C.二、填空题(共6小题,每小题4分,满分24分)13.计算﹣3的结果是3.【考点】二次根式的加减法.【分析】先进行二次根式的化简,再进行同类二次根式的合并即可.【解答】解:原式=4﹣3×=4﹣=3.故答案为:3.14.在平面直角坐标系中,点P(m,m﹣3)在第四象限内,则m的取值范围是0<m<3 .【考点】点的坐标;解一元一次不等式组.【分析】根据第四项限内点的横坐标大于零,纵坐标小于零,可得不等式组,根据解不等式组,可得答案.【解答】解:由点P(m,m﹣3)在第四象限内,得.解得0<m<3,故答案为:0<m<3.15.如图,点A,C,F,B在同一直线上,CD平分∠ECB,FG∥CD,若∠ECA的度数为40°,则∠GFB的度数为70°.【考点】平行线的性质.【分析】根据平角得到由求出∠DCF,根据两直线平行同位角相等即可求出∠GFB.【解答】解:∵∠ECA=40°,∴∠ECD=180°﹣∠ECA=140°,∵CD平分∠ECF,∴∠DCF=∠ECF=×140°=70°,∵CD∥GF,∴∠GFB=∠DCF=70°.16.已知是二元一次方程组的解,则2m﹣n的算术平方根为 2 .【考点】算术平方根;二元一次方程组的解.【分析】由题意可解出m,n的值,从而求出2m﹣n的值,继而得出其算术平方根.【解答】解:将代入二元一次方程组,得,解得:,∴2m﹣n=4,而4的算术平方根为2.故2m﹣n的算术平方根为2.故答案为:2.17.如图,直线l1∥l2,∠α=∠β,∠1=50°,则∠2= 130°.【考点】平行线的性质.【分析】先根据平行线的性质,由l1∥l2得∠3=∠1=40°,再根据平行线的判定,由∠α=∠β得AB∥CD,然后根据平行线的性质得∠2+∠3=180°,再把∠1=40°代入计算即可.【解答】解:如图,∵l1∥l2,∴∠3=∠1=50°,∵∠α=∠β,∴AB∥CD,∴∠2+∠3=180°,∴∠2=180°﹣∠3=180°﹣50°=130°.18.为了节省空间,家里的饭碗一般是摆起来存放的,如果6只饭碗(注:饭碗的大小形状都一样,下同)摆起来的高度为15cm,9只饭碗摆起来的高度为20cm,李老师家的碗橱每格的高度为36cm,则李老师一摞碗最多只能放18 只.【考点】一元一次不等式的应用.【分析】设碗底的高度为xcm,碗身的高度为ycm,可得碗的高度和碗的个数的关系式为高度=个数×碗底高度+碗身高度,根据6只饭碗摞起来的高度为15cm,9只饭碗摞起来的高度为20cm,列方程组求解,根据碗橱每格的高度为36cm,列不等式求解.【解答】解:设碗底的高度为xcm,碗身的高度为ycm,由题意得,,解得:,设李老师一摞碗能放a只碗,a+5≤36,解得:a≤,故李老师一摞碗最多只能放18只碗.故答案为18.三、解答题(共8小题,满分78分)19.计算:0+()﹣1+|﹣|﹣(+1)【考点】二次根式的混合运算;零指数幂;负整数指数幂.【分析】首先计算0次幂和负指数次幂,去掉绝对值符号,然后合并同类二次根式即可求解.【解答】解:原式=1+3+(﹣)﹣(3+)=1+3+﹣﹣3﹣=1﹣.20.解下列方程组:(1)(2).【考点】解二元一次方程组.【分析】(1)方程组整理后,利用代入消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1)由②得:5y=3x﹣10③,把①代入③得:5y=y+2﹣10,即y=﹣2,把y=﹣2代入①得:x=0,则方程组的解为;(2)方程组整理得:,①×3﹣②得:2y=4,即y=2,把y=2代入①得:x=﹣1.5,则方程组的解为.21.解下列不等式或不等式组,并将其解集在数轴上表示出来:(1)2(x+6)≥3x﹣18(2).【考点】解一元一次不等式组;在数轴上表示不等式的解集;解一元一次不等式.【分析】(1)先去括号,再移项,合并同类项,把x的系数化为1,并在数轴上表示出来即可;(2)分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:(1)去括号得,2x+12≥3x﹣18,移项得,2x﹣3x≥﹣18﹣12,合并同类项得,﹣x>﹣30,把x的系数化为1得,x<30,在数轴上表示为:;(2)由①得,x>﹣3,由②得,x<6,故不等式组的解集为:﹣3<x<6,在数轴是表示为:.22.某校为了了解初三年级800名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均取整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.根据统计图,解答下列问题:(1)这次抽样调查的样本容量是50 ,并补全频数分布直方图;(2)D组学生的频率为0.2 ,在扇形统计图中E组的圆心角是57.6 度;(3)请你估计该校初三年级体重低于54kg的学生大约有多少名?【考点】频数(率)分布直方图;总体、个体、样本、样本容量;用样本估计总体;扇形统计图.【分析】(1)根据A组的频数是4,对应的百分比是8%,据此即可求得总人数,即样本容量,然后求得B组的人数,补全直方图;(2)利用频率的定义求得D组的频率,利用360°乘以对应的比例求得E组的圆心角度数;(3)利用总人数乘以对应的比例即可求解.【解答】解:(1)这次抽样的样本容量是4÷8%=50,B组的频数是50﹣4﹣16﹣10﹣8=12.故答案是:50.;(2)D组的频率是=0.2;E组的圆心角的度数是360°×=57.6°,故答案是:0.2,57.6;(3)该校初三年级体重低于54kg的学生大约有800×=256(人),答:该校初三年级体重低于54kg的学生大约256人.23.对于任意实数m,n定义一种新运算m※n=mn﹣m+3,等式的右边是通常的加减法和乘法运算,例如:3※5=3×5﹣3+3=15.请根据上述定义解决问题:若a<2※x<7,且解集中恰有两个整数解,求a的取值范围.【考点】不等式的解集;实数的运算.【分析】根据定义可知:2※x=2x﹣2+3=2x+1,利用不等式可求解出<x<3,由于x有两个整数解,所以0≤<1,求出该不等式的解集即可知道a的取值范围.【解答】解:由题意可知:2※x=2x﹣2+3=2x+1,∵a<2※x<7,∴a<2x+1<7,∴<x<3,∵该不等式的解集有两个整数解,∴该整数解为1或2,∴0≤<1,∴1≤a<3.24.如图,在平面直角坐标系中,四边形ABCD各顶点的坐标分别为A(0,1)、B(5,1)、C (7,3)、D(2,5).(1)填空:四边形ABCD内(边界点除外)一共有13 个整点(即横坐标和纵坐标都是整数的点);(2)求四边形ABCD的面积.【考点】坐标与图形性质.【分析】(1)横坐标和纵坐标都是整数的点叫做整点,本题根据图形数一数,对一些模糊的点如点(1,3)得求出直线AB的解析式验证;(2)四边形ABCD分割成几个规则图形就可简单求解.【解答】解:(1)填空:四边形ABCD内(边界点除外)一共有13个整点.(2)如下图所示:∵S四边形ABCD=S△ADE+S△DFC+S四边形BEFG+S△BCGS△ADE=×2×4=4S△DFC=×2×5=5S四边形BEFG=2×3=6S△BCG=×2×2=2∴S四边形ABCD=4+5+6+2=17即:四边形ABCD的面积为1725.(1)如图(1),已知任意三角形ABC,过点C作DE∥AB,求证:∠DCA=∠A;(2)如图(1),求证:三角形ABC的三个内角(即∠A、∠B、∠ACB)之和等于180°;(3)如图(2),求证:∠AGF=∠AEF+∠F;(4)如图(3),AB∥CD,∠CDE=119°,GF交∠DEB的平分线EF于点F,∠AGF=150°,求∠F.【考点】平行线的性质.【分析】(1)根据平行线的性即可得到结论;(2)因为平角为180°,若能运用平行线的性质,将三角形三个内角集中到同一顶点,并得到一个平角,问题即可解决;(3)根据平角的定义和三角形的内角和定理即可得到结论;(4)根据平行线的性质得到∠DEB=119°,∠AED=61°,由角平分线的性质得到∠DEF=59.5°,根据三角形的外角的性质即可得到结论.【解答】证明:(1)∵DE∥BC,∴∠DCA=∠A;(2)如图1所示,在△ABC中,∵DE∥BC,∴∠B=∠1,∠C=∠2(内错角相等).∵∠1+∠BAC+∠2=180°,∴∠A+∠B+∠C=180°.即三角形的内角和为180°;(3)∵∠AGF+∠FGE=180°,由(2)知,∠GEF+∠EG+∠FGE=180°,∴∠AGF=∠AEF+∠F;(4)∵AB∥CD,∠CDE=911°,∴∠DEB=119°,∠AED=61°,∵GF交∠DEB的平分线EF于点F,∴∠DEF=59.5°,∴∠AEF=120.5°,∵∠AGF=150°,∵∠AGF=∠AEF+∠F,∴∠F=150°﹣120.5°=29.5°.26.“全名阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1560元,20本文学名著比20本动漫书多360元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样).(1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于74本,总费用不超过2100,请求出所有符合条件的购书方案.【考点】一元一次不等式组的应用;二元一次方程组的应用.【分析】(1)设每本文学名著x元,动漫书y元,根据题意列出方程组解答即可;(2)根据学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于74本,总费用不超过2100元,列出不等式组,解答即可.【解答】解:(1)设每本文学名著x元,动漫书y元,可得:,解得:,答:每本文学名著和动漫书各为38元和20元;(2)设学校要求购买文学名著x本,动漫书为(x+20)本,根据题意可得:,解得:26≤x≤,因为取整数,所以x取27,28,29;方案一:文学名著27本,动漫书47本;方案二:文学名著28本,动漫书48本;方案三:文学名著29本,动漫书49本.2017年3月3日。
2020-2021重庆市初一数学下期末试题及答案
![2020-2021重庆市初一数学下期末试题及答案](https://img.taocdn.com/s3/m/2f194612be1e650e52ea9968.png)
2020-2021重庆市初一数学下期末试题及答案一、选择题1.如图,已知∠1=∠2,∠3=30°,则∠B 的度数是( )A .20B .30C .40D .602.116的平方根是( ) A .±12B .±14C .14D .123.已知实数x ,y 满足254()0x y x y +-+-=,则实数x ,y 的值是( )A .22x y =-⎧⎨=-⎩B .00x y =⎧⎨=⎩C .22x y =⎧⎨=⎩D .33x y =⎧⎨=⎩4.小明对九(1)、九(2)班(人数都为50人)参加“阳光体育”的情况进行了调查,统计结果如图所示.下列说法中正确的是( )A .喜欢乒乓球的人数(1)班比(2)班多B .喜欢足球的人数(1)班比(2)班多C .喜欢羽毛球的人数(1)班比(2)班多D .喜欢篮球的人数(2)班比(1)班多5.不等式组1212x x +>⎧⎨-≤⎩的解集是( )A .1x <B .x ≥3C .1≤x ﹤3D .1﹤x ≤36.如图,已知两直线1l 与2l 被第三条直线3l 所截,下列等式一定成立的是( )A .12∠∠=B .23∠∠=C .24∠∠+=180°D .14∠∠+=180°7.如图,下列能判断AB ∥CD 的条件有 ( )①∠B +∠BCD =180° ②∠1 = ∠2 ③∠3 =∠4 ④∠B = ∠5 A .1B .2C .3D .48.不等式组3(1)112123x x x x -->-⎧⎪--⎨≤⎪⎩的解集在数轴上表示正确的是( )A .B .C .D .9.已知x 、y 满足方程组2827x y x y +=⎧⎨+=⎩,则x +y 的值是( )A .3B .5C .7D .910.如图,AB ∥CD ,DE ⊥BE ,BF 、DF 分别为∠ABE 、∠CDE 的角平分线,则∠BFD =( )A .110°B .120°C .125°D .135° 11.过一点画已知直线的垂线,可画垂线的条数是( )A .0B .1C .2D .无数12.已知:ABC ∆中,AB AC =,求证:90O B ∠<,下面写出可运用反证法证明这个命题的四个步骤:①∴180O A B C ∠+∠+∠>,这与三角形内角和为180O 矛盾,②因此假设不成立.∴90O B ∠<,③假设在ABC ∆中,90O B ∠≥,④由AB AC =,得90O B C ∠=∠≥,即180O B C ∠+∠≥.这四个步骤正确的顺序应是( )A .③④②①B .③④①②C .①②③④D .④③①②二、填空题13.如果点p(3,2)m m +-在x 轴上,那么点P 的坐标为(____,____).14.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问安排______名工人加工大齿轮,才能使每天加工的大小齿轮刚好配套.15.用适当的符号表示a是非负数:_______________.16.若不等式(a+1)x>a+1的解集是x<1,则a的取值范围是_________.17.关于x的不等式组352223x xx a-≤-⎧⎨+>⎩有且仅有4个整数解,则a的整数值是______________.18.某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答.如表记录了4个参赛者的得分情况.在此次竞赛中,有一位参赛者答对13道题,答错7道题,则他的得分是_____.参赛者答对题数答错题数得分A191112B182104C17396D10104019.结合下面图形列出关于未知数x,y的方程组为_____.20.如图,将△ABC沿BC方向平移1个单位得到△DEF,若△ABC的周长等于8,则四边形ABFD的周长等于_______.三、解答题21.目前“微信”、“支付宝”、“共享单车”和“网购”给我们带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行了调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.(1)根据图中信息求出m=___________,n=_____________;(2)请你帮助他们将这两个统计图补全;(3)根据抽样调查的结果,请估算全校2000名学生种,大约有多少人最认可“微信”这一新生事物?22.已知:用3辆A 型车和2辆B 型车载满货物一次可运货17吨;用2辆A 型车和3辆B 型车载满货物一次可运货l8吨,某物流公刊现有35吨货物,计划同时租用A 型车a 辆,B 型车b 辆,一次运完,且恰好每辆车都载满货物. 根据以上信息,解答下列问题:(1)l 辆A 型车和l 辆B 型车都载满货物一次可分别运货多少吨? (2)请你帮该物流公司设计租车方案;(3)若A 型车每辆需租金200元/次,B 型车每辆需租金240元/次,请选出最省钱的租车方案,并求出最少租车费.23.快递公司准备购买机器人来代替人工分拣已知购买- 台甲型机器人比购买-台乙型机器人多2万元;购买2台甲型机器人和3台乙型机器人共需24万元. (1)求甲、乙两种型号的机器人每台的价格各是多少万元;(2)已知甲型、乙型机器人每台每小时分拣快递分别是1200件、1000件,该公司计划最多用41万元购买8台这两种型号的机器人.该公司该如何购买,才能使得每小时的分拣量最大?24.点C ,B 分别在直线MN ,PQ 上,点A 在直线MN ,PQ 之间,//MN PQ . (1)如图1,求证:A MCA PBA ∠=∠+∠;(2)如图2,过点C 作//CD AB ,点E 在PQ 上,ECM ACD ∠=∠,求证:A ECN ∠=∠;(3)在(2)的条件下,如图3,过点B 作PQ 的垂线交CE 于点F ,ABF ∠的平分线交AC 于点G ,若DCE ACE ∠=∠,32CFB CGB ∠=∠,求A ∠的度数.25.如图,已知AB CD ∥,B D ∠=∠,请用三种不同的方法说明AD BC ∥.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据内错角相等,两直线平行,得AB∥CE,再根据性质得∠B=∠3.【详解】因为∠1=∠2,所以AB∥CE所以∠B=∠3=30故选B【点睛】熟练运用平行线的判定和性质.2.A解析:A【解析】【分析】根据平方根的性质:一个正数的平方根有两个,它们互为相反数计算即可.【详解】1 1614,14的平方根是12±,1 1612±,故选A.【点睛】本题考查平方根的性质,一个正数的平方根有两个,它们互为相反数,0的平方根还是0,熟练掌握相关知识是解题关键.3.C解析:C【解析】【分析】根据绝对值和平方的非负性,得到二元一次方程粗,求解即可得到答案.【详解】解:∵实数x ,y 满足254()0x y x y +-+-=,∴40x y +-=且2()0x y -=,即400x y x y +-=⎧⎨-=⎩,解得:22x y =⎧⎨=⎩,故选C . 【点睛】本题只要考查了绝对值和平方的非负性,知道一个数的绝对值不可能为负数和平方后所得的数非负数是解题的关键.4.C解析:C 【解析】 【分析】根据扇形图算出(1)班中篮球,羽毛球,乒乓球,足球,羽毛球的人数和(2)班的人数作比较,(2)班的人数从折线统计图直接可看出. 【详解】解:A 、乒乓球:(1)班50×16%=8人,(2)班有9人,8<9,故本选项错误; B 、足球:(1)班50×14%=7人,(2)班有13人,7<13,故本选项错误; C 、羽毛球:(1)班50×40%=20人,(2)班有18人,20>18,故本选项正确; D 、篮球:(1)班50×30%=15人,(2)班有10人,15>10,故本选项错误. 故选C. 【点睛】本题考查扇形统计图和折线统计图,扇形统计图表现部分占整体的百分比,折线统计图表现变化,在这能看出每组的人数,求出(1)班喜欢球类的人数和(2)班比较可得出答案.5.D解析:D 【解析】 【分析】 【详解】解:1212x x +>⎧⎨-≤⎩①②,由①得x>1,由②得x≤3,所以解集为:1<x≤3; 故选D .6.D解析:D 【解析】【分析】由三线八角以及平行线的性质可知,A ,B ,C 成立的条件题目并没有提供,而D 选项中邻补角的和为180°一定正确. 【详解】1∠与2∠是同为角,2∠与3∠是内错角,2∠与4∠是同旁内角,由平行线的性质可知,选项A ,B ,C 成立的条件为12l l //时,故A 、B 、C 选项不一定成立, ∵1∠与4∠是邻补角, ∴∠1+∠4=180°,故D 正确. 故选D . 【点睛】本题考查三线八角的识别及平行线的性质和邻补角的概念.本题属于基础题,难度不大.7.C解析:C 【解析】 【分析】判断平行的条件有:同位角相等、内错角相等、同旁内角互补,依次判断各选项是否符合. 【详解】①∠B +∠BCD =180°,则同旁内角互补,可判断AB ∥CD ; ②∠1 = ∠2,内错角相等,可判断AD ∥BC ,不可判断AB ∥CD ; ③∠3 =∠4,内错角相等,可判断AB ∥CD ; ④∠B = ∠5,同位角相等,可判断AB ∥CD 故选:C 【点睛】本题考查平行的证明,注意②中,∠1和∠2虽然是内错角关系,但对应的不是AB 与CD 这两条直线,故是错误的.8.B解析:B 【解析】 【分析】首先解两个不等式求出不等式组解集,然后将解集在数轴上的表示出来即可. 【详解】解:3(1)112123x x x x -->-⎧⎪⎨--≤⎪⎩①②,解不等式①得:x <2, 解不等式②得:x≥-1, 在数轴上表示解集为:,故选:B.【点睛】本题考查了解一元一次不等式组及在数轴上表示不等式组解集,解题关键是熟练掌握确定不等式组解集的方法:同大取大、同小取小、大小小大中间找、大大小小无解了.9.B解析:B【解析】【分析】把两个方程相加可得3x+3y=15,进而可得答案.【详解】两个方程相加,得3x+3y=15,∴x+y=5,故选B.【点睛】本题主要考查解二元一次方程组,灵活运用整体思想是解题关键.10.D解析:D【解析】【分析】【详解】如图所示,过E作EG∥AB.∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°.又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,∴∠FBE+∠FDE=12(∠ABE+∠CDE)=12(360°﹣90°)=135°,∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故选D.【点睛】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.11.B解析:B 【解析】 【分析】根据垂直的性质:过直线外或直线上一点画已知直线的垂线,可以画一条,据此解答. 【详解】在平面内,过一点有且只有一条直线与已知直线垂直, 故选:B 【点睛】此题考查了直线的垂直的性质,注意基础知识的识记和理解.12.B解析:B 【解析】 【分析】根据反证法的证明步骤“假设、合情推理、导出矛盾、结论”进行分析判断即可. 【详解】题目中“已知:△ABC 中,AB=AC ,求证:∠B <90°”,用反证法证明这个命题过程中的四个推理步骤:应该为:(1)假设∠B ≥90°,(2)那么,由AB=AC ,得∠B=∠C ≥90°,即∠B+∠C ≥180°, (3)所以∠A+∠B+∠C >180°,这与三角形内角和定理相矛盾, (4)因此假设不成立.∴∠B <90°, 原题正确顺序为:③④①②, 故选B . 【点睛】本题考查反证法的证明步骤,弄清反证法的证明环节是解题的关键.二、填空题13.0【解析】【分析】根据x 轴上的点的纵坐标为0可得m-2=0即可求得m=2由此求得点P 的坐标【详解】∵点在x 轴上∴m-2=0即m=2∴P (50)故答案为:50【点睛】本题考查了x 轴上的点的坐标的特点熟解析:0 【解析】 【分析】根据x 轴上的点的纵坐标为0可得m-2=0,即可求得m=2,由此求得点P 的坐标. 【详解】 ∵点p(3,2)m m +-在x 轴上,∴m-2=0,即m=2,∴P (5,0). 故答案为:5,0. 【点睛】本题考查了x 轴上的点的坐标的特点,熟知x 轴上的点的纵坐标为0是解决问题的关键.14.25【解析】【分析】【详解】设需安排x 名工人加工大齿轮安排y 名工人加工小齿轮由题意得:解得:即安排25名工人加工大齿轮才能使每天加工的大小齿轮刚好配套故答案为25【点睛】本题考查理解题意能力关键是能解析:25 【解析】 【分析】 【详解】设需安排x 名工人加工大齿轮,安排y 名工人加工小齿轮,由题意得:85316210x y x y +=⎧⎨⨯=⨯⎩,解得:2560x y =⎧⎨=⎩. 即安排25名工人加工大齿轮,才能使每天加工的大小齿轮刚好配套. 故答案为25. 【点睛】本题考查理解题意能力,关键是能准确得知2个大齿轮和3个小齿轮配成一套,根据此正确列出方程.15.a≥0【解析】【分析】非负数即大于等于0据此列不等式【详解】由题意得a≥0故答案为:a≥0解析:a≥0 【解析】 【分析】非负数即大于等于0,据此列不等式. 【详解】 由题意得a≥0. 故答案为:a≥0.16.a <﹣1【解析】不等式(a+1)x>a+1两边都除以a+1得其解集为x<1∴a+1<0解得:a<−1故答案为a<−1点睛:本题主要考查解一元一次不等式解答此题的关键是掌握不等式的性质再不等式两边同加解析:a <﹣1 【解析】不等式(a+1)x>a+1两边都除以a+1,得其解集为x<1, ∴a+1<0, 解得:a<−1, 故答案为a<−1.点睛:本题主要考查解一元一次不等式,解答此题的关键是掌握不等式的性质,再不等式两边同加或同减一个数或式子,不等号的方向不变,在不等式的两边同乘或同除一个正数或式子,不等号的方向不变,在不等式的两边同乘或同除一个负数或式子,不等号的方向改变.17.12【解析】【分析】求出每个不等式的解集根据已知得出不等式组的解集根据不等式组的整数解即可得出关于a 的不等式组求出即可【详解】解不等式3x -5≤2x -2得:x≤3解不能等式2x+3>a 得:x >∵不等解析:1,2【解析】【分析】求出每个不等式的解集,根据已知得出不等式组的解集,根据不等式组的整数解即可得出关于a 的不等式组,求出即可.【详解】解不等式3x-5≤2x -2,得:x≤3,解不能等式2x+3>a ,得:x >32a -, ∵不等式组有且仅有4个整数解,∴-1≤32a -<0, 解得:1≤a <3,∴整数a 的值为1和2,故答案为:1,2.【点睛】 本题考查了一元一次不等式组的整数解,解答本题的关键应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.18.【解析】【分析】设答对1道题得x 分答错1道题得y 分根据图表列出关于x 和y 的二元一次方程组解之即可【详解】解:设答对1道题得x 分答错1道题得y 分根据题意得:解得:答对13道题打错7道题得分为:13×6 解析:【解析】【分析】设答对1道题得x 分,答错1道题得y 分,根据图表,列出关于x 和y 的二元一次方程组,解之即可.【详解】解:设答对1道题得x 分,答错1道题得y 分,根据题意得:19112182104x y x y +=⎧⎨+=⎩ , 解得:62x y =⎧⎨=-⎩,答对13道题,打错7道题,得分为:13×6+(﹣2)×7=78﹣14=64(分),故答案为:64.【点睛】本题考查了二元一次方程组的应用,正确找出等量关系,列出二元一次方程组是解题的关键.19.【解析】【分析】根据图形列出方程组即可【详解】由图可得故答案为【点睛】本题考查了二元一次方程组解题的关键是根据实际问题抽象出二元一次方程组解析:250 325x yx y+=⎧⎨=+⎩.【解析】【分析】根据图形列出方程组即可.【详解】由图可得250 325 x yx y+=⎧⎨=+⎩.故答案为250 325 x yx y+=⎧⎨=+⎩.【点睛】本题考查了二元一次方程组,解题的关键是根据实际问题抽象出二元一次方程组. 20.10【解析】【分析】根据平移的性质可得AD=CF=1AC=DF然后根据四边形的周长的定义列式计算即可得解【详解】∵△ABC沿BC方向平移2个单位得到△DE F∴AD=CF=1AC=DF∴四边形ABFD解析:10【解析】【分析】根据平移的性质可得AD=CF=1,AC=DF,然后根据四边形的周长的定义列式计算即可得解.【详解】∵△ABC沿BC方向平移2个单位得到△DEF,∴AD=CF=1,AC=DF,∴四边形ABFD的周长=AB+(BC+CF)+DF+AD=AB+BC+AC+AD+CF,∵△ABC的周长=8,∴AB+BC+AC=8,∴四边形ABFD的周长=8+1+1=10.故答案为10.【点睛】本题考查了平移的性质,熟记性质得到相等的线段是解题的关键.三、解答题21.(1)100,35;(2)详见解析;(3)800人.【解析】【分析】(1)由共享单车的人数以及其所占百分比可求得总人数m,用支付宝人数除以总人数可得其百分比n的值;(2)总人数乘以网购的百分比可求得网购人数,用微信人数除以总人数求得其百分比,由此即可补全两个图形;(3)总人数乘以样本中微信人数所占百分比即可求得答案.【详解】(1)抽查的总人数m=10÷10%=100,支付宝的人数所占百分比n%=35100100%⨯=35%,所以n=35,故答案为:100,35;(2)网购人数为:100×15%=15人,微信对应的百分比为:40100%40% 100⨯=,补全图形如图所示:(3)估算全校2000名学生种,最认可“微信”这一新生事物的人数为:2000×40%=800人.【点睛】本题考查了条形统计图与扇形统计图信息相关问题,读懂统计图,从中找到必要的信息是解题的关键.22.(1)A型车、B型车都装满货物一次可以分别运货3吨、4吨;(2)最省钱的租车方案是方案一:A型车8辆,B型车2辆,最少租车费为2080元.【解析】【分析】(1)设每辆A型车、B型车都装满货物一次可以分别运货x吨、y吨,根据题目中的等量关系:用3辆A型车和2辆B型车载满货物一次可运货17吨;用2辆A型车和3辆B型车载满货物一次可运货l8吨,列方程组求解即可;(2)由题意得出3a+4b=35,然后由a、b为整数解,得到三中租车方案;(3)根据(2)中的所求方案,利用A型车每辆需租金200元/次,B型车每辆需租金240元/次,分别求出租车费用即可.【详解】解:(1)设每辆A型车、B型车都装满货物一次可以分别运货x吨、y吨,依题意列方程组为:3217 2318 x yx y+=⎧⎨+=⎩解得34 xy=⎧⎨=⎩答:1辆A型车辆装满货物一次可运3吨,1辆B型车装满货物一次可运4吨.(2)结合题意,和(1)可得3a+4b=35∴a=3543b-∵a、b都是整数∴92ab=⎧⎨=⎩或55ab=⎧⎨=⎩或18ab=⎧⎨=⎩答:有3种租车方案:方案一:A型车9辆,B型车2辆;方案二:A型车5辆,B型车5辆;方案三:A型车1辆,B型车8辆.(3)∵A型车每辆需租金200元/次,B型车每辆需租金240元/次,∴方案一需租金:9×200+2×240=2280(元)方案二需租金:5×200+5×240=2200(元)方案三需租金:1×200+8×240=2120(元)∵2280>2200>2120∴最省钱的租车方案是方案一:A型车1辆,B型车8辆,最少租车费为2120元.【点睛】此题主要考查了二元一次方程组以及二元一次方程的解法,关键是明确二元一次方程有无数解,但在解与实际问题有关的二元一次方程组时,要结合未知数的实际意义求解. 23.(1)6万元、4万元(2)甲、乙型机器人各4台【解析】【分析】(1)设甲型机器人每台的价格是x万元,乙型机器人每台的价格是y万元,根据“购买一台甲型机器人比购买一台乙型机器人多2万元;购买2台甲型机器人和3台乙型机器人共需24万元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买a台甲型机器人,则购买(8-a)台乙型机器人,根据总价=单价×数量结合总费用不超过41万元,即可得出关于a 的一元一次不等式,解之即可得出a 的取值范围,再结合a 为整数可得出共有几种方案,逐一计算出每一种方案的每小时的分拣量,通过比较即可找出使得每小时的分拣量最大的购买方案.【详解】解:(1) 设甲型机器人每台价格是x 万元,乙型机器人每台价格是y 万元,根据题意的: 22324x y x y =+⎧⎨+=⎩解得:64x y =⎧⎨=⎩答:甲、乙两种型号的机器人每台价格分别是6万元、4万元:(2)设该公可购买甲型机器人a 台,乙型机器人()8a -台,根据题意得:()64841a a +-≤ 解得: 4.5a ≤ a 为正整数∴a=1或2或3或4当1a =,87a -=时.每小时分拣量为:12001100078200⨯+⨯=(件);当2a =,86a -=时.每小时分拣量为:12002100068400⨯+⨯=(件);当3a =,85a -=时.每小时分拣量为:12003100058600⨯+⨯=(件);当4a =,84a -=时.每小时分拣量为:12004100048800⨯+⨯=(件);∴该公司购买甲、乙型机器人各4台,能使得每小时的分拣量最大.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.24.(1)证明见解析;(2)证明见解析;(3)∠A=72°.【解析】【分析】(1)根据题意过点A 作平行线AD//MN ,证出三条直线互相平行并由平行得出与ACM ∠和ABP ∠相等的角即可得出结论;(2)由题意利用垂直线定义以及三角形内角和为180°进行分析即可证得A ECN ∠=∠; (3)根据题意设MCA ACE ECD x ∠=∠=∠=,由(1)列出关系式2702CFB x ∠=︒-和11352CGB x ∠=︒-,解出方程进而得出结论. 【详解】证明:(1)过点A 作平行线AD//MN ,∵AD//MN ,//MN PQ ,∴AD//MN//PQ,∴,MCA DAC PBA DAB ∠=∠∠=∠,∴A DAC DAB MCA PBA ∠=∠+∠=∠+∠.(2)∵//CD AB∴180A ACD ∠+∠=︒∵180ECM ECN ∠+∠=︒又ECM ACD ∠=∠∴A ECN ∠=∠(3)证得MCA ACE ECD ∠=∠=∠ ABP NCD ∠=∠设MCA ACE ECD x ∠=∠=∠=由(1)可知CFB FCN FBQ ∠=∠+∠列出关系式2702CFB x ∠=︒-由(1)可知CGB MCG GBP ∠=∠+∠ 列出关系式11352CGB x ∠=︒- 312702(135)22x x -=︒- 解得:54x =︒结论:72A ∠=︒【点睛】本题考查平行线的性质与判定,结合平行线的性质与判定运用数形结合思维分析是解题的关键.25.见解析【解析】【分析】有多种方法可证明:方法一:通过∠C 转化得到180D C ∠+∠=︒,从而证明;方法二:连接BD ,根据平行得ABD CDB ∠=∠,角度转化得到DBC BDA ∠=∠,从而证平行;方法三:延长BC 至E ,根据平行得B DCE ∠=∠,角度转化得DCE D ∠=∠,从而证平行.【详解】方法一:∵AB ∥CD ∴180B C ∠+∠=︒∵B D ∠=∠∴180D C ∠+∠=︒∴AD ∥BC方法二:连接BD∵AB ∥CD ∴ABD CDB ∠=∠又∵ABC CDA ∠=∠∴ABC ABD CDA CDB ∠-∠=∠-∠∴DBC BDA ∠=∠∴AD ∥BC方法三:延长BC 至E∵AB ∥CD ∴B DCE ∠=∠又∵B D ∠=∠∴DCE D ∠=∠∴AD ∥BC【点睛】本题考查平行线的性质和证明,注意,仅当两直线平行时才有:同位角相等、内错角相等、同旁内角互补.。
2021-2022学年重庆市渝中区巴蜀中学初一数学第二学期期末试卷及解析
![2021-2022学年重庆市渝中区巴蜀中学初一数学第二学期期末试卷及解析](https://img.taocdn.com/s3/m/ae27e424df80d4d8d15abe23482fb4daa58d1dcc.png)
2021-2022学年重庆市渝中区巴蜀中学初一数学第二学期期末试卷A 卷一、选择题:(本大题12个小题,每小题4分,共48分) 1.下列四个图形中,是轴对称图形的是( )A .B .C .D .2.在实数:3.142,4,227,π中,无理数是( ) A .3.142B .4C .227D .π3.下列调查中,适宜采用全面调查(普查)方式的是( ) A .对全国七年级学生视力情况的调查B .调查重庆市民对中央电视台2022年春节联欢晚会的满意度C .疫情期间,对进入重医附一院的人士“渝康码”的检查D .对重庆市各大药房口罩销售情况的调查 4.估算262-的值是在( ) A .2到3之间B .3到4之间C .4到5之间D .5到6之间5.下列生活中的实例利用到三角形的稳定性的是( ) A .自行车的三角车架 B .用两颗钉子把木条固定在墙上 C .学校大门口的伸缩门 D .四条腿的方桌6.已知点(23,1)A m --在第四象限,则m 的取值范围是( ) A .32m <B .32m >-C .32m <-D .32m >7.如图,在ABC ∆和ABD ∆中,ABC ABD ∠=∠,则添加以下条件,不能判定ABC ABD ∆≅∆的是( )A .BC BD =B .CAB DAB ∠=∠C .CD ∠=∠ D .AC AD =8.下列对ABC ∆的判断,错误的是( )A .若AB AC =,60B ∠=︒,则ABC ∆是等边三角形 B .若::2:3:5A B C ∠∠∠=,则ABC ∆是直角三角形 C .若20A ∠=︒,80B ∠=︒,则ABC ∆是等腰三角形D .若AB BC =,40C ∠=︒,则40B ∠=︒ 9.下列叙述正确的是( ) A .若a b >,则33a b +>+ B .若a b >,则22a b ->-C .若a b >,则22a b >D .若a b <,则35a b > 10.如图,ABC ∆中,2CE BE =,点D 为AC 中点,连接DE 、AE ,取DE 的中点F ,连接AF ,若AEF ∆的面积是1,则ABC ∆的面积是( )A .2B .4C .6D .811.如图,在ABC ∆的边BC 上有两点D 、E ,连接AD ,AE ,若AB BE =,CA CD =,且100BAC ∠=︒,那么DAE ∠的度数为( )A .80︒B .40︒C .30︒D .100︒12.若关于x 的不等式组6511462x a x x -⎧⎪-⎨-<⎪⎩恰好有3个整数解,且关于y 的方程11a y +=-的解是非负数,则符合条件的所有整数a 的个数是( ) A .2个B .3个C .4个D .5个二、填空题:(本大题6个小题,每小题4分,共24分) 13.64的算术平方根是 .14.已知(3,4)P -,则P 点到x 轴的距离为 .15.一个凸n 边形的内角和是540︒,则n = .16.若关于x 、y 的等式2|3|0x y -++=成立,则x y += .17.如图,将长方形纸片ABCD 折叠,使点D 与点B 重合,点C 落在点C 处,折痕为EF ,若40ABE ∠=︒,那么EFC '∠的度数为 .18.如图,在ABC ∆中,D 为边AC 上一点,且BD 平分ABC ∠,过A 作AE BD ⊥于E .若52ABC ∠=︒,32C ∠=︒, 5.2AB =,9.8BC =,则AE = .三、解答题:(本大题5个小题,共36分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上. 19.计算:228(2)(5)+-+. 20.解不等式:41132x x -+>,并在数轴上表示其解集.21.某学校物理组教师为了激发八年级学生学习物理的学起,举办了一场《物理向未来》的综艺直播秀.分别演示了《倔强的尺子》、《发电很容易》、《人工撒花机》、《神奇的摆动》四个实验,学生们被奇妙的实验深深吸引,每个实验都那么的不可思议,为了了解学生心中“最不可思议的实验”的情况,随机抽取了部分学生(每人只选择一个实验)进行调查,如表和图是根据调查结果绘制的统计图表的一部分和扇形统计图.实验名称 频数(人)频率 A .《倔强的尺子》 12 0.15B .《发电很容易》 16mC.《人工撒花机》n0.3D.《神奇的摆动》28根据以上信息,回答下列问题:(1)本次调查的样本容量为,m=;(2)扇形统计图中认为“最不可思议的实验”是D扇形的圆心角度;(3)若该八年级校共有600名学生,请根据调查结果,估计认为“最不可思议的实验”是B的学生人数.22.在每个小正方形的边长都为1的网格中,有一个格点ABC∆(即三角形的顶点都在格点上),建立如图所示的直角坐标系.(1)作出ABC∆关于x轴对称的图形△A B C;111(2)将ABC∆向右平移5个单位得△A B C;222(3)则ABC∆的面积为.23.尺规作图并完成证明.如图,点D、点F在ABCAF BC,ABD CAF∠=∠,∆外,连接AF、AD、BD,且//=.BD AC(1)用尺规完成以下基本作图:作ABC∠的平分线BE交AF于点E,连接CE(保留作图痕迹,不写作法);(2)根据(1)中作图,求证:AD CE=;请完善下面的证明过程.证明:BE 平分ABC ∠, CBE ∴∠= . //AF BC . CBE ∴∠= .ABE AEB ∴∠=∠.∴ .在ACE 和BDA ∆中, AE AB ABD CAF AC BD =⎧⎪∠=∠⎨⎪=⎩. ACE BDA ∴∆≅∆. AD CE ∴=.B 卷四、填空题:(本大题4个小题,每小题3分.共12分)请将每小题的答案填在答题卡中对应的横线上. 24.若有理数a 、b 满足26946(0)a b a +=+>.则a b -的值为 . 25.等腰ABC ∆两腰上的高所在直线夹角为45︒,则顶角A ∠的度数为 .26.如图,等腰直角ABC 中,90ACB ∠=︒,45ABC ∠=︒,CH AB ⊥于点H ,AD 垂直平分BE ,交BC 于点F ,交CH 于点G ,则下列结论中正确的有 . ①EBC CAF ∠=∠; ②AG DE =; ③BC CG AB +=; ④ACG BFGHS S∆=.27.“鲁巴好少年,一起向未来”,重庆市鲁能巴蜀中学校春季运动会在4月27日如期举行.各班同学积极参与,热情高涨;运动员挥洒汗水,激昂赛场;场下观众文明观赛,有序加油.后勤团队也不甘示弱,积极为同学们做好各种后勤保障,其中,采购小组的同学们就为全班同学准备了百事可乐,红牛和脉动三种饮料.已知百事可乐、红牛和脉动的单价之和为14元,计划购买百事可乐,红牛和脉动的数量总共不超过160瓶,其中脉动的单价为每瓶5元,计划购买20瓶,百事可乐的数量不多于红牛数量的一半,但至少购买40瓶,结果,在做预算时,将百事可乐和红牛的单价弄反了,结果在实际购买时,总费用比预算多了150元.若百事可乐、红牛和脉动的单价均为整数,则实际购买百事可乐、红牛和脉动的总费用最多需要花费.五、解答题:(本大题3个小题,每小题10分,共30分)28.吃粽子是端午节的习俗,某糕点店推出的“海鸭蛋蛋黄粽”和“红豆鲜肉粽”深受顾客喜欢.“海鸭蛋蛋黄粽“每个售价是“红豆鲜肉粽”的53倍,去年端午节期间,“海鸭蛋蛋黄粽”销量为3500个,“红豆鲜肉粽”销量为2500个,两款粽子销售额共为50000元.(1)求“海鸭蛋蛋黄粽”和“红豆鲜肉粽”的售价各是多少元?(2)糕点店在今年端午节前夕,“海鸭蛋蛋黄粽”和“红豆鲜肉粽”的进货量均为去年端午节期间两种粽子销售量的两倍,计划利用店庆活动让利于新老顾客,对两种粽子都开展降价的促销活动;其中,“海鸭蛋蛋黄粽”每个让利0.5a元销售(a为整数),“红豆鲜肉粽”则按原售价打(5)a+折出售,并且降价后的“海鸭蛋蛋黄粽”售价不低于“红豆鲜肉粽”售价的2倍,最终两种粽子全部都销售了出去,且总销售额不超过84000元,求出a的值.29.一个四位正整数A满足百位上的数字比千位上的数字小2.个位上的数字比十位上的数字小2,百位上的数字与个位上的数字不相等且各个数位上的数字均不为零,则称A为“比翼双飞数”,将“比翼双飞数“A的千位和十位数字组成的两位数与百位和个位数字组成的两位数的和记为F(A),将“比翼双飞数“A的千位和百位数字组成的两位数与十位和个位数字组成的两位数的差记为f(A).例如:四位正整数9764,972-=,642-=且74≠,9764∴是“比翼双飞数”,此时,F(A)9674170=+=,f(A)976433=-=.(1)判断:8631,5322是否是“比翼双飞数”,并说明理由;(2)若“比翼双飞数”A能被2整除,且满足F(A)f-(A)能被4整除,求F(A)的值.30.在Rt ABC∆中,AB BC=,在Rt CEH∆中,45CEH∠=︒,90ECH∠=︒,连接AE.(1)如图1,若点E在CB延长线上,连接AH,且6AH=,求AE的长;(2)如图2,若点E在AC上,F为AE的中点,连接BF、BH,当2BH BF=,1452EHB HBF∠+∠=︒时,求证:AE CE=;(3)如图3,若点E在线段AC上运动,取AE的中点F,作//FH BC'交AB于H,连接BE并延长到D,使得BE DE=,连接AD、CD;在线段BC上取一点G,使得CG AF=,并连接EG;若点E在线段AC 上运动的过程中,当ACD的周长取得最小值时,AED∆的面积为25,请直接写出GE BH+'的最小值.答案与解析A卷一、选择题:(本大题12个小题,每小题4分,共48分)1.解:A.不是轴对称图形,故此选项不合题意;B.不是轴对称图形,故此选项不合题意;C.是轴对称图形,故此选项符合题意;D.不是轴对称图形,故此选项不合题意;故选:C.2.解:A、3.142是有限小数,属于有理数,故本选项不合题意;B2,2是整数,属于有理数,故本选项不合题意;C、227是分数,属于有理数,故本选项不合题意;D、π是无理数,故本选项符合题意.故选:D.3.解:A.对全国七年级学生视力情况的调查,适合使用抽样调查,因此选项A不符合题意;B.调查重庆市民对中央电视台2022年春节联欢晚会的满意度,适合使用抽样调查,因此选项B不符合题意;C.疫情期间,对进入重医附一院的人士“渝康码”的检查,适合使用全面调查,因此选项C符合题意;D.对重庆市各大药房口罩销售情况的调查,适合使用抽样调查,因此选项D不符合题意;故选:C.4.解:5266<<,∴减2得:324<<,2的值在3到4之间,故选:B.5.解:A、自行车的三角车架是利用了三角形的稳定性,符合题意;B、用两颗钉子把木条固定在墙上是利用了两点确定一条直线,不符合题意;C、学校大门口的伸缩门利用了四边形的不稳定性,不符合题意;D、四条腿的方桌不是利用了三角形的稳定性,不符合题意.故选:A.6.解:点(23,1)A m --在第四象限, 230m ∴->,则32m >, 故选:D .7.解:A .AB AB =,ABC ABD ∠=∠,BC BD =,符合全等三角形的判定定理SAS ,能推出ABC ABD ∆≅∆,故本选项不符合题意;B .CAB DAB ∠=∠,AB AB =,ABC ABD ∠=∠,符合全等三角形的判定定理ASA ,能推出ABC ABD ∆≅∆,故本选项不符合题意;C .CD ∠=∠,ABC ABD ∠=∠,AB AB =,符合全等三角形的判定定理AAS ,能推出ABC ABD ∆≅∆,故本选项不符合题意;D .AB AB =,AC AD =,ABC ABD ∠=∠,不符合全等三角形的判定定理,不能推出ABC ABD ∆≅∆,故本选项符合题意; 故选:D . 8.解:A .AB AC =,60B ∠=︒,ABC ∴∆是等边三角形(有一个角是60︒的等腰三角形是等边三角形),故本选项不符合题意; B .::2:3:5A B C ∠∠∠=,180A B C ∠+∠+∠=︒,∴最大角C ∠的度数是518090235︒⨯=︒++,ABC ∴∆是直角三角形,故本选项不符合题意; C .20A ∠=︒,80B ∠=︒, 18080C A B ∴∠=︒-∠-∠=︒, B C ∴∠=∠,ABC ∴∆是等腰三角形,故本选项不符合题意;D .AB BC =,C A ∴∠=∠, 40C ∠=︒, 40A ∴∠=︒,180100B A C ∴∠=︒-∠-∠=︒,故本选项符合题意;故选:D . 9.解:a b >, 33a b ∴+>+,∴选项A 符合题意;a b >, 22a b ∴-<-,∴选项B 不符合题意;a b >时,22a b >不一定成立,例如:24>-,但是222(4)<-,∴选项C 不符合题意;a b <时,35a b>不一定成立, 例如:35<,但是3535=,∴选项D 不符合题意.故选:A .10.解:ABC ∆中,2CE BE =, 2AEC ABE S S ∆∆∴=,3ABC ABE S S ∆∆=,F 为DE 的中点,1AEF AFD S S ∆∆∴==, 2AED S ∆∴=,点D 为AC 中点, 2224AEC AED S S ∆∆∴==⨯=, 2ABE S ∆∴=, 236ABC S ∆∴=⨯=,ABC ∴∆的面积是6.故选:C . 11.解:AB BE =,BAE BEA ∴∠=∠,1802B BAE ∴∠=︒-∠,① CD CA =, CAD CDA ∴∠=∠,1802C CAD ∴∠=︒-∠,②①+②得:3602()B C BAE CAD ∠+∠=︒-∠+∠,1803602[()()]BAC BAD DAE DAE CAE ∴︒-∠=︒-∠+∠+∠+∠,1802[()]BAC BAD DAE CAE DAE ∴-∠=︒-∠+∠+∠+∠,1802()BAC BAC DAE ∴-∠=︒-∠+∠,2180DAE BAC ∴∠=︒-∠,100BAC ∠=︒,218010080DAE ∴∠=︒-︒=︒,40DAE ∴∠=︒.故选:B .12.解:6511462x a x x -⎧⎪⎨--<⎪⎩①②,解不等式①得:56a x +, 解不等式②得:4x <,∴原不等式组的解集为:546a x +<, 不等式组恰好有3个整数解,5016a +∴<, 51a ∴-<,11a y +=-,解得:2y a =+,方程的解是非负数, 20a ∴+,2a ∴-, 综上所述,21a -,∴符合条件的所有整数a 的值为:2-,1-,0,1,∴符合条件的所有整数a 的个数为4,故选:C .二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.解:2864=∴8=.故答案为:8.14.解:(3,4)P -,则P 点到x 轴的距离为:4.故答案为:4.15.解:根据题意得,(2)180540n -⋅︒=︒,解得5n =,故答案为:5.16.解:|3|0y +=,20x ∴-=,30y +=,2x ∴=,3y =-,231x y ∴+=-=-.故答案为:1-.17.解:Rt ABE ∆中,40ABE ∠=︒,50AEB ∴∠=︒,由折叠的性质知:BEF DEF ∠=∠,而180130BED AEB ∠=︒-∠=︒,65DEF ∴∠=︒,//AD BC ,180EFC DEF ∴∠+∠=︒,180115EFC DEF ∴∠=︒-∠=︒,由折叠的性质得,115EFC EFC '∠=∠=︒,故答案为:115︒.18.解:延长AE 交BC 于F , BD 平分ABC ∠,ABE FBE ∴∠=∠,在ABE ∆和FBE ∆中,90AEB FEB BE BEABE FBE ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩, ()ABE FBE ASA ∴∆≅∆,AE EF ∴=, 5.2AB BF ==, 1(18052)642BAF BFA ∴∠=∠=⨯︒-︒=︒, 32C ∠=︒,32CAF AFB C ∴∠=∠-∠=︒,CAF C ∴∠=∠,AF CF ∴=,9.8BC =,4.6CF BC BF ∴=-=,4.6AF ∴=,2.3AE ∴=,故答案为:2.3.三、解答题:(本大题5个小题,共36分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.解:228(2)(5)-825=++15=.20.解:41132x x -+>, 去分母,得2(41)3(1)x x ->+,移项,得8332x x ->+,合并同类项,得55x >,化系数为1,得1x >.所以在数轴上表示为:.21.解:(1)本次调查的样本容量为:120.1580÷=,16800.2m=÷=,故答案为:80,0.2;(2)扇形统计图中认为“最不可思议的实验”是D扇形的圆心角为:28 36012680︒⨯=︒,故答案为:126;(3)6000.2120⨯=(人),答:估计认为“最不可思议的实验”是B的学生人数为120人.22.解:(1)如图所示,△111A B C即为所求.(2)如图所示,△222A B C即为所求.(3)ABC∆的面积为11111 342314132222⨯-⨯⨯-⨯⨯-⨯⨯=,故答案为:112.23.(1)解:图形如图所示:(2)证明:BE平分ABC∠,CBE ABE ∴∠=∠,//AF BC ,CBE AEB ∴∠=∠,ABE AEB ∴∠=∠,AE AB ∴=,在ACE 和BDA ∆中,AE AB ABD CAF AC BD =⎧⎪∠=∠⎨⎪=⎩,()ACE BDA SAS ∴∆≅∆,AD CE ∴=.故答案为:ABE ∠,AEB ∠,AE AB =.B 卷四、填空题:(本大题4个小题,每小题3分.共12分)请将每小题的答案填在答题卡中对应的横线上.24.解:由a ,b 为有理数,满足26946(0)a b a +=+>,可得29a =,4b =,0a >,3a ∴=,341a b ∴-=-=-.故答案为:1-.25.解:如图,当BAC ∠是钝角时,由题意:AB AC =,90AEH ADH ∠=∠=︒,45EHD ∠=︒,360909045135BAC EAD ∴∠=∠=︒-︒-︒-︒=︒;如图,当A ∠是锐角时,由题意:AB AC =,90CDA BEA ∠=∠=︒,45CHE ∠=︒,180135DHE CHE ∴∠=︒-∠=︒,360909013545A ∴∠=︒-︒-︒-︒=︒,故答案为:135︒或45︒.26.解:ABC ∆是等腰直角三角形,90ACB ∠=︒,AC BC ∴=,AD BE ⊥,90ADE ACB BCE ∴∠=∠=∠=︒,90E EBC E CAF ∴∠+∠=︒=∠+∠,EBC CAF ∴∠=∠,故①正确;在BCE ∆和ACF ∆中,EBC CAF AC BCACF BCE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()BCE ACF ASA ∴∆≅∆,EC CF ∴=, AD 垂直平分BE ,AB AE ∴=,AD BE ⊥,BD DE =,BAD CAD ∴∠=∠,CH AB ⊥,90CHA ACB ∴∠=︒=∠,90BAD AGH CAD CFA ∴∠+∠=︒=∠+∠,CFA AGH CGF ∴∠=∠=∠,CG CF CE ∴==,CG BC CE AC AE AB ∴+=+==,故③正确;故答案为:①③.27.解:设购买x 瓶百事可乐,y 瓶红牛,百事可乐的单价为m 元,则红牛的单价为145(9)m m --=-元, 依题意得:(9)[(9)]150xm y m x m ym +---+=, 整理得:15092y x m -=-, 12x y ,40x , 20160x y ∴++,140x y ∴+,又x ,y ,m 均为正整数,12x y , y x ∴-是正整数,4.5m <,927m ∴-=(舍去)或925m -=或923m -=或921m -=,2m ∴=或3m =或4m =,当2m =时,97m -=,30y x -=,∴4030140x x x ⎧⎨++⎩, 解得:4055x ,此时实际购买这三种物品的总费用为:5202710027(30)9310x y x x x ⨯++=+++=+,∴当x 取最大值55时,总费用最大为955310805⨯+=(元)(不合题意舍去); 当3m =时,96m -=,50y x -=,4050140x x x ⎧⎨++⎩, 解得4045y ,∴此时实际购买这三种物品的总费用为:52036(50)9400x x x ⨯+++=+,∴当x 取最大值45时,总费用最大为945400805⨯+=(元);当4m =时,95m -=,150y x -=,∴40150140x x x ⎧⎨++⎩, 此时不等式组无解.综上所述,实际购买百事可乐、红牛和脉动的总费用最多需要花费805元. 故答案为:805元.五、解答题:(本大题3个小题,每小题10分,共30分)28.解:(1)设“红豆鲜肉粽”的售价是x 元,则“海鸭蛋蛋黄粽”的售价是53x 元, 依题意得:535002500500003x x ⨯+=, 解得:6x =, ∴5561033x =⨯=. 答:“海鸭蛋蛋黄粽”的售价为10元,“红豆鲜肉粽”的售价是6元.(2)依题意得:5100.52610535002(100.5)2500268400010a a a a +⎧-⨯⨯⎪⎪⎨+⎪⨯⨯-+⨯⨯⨯⎪⎩, 解得:40217a , 又a 为整数,2a ∴=.答:a 的值为2.29.解:(1)8631是“比翼双飞数”,5322不是“比翼双飞数”.理由如下: 862-=,312-=且61≠,8631∴是“比翼双飞数”, 532-=,但2202-=≠,5322∴不是“比翼双飞数”; (2)设“比翼双飞数” (2)(2)(A a a b b a b =++≠,a 、b 为整数,17a ,17)b , “比翼双飞数” A 能被2整除,∴1000(2)10010(2)5505101022a ab b b a b +++++=+++为整数, b ∴为偶数,2b ∴=或4或6,F (A )10(2)21020222a b a b a b =+++++=++,f (A )[10(2)][10(2)]1111a a b b a b =++-++=-,F ∴(A )f -(A )91322a b =++, F (A )f -(A )能被4整除, ∴91322223544a b a b a b ++++=+++为整数, ∴24a b ++为整数, 4a ∴=,2b =或2a =,4b =或6a =,4b =或4a =,6b =, 6442A ∴=或4264或8664或6486F ∴(A )6442=+或4624+或8664+或6846+,即F (A )106=或70或150或114.30.(1)解:在Rt ABC ∆中,AB BC =,45BAC ACB ∴∠=∠=︒,90ECH ∠=︒,45ACH ∴∠=︒,ACE ACH ∴∠=∠,在Rt CEH ∆中,45CEH ∠=︒,45CHE ∴∠=︒,CE CH ∴=,AC AC =,()ACE ACH SAS ∴∆≅∆,6AE AH ∴==;(2)证明:如图1,连接BE ,设BH 与AC 交于点G ,1452EHB HBF ∠+∠=︒,90ABC ∠=︒, 1452ABF HBF ∴∠+∠=︒, BCH ABG ∴∠=∠,AB AC =,45A ACB ∠=∠=︒,()ABF CBG ASA ∴∆≅∆,BG BF ∴=,2BH BF =,2BH BG ∴=,45HEG BCG ∠=∠=︒,EGH CGB ∠=∠,()EGH CGB AAS ∴∆≅∆,EG CG ∴=,∴四边形EBCH 是平行四边形,//BE CH ∴,90BEG ECH ∴∠=∠=︒,AE CE ∴=;(3)解:如图2,作//DN AC 作点A 的对称点A ',连接AC 交DN 于D ',连接BD ',交AC 与E ', 则当点D 在D '处,点E 在点E '处时,ACD ∆的周长最小,此时ACD ∆为等腰直角三角形, 21252ADE S AE ∆='=, 52AE ∴'=2102AC AE ∴='=210AB BC AC ∴===, 15222AF AE ==第21页(共21页)52H F AH AF ∴'='==, 5151022BH ∴'=-=, 作GR CE ⊥'于R ,在Rt CGR ∆中,12CG AF ==45BAC ∠=︒,52222GR CR ∴===⨯=, 在Rt GRE ∆'中,52E R E C CR '='-=,E G '==152GE BH ∴+'=+.。
精品解析重庆市巴蜀中学2021-2021学年初2021届初一下学期期末数学试卷(原卷版)
![精品解析重庆市巴蜀中学2021-2021学年初2021届初一下学期期末数学试卷(原卷版)](https://img.taocdn.com/s3/m/8fc9ac0f102de2bd970588e5.png)
巴蜀中学初2021 届(初一下)期末考试数学试卷一、选择题(本大题12 小题,每小题 4 分,共48 分)1.下列图形中,不是轴对称图形的是()A. B. C. D.2.下列事件为必然事件的是【】A.小王参加本次数学考试,成绩是150 分B.某射击运动员射靶一次,正中靶心C.打开电视机,CCTV 第一套节目正播放新闻D.口袋中装有2 个红球和1 个白球,从中摸出2 个球,其中必有红球3.如图,在∆ABC 中,D E、F 分别在AB、BC、AC 上,且EF ∥ AB ,要使DF ∥BC ,只需再有下列条件中的()即可.A. ∠1 =∠2B.∠1 =∠DFEπ 1 C.∠1 =∠AFD D.∠2 =∠AFD4.下面5 个数:3.141592,2 ,7,8 ,-1,其中是有理数的有()A. 2 个B. 3 个C. 4 个D. 5 个5.将一副三角板按图中方式叠放,则角α 等于()A. 30°B. 45°C. 60°D. 75°6.如图,在△ABC 和△DEF 中,已有条件AB=DE,还需要添加两个条件才能使△ABC≌△DEF,不能添加的一组条件是()A. ∠B=∠E,BC=EFB. ∠A=∠D,BC=EF116C. ∠A=∠D,∠B=∠ED. BC=EF,AC=DF7. 的平方根是( )A.±121 1B.±C.4 4D.128.已知等腰三角形的一边长为2cm ,另一边长为4cm ,则它周长是()A. 6cmB. 8cmC. 10cmD. 8cm 或10cm9.如图,一只蚂蚁以均匀的速度沿台阶A1⇒A2⇒A3⇒A4⇒A5爬行,那么蚂蚁爬行的高度h 随时间t 变化的图象大致是()A. B.C. D.10.如图,△ABC 中,BD⊥AC,AE⊥BC,AE、BD 交于点O,连接CO,∠ABC=54°,∠ACB=48°,则∠COD=()A. 51°B. 66°C. 78°D. 88°111.如图,AE 垂直于∠ABC 的平分线交于点D,交BC 于点E,CE=3的面积为()BC,若△ABC 的面积为2,则△CDE1 1 1A. B. C.3 6 8 D.11012.如图,△ABC 中,AC=BC,∠ACB=90°,AE 平分∠BAC 交BC 于E,BD⊥AE 于D,DM⊥AC 交AC延长线于M,连接CD,下列四个结论:①∠ADC=45°;②BD= 1AE;③AC+CE=AB;④AB-BC=2MC,2其中正确的有()个.A. 1B. 2C. 3D. 4二、填空题(本大题12 小题,每小题 3 分,共36 分)13.26000000 用科学计数法表示为.14.若x -3 +y + 4 = 0 ,则(x +y)2014的值为.15.弹簧挂上重物后会伸长,测得一弹簧的长度y(cm)于所挂的重物的质量x(kg)间有下面的关系(弹簧的弹性范围x≤10kg),当所挂的物体质量是8kg 时,弹簧的长度是cm.16.在一个不透明的口袋中放入只有颜色不同的白球6 个,黑球4 个,黄球n 个,搅匀后随机摸出一个球恰1好是黄球的概率是3.则n= .17.已知a,b,c 是三角形三边长,则化简(a -b -c)2 =.18.如图,∠C =90︒,∠1 =∠2 ,若BC =10 ,BD =6 ,则D 到AB 的距离为。
重庆巴蜀中学数学七年级下学期期末数学试题
![重庆巴蜀中学数学七年级下学期期末数学试题](https://img.taocdn.com/s3/m/bd737e3f19e8b8f67d1cb9cf.png)
18.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是_____.
19.一个容量为 的样本的最大值为 ,最小值为 ,若取组距为 ,则应该分的组数是为_______.
20.已知一个多边形的每一个外角都等于 ,则这个多边形的边数是.
4.下列各式中,不能用平方差公式计算的是()
A.xyxyB.-x-y-xyC.x-y-x-yD.xy-xy
5.x2•x3=( )
A.x5B.x6C.x8D.x9
6.下列各式从左到右的变形中,是因式分解的为( )
A.ab+ac+d=a(b+c)+dB.(x+2)(x﹣2)=x2﹣4
C.6ab=2a⋅3bD.x2﹣8x+16=(x﹣4)2
∴∠PDC+∠PCD= (∠BCD+∠CDE)=270°- α,
∴∠P=180°-(270°- α)= α-90°.
故选:A.
【点睛】
此题考查多边形的内角和公式,角平分线的定义,熟记公式是解题的关键.注意整体思想的运用.
3.B
解析:B
【解析】
试题分析:A、2+2=4,不能构成三角形,故本选项错误;
B、3、4、5,满足任意两边之和大于第三边,能构成三角形,故本选项正确;
7.下列运算正确的是( )
A.a2+a2=a4B.(﹣b2)3=﹣b6
C.2x•2x2=2x3D.(m﹣n)2=m2﹣n2
8.已知a、b、c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为( )
A.2a+2b-2cB.2a+2bC.2cD.0
重庆市巴蜀中学2020-2021学年七年级(下)期末数学试卷及答案解析
![重庆市巴蜀中学2020-2021学年七年级(下)期末数学试卷及答案解析](https://img.taocdn.com/s3/m/708984d627fff705cc1755270722192e453658e3.png)
2020-2021学年重庆市渝中区巴蜀中学七年级(下)期末数学试卷一、选择题:(本大题10个小题,每小题4分,共40分)1.(4分)下列四个实数中,是无理数的是()A.﹣πB.3.1415C.D.2.(4分)下列调查工作适合采用普查方式的是()A.重庆市环保局对嘉陵江水域的水污染情况的调查B.重庆市旅游局了解外地游客对洪崖洞的印象C.重庆市质检部门对各厂家生产的电灯泡使用寿命的调查D.神舟十二号载人飞船发射前,工作人员对其各个零部作安全情况的检查3.(4分)如图,木工师傅在制作木门时,为了使本门不容易变形,常常在它的背面加钉了一根木条,这样做的依据是()A.垂线段最短B.三角形具有稳定性C.两点之间线段最短D.三角形任意两边之和大于第三边4.(4分)如图,象棋盘上,若“将”位于点(3,﹣3),“车“位于点(﹣1,﹣3),则“马”位于()A.(1,3)B.(3,3)C.(0,6)D.(6,0)5.(4分)如果n=﹣1,那么n的取值范围是()A.0<n<1B.1<n<2C.2<n<3D.3<n<4 6.(4分)若a>b,则下列各式中不正确的是()A.5a>5b B.C.﹣a>﹣b D.a﹣3>b﹣3 7.(4分)重庆北站到万州客车站路程全长270km,一小汽车和一辆货车同时从重庆北站、万州客车站两地相向而行,经过1小时40分钟相遇,相遇时小汽车比货车多行驶40km,设小汽车和货车的平均速度分别为xkm/h和ykm/h,则个列方程组中正确的是()A.B.C.D.8.(4分)如图,在△ABC和△DEC中,已知AB=DE,∠B=∠E,添加一个条件,不能判定△ABC≌△DEC的是()A.∠ECB=∠DCA B.BC=EC C.∠A=∠D D.AC=DC9.(4分)若a使得关于x的不等式组有且仅有2个整数解,且使得关于y的方程4y﹣3a=2(y﹣3)有正数解,则所有满足条件的整数a的个数为()A.6B.5C.4D.310.(4分)如图,四边形ABCD中,AC、BD为对角线,且AC=AB,∠ACD=∠ABD,AE ⊥BD于点E,若BD=6.4,CD=5.2.则DE的长度为()A.1.2B.0.6C.0.8D.1二、填空题,(本大题10个小题,每小题4分,共40分)11.(4分)﹣的立方根为.12.(4分)一个多边形的内角和是1080°,这个多边形的边数是.13.(4分)若点P(a﹣2,a)在第一象限,则a的取值范围为.14.(4分)若是二元一次方程2x+y=3的一组解.则6a+3b=.15.(4分)如图所示,在△ABC中,AD平分∠BAC,BE是高线,∠BAC=50°,∠EBC =20°,则∠ADC的度数为.16.(4分)设a,b,c是△ABC的三边的长,化简+|b﹣a﹣c|的结果是.17.(4分)如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D,AD=2,BE=1.则DE=.18.(4分)如图,BF是∠ABD的角平分线,CE是∠ACD的角平分线,BF、CE交于点G,如果∠BDC=120°,∠BGC=100°,则∠A的度数为度.19.(4分)如图所示,AD是△ABC的角平分线,DF⊥AB于点F,DE=DG,若S△DEF=2,S△ADG=9:则△ADE的面积为.20.(4分)“开放的六月”美术馆之夜携手多所艺术高校在重庆正式开启,分别有音乐表演、剧场表演、灯光秀以及时装秀四个类型的演出,且每类演出的单价均为整数,其中音乐表演和剧场表演的门票单价分别为8元和15元,灯光秀和时装秀的门票单价之比为4:13.我校准备组织热爱艺术的同学前往观看表演,带队老师在统计购买门票时发现,购买音乐表演的门票数量大于5小于10,购买剧场表演的门票数量大于20不大于26.购买时装秀的门票数量少于购买灯光秀门票数量的2倍,而购买时装秀门票数量小于16,购买时装秀门票数量与购买灯光秀门票数量之差大于5小于10.且购买音乐表演、剧场表演门票的总价恰好等于购买灯光秀和时装秀的门票总价.而在实际购票时,售票员将音乐表演,剧场表演门票数量搞反了,将灯光秀和时装秀门票数量也搞反了,结果发现购买音乐表演和剧场表演门票的总价还是等于购买灯光秀和时装秀的门票总价,则实际购票时购买灯光秀和时装秀门票总价为元.三、解答题:(本大题8个小题共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上。
重庆巴蜀中学七年级下册数学期末试卷测试卷(含答案解析)
![重庆巴蜀中学七年级下册数学期末试卷测试卷(含答案解析)](https://img.taocdn.com/s3/m/a8d1ca9d6aec0975f46527d3240c844769eaa0cd.png)
重庆巴蜀中学七年级下册数学期末试卷测试卷(含答案解析)一、解答题1.如图1,已AB∥CD,∠C=∠A.(1)求证:AD∥BC;(2)如图2,若点E是在平行线AB,CD内,AD右侧的任意一点,探究∠BAE,∠CDE,∠E之间的数量关系,并证明.(3)如图3,若∠C=90°,且点E在线段BC上,DF平分∠EDC,射线DF在∠EDC的内部,且交BC于点M,交AE延长线于点F,∠AED+∠AEC=180°,①直接写出∠AED与∠FDC的数量关系:.②点P在射线DA上,且满足∠DEP=2∠F,∠DEA﹣∠PEA=514∠DEB,补全图形后,求∠EPD的度数2.已知点C在射线OA上.(1)如图①,CD//OE,若∠AOB=90°,∠OCD=120°,求∠BOE的度数;(2)在①中,将射线OE沿射线OB平移得O′E'(如图②),若∠AOB=α,探究∠OCD 与∠BO′E′的关系(用含α的代数式表示)(3)在②中,过点O′作OB的垂线,与∠OCD的平分线交于点P(如图③),若∠CPO′=90°,探究∠AOB与∠BO′E′的关系.3.如图,已知AM//BN,点P是射线AM上一动点(与点A不重合),BC BD、分别平分ABP∠和PBN∠,分别交射线AM于点,C D.(1)当60A ∠=︒时,ABN ∠的度数是_______;(2)当A x ∠=︒,求CBD ∠的度数(用x 的代数式表示);(3)当点P 运动时,ADB ∠与APB ∠的度数之比是否随点P 的运动而发生变化?若不变化,请求出这个比值;若变化,请写出变化规律.(4)当点P 运动到使ACB ABD =∠∠时,请直接写出14DBN A +∠∠的度数.4.(1)(问题)如图1,若//AB CD ,40AEP ∠=︒,130PFD ∠=︒.求EPF ∠的度数; (2)(问题迁移)如图2,//AB CD ,点P 在AB 的上方,问PEA ∠,PFC ∠,EPF ∠之间有何数量关系?请说明理由;(3)(联想拓展)如图3所示,在(2)的条件下,已知EPF α∠=,PEA ∠的平分线和PFC ∠的平分线交于点G ,用含有α的式子表示G ∠的度数.5.如图,直线//PQ MN ,点C 是PQ 、MN 之间(不在直线PQ ,MN 上)的一个动点.(1)如图1,若1∠与2∠都是锐角,请写出C ∠与1∠,2∠之间的数量关系并说明理由; (2)把直角三角形ABC 如图2摆放,直角顶点C 在两条平行线之间,CB 与PQ 交于点D ,CA 与MN 交于点E ,BA 与PQ 交于点F ,点G 在线段CE 上,连接DG ,有BDF GDF ∠=∠,求AENCDG∠∠的值; (3)如图3,若点D 是MN 下方一点,BC 平分PBD ∠, AM 平分CAD ∠,已知25PBC ∠=︒,求ACB ADB ∠+∠的度数.二、解答题6.如图1,点O 在MN 上,90,,AOB AOM m OCQ n ∠=︒∠=︒∠=︒,射线OB 交PQ 于点C ,已知m ,n 满足:220(70)0m n -+-=.(1)试说明MN //PQ 的理由;(2)如图2,OD 平分AON ∠,CF 平分OCQ ∠,直线OD 、CF 交于点E ,则OEF ∠=______︒;(3)若将AOB ∠绕点O 逆时针旋转()090αα<<︒,其余条件都不变,在旋转过程中,OEF ∠的度数是否发生变化?请说明你的结论.7.如图1,E 点在BC 上,∠A =∠D ,AB ∥CD . (1)直接写出∠ACB 和∠BED 的数量关系 ;(2)如图2,BG 平分∠ABE ,与∠CDE 的邻补角∠EDF 的平分线交于H 点.若∠E 比∠H 大60°,求∠E ;(3)保持(2)中所求的∠E 不变,如图3,BM 平分∠ABE 的邻补角∠EBK ,DN 平分∠CDE ,作BP ∥DN ,则∠PBM 的度数是否改变?若不变,请求值;若改变,请说理由.8.已知射线//AB 射线CD ,P 为一动点,AE 平分PAB ∠,CE 平分PCD ∠,且AE 与CE 相交于点E .(注意:此题不允许使用三角形,四边形内角和进行解答)(1)在图1中,当点P 运动到线段AC 上时,180APC ∠=︒.直接写出AEC ∠的度数; (2)当点P 运动到图2的位置时,猜想AEC ∠与APC ∠之间的关系,并加以说明; (3)当点P 运动到图3的位置时,(2)中的结论是否还成立?若成立,请说明理由:若不成立,请写出AEC ∠与APC ∠之间的关系,并加以证明.9.长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况,如图,灯A 射线自AM 顺时针旋转至AN 便立即回转,灯B 射线自BP 顺时针旋转至BQ 便立即回转,两灯不停交叉照射巡视,若灯A 转动的速度是a °/秒,灯B 转动的速度是b °/秒,且a 、b 满足()2450a b a b -++-=.假定这一带长江两岸河堤是平行的,即//PQ MN ,且60BAN ∠=︒(1)求a 、b 的值;(2)若灯B 射线先转动45秒,灯A 射线才开始转动,当灯B 射线第一次到达BQ 时运动停止,问A 灯转动几秒,两灯的光束互相平行?(3)如图,两灯同时转动,在灯A 射线到达AN 之前.若射出的光束交于点C ,过C 作CD AC ⊥交PQ 于点D ,则在转动过程中,BAC ∠与BCD ∠的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.10.如图,已知AM ∥BN ,∠A =64°.点P 是射线AM 上一动点(与点A 不重合),BC 、BD 分别平分∠ABP 和∠PBN ,分别交射线AM 于点C ,D .(1)①∠ABN 的度数是 ;②∵AM ∥BN ,∴∠ACB =∠ ; (2)求∠CBD 的度数;(3)当点P 运动时,∠APB 与∠ADB 之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由:若变化,请写出变化规律; (4)当点P 运动到使∠ACB =∠ABD 时,∠ABC 的度数是 .三、解答题11.在△ABC 中,射线AG 平分∠BAC 交BC 于点G ,点D 在BC 边上运动(不与点G 重合),过点D 作DE ∥AC 交AB 于点E .(1)如图1,点D在线段CG上运动时,DF平分∠EDB①若∠BAC=100°,∠C=30°,则∠AFD=;若∠B=40°,则∠AFD=;②试探究∠AFD与∠B之间的数量关系?请说明理由;(2)点D在线段BG上运动时,∠BDE的角平分线所在直线与射线AG交于点F试探究∠AFD与∠B之间的数量关系,并说明理由12.在△ABC中,∠BAC=90°,点D是BC上一点,将△ABD沿AD翻折后得到△AED,边AE交BC于点F.(1)如图①,当AE⊥BC时,写出图中所有与∠B相等的角:;所有与∠C相等的角:.(2)若∠C-∠B=50°,∠BAD=x°(0<x≤45) .① 求∠B的度数;②是否存在这样的x的值,使得△DEF中有两个角相等.若存在,并求x的值;若不存在,请说明理由.13.如图,直线m与直线n互相垂直,垂足为O、A、B两点同时从点O出发,点A沿直线m向左运动,点B沿直线n向上运动.(1)若∠BAO和∠ABO的平分线相交于点Q,在点A,B的运动过程中,∠AQB的大小是否会发生变化?若不发生变化,请求出其值,若发生变化,请说明理由.(2)若AP是∠BAO的邻补角的平分线,BP是∠ABO的邻补角的平分线,AP、BP相交于点P,AQ的延长线交PB的延长线于点C,在点A,B的运动过程中,∠P和∠C的大小是否会发生变化?若不发生变化,请求出∠P和∠C的度数;若发生变化,请说明理由.14.操作示例:如图1,在△ABC中,AD为BC边上的中线,△ABD的面积记为S1,△ADC 的面积记为S2.则S1=S2.解决问题:在图2中,点D、E分别是边AB、BC的中点,若△BDE的面积为2,则四边形ADEC的面积为 .拓展延伸:(1)如图3,在△ABC中,点D在边BC上,且BD=2CD,△ABD的面积记为S1,△ADC的面积记为S2.则S1与S2之间的数量关系为.(2)如图4,在△ABC中,点D、E分别在边AB、AC上,连接BE、CD交于点O,且BO=2EO,CO=DO,若△BOC的面积为3,则四边形ADOE的面积为 .15.如图,△ABC和△ADE有公共顶点A,∠ACB=∠AED=90°,∠BAC=45°,∠DAE=30°.(1)若DE//AB,则∠EAC=;(2)如图1,过AC上一点O作OG⊥AC,分别交A B、A D、AE于点G、H、F.①若AO=2,S△AGH=4,S△AHF=1,求线段OF的长;②如图2,∠AFO的平分线和∠AOF的平分线交于点M,∠FHD的平分线和∠OGB的平分线交于点N,∠N+∠M的度数是否发生变化?若不变,求出其度数;若改变,请说明理由.【参考答案】一、解答题1.(1)见解析;(2)∠BAE+∠CDE=∠AED,证明见解析;(3)①∠AED-∠FDC=45°,理由见解析;②50°【分析】(1)根据平行线的性质及判定可得结论;(2)过点E作EF∥AB,根解析:(1)见解析;(2)∠BAE+∠CDE=∠AED,证明见解析;(3)①∠AED-∠FDC=45°,理由见解析;②50°【分析】(1)根据平行线的性质及判定可得结论;(2)过点E作EF∥AB,根据平行线的性质得AB∥CD∥EF,然后由两直线平行内错角相等可得结论;(3)①根据∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,DF平分∠EDC,可得出2∠AED+(90°-2∠FDC)=180°,即可导出角的关系;②先根据∠AED=∠F+∠FDE,∠AED-∠FDC=45°得出∠DEP=2∠F=90°,再根据∠DEA-∠PEA=5∠DEB,求出∠AED=50°,即可得出∠EPD的度数.14【详解】解:(1)证明:AB∥CD,∴∠A+∠D=180°,∵∠C=∠A,∴∠C+∠D=180°,∴AD∥BC;(2)∠BAE+∠CDE=∠AED,理由如下:如图2,过点E作EF∥AB,∵AB∥CD∴AB∥CD∥EF∴∠BAE=∠AEF,∠CDE=∠DEF即∠FEA+∠FED=∠CDE+∠BAE∴∠BAE+∠CDE=∠AED;(3)①∠AED-∠FDC=45°;∵∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,∴∠AEC=∠DEC+∠AEB,∴∠AED=∠AEB,∵DF平分∠EDC∠DEC=2∠FDC∴∠DEC=90°-2∠FDC,∴2∠AED+(90°-2∠FDC)=180°,∴∠AED-∠FDC=45°,故答案为:∠AED-∠FDC=45°;②如图3,∵∠AED=∠F+∠FDE,∠AED-∠FDC=45°,∴∠F=45°,∴∠DEP=2∠F=90°,∵∠DEA-∠PEA=514∠DEB=57∠DEA,∴∠PEA=27∠AED,∴∠DEP=∠PEA+∠AED=97∠AED=90°,∴∠AED=70°,∵∠AED+∠AEC=180°,∴∠DEC+2∠AED=180°,∴∠DEC=40°,∵AD∥BC,∴∠ADE=∠DEC=40°,在△PDE中,∠EPD=180°-∠DEP-∠AED=50°,即∠EPD=50°.【点睛】本题主要考查平行线的判定和性质,熟练掌握平行线的判定和性质,角平分线的性质等知识点是解题的关键.2.(1)150°;(2)∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′【分析】(1)先根据平行线的性质得到∠AOE的度数,再根据直角、周角的定义即可求得∠BOE的度数;(2)解析:(1)150°;(2)∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′【分析】(1)先根据平行线的性质得到∠AOE的度数,再根据直角、周角的定义即可求得∠BOE的度数;(2)如图②,过O点作OF∥CD,根据平行线的判定和性质可得∠OCD、∠BO′E′的数量关系;(3)由已知推出CP∥OB,得到∠AOB+∠PCO=180°,结合角平分线的定义可推出∠OCD=2∠PCO=360°-2∠AOB,根据(2)∠OCD+∠BO′E′=360°-∠AOB,进而推出∠AOB=∠BO′E′.【详解】解:(1)∵CD∥OE,∴∠AOE=∠OCD=120°,∴∠BOE=360°-∠AOE-∠AOB=360°-90°-120°=150°;(2)∠OCD+∠BO′E′=360°-α.证明:如图②,过O点作OF∥CD,∵CD∥O′E′,∴OF∥O′E′,∴∠AOF=180°-∠OCD,∠BOF=∠E′O′O=180°-∠BO′E′,∴∠AOB=∠AOF+∠BOF=180°-∠OCD+180°-∠BO′E′=360°-(∠OCD+∠BO′E′)=α,∴∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′.证明:∵∠CPO′=90°,∴PO′⊥CP,∵PO′⊥OB,∴CP∥OB,∴∠PCO+∠AOB=180°,∴2∠PCO=360°-2∠AOB,∵CP是∠OCD的平分线,∴∠OCD=2∠PCO=360°-2∠AOB,∵由(2)知,∠OCD+∠BO′E′=360°-α=360°-∠AOB,∴360°-2∠AOB+∠BO′E′=360°-∠AOB,∴∠AOB=∠BO′E′.【点睛】此题考查了平行线的判定和性质,平移的性质,直角的定义,角平分线的定义,正确作出辅助线是解决问题的关键.3.(1)120°;(2)90°-x°;(3)不变,;(4)45°【分析】(1)由平行线的性质:两直线平行同旁内角互补可得;(2)由平行线的性质可得∠ABN=180°-x°,根据角平分线的定义知∠解析:(1)120°;(2)90°-12x°;(3)不变,12;(4)45°【分析】(1)由平行线的性质:两直线平行同旁内角互补可得;(2)由平行线的性质可得∠ABN=180°-x°,根据角平分线的定义知∠ABP=2∠CBP、∠PBN=2∠DBP,可得2∠CBP+2∠DBP=180°-x°,即∠CBD=∠CBP+∠DBP=90°-12x°;(3)由AM∥BN得∠APB=∠PBN、∠ADB=∠DBN,根据BD平分∠PBN知∠PBN=2∠DBN,从而可得∠APB:∠ADB=2:1;(4)由AM∥BN得∠ACB=∠CBN,当∠ACB=∠ABD时有∠CBN=∠ABD,得∠ABC+∠CBD=∠CBD+∠DBN,即∠ABC=∠DBN,根据角平分线的定义可得∠ABP=∠PBN=12∠ABN=2∠DBN,由平行线的性质可得12∠A+12∠ABN=90°,即可得出答案.【详解】解:(1)∵AM∥BN,∠A=60°,∴∠A+∠ABN=180°,∴∠ABN=120°;(2)∵AM∥BN,∴∠ABN+∠A=180°,∴∠ABN=180°-x°,∴∠ABP+∠PBN=180°-x°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=180°-x°,∴∠CBD=∠CBP+∠DBP=12(180°-x°)=90°-12x°;(3)不变,∠ADB:∠APB=12.∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB:∠ADB=2:1,∴∠ADB:∠APB=12;(4)∵AM∥BN,∴∠ACB=∠CBN,当∠ACB=∠ABD时,则有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN,∴∠ABC=∠DBN,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠ABC,∠PBN=2∠DBN,∴∠ABP=∠PBN=2∠DBN=12∠ABN,∵AM∥BN,∴∠A+∠ABN=180°,∴12∠A+12∠ABN=90°,∴12∠A+2∠DBN=90°,∴14∠A+∠DBN=12(12∠A+2∠DBN)=45°.【点睛】本题主要考查平行线的性质和角平分线的定义,熟练掌握平行线的性质是解题的关键.4.(1)90°;(2)∠PFC=∠PEA+∠P;(3)∠G=α【分析】(1)根据平行线的性质与判定可求解;(2)过P点作PN∥AB,则PN∥CD,可得∠FPN=∠PEA+∠FPE,进而可得∠PF 解析:(1)90°;(2)∠PFC=∠PEA+∠P;(3)∠G=12α【分析】(1)根据平行线的性质与判定可求解;(2)过P点作PN∥AB,则PN∥CD,可得∠FPN=∠PEA+∠FPE,进而可得∠PFC=∠PEA+∠FPE,即可求解;(3)令AB与PF交点为O,连接EF,根据三角形的内角和定理可得∠GEF+∠GFE=1 2∠PEA+12∠PFC+∠OEF+∠OFE,由(2)得∠PEA=∠PFC-α,由∠OFE+∠OEF=180°-∠FOE=180°-∠PFC可求解.【详解】解:(1)如图1,过点P作PM∥AB,∴∠1=∠AEP.又∠AEP=40°,∴∠1=40°.∵AB∥CD,∴PM∥CD,∴∠2+∠PFD=180°.∵∠PFD=130°,∴∠2=180°-130°=50°.∴∠1+∠2=40°+50°=90°.即∠EPF=90°.(2)∠PFC=∠PEA+∠P.理由:过P点作PN∥AB,则PN∥CD,∴∠PEA=∠NPE,∵∠FPN=∠NPE+∠FPE,∴∠FPN=∠PEA+∠FPE,∵PN∥CD,∴∠FPN=∠PFC,∴∠PFC=∠PEA+∠FPE,即∠PFC=∠PEA+∠P;(3)令AB与PF交点为O,连接EF,如图3.在△GFE中,∠G=180°-(∠GFE+∠GEF),∵∠GEF=12∠PEA+∠OEF,∠GFE=12∠PFC+∠OFE,∴∠GEF+∠GFE=12∠PEA+12∠PFC+∠OEF+∠OFE,∵由(2)知∠PFC=∠PEA+∠P,∴∠PEA=∠PFC-α,∵∠OFE+∠OEF=180°-∠FOE=180°-∠PFC,∴∠GEF+∠GFE=12(∠PFC−α)+12∠PFC+180°−∠PFC=180°−12α,∴∠G=180°−(∠GEF+∠GFE)=180°−180°+12α=12α.【点睛】本题主要考查平行线的性质与判定,灵活运用平行线的性质与判定是解题的关键.5.(1)见解析;(2);(3)75°【分析】(1)根据平行线的性质、余角和补角的性质即可求解.(2)根据平行线的性质、对顶角的性质和平角的定义解答即可.(3)根据平行线的性质和角平分线的定义以解析:(1)见解析;(2)12;(3)75°【分析】(1)根据平行线的性质、余角和补角的性质即可求解.(2)根据平行线的性质、对顶角的性质和平角的定义解答即可.(3)根据平行线的性质和角平分线的定义以及三角形内角和解答即可.【详解】解:(1)∠C=∠1+∠2,证明:过C作l∥MN,如下图所示,∵l∥MN,∴∠4=∠2(两直线平行,内错角相等),∵l∥MN,PQ∥MN,∴l∥PQ,∴∠3=∠1(两直线平行,内错角相等),∴∠3+∠4=∠1+∠2,∴∠C=∠1+∠2;(2)∵∠BDF=∠GDF,∵∠BDF=∠PDC,∴∠GDF=∠PDC,∵∠PDC+∠CDG+∠GDF=180°,∴∠CDG+2∠PDC=180°,∴∠PDC=90°-12∠CDG,由(1)可得,∠PDC+∠CEM=∠C=90°,∴∠AEN=∠CEM,∴190(90)90122CDGAEN CEM PDCCDG CDG CDG CDG︒-︒-∠∠∠︒-∠====∠∠∠∠,(3)设BD交MN于J.∵BC 平分∠PBD ,AM 平分∠CAD ,∠PBC =25°,∴∠PBD =2∠PBC =50°,∠CAM =∠MAD ,∵PQ ∥MN ,∴∠BJA =∠PBD =50°,∴∠ADB =∠AJB -∠JAD =50°-∠JAD =50°-∠CAM ,由(1)可得,∠ACB =∠PBC +∠CAM ,∴∠ACB +∠ADB =∠PBC +∠CAM +50°-∠CAM =25°+50°=75°.【点睛】本题考查了平行线的性质、余角和补角的性质,解题的关键是根据平行找出角度之间的关系.二、解答题6.(1)见解析;(2)45;(3)不变,见解析;【分析】(1)由可求得m 及n ,从而可求得∠MOC=∠OCQ ,则可得结论;(2)易得∠AON 的度数,由两条角平分线,可得∠DON ,∠OCF 的度数,也 解析:(1)见解析;(2)45;(3)不变,见解析;【分析】(1)由220(70)0m n -+-=可求得m 及n ,从而可求得∠MOC =∠OCQ ,则可得结论;(2)易得∠AON 的度数,由两条角平分线,可得∠DON ,∠OCF 的度数,也易得∠COE 的度数,由三角形外角的性质即可求得∠OEF 的度数;(3)不变,分三种情况讨论即可.【详解】(1)∵200m -≥,2(70)0n -≥,且220(70)0m n -+-= ∴200m -=,2(70)0n -=∴m =20,n =70∴∠MOC =90゜-∠AOM =70゜∴∠MOC =∠OCQ =70゜∴MN ∥PQ(2)∵∠AON =180゜-∠AOM =160゜又∵OD 平分AON ∠,CF 平分OCQ ∠ ∴1802DON AON ∠=∠=︒,1352OCF OCQ ∠=∠=︒∵80MOE DON ∠=∠=︒∴10COE MOE MOC ∠=∠-∠=︒∴∠OEF =∠OCF +∠COE =35゜+10゜=45゜故答案为:45.(3)不变,理由如下:如图,当0゜<α<20゜时,∵CF 平分∠OCQ∴∠OCF=∠QCF设∠OCF=∠QCF=x则∠OCQ=2x∵MN∥PQ∴∠MOC=∠OCQ=2x∵∠AON=360゜-90゜—(180゜-2x)=90゜+2x,OD平分∠AON∴∠DON=45゜+x∵∠MOE=∠DON=45゜+x∴∠COE=∠MOE-∠MOC=45゜+x-2x=45゜-x∴∠OEF=∠COE+∠OCF=45゜-x+x=45゜当α=20゜时,OD与OB共线,则∠OCQ=90゜,由CF平分∠OCQ知,∠OEF=45゜当20゜<α<90゜时,如图∵CF平分∠OCQ∴∠OCF=∠QCF设∠OCF=∠QCF=x则∠OCQ=2x∵MN∥PQ∴∠NOC=180゜-∠OCQ=180゜-2x∵∠AON=90゜+(180゜-2x)=270゜-2x,OD平分∠AON∴∠AOE=135゜-x∴∠COE=90゜-∠AOE=90゜-(135゜-x)=x-45゜∴∠OEF=∠OCF-∠COE=x-(x-45゜)=45゜综上所述,∠EOF的度数不变.【点睛】本题主要考查了角平分线的定义,平行线的判定与性质,角的和差关系,注意分类讨论,引入适当的量便于运算简便.7.(1)∠ACB+∠BED=180°;(2)100°;(3)40°【分析】(1)如图1,延长DE 交AB 于点F ,根据ABCD 可得∠DFB=∠D ,则∠DFB=∠A ,可得ACDF ,根据平行线的性质得∠A解析:(1)∠ACB +∠BED =180°;(2)100°;(3)40°【分析】(1)如图1,延长DE 交AB 于点F ,根据AB //CD 可得∠DFB =∠D ,则∠DFB =∠A ,可得AC //DF ,根据平行线的性质得∠ACB +∠CEF =180°,由对顶角相等可得结论;(2)如图2,作EM //CD ,HN //CD ,根据AB //CD ,可得AB //EM //HN //CD ,根据平行线的性质得角之间的关系,再根据∠DEB 比∠DHB 大60°,列出等式即可求∠DEB 的度数; (3)如图3,过点E 作ES //CD ,设直线DF 和直线BP 相交于点G ,根据平行线的性质和角平分线定义可求∠PBM 的度数.【详解】解:(1)如图1,延长DE 交AB 于点F ,//AB CD ,DFB D ∴∠=∠,A D ∠=∠,A DFB ∴∠=∠,//AC DF ∴,180ACB CEF ∴∠+∠=︒,180ACB BED ∴∠+∠=︒,故答案为:180ACB BED ∠+∠=︒;(2)如图2,作//EM CD ,//HN CD ,//AB CD ,//////AB EM HN CD ∴,1180EDF ∴∠+∠=︒,MEB ABE ∠=∠, BG 平分ABE ∠,12ABG ABE ∴∠=∠, //AB HN ,2ABG ∴∠=∠,//CF HN ,23β∴∠+∠=∠,∴132ABE β∠+∠=∠, DH 平分EDF ∠,132EDF ∴∠=∠, ∴1122ABE EDF β∠+∠=∠,1()2EDF ABE β∴∠=∠-∠, 2EDF ABE β∴∠-∠=∠,设DEB α∠=∠,1180180()1802MEB EDF ABE EDF ABE αβ∠=∠+∠=︒-∠+∠=︒-∠-∠=︒-∠,DEB ∠比DHB ∠大60︒,60αβ∴∠-︒=∠,1802(60)αα∴∠=︒-∠-︒,解得100α∠=︒.DEB ∴∠的度数为100︒;(3)PBM ∠的度数不变,理由如下:如图3,过点E 作//ES CD ,设直线DF 和直线BP 相交于点G ,BM 平分EBK ∠,DN 平分CDE ∠,12EBM MBK EBK ∴∠=∠=∠, 12CDN EDN CDE ∠=∠=∠, //ES CD ,//AB CD ,////ES AB CD ∴,DES CDE ∴∠=∠,180BES ABE EBK ∠=∠=︒-∠,G PBK ∠=∠,由(2)可知:100DEB ∠=︒,180100CDE EBK ∴∠+︒-∠=︒,80EBK CDE ∴∠-∠=︒,//BP DN ,CDN G ∴∠=∠,12PBK G CDN CDE ∴∠=∠=∠=∠, PBM MBK PBK ∴∠=∠-∠1122EBK CDE =∠-∠ 1()2EBK CDE =∠-∠ 1802=⨯︒ 40=︒.【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.8.(1);(2),证明见解析;(3),证明见解析.【分析】(1)过点作,先根据平行线的性质、平行公理推论可得,从而可得,再根据平行线的性质可得,然后根据角平分线的定义可得,最后根据角的和差即可得; 解析:(1)90︒;(2)2APC AEC ∠=∠,证明见解析;(3)2360APC AEC ∠+∠=︒,证明见解析.【分析】(1)过点E 作//EF AB ,先根据平行线的性质、平行公理推论可得,AEF BAE CEF DCE ∠=∠∠=∠,从而可得AEC BAE DCE ∠=∠+∠,再根据平行线的性质可得180PAB PCD ∠+∠=︒,然后根据角平分线的定义可得11,22BAE PAB DCE PCD ∠=∠∠=∠,最后根据角的和差即可得; (2)过点E 作//EF AB ,过点P 作//PQ AB ,先根据(1)可得1()2AEC BAE DCE PAB PCD ∠=∠+∠=∠+∠,再根据(1)同样的方法可得APC PAB PCD ∠=∠+∠,由此即可得出结论;(3)过点E 作//EF AB ,过点P 作//PQ AB ,先根据(1)可得2PAB PCD AEC ∠+∠=∠,再根据平行线的性质、平行公理推论可得180,180APQ PAB CPQ PCD ∠=︒-∠∠=︒-∠,然后根据角的和差、等量代换即可得出结论.【详解】解:(1)如图,过点E 作//EF AB ,AEF BAE ∴∠=∠,//AB CD ,//EF CD ∴,CEF DCE ∴∠=∠,AEC AEF CEF BAE DCE ∴∠=∠+∠=∠+∠,又//AB CD ,且点P 运动到线段AC 上,180PAB PCD ∴∠+∠=︒,AE ∵平分PAB ∠,CE 平分PCD ∠, 11,22BAE PAB DCE PCD ∴∠=∠∠=∠, 111()90222AEC PAB PCD PAB PCD ∴∠=∠+∠=∠+∠=︒; (2)猜想2APC AEC ∠=∠,证明如下:如图,过点E 作//EF AB ,过点P 作//PQ AB ,由(1)已得:1()2AEC BAE DCE PAB PCD ∠=∠+∠=∠+∠, 同理可得:APC PAB PCD ∠=∠+∠,2APC AEC ∴∠=∠;(3)2360APC AEC ∠+∠=︒,证明如下:如图,过点E 作//EF AB ,过点P 作//PQ AB ,由(1)已得:1()2AEC BAE DCE PAB PCD ∠=∠+∠=∠+∠, 即2PAB PCD AEC ∠+∠=∠,//PQ AB ,180APQ PAB ∴∠+∠=︒,即180APQ PAB ∠=︒-∠,//AB CD ,//PQ CD ∴,180CPQ PCD ∴∠+∠=︒,即180CPQ PCD ∠=︒-∠,APC APQ CPQ ∴∠=∠+∠,180180PAB PCD =︒-∠+︒-∠,()360PAB PCD =︒-∠+∠,3602AEC =︒-∠,即2360APC AEC ∠+∠=︒.【点睛】本题考查了平行线的性质、平行公理推论、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键.9.(1),;(2)15秒或63秒;(3)不发生变化,【分析】(1)利用非负数的性质解决问题即可.(2)分三种情形,利用平行线的性质构建方程即可解决问题.(3)由参数表示,即可判断.【详解】解析:(1)4a =,1b =;(2)15秒或63秒;(3)不发生变化,34BAC BCD ∠=∠【分析】(1)利用非负数的性质解决问题即可.(2)分三种情形,利用平行线的性质构建方程即可解决问题.(3)由参数t 表示BAC ∠,BCD ∠即可判断.【详解】解:(1)∵()2450a b a b -++-=, ∴4050a b a b -=⎧⎨+-=⎩, 4a ∴=,1b =;(2)设A 灯转动t 秒,两灯的光束互相平行,①当045t <<时,4(45)1t t =+⨯,解得15t =;②当4590t <<时,()418018045t t -=-+,解得63t =;③当90135t <<时,436045t t -=+,解得135t =,(不合题意)综上所述,当t =15秒或63秒时,两灯的光束互相平行;(3)设A 灯转动时间为t 秒,1804CAN t ∠=︒-,60(1804)4120BAC t t ∴∠=︒-︒-=-︒,又//PQ MN ,18041803BCA CBD CAN t t t ∴∠=∠+∠=+︒-=︒-,而90ACD ∠=︒,9090(1803)390BCD BCA t t ∴∠=︒-∠=︒-︒-=-︒,:4:3BAC BCD ∴∠∠=,即34BAC BCD ∠=∠.【点睛】本题考查平行线的性质和判定,非负数的性质等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考常考题型.10.(1)① ②;(2);(3)不变,,理由见解析;(4)【分析】(1)①由平行线的性质,两直线平行,同旁内角互补可直接求出;②由平行线的性质,两直线平行,内错角相等可直接写出;(2)由角平分线的解析:(1)①116,︒ ②CBN ;(2)58︒;(3)不变,:2:1APB ADB ∠∠=,理由见解析;(4)29.︒【分析】(1)①由平行线的性质,两直线平行,同旁内角互补可直接求出;②由平行线的性质,两直线平行,内错角相等可直接写出;(2)由角平分线的定义可以证明∠CBD =12∠ABN ,即可求出结果;(3)不变,∠APB :∠ADB =2:1,证∠APB =∠PBN ,∠PBN =2∠DBN ,即可推出结论; (4)可先证明∠ABC =∠DBN ,由(1)∠ABN =116°,可推出∠CBD =58°,所以∠ABC+∠DBN =58°,则可求出∠ABC 的度数.【详解】解:(1)①∵AM//BN ,∠A =64°,∴∠ABN =180°﹣∠A =116°,故答案为:116°;②∵AM//BN ,∴∠ACB =∠CBN ,故答案为:CBN ;(2)∵AM//BN ,∴∠ABN+∠A =180°,∴∠ABN =180°﹣64°=116°,∴∠ABP+∠PBN =116°,∵BC 平分∠ABP ,BD 平分∠PBN ,∴∠ABP =2∠CBP ,∠PBN =2∠DBP ,∴2∠CBP+2∠DBP =116°,∴∠CBD =∠CBP+∠DBP =58°;(3)不变,∠APB :∠ADB =2:1,∵AM//BN ,∴∠APB =∠PBN ,∠ADB =∠DBN ,∵BD 平分∠PBN ,∴∠PBN =2∠DBN ,∴∠APB :∠ADB =2:1;(4)∵AM//BN ,∴∠ACB =∠CBN ,当∠ACB =∠ABD 时,则有∠CBN =∠ABD ,∴∠ABC+∠CBD =∠CBD+∠DBN∴∠ABC =∠DBN ,由(1)∠ABN =116°,∴∠CBD =58°,∴∠ABC+∠DBN =58°,∴∠ABC =29°,故答案为:29°.【点睛】本题考查了角平分线的定义,平行线的性质等,解题关键是能熟练运用平行线的性质并能灵活运用角平分线的定义等.三、解答题11.(1)①115°;110°;②;理由见解析;(2);理由见解析【分析】(1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由解析:(1)①115°;110°;②1902AFD B ∠=︒+∠;理由见解析;(2)1902AFD B ∠=︒-∠;理由见解析 【分析】(1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由角平分线定义得出1502BAG BAC ∠=∠=︒,1152FDG EDB ∠=∠=︒,由三角形的外角性质得出∠DGF=100°,再由三角形的外角性质即可得出结果;若∠B=40°,则∠BAC+∠C=180°-40°=140°,由角平分线定义得出12BAG BAC ∠=∠,12FDG EDB ∠=∠,由三角形的外角性质即可得出结果;②由①得:∠EDB=∠C ,1502BAG BAC ∠=∠=︒,1152FDG EDB ∠=∠=︒,由三角形的外角性质得出∠DGF=∠B+∠BAG ,再由三角形的外角性质即可得出结论; (2)由(1)得:∠EDB=∠C ,12BAG BAC ∠=∠,1122BDH EDB C ∠=∠=∠,由三角形的外角性质和三角形内角和定理即可得出结论.【详解】(1)①若∠BAC=100°,∠C=30°,则∠B=180°-100°-30°=50°,∵DE ∥AC ,∴∠EDB=∠C=30°,∵AG 平分∠BAC ,DF 平分∠EDB , ∴1502BAG BAC ∠=∠=︒,1152FDG EDB ∠=∠=︒,∴∠DGF=∠B+∠BAG=50°+50°=100°,∴∠AFD=∠DGF+∠FDG=100°+15°=115°;若∠B=40°,则∠BAC+∠C=180°-40°=140°,∵AG 平分∠BAC ,DF 平分∠EDB , ∴12BAG BAC ∠=∠,12FDG EDB ∠=∠, ∵∠DGF=∠B+∠BAG ,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG =()12B BAC C ∠+∠+∠ 1401402=︒+⨯︒ 4070110=︒+︒=︒故答案为:115°;110°; ②1902AFD B ∠=︒+∠; 理由如下:由①得:∠EDB=∠C ,12BAG BAC ∠=∠,12FDG EDB ∠=∠, ∵∠DGF=∠B+∠BAG ,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG =()12B BAC C ∠+∠+∠ ()11802B B =∠+︒-∠ 1902B =︒+∠;(2)如图2所示:1902AFD B ∠=︒-∠;理由如下: 由(1)得:∠EDB=∠C ,12BAG BAC ∠=∠,1122BDH EDB C ∠=∠=∠, ∵∠AHF=∠B+∠BDH ,∴∠AFD=180°-∠BAG-∠AHF11802BAC B BDH =︒-∠-∠-∠1118022BAC B C =︒-∠-∠-∠ ()11802B BAC C =︒-∠-∠+∠ ()11801802B B =︒-∠-︒-∠ 1180902B B =︒-∠-︒+∠ 1902B =︒-∠. 【点睛】本题考查了三角形内角和定理、三角形的外角性质、平行线的性质等知识;熟练掌握三角形内角和定理和三角形的外角性质是解题的关键.12.(1)∠E 、∠CAF ;∠CDE 、∠BAF ; (2)①20°;②30【分析】(1)由翻折的性质和平行线的性质即可得与∠B 相等的角;由等角代换即可得与∠C 相等的角;(2)①由三角形内角和定理可得,解析:(1)∠E 、∠CAF ;∠CDE 、∠BAF ; (2)①20°;②30【分析】(1)由翻折的性质和平行线的性质即可得与∠B 相等的角;由等角代换即可得与∠C 相等的角;(2)①由三角形内角和定理可得90B C ∠+∠=︒,再由50C B ∠∠︒-=根据角的和差计算即可得∠C 的度数,进而得∠B 的度数.②根据翻折的性质和三角形外角及三角形内角和定理,用含x 的代数式表示出∠FDE 、∠DFE 的度数,分三种情况讨论求出符合题意的x 值即可.【详解】(1)由翻折的性质可得:∠E =∠B ,∵∠BAC =90°,AE ⊥BC ,∴∠DFE =90°,∴180°-∠BAC =180°-∠DFE =90°,即:∠B +∠C =∠E +∠FDE =90°,∴∠C =∠FDE ,∴AC ∥DE ,∴∠CAF =∠E ,∴∠CAF =∠E =∠B故与∠B 相等的角有∠CAF 和∠E ;∵∠BAC =90°,AE ⊥BC ,∴∠BAF +∠CAF =90°, ∠CFA =180°-(∠CAF +∠C )=90°∴∠BAF +∠CAF =∠CAF +∠C =90°∴∠BAF =∠C又AC ∥DE ,∴∠C =∠CDE ,∴故与∠C 相等的角有∠CDE 、∠BAF ;(2)①∵90BAC ∠=︒∴90B C ∠+∠=︒又∵50C B ∠∠︒-=,∴∠C =70°,∠B =20°;②∵∠BAD =x °, ∠B =20°则160ADB x ∠︒︒=-,20ADF x ∠︒︒=+,由翻折可知:∵160ADE ADB x ∠∠︒︒==-, 20E B ∠∠︒==,∴1402FDE x ∠︒︒=-, 202DFE x ∠︒︒=+,当∠FDE =∠DFE 时,1402202x x ︒︒︒︒-=+, 解得:30x ︒︒=;当∠FDE =∠E 时,140220x ︒︒︒-=,解得:60x ︒︒=(因为0<x ≤45,故舍去);当∠DFE =∠E 时,20220x ︒︒︒+=,解得:0x ︒=(因为0<x ≤45,故舍去);综上所述,存在这样的x 的值,使得△DEF 中有两个角相等.且30x =.【点睛】本题考查图形的翻折、三角形内角和定理、平行线的判定及其性质、三角形外角的性质、等角代换,解题的关键是熟知图形翻折的性质及综合运用所学知识.13.(1)∠AQB 的大小不发生变化,∠AQB =135°;(2)∠P 和∠C 的大小不变,∠P=45°,∠C=45°.【分析】第(1)题因垂直可求出∠ABO 与∠BAO 的和,由角平分线和角的和差可求出∠BA 解析:(1)∠AQB 的大小不发生变化,∠AQB =135°;(2)∠P 和∠C 的大小不变,∠P=45°,∠C=45°.【分析】第(1)题因垂直可求出∠ABO 与∠BAO 的和,由角平分线和角的和差可求出∠BAQ 与∠ABQ 的和,最后在△ABQ 中,根据三角形的内角各定理可求∠AQB 的大小.第(2)题求∠P 的大小,用邻补角、角平分线、平角、直角和三角形内角和定理等知识求解.【详解】解:(1)∠AQB 的大小不发生变化,如图1所示,其原因如下:∵m⊥n,∴∠AOB=90°,∵在△ABO中,∠AOB+∠ABO+∠BAO=180°,∴∠ABO+∠BAO=90°,又∵AQ、BQ分别是∠BAO和∠ABO的角平分线,∴∠BAQ=12∠BAC,∠ABQ=12∠ABO,∴∠BAQ+∠ABQ=12 (∠ABO+∠BAO)=190452⨯=又∵在△ABQ中,∠BAQ+∠ABQ+∠AQB=180°,∴∠AQB=180°﹣45°=135°.(2)如图2所示:①∠P的大小不发生变化,其原因如下:∵∠ABF+∠ABO=180°,∠EAB+∠BAO=180°∠BAQ+∠ABQ=90°,∴∠ABF+∠EAB=360°﹣90°=270°,又∵AP、BP分别是∠BAE和∠ABP的角平分线,∴∠PAB=12∠EAB,∠PBA=12∠ABF,∴∠PAB+∠PBA=12 (∠EAB+∠ABF)=12×270°=135°,又∵在△PAB中,∠P+∠PAB+∠PBA=180°,∴∠P=180°﹣135°=45°.②∠C的大小不变,其原因如下:∵∠AQB=135°,∠AQB+∠BQC=180°,∴∠BQC=180°﹣135°,又∵∠FBO=∠OBQ+∠QBA+∠ABP+∠PBF=180°∠ABQ=∠QBO=1∠ABO,∠PBA=∠PBF=∠ABF,2∴∠PBQ=∠ABQ+∠PBA=90°,又∵∠PBC=∠PBQ+∠CBQ=180°,∴∠QBC=180°﹣90°=90°.又∵∠QBC+∠C+∠BQC=180°,∴∠C=180°﹣90°﹣45°=45°【点睛】本题考查三角形内角和定理,垂直,角平分线,平角,直角和角的和差等知识点,同时,也是一个以静求动的一个点型题目,有益于培养学生的思维几何综合题.14.解决问题:6;拓展延伸:(1)S1=2S2 (2)10.5【解析】试题分析:解决问题:连接AE,根据操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,从而得到结论;拓展延伸:(1)解析:解决问题:6;拓展延伸:(1)S1=2S2(2)10.5【解析】试题分析:解决问题:连接AE,根据操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,从而得到结论;拓展延伸:(1)作△ABD的中线AE,则有BE=ED=DC,从而得到△ABE的面积=△AED的面积=△ADC的面积,由此即可得到结论;(2)连接AO.则可得到△BOD的面积=△BOC的面积,△AOC的面积=△AOD的面积,△EOC的面积=△BOC的面积的一半,△AOB的面积=2△AOE的面积.设△AOD的面积=a,△AOE的面积=b,则a+3=2b,a=b+1.5,求出a、b的值,即可得到结论.试题解析:解:解决问题连接AE.∵点D、E分别是边AB、BC的中点,∴S△ADE=S△BDE,S△ABE=S△AEC.∵S△BDE =2,∴S△ADE =2,∴S△ABE=S△AEC=4,∴四边形ADEC的面积=2+4=6.拓展延伸:解:(1)作△ABD的中线AE,则有BE=ED=DC,∴△ABE的面积=△AED的面积=△ADC的面积= S2,∴S1=2S2.(2)连接AO.∵CO=DO,∴△BOD的面积=△BOC的面积=3,△AOC的面积=△AOD的面积.∵BO=2EO,∴△EOC的面积=△BOC的面积的一半=1.5,△AOB的面积=2△AOE的面积.设△AOD的面积=a,△AOE的面积=b,则a+3=2b,a=b+1.5,解得:a=6,b=4.5,∴四边形ADOE的面积为=a+b=6+4.5=10.5.15.(1)45°;(2)①1;②是定值,∠M+∠N=142.5°【分析】(1)利用平行线的性质求解即可.(2)①利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论.②利用角平分线的定解析:(1)45°;(2)①1;②是定值,∠M+∠N=142.5°【分析】(1)利用平行线的性质求解即可.(2)①利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论.②利用角平分线的定义求出∠M,∠N(用∠FAO表示),可得结论.【详解】解:(1)如图,∵AB∥ED∴∠E=∠EAB=90°(两直线平行,内错角相等),∵∠BAC=45°,∴∠CAE=90°-45°=45°.故答案为:45°.(2)①如图1中,∵OG⊥AC,∴∠AOG=90°,∵∠OAG=45°,∴∠OAG=∠OGA=45°,∴AO=OG=2,∵S△AHG=12•GH•AO=4,S△AHF=12•FH•AO=1,∴GH=4,FH=1,∴OF=GH-HF-OG=4-1-2=1.②结论:∠N+∠M=142.5°,度数不变.理由:如图2中,∵MF,MO分别平分∠AFO,∠AOF,∴∠M=180°-12(∠AFO+∠AOF)=180°-12(180°-∠FAO)=90°+12∠FAO,∵NH,NG分别平分∠DHG,∠BGH,∴∠N=180°-12(∠DHG+∠BGH)=180°-12(∠HAG+∠AGH+∠HAG+∠AHG)=180°-12(180°+∠HAG)=90°-12∠HAG=90°-12(30°+∠FAO+45°)=52.5°-12∠FAO,∴∠M+∠N=142.5°.【点睛】本题考查平行线的性质,角平分线的定义,三角形内角和定理,三角形外角的性质等知识,最后一个问题的解题关键是用∠FAO表示出∠M,∠N.。
2020-2021学年重庆市渝中区巴蜀中学七年级(下)开学数学试卷(附答案详解)
![2020-2021学年重庆市渝中区巴蜀中学七年级(下)开学数学试卷(附答案详解)](https://img.taocdn.com/s3/m/d4d42b8302768e9950e738cc.png)
2020-2021学年重庆市渝中区巴蜀中学七年级(下)开学数学试卷1. 下列各数中,正数的个数是( )|−5|,52,−(−1),0,−|−3|,+(−4) A. 2 B. 3C. 4D. 5 2. 在π+3,√6,√9,47,3.121231234…,√−53中,无理数的个数是( )个.A. 2B. 3C. 4D. 53. 计算|2−√3|=( ) A. 2−√3 B. √3−2 C. 2+√3 D. −2−√34. 下列用数轴表示不等式组{x >1x ≤2的解集正确的是( ) A.B.C.D.5. 若3a 2+m b 3和(n −1)a 4b 3是同类项,且它们的和为0,则mn 的值是( )A. −4B. −2C. 2D. 46. 一个角的度数为51°14′36″,则这个角的余角为( )A. 38°45′24″B. 39°45′24″C. 38°46′24″D. 39°46′24″7. 二元一次方程x +3y =4有一组解互为相反数,则y 的值是( )A. 1B. −1C. 0D. 2 8. 多项式12x |m|−(m −3)x +7是关于x 的三次三项式,则m 的值是( )A. −3B. 3C. 3或−3D. 不能确定9. 若(k −2)x |k|−1−3=0是关于x 的一元一次方程,那么k 2−2k +1的值为( )A. 1B. 9C. 1或9D. 010. 如图,在下列给出的条件中,可以判定AB//CD 的有( )①∠1=∠2;②∠1=∠3;③∠2=∠4;④∠DAB +∠ABC =180°;⑤∠BAD +∠ADC =180°.A. ①②③B. ①②④C. ①④⑤D. ②③⑤11. 新冠疫情得到有效控制后,妈妈去药店为即将开学的李林和已经复工的爸爸购买口罩.若买50只一次性医用口罩和15只KN 95口罩,需付325元;若买60只一次性医用口罩和30只KN 95口罩,需付570元.设一只一次性医用口罩x 元,一只KN 95口罩y 元,下面所列方程组正确的是( )A. {50x +15y =57060x +30y =325B. {50y +15x =32560y +30x =570 C. {50x +15y =32560x +30y =570 D. {60x +15y =32550x +30y =570 12. 已知关于x 、y 的二元一次方程组{x −y =a +32x +y =5a的解满足x >y ,且关于x 的不等式组{2x +1<2a 2x−114≥37无解,那么所有符合条件的整数a 的个数为( )A. 6个B. 7个C. 8个D. 9个13. 一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.496亿km.用科学记数法表示1.496亿是______ .14. √273的算术平方根为______ .15. 如果单项式−x a+1y 3与12y b x 2是同类项,则|a −b|+|−a −2b|的值是______ 。
2020-2021重庆巴蜀中学初一数学下期末模拟试题附答案
![2020-2021重庆巴蜀中学初一数学下期末模拟试题附答案](https://img.taocdn.com/s3/m/028b5d2102768e9951e738dd.png)
2020-2021重庆巴蜀中学初一数学下期末模拟试题附答案一、选择题1.在实数3π,227,0.2112111211112……(每两个2之多一个1),3,38中,无理数的个数有 A .1个B .2个C .3个D .4个2.已知实数a ,b ,若a >b ,则下列结论错误的是 A .a-7>b-7B .6+a >b+6C .55a b >D .-3a >-3b3.如图,数轴上表示2、5的对应点分别为点C ,B ,点C 是AB 的中点,则点A 表示的数是( )A .5-B .25-C .45-D .52-4.下面不等式一定成立的是( ) A .2a a < B .a a -<C .若a b >,c d =,则ac bd >D .若1a b >>,则22a b >5.一副直角三角板如图放置,点C 在FD 的延长线上,AB//CF ,∠F=∠ACB=90°,则∠DBC 的度数为( )A .10°B .15°C .18°D .30°6.已知方程组276359632713x y x y +=⎧⎨+=-⎩的解满足1x y m -=-,则m 的值为( )A .-1B .-2C .1D .27.已知关于x ,y 的二元一次方程组231ax by ax by +=⎧⎨-=⎩的解为11x y =⎧⎨=-⎩,则a ﹣2b 的值是( ) A .﹣2 B .2 C .3 D .﹣38.若不等式组20{210x a x b +---><的解集为0<x <1,则a ,b 的值分别为( ) A .a =2,b =1B .a =2,b =3C .a =-2,b =3D .a =-2,b =19.已知4<m <5,则关于x 的不等式组0420x m x -<⎧⎨-<⎩的整数解共有( )A .1个B .2个C .3个D .4个10.在平面直角坐标系中,点B 在第四象限,它到x 轴和y 轴的距离分别是2、5,则点B的坐标为( ) A .()5,2- B .()2,5- C .()5,2- D .()2,5-- 11.过一点画已知直线的垂线,可画垂线的条数是( )A .0B .1C .2D .无数12.如图,直线l 1∥l 2,被直线l 3、l 4所截,并且l 3⊥l 4,∠1=44°,则∠2等于( )A .56°B .36°C .44°D .46°二、填空题139________.14.若方程33x x m +=-的解是正数,则m 的取值范围是______.15.线段CD 是由线段AB 平移得到的,其中点A (﹣1,4)平移到点C (﹣3,2),点B (5,﹣8)平移到点D ,则D 点的坐标是________.16.现有2019条直线1232019a a a a ,,,,,⋯且有12233445a a a a a a a a ⊥⊥,,,,…,则直线1a 与2019a 的位置关系是___________.17.已知在一个样本中,50个数据分别在5个组内,第一、二、三、五组数据的个数分别为2,8,15,5,则第四组的频数为__________.18.某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答.如表记录了4个参赛者的得分情况.在此次竞赛中,有一位参赛者答对13道题,答错7道题,则他的得分是_____. 参赛者 答对题数 答错题数 得分 A 19 1 112 B 18 2 104 C 17 3 96 D10104019.用不等式表示x 的4倍与2的和大于6,________;此不等式的解集为________. 20.如果点M (a-1,a+1)在x 轴上,则a 的值为___________.三、解答题21.解不等式组()x1<0{2x 13x+1--≤,并把解集在数轴上表示出来.22.随着移动计算技术和无线网络的快速发展,移动学习方式越来越引起人们的关注,某校计划将这种学习方式应用到教育学中,从全校1500名学生中随机抽取了部分学生,对其家庭中拥有的移动设备的情况进行调查,并绘制出如下的统计图①和图②,根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为 ,图①中m 的值为 ; (Ⅱ)求本次调查获取的样本数据的众数、中位数和平均数;(Ⅲ)根据样本数据,估计该校1500名学生家庭中拥有3台移动设备的学生人数.23.已知,点、、A B C 不在同一条直线上,//AD BE(1)如图①,当,58118A B ︒︒∠=∠=时,求C ∠的度数;(2)如图②,,AQ BQ 分别为,DAC EBC ∠∠的平分线所在直线,试探究C ∠与AQB ∠的数量关系;(3)如图③,在(2)的前提下且//AC QB ,QP PB ⊥,直接写11,,DAC ACB CBE ∠∠∠的值24.如图,已知∠A=∠AGE,∠D=∠DGC(1)求证:AB∥CD;(2)若∠2+∠1=180°,且∠BEC=2∠B+30°,求∠C 的度数.25.某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元. (1)符合公司要求的购买方案有几种?请说明理由;(2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于1500元,那么应选择以上哪种购买方案?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】根据无理数的三种形式,①开方开不尽的数,②无限不循环小数,③含有π的数,结合所给数据进行判断即可. 【详解】无理数有3π,0.2112111211112……(每两个2之多一个13,共三个, 故选C . 【点睛】本题考查了无理数的知识,解题的关键是熟练掌握无理数的三种形式.2.D解析:D 【解析】A.∵a >b ,∴a-7>b-7,∴选项A 正确;B.∵a >b ,∴6+a >b+6,∴选项B 正确;C.∵a >b ,∴55a b >,∴选项C 正确; D.∵a >b ,∴-3a <-3b ,∴选项D 错误.故选D.3.C解析:C 【解析】 【分析】首先可以求出线段BC 的长度,然后利用中点的性质即可解答. 【详解】∵表示2C ,B ,,∵点C 是AB 的中点,则设点A 的坐标是x ,则∴点A 表示的数是 故选C . 【点睛】本题主要考查了数轴上两点之间x 1,x 2的中点的计算方法.4.D解析:D 【解析】 【分析】根据不等式两边加(或减)同一个数(或式子),不等号的方向不变,不等式两边乘(或除以)同一个正数,不等号的方向不变,不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案. 【详解】A. 当0a ≤时,2aa ≥,故A 不一定成立,故本选项错误; B. 当0a ≤时,a a -≥,故B 不一定成立,故本选项错误;C. 若a b >,当0c d =≤时,则ac bd ≤,故C 不一定成立,故本选项错误;D. 若1a b >>,则必有22a b >,正确; 故选D . 【点睛】主要考查了不等式的基本性质.“0”是很特殊的数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.5.B解析:B 【解析】 【分析】直接利用三角板的特点,结合平行线的性质得出∠ABD=45°,进而得出答案.【详解】由题意可得:∠EDF=45°,∠ABC=30°,∵AB∥CF,∴∠ABD=∠EDF=45°,∴∠DBC=45°﹣30°=15°.故选B.【点睛】本题考查的是平行线的性质,熟练掌握这一点是解题的关键.6.A解析:A【解析】【分析】观察方程结构和目标式,两个方程直接相减得到x-y=-2,,整体代入x-y=m-1,求出m的值即可.【详解】解:276359 632713x yx y+=⎧⎨+=-⎩①②②-①得36x-36y=-72则x-y=-2所以m-1=-2所以m=-1.故选:A.【点睛】考查了解二元一次方程组,解关于x,y二元一次方程组有关的问题,观察方程结构和目标式,巧妙变形,运用整体的思想求解,能简化计算,应熟练掌握.7.B解析:B【解析】【详解】把11xy=⎧⎨=-⎩代入方程组231ax byax by+=⎧⎨-=⎩得:231a ba b-=⎧⎨+=⎩,解得:4313 ab⎧=⎪⎪⎨⎪=-⎪⎩,所以a−2b=43−2×(13-)=2.故选B.8.A解析:A【解析】试题分析:先把a、b当作已知条件求出不等式组的解集,再与已知解集相比较即可求出a、b的值.解:20210x ax b+->⎧⎨--<⎩①②,由①得,x>2﹣a,由②得,x<12b+,故不等式组的解集为;2﹣a<x<12b +,∵原不等式组的解集为0<x<1,∴2﹣a=0,12b+=1,解得a=2,b=1.故选A.9.B解析:B【解析】【分析】先求解不等式组得到关于m的不等式解集,再根据m的取值范围即可判定整数解.【详解】不等式组0 420 x mx-<⎧⎨-<⎩①②由①得x<m;由②得x>2;∵m的取值范围是4<m<5,∴不等式组420x mx-<⎧⎨-<⎩的整数解有:3,4两个.故选B.【点睛】本题考查了一元一次不等式组的整数解,用到的知识点是一元一次不等式组的解法,m的取值范围是本题的关键.10.A解析:A【解析】【分析】先根据点B所在的象限确定横纵坐标的符号,然后根据点B与坐标轴的距离得出点B的坐标.【详解】∵点B在第四象限内,∴点B的横坐标为正数,纵坐标为负数∵点B到x轴和y轴的距离分别是2、5∴横坐标为5,纵坐标为-2故选:A【点睛】本题考查平面直角坐标系中点的特点,在不同象限内,坐标点横纵坐标的正负是不同的:第一象限内,则横坐标为正,纵坐标为正;第二象限内,则横坐标为负,纵坐标为正;第三象限内,则横坐标为负,纵坐标为负;第四象限内,则横坐标为正,纵坐标为负.11.B解析:B【解析】【分析】根据垂直的性质:过直线外或直线上一点画已知直线的垂线,可以画一条,据此解答.【详解】在平面内,过一点有且只有一条直线与已知直线垂直,故选:B【点睛】此题考查了直线的垂直的性质,注意基础知识的识记和理解.12.D解析:D【解析】解:∵直线l1∥l2,∴∠3=∠1=44°.∵l3⊥l4,∠2=90°-∠3=90°-44°=46°.故选D.二、填空题13.【解析】【分析】根据算术平方根的性质求出=3再求出3的算术平方根即可【详解】解:∵=33的算术平方根是∴的算术平方根是故答案为:【点睛】本题考查算术平方根的概念和求法正数的算术平方根是正数0的算术平3【解析】【分析】,再求出3的算术平方根即可.【详解】,3,.【点睛】本题考查算术平方根的概念和求法,正数的算术平方根是正数,0的算术平方根是0,负数没有平方根.14.m>-3【解析】【分析】首先解方程利用m表示出x的值然后根据x是正数即可得到一个关于m的不等式即可求得m的范围【详解】2x=3+m根据题意得:3+m>0解得:m>-3故答案是:m>-3【点睛】本题考解析:m>-3【解析】【分析】首先解方程,利用m表示出x的值,然后根据x是正数即可得到一个关于m的不等式,即可求得m的范围.【详解】x x m+=-332x=3+m,根据题意得:3+m>0,解得:m>-3.故答案是:m>-3.【点睛】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.15.(3﹣10)【解析】【分析】由于线段CD是由线段AB平移得到的而点A (-14)的对应点为C(-32)比较它们的坐标发现横坐标减小2纵坐标减小2利用此规律即可求出点B(5-8)的对应点D的坐标【详解】解析:(3,﹣10)【解析】【分析】由于线段CD是由线段AB平移得到的,而点A(-1,4)的对应点为C(-3,2),比较它们的坐标发现横坐标减小2,纵坐标减小2,利用此规律即可求出点B(5,-8)的对应点D的坐标.【详解】∵线段CD是由线段AB平移得到的,而点A(-1,4)的对应点为C(-3,2),∴由A平移到C点的横坐标减小2,纵坐标减小2,则点B(5,-8)的对应点D的坐标为(3,-10),故答案为:(3,-10).【点睛】本题主要考查坐标系中点、线段的平移规律.在平面直角坐标系中,图形的平移与图形上某点的平移相同.16.垂直【解析】【分析】根据两直线平行同位角相等得出相等的角再根据垂直的定义解答进而得出规律:a1与其它直线的位置关系为每4个一循环垂直垂直平行平行根据此规律即可判断【详解】先判断直线a1与a3的位置关解析:垂直.【解析】【分析】根据两直线平行,同位角相等得出相等的角,再根据垂直的定义解答,进而得出规律:a1与其它直线的位置关系为每4个一循环,垂直、垂直、平行、平行,根据此规律即可判断.【详解】先判断直线a1与a3的位置关系是:a1⊥a3.理由如下:如图1,∵a1⊥a2,∴∠1=90°,∵a2∥a3,∴∠2=∠1=90°,∴a1⊥a3;再判断直线a1与a4的位置关系是:a1∥a4,如图2;∵直线a1与a3的位置关系是:a1⊥a3,直线a1与a4的位置关系是:a1∥a4,∵2019÷4=504…3,∴直线a1与a2015的位置关系是:垂直.故答案为:垂直.【点睛】本题考查了平行公理的推导,作出图形更有利于规律的发现以及规律的推导,解题的关键是:结合图形先判断几组直线的关系,然后找出规律.17.【解析】【分析】每组的数据个数就是每组的频数50减去第1235小组数据的个数就是第4组的频数【详解】50−(2+8+15+5)=20则第4小组的频数是20【点睛】本题考查频数与频率解题的关键是掌握频解析:20【解析】【分析】每组的数据个数就是每组的频数,50减去第1,2,3,5,小组数据的个数就是第4组的频数.【详解】50−(2+8+15+5)=20.则第4小组的频数是20.【点睛】本题考查频数与频率,解题的关键是掌握频数与频率的计算.18.【解析】【分析】设答对1道题得x 分答错1道题得y 分根据图表列出关于x 和y 的二元一次方程组解之即可【详解】解:设答对1道题得x 分答错1道题得y 分根据题意得:解得:答对13道题打错7道题得分为:13×6 解析:【解析】【分析】设答对1道题得x 分,答错1道题得y 分,根据图表,列出关于x 和y 的二元一次方程组,解之即可.【详解】解:设答对1道题得x 分,答错1道题得y 分,根据题意得:19112182104x y x y +=⎧⎨+=⎩, 解得:62x y =⎧⎨=-⎩, 答对13道题,打错7道题,得分为:13×6+(﹣2)×7=78﹣14=64(分),故答案为:64.【点睛】本题考查了二元一次方程组的应用,正确找出等量关系,列出二元一次方程组是解题的关键.19.4x+2>6x >1【解析】【分析】根据x 的4倍与2的和大于6可列出不等式进而求解即可【详解】解:由题意得4x+2>6移项合并得:4x>4系数化为1得:x>1故答案为:4x+2>6x>1【点睛】本题主解析:4x+2>6x>1【解析】【分析】根据x的4倍与2的和大于6可列出不等式,进而求解即可.【详解】解:由题意得,4x+2>6,移项、合并得:4x>4,系数化为1得:x>1,故答案为:4x+2>6,x>1.【点睛】本题主要考查列一元一次不等式,解题的关键是抓住关键词语,弄清运算的先后顺序和不等关系,列出不等式.20.-1【解析】【分析】根据x轴上的点纵坐标等于0列出方程求解得到a的值【详解】∵点M(a-1a+1)在x轴上∴a+1=0解得a=-1故答案为:-1【点睛】本题考查了点的坐标熟记x轴上的点的纵坐标等于0解析:-1【解析】【分析】根据x轴上的点纵坐标等于0列出方程求解得到a的值.【详解】∵点M(a-1,a+1)在x轴上,∴a+1=0,解得a=-1,故答案为:-1.【点睛】本题考查了点的坐标,熟记x轴上的点的纵坐标等于0是解题的关键.三、解答题21.﹣2≤x<2,见解析【解析】【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.【详解】 解:()x 1<02x 13x 1⎧-⎪⎨⎪-≤⎩①+②,解不等式①得,x <2,解不等式②得,x≥﹣2,∴不等式组的解集是﹣2≤x <2.在数轴上表示如下:22.(Ⅰ)50、32;(Ⅱ)4;3;3.2;(Ⅲ)420人.【解析】【分析】(Ⅰ)利用家庭中拥有1台移动设备的人数除以其所占百分比即可得调查的学生人数,将拥有4台移动设备的人数除以总人数即可求得m 的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)将样本中拥有3台移动设备的学生人数所占比例乘以总人数1500即可求解.【详解】解:(Ⅰ)本次接受随机抽样调查的学生人数为:48%=50(人), ∵1650×100=32%, ∴图①中m 的值为32.故答案为50、32;(Ⅱ)∵这组样本数据中,4出现了16次,出现次数最多,∴这组数据的众数为4;∵将这组数据从小到大排列,其中处于中间的两个数均为3,有332+=3, ∴这组数据的中位数是3; 由条形统计图可得142103144165650x ⨯+⨯+⨯+⨯+⨯==3.2, ∴这组数据的平均数是3.2.(Ⅲ)1500×28%=420(人). 答:估计该校学生家庭中;拥有3台移动设备的学生人数约为420人.【点睛】 本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.(1)120°;(2)2∠AQB+∠C=180°;(3)∠DAC=60°,∠ACB=120°,∠CBE=120°.【解析】【分析】(1)过点C作CF∥AD,则CF∥BE,根据平行线的性质可得出∠ACF=∠A、∠BCF=180°-∠B,将其代入∠ACB=∠ACF+∠BCF即可求出∠ACB的度数;(2)过点Q作QM∥AD,则QM∥BE,根据平行线的性质、角平分线的定义可得出∠AQB=12(∠CBE-∠CAD),结合(1)的结论可得出2∠AQB+∠C=180°;(3)由(2)的结论可得出∠CAD=12∠CBE①,由QP⊥PB可得出∠CAD+∠CBE=180°②,联立①②可求出∠CAD、∠CBE的度数,再结合(1)的结论可得出∠ACB的度数.【详解】解:(1)在图①中,过点C作CF∥AD,则CF∥BE.∵CF∥AD∥BE,∴∠ACF=∠A,∠BCF=180°-∠B,∴∠ACB=∠ACF+∠BCF=180°-(∠B-∠A)=180°-(118°-58°)=120°.(2)在图2中,过点Q作QM∥AD,则QM∥BE.∵QM∥AD,QM∥BE,∴∠AQM=∠NAD,∠BQM=∠EBQ.∵AQ平分∠CAD,BQ平分∠CBE,∴∠NAD=12∠CAD,∠EBQ=12∠CBE,∴∠AQB=∠BQM-∠AQM=12(∠CBE-∠CAD).∵∠C=180°-(∠CBE-∠CAD)=180°-2∠AQB,∴2∠AQB+∠C=180°.(3)∵AC∥QB,∴∠AQB=∠CAP=12∠CAD,∠ACP=∠PBQ=12∠CBE,∴∠ACB=180°-∠ACP=180°-12∠CBE.∵2∠AQB+∠ACB=180°,∴∠CAD=12∠CBE.又∵QP⊥PB,∴∠CAP+∠ACP=90°,即∠CAD+∠CBE=180°,∴∠CAD=60°,∠CBE=120°,∴∠ACB=180°-(∠CBE-∠CAD)=120°,故∠DAC=60°,∠ACB=120°,∠CBE=120°.【点睛】本题考查了平行线的性质、邻补角、角平分线以及垂线,解题的关键是:(1)根据平行线的性质结合角的计算找出∠ACB=180°-(∠B-∠A);(2)根据平行线的性质、角平分线的定义找出∠AQB=12(∠CBE-∠CAD);(3)由AC∥QB、QP⊥PB结合(1)(2)的结论分别求出∠DAC、∠ACB、∠CBE的度数.24.(1)证明见解析;(2)50°.【解析】证明:(1)∵∠A =∠AGE,∠D =∠DGC又∵∠AGE =∠DGC∴∠A=∠D∴AB∥CD(2) ∵∠1+∠2 =180°又∵∠CGD+∠2=180°∴∠CGD=∠1∴CE∥FB∴∠C=∠BFD,∠CEB +∠B=180°又∵∠BEC=2∠B+30°∴2∠B+30°+∠B=180°∴∠B=50°又∵AB∥CD∴∠B=∠BFD∴∠C=∠BFD=∠B=50°.25.(1)有三种购买方案,理由见解析;(2)为保证日租金不低于1500元,应选择方案三,即购买5辆轿车,5辆面包车【解析】【分析】设要购买轿车x辆,则要购买面包车(10-x)辆,题中要求“轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元”列出不等式,然后解出x的取值范围,最后根据x的值列出不同方案.【详解】(1)设购买轿车x辆,那么购买面包车(10-x)辆.由题意,得7x+4(10-x)≤55,解得x≤5.又因为x≥3,所以x的值为3,4,5,所以有三种购买方案:方案一:购买3辆轿车,7辆面包车;方案二:购买4辆轿车,6辆面包车;方案三:购买5辆轿车,5辆面包车.(2)方案一的日租金为3×200+7×110=1370(元)<1500元;方案二的日租金为4×200+6×110=1460(元)<1500元;方案三的日租金为5×200+5×110=1550(元)>1500元.所以为保证日租金不低于1500元,应选择方案三,即购买5辆轿车,5辆面包车.【点睛】本题主要考查对于一元一次不等式组的应用,要注意找好题中的不等关系.解题的关键是:(1)根据数量关系列出关于x的一元一次不等式;(2)求出三种购买方案的日租金。
2020-2021重庆巴川中学七年级数学下期末一模试卷(带答案)
![2020-2021重庆巴川中学七年级数学下期末一模试卷(带答案)](https://img.taocdn.com/s3/m/a0004c407f1922791688e8b0.png)
(1)试说明AB∥CD;
(2)若∠1+∠2=180°,且∠BEC=2∠B+60°,求∠C的度数.
24.已知:用3辆A型车和2辆B型车载满货物一次可运货17吨;用2辆A型车和3辆B型车载满货物一次可运货l8吨,某物流公刊现有35吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.
根据以上信息,解答下列问题:
(1)l辆A型车和l辆B型车都载满货物一次可分别运货多少吨?
(2)请你帮该物流公司设计租车方案;
(3)若A型车每辆需租金200元/次,B型车每辆需租金240元/次,请选出最省钱的租车方案,并求出最少租车费.
25.“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:
解析:5000
【解析】
试题解析:由图片可看出,剩余部分的草坪正好可以拼成一个长方形,
且这个长方形的长为102−2=100m,
这个长方形的宽为:51−1=50m,
因此,草坪的面积
故答案为:5000.
16.【解析】【分析】把xy的值代入方程组再将两式相加即可求出a﹣b的值【详解】将代入方程组得:①+②得:4a﹣4b=7则a﹣b=故答案为【点睛】本题考查二元一次方程组的解解题的关键是观察两方程的系数从而
∴AB∥()
∴∠BAE=( 两直线平行,内错角相等 )
又∵∠1=∠2
∴∠BAE﹣∠1=﹣∠2即∠MAE=
∴∥NE()
∴∠M=∠N()
15.如图5-Z-11是一块长方形ABCD的场地,长AB=102 m,宽AD=51 m,从A,B两处入口的中路宽都为1 m,两小路汇合处路宽为2 m,其余部分种植草坪,则草坪的面积为________m2.
2020-2021重庆巴蜀中学七年级数学下期末模拟试卷(带答案)
![2020-2021重庆巴蜀中学七年级数学下期末模拟试卷(带答案)](https://img.taocdn.com/s3/m/992c63b2a8956bec0875e3c3.png)
2020-2021重庆巴蜀中学七年级数学下期末模拟试卷(带答案)一、选择题1.下列各式中计算正确的是( )A .93=±B .2(3)3-=-C .33(3)3-=±D .3273=2.如图,已知∠1=∠2,∠3=30°,则∠B 的度数是( )A .20B .30C .40D .603.如图,将一张长方形纸条折叠,如果∠1=130°,则,∠2=( )A .100°B .130°C .150°D .80°4.已知关于x 的不等式组的解中有3个整数解,则m 的取值范围是( )A .3<m≤4B .4≤m<5C .4<m≤5D .4≤m≤5 5.下面不等式一定成立的是( )A .2a a <B .a a -<C .若a b >,c d =,则ac bd >D .若1a b >>,则22a b > 6.一副直角三角板如图放置,点C 在FD 的延长线上,AB//CF ,∠F=∠ACB=90°,则∠DBC 的度数为( )A .10°B .15°C .18°D .30°7.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A .15°B .22.5°C .30°D .45°8.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )A .6折B .7折C .8折D .9折9.在实数0,-π34中,最小的数是( )A .0B .-πC 3D .-410.点P 为直线m 外一点,点A ,B ,C 为直线m 上三点,PA =4cm ,PB =5cm ,PC =2cm ,则点P 到直线m 的距离为( )A .4cmB .2cm ;C .小于2cmD .不大于2cm11.在平面直角坐标系中,点A 的坐标()0,1,点B 的坐标()3,3,将线段AB 平移,使得A 到达点()4,2C ,点B 到达点D ,则点D 的坐标是( )A .()7,3B .()6,4C .()7,4D .()8,412.某中学计划租用若干辆汽车运送七年级学生外出进行社会实践活动,如果一辆车乘坐45人,那么有35名学生没有车坐;如果一辆车乘坐60人,那么有一辆车只坐了35人,并且还空出一辆车.设计划租用x 辆车,共有y 名学生.则根据题意列方程组为( )A .453560(2)35x y x y -=⎧⎨-=-⎩B .453560(2)35x y x y =-⎧⎨-+=⎩C .453560(1)35x y x y +=⎧⎨-+=⎩D .453560(2)35x y y x =+⎧⎨--=⎩二、填空题13.已21x y =⎧⎨=-⎩是关于x 、y 的二次元方程39ax y +=的解,则a 的值为___________ 14.27的立方根为 .15.64的立方根是_______.16.如果点p(3,2)m m +-在x 轴上,那么点P 的坐标为(____,____).17.用适当的符号表示a 是非负数:_______________.18.若a ,b 均为正整数,且a >7,b <32,则a +b 的最小值是_______________.19.结合下面图形列出关于未知数x ,y 的方程组为_____.20.若方程组23133530.9a b a b -=⎧⎨+=⎩的解为8.31.2a b =⎧⎨=⎩,则方程组2(2)3(1)133(2)5(1)30.9x y x y +--=⎧⎨++-=⎩的解为_______. 三、解答题21.随着移动计算技术和无线网络的快速发展,移动学习方式越来越引起人们的关注,某校计划将这种学习方式应用到教育学中,从全校1500名学生中随机抽取了部分学生,对其家庭中拥有的移动设备的情况进行调查,并绘制出如下的统计图①和图②,根据相关信息,解答下列问题: (Ⅰ)本次接受随机抽样调查的学生人数为 ,图①中m 的值为 ;(Ⅱ)求本次调查获取的样本数据的众数、中位数和平均数;(Ⅲ)根据样本数据,估计该校1500名学生家庭中拥有3台移动设备的学生人数.22.已知方程组137x y a x y a-=+⎧⎨+=--⎩中x 为非正数,y 为负数. (1)求a 的取值范围;(2)在a 的取值范围中,当a 为何整数时,不等式221ax x a ++>的解集为1x <?23.某商贸公司有A 、B 两种型号的商品需运出,这两种商品的体积和质量分别如下表所示:体积(立方米/件) 质量(吨/件) A 型商品0.8 0.5 B 型商品 2 1(1)已知一批商品有A 、B 两种型号,体积一共是20立方米,质量一共是10.5吨,求A 、B 两种型号商品各有几件?(2)物资公司现有可供使用的货车每辆额定载重3.5吨,容积为6立方米,其收费方式有以下两种:①按车收费:每辆车运输货物到目的地收费600元;②按吨收费:每吨货物运输到目的地收费200元.现要将(1)中商品一次或分批运输到目的地,如果两种收费方式可混合使用,商贸公司应如何选择运送、付费方式,使其所花运费最少,最少运费是多少元?24.小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员A:月销售件数200件,月总收入2400元;营业员B:月销售件数300件,月总收入2700元;假设营业员的月基本工资为x元,销售每件服装奖励y元.(1)求x、y的值;(2)若某营业员的月总收入不低于3100元,那么他当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需350元;如果购买甲1件,乙2件,丙3件共需370元.某顾客想购买甲、乙、丙各一件共需多少元?25.如图,平面直角坐标系中,ABCD为长方形,其中点A、C坐标分别为(﹣8,4)、(2,﹣8),且AD∥x轴,交y轴于M点,AB交x轴于N.(1)求B、D两点坐标和长方形ABCD的面积;(2)一动点P从A出发(不与A点重合),以12个单位/秒的速度沿AB向B点运动,在P点运动过程中,连接MP、OP,请直接写出∠AMP、∠MPO、∠PON之间的数量关系;(3)是否存在某一时刻t,使三角形AMP的面积等于长方形面积的13?若存在,求t的值并求此时点P的坐标;若不存在请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】直接利用算术平方根、平方根以及立方根的定义分别化简求出答案.【详解】A、93=,此选项错误错误,不符合题意;B、2(3)3-=,此选项错误错误,不符合题意;C、3-=-,此选项错误错误,不符合题意;3(3)3D、3273=,此选项正确,符合题意;故选:D.【点睛】本题主要考查了算术平方根、平方根、立方根的概念,正确理解和灵活运用相关知识是解题关键.2.B解析:B【解析】【分析】根据内错角相等,两直线平行,得AB∥CE,再根据性质得∠B=∠3.【详解】因为∠1=∠2,所以AB∥CE所以∠B=∠3=30故选B【点睛】熟练运用平行线的判定和性质.3.A解析:A【解析】1=1303=502=23=100∠︒∴∠︒∴∠∠︒ .故选A.4.C解析:C【解析】【分析】 表示出不等式组的解集,由解集中有3个整数解,确定出m 的范围即可.【详解】不等式组解集为1<x <m ,由不等式组有3个整数解,且为2,3,4,得到4<m≤5,故选C .【点睛】此题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.5.D解析:D【解析】【分析】根据不等式两边加(或减)同一个数(或式子),不等号的方向不变,不等式两边乘(或除以)同一个正数,不等号的方向不变,不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案.【详解】A. 当0a ≤时,2a a ≥,故A 不一定成立,故本选项错误; B. 当0a ≤时,a a -≥,故B 不一定成立,故本选项错误; C. 若ab >,当0cd =≤时,则ac bd ≤,故C 不一定成立,故本选项错误;D. 若1a b >>,则必有22a b >,正确;故选D .【点睛】主要考查了不等式的基本性质.“0”是很特殊的数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.6.B解析:B 【解析】【分析】直接利用三角板的特点,结合平行线的性质得出∠ABD=45°,进而得出答案.【详解】由题意可得:∠EDF=45°,∠ABC=30°,∵AB ∥CF ,∴∠ABD=∠EDF=45°,∴∠DBC=45°﹣30°=15°.故选B.【点睛】本题考查的是平行线的性质,熟练掌握这一点是解题的关键.7.A解析:A【解析】试题分析:如图,过A 点作AB ∥a ,∴∠1=∠2,∵a ∥b ,∴AB ∥b ,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A .考点:平行线的性质.8.B解析:B【解析】【详解】设可打x 折,则有1200×10x -800≥800×5%, 解得x≥7.即最多打7折.故选B .【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.9.D解析:D【解析】【分析】根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解.【详解】∵正数大于0和一切负数,∴只需比较-π和-4的大小,∵|-π|<|-4|,∴最小的数是-4.故选D.【点睛】此题主要考查了实数的大小的比较,注意两个无理数的比较方法:统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.10.D解析:D【解析】【分析】根据点到直线的距离是直线外的点与直线上垂足间的线段的长,再根据垂线段最短,可得答案.【详解】当PC⊥l时,PC是点P到直线l的距离,即点P到直线l的距离2cm,当PC不垂直直线l时,点P到直线l的距离小于PC的长,即点P到直线l的距离小于2cm,综上所述:点P到直线l的距离不大于2cm,故选:D.【点睛】考查了点到直线的距离,利用了垂线段最短的性质.11.C解析:C【解析】【分析】根据A和C的坐标可得点A向右平移4个单位,向上平移1个单位,点B的平移方法与A的平移方法相同,再根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得点D的坐标.【详解】解:∵点A(0,1)的对应点C的坐标为(4,2),即(0+4,1+1),∴点B(3,3)的对应点D的坐标为(3+4,3+1),即D(7,4);故选:C.【点睛】此题主要考查了坐标与图形的变化——平移,关键正确得到点的平移方法.12.B解析:B【解析】根据题意,易得B.二、填空题13.6【解析】【分析】把x与y的值代入方程组求出a的值代入原式计算即可求出值【详解】解:把代入得解得:故答案为:6【点睛】此题考查了解二元一次方程掌握方程的解是解答本题的关键解析:6【解析】【分析】把x与y的值代入方程组求出a的值,代入原式计算即可求出值.【详解】解:把21xy=⎧⎨=-⎩,代入得239a-=,解得:6a=故答案为:6【点睛】此题考查了解二元一次方程,掌握方程的解是解答本题的关键.14.3【解析】找到立方等于27的数即可解:∵33=27∴27的立方根是3故答案为3考查了求一个数的立方根用到的知识点为:开方与乘方互为逆运算解析:3【解析】找到立方等于27的数即可.解:∵33=27,∴27的立方根是3,故答案为3.考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算15.【解析】【分析】根据立方根的定义即可求解【详解】∵43=64∴64的立方根是4故答案为4【点睛】此题主要考查立方根的定义解题的关键是熟知立方根的定义 解析:【解析】【分析】根据立方根的定义即可求解.【详解】∵43=64,∴64的立方根是4故答案为4【点睛】此题主要考查立方根的定义,解题的关键是熟知立方根的定义.16.0【解析】【分析】根据x 轴上的点的纵坐标为0可得m-2=0即可求得m=2由此求得点P 的坐标【详解】∵点在x 轴上∴m-2=0即m=2∴P (50)故答案为:50【点睛】本题考查了x 轴上的点的坐标的特点熟解析:0【解析】【分析】根据x 轴上的点的纵坐标为0可得m-2=0,即可求得m=2,由此求得点P 的坐标.【详解】∵点p(3,2)m m +-在x 轴上,∴m-2=0,即m=2,∴P (5,0).故答案为:5,0.【点睛】本题考查了x 轴上的点的坐标的特点,熟知x 轴上的点的纵坐标为0是解决问题的关键. 17.a≥0【解析】【分析】非负数即大于等于0据此列不等式【详解】由题意得a≥0故答案为:a≥0解析:a≥0【解析】【分析】非负数即大于等于0,据此列不等式.【详解】由题意得a≥0.故答案为:a≥0.18.4【解析】【分析】先估算的范围然后确定ab 的最小值即可计算a+b 的最小值【详解】∵<<∴2<<3∵a >a 为正整数∴a 的最小值为3∵<<∴1<<2∵b <b 为正整数∴b的最小值为1∴a+b的最小值为3+解析:4【解析】【分析】a、b的最小值,即可计算a+b的最小值.【详解】∴23,∵a a为正整数,∴a的最小值为3,∴12,∵b b为正整数,∴b的最小值为1,∴a+b的最小值为3+1=4.故答案为:4.【点睛】此题考查了估算无理数的大小,解题的关键是:确定a、b的最小值.19.【解析】【分析】根据图形列出方程组即可【详解】由图可得故答案为【点睛】本题考查了二元一次方程组解题的关键是根据实际问题抽象出二元一次方程组解析:250 325x yx y+=⎧⎨=+⎩.【解析】【分析】根据图形列出方程组即可.【详解】由图可得250 325 x yx y+=⎧⎨=+⎩.故答案为250 325 x yx y+=⎧⎨=+⎩.【点睛】本题考查了二元一次方程组,解题的关键是根据实际问题抽象出二元一次方程组.20.【解析】【分析】主要是通过换元法设把原方程组变成进行化简求解ab 的值在将ab 代入求解即可【详解】设可以换元为;又∵∴解得故答案为【点睛】本题主要应用了换元法解二元一次方程组换元法是将复杂问题简单化时解析: 6.32.2x y =⎧⎨=⎩【解析】【分析】主要是通过换元法设2,1x a y b +=-=,把原方程组变成23133530.9a b a b -=⎧⎨+=⎩,进行化简求解a,b 的值,在将a,b 代入2,1x a y b +=-=求解即可.【详解】设2,1x a y b +=-=,2(2)3(1)133(2)5(1)30.9x y x y +--=⎧⎨++-=⎩可以换元为23133530.9a b a b -=⎧⎨+=⎩; 又∵8.31.2a b =⎧⎨=⎩, ∴ 28.31 1.2x y +=⎧⎨-=⎩, 解得 6.32.2x y =⎧⎨=⎩. 故答案为 6.32.2x y =⎧⎨=⎩【点睛】本题主要应用了换元法解二元一次方程组,换元法是将复杂问题简单化时常用的方法,应用较为广泛.三、解答题21.(Ⅰ)50、32;(Ⅱ)4;3;3.2;(Ⅲ)420人.【解析】【分析】(Ⅰ)利用家庭中拥有1台移动设备的人数除以其所占百分比即可得调查的学生人数,将拥有4台移动设备的人数除以总人数即可求得m 的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)将样本中拥有3台移动设备的学生人数所占比例乘以总人数1500即可求解.【详解】解:(Ⅰ)本次接受随机抽样调查的学生人数为:48%=50(人), ∵1650×100=32%, ∴图①中m 的值为32.故答案为50、32;(Ⅱ)∵这组样本数据中,4出现了16次,出现次数最多,∴这组数据的众数为4;∵将这组数据从小到大排列,其中处于中间的两个数均为3,有332+=3, ∴这组数据的中位数是3; 由条形统计图可得142103144165650x ⨯+⨯+⨯+⨯+⨯==3.2, ∴这组数据的平均数是3.2.(Ⅲ)1500×28%=420(人).答:估计该校学生家庭中;拥有3台移动设备的学生人数约为420人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(1)a 的取值范围是﹣2<a≤3;(2)当a 为﹣1时,不等式2ax+x >2a+1的解集为x <1.【解析】【分析】(1)先解方程组得342x a y a =-+⎧⎨=--⎩,再解不等式组30420a a -+≤⎧⎨--⎩;(2)由不等式的解推出210a +,再从a 的范围中确定整数值.【详解】(1)由方程组:713x y a x y a+=--⎧⎨-=+⎩ ,得 342x a y a =-+⎧⎨=--⎩, 因为x 为非正数,y 为负数.所以30420a a -+≤⎧⎨--⎩, 解得23a -≤.(2) 不等式221ax x a ++可化为()2121x a a ++,因为不等式的解为1x <,所以210a +, 所以在23a -≤中,a 的整数值是-1.故正确答案为(1)2a 3-<≤;(2)a=-1.【点睛】此题是方程组与不等式组的综合运用.解题的关键在于求出方程组的解,再解不等式组;难点在于从不等式的解推出未知数系数的正负.23.(1)A 种型号商品有5件,B 种型号商品有8件;(2)先按车收费用3辆车运送18m 3,再按吨收费运送1件B 型产品,运费最少为2000元【解析】【分析】(1)设A 、B 两种型号商品各x 件、y 件,根据体积与质量列方程组求解即可;(2)①按车付费=车辆数⨯600;②按吨付费=10.5⨯200;③先按车付费,剩余的不满车的产品按吨付费,将三种付费进行比较.【详解】(1))设A 、B 两种型号商品各x 件、y 件,0.82200.510.5x y x y +=⎧⎨+=⎩, 解得58x y =⎧⎨=⎩, 答:A 种型号商品有5件,B 种型号商品有8件;(2)①按车收费:10.5 3.53÷=(辆),但是车辆的容积63⨯=18<20,3辆车不够,需要4辆车,60042400⨯=(元);②按吨收费:200⨯10.5=2100(元);③先用车辆运送18m 3,剩余1件B 型产品,共付费3⨯600+1⨯200=2000(元),∵2400>2100>2000,∴先按车收费用3辆车运送18m 3,再按吨收费运送1件B 型产品,运费最少为2000元.【点睛】此题考查二元一次方程组的实际应用,正确理解题意是解题的关键,(2)注意分类讨论,分别求出费用进行比较解答问题.24.(1) 18003x y =⎧⎨=⎩;(2) 434;(3) 180. 【解析】解:(1)依题意,得20024003002700x y x y +=⎧⎨+=⎩ 解,得18003x y =⎧⎨=⎩(2)设他当月要卖服装m 件.则180033100m +≥14333m ≥ 14333m ≥的最小整数是434 答:他当月至少要卖服装434件.(3)设甲、乙、丙服装的单价分别为a 元、b 元、c 元.则3235023370a b c a b c ++=⎧⎨++=⎩ ∴ 444720a b c ++=∴ 180a b c ++=答:购买甲、乙、丙各一件共需180元.25.(1)B (﹣8,﹣8),D (2,4),120;(2)∠MPO=∠AMP+∠PON ;∠MPO=∠AMP-∠PON ;(3)存在,P 点坐标为(﹣8,﹣6).【解析】【分析】(1)利用点A 、C 的坐标和长方形的性质易得B (﹣8,﹣8),D (2,4),然后根据长方形的面积公式即可计算长方形ABCD 的面积;(2)分点P 在线段AN 上和点P 在线段NB 上两种情况进行讨论即可得;(3)由于AM=8,AP=12t ,根据三角形面积公式可得S △AMP =t ,再利用三角形AMP 的面积等于长方形面积的13,即可计算出t=20,从而可得AP=10,再根据点的坐标的表示方法即可写出点P 的坐标.【详解】(1)∵点A 、C 坐标分别为(﹣8,4)、(2,﹣8),∴B (﹣8,﹣8),D (2,4),长方形ABCD的面积=(2+8)×(4+8)=120;(2)当点P在线段AN上时,作PQ∥AM,如图,∵AM∥ON,∴AM∥PQ∥ON,∴∠QPM=∠AMP,∠QPO=∠PON,∴∠QPM+∠QPO=∠AMP+∠PON,即∠MPO=∠AMP+∠PON;当点P在线段NB上时,作PQ∥AM,如图,∵AM∥ON,∴AM∥PQ∥ON,∴∠QPM=∠AMP,∠QPO=∠PON,∴∠QPM-∠QPO=∠AMP-∠PON,即∠MPO=∠AMP-∠PON;(3)存在,∵AM=8,AP=12t,∴S△AMP=12×8×12t=2t,∵三角形AMP的面积等于长方形面积的13,∴2t=120×13=40,∴t=20,AP=12×20=10,∵AN=4,∴PN=6∴P点坐标为(﹣8,﹣6).【点睛】本题考查了坐标与图形性质,结合图形、运用分类讨论思想进行解答是关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021重庆巴蜀中学七年级数学下期末模拟试卷(带答案)一、选择题1.下列各式中计算正确的是( )A .93=±B .2(3)3-=-C .33(3)3-=±D .3273=2.如图,已知∠1=∠2,∠3=30°,则∠B 的度数是( )A .20B .30C .40D .603.如图,将一张长方形纸条折叠,如果∠1=130°,则,∠2=( )A .100°B .130°C .150°D .80°4.已知关于x 的不等式组的解中有3个整数解,则m 的取值范围是( )A .3<m≤4B .4≤m<5C .4<m≤5D .4≤m≤5 5.下面不等式一定成立的是( )A .2a a <B .a a -<C .若a b >,c d =,则ac bd >D .若1a b >>,则22a b > 6.一副直角三角板如图放置,点C 在FD 的延长线上,AB//CF ,∠F=∠ACB=90°,则∠DBC 的度数为( )A .10°B .15°C .18°D .30°7.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A .15°B .22.5°C .30°D .45°8.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )A .6折B .7折C .8折D .9折9.在实数0,-π,3,-4中,最小的数是( )A .0B .-πC .3D .-410.点P 为直线m 外一点,点A ,B ,C 为直线m 上三点,PA =4cm ,PB =5cm ,PC =2cm ,则点P 到直线m 的距离为( )A .4cmB .2cm ;C .小于2cmD .不大于2cm11.在平面直角坐标系中,点A 的坐标()0,1,点B 的坐标()3,3,将线段AB 平移,使得A 到达点()4,2C ,点B 到达点D ,则点D 的坐标是( )A .()7,3B .()6,4C .()7,4D .()8,412.某中学计划租用若干辆汽车运送七年级学生外出进行社会实践活动,如果一辆车乘坐45人,那么有35名学生没有车坐;如果一辆车乘坐60人,那么有一辆车只坐了35人,并且还空出一辆车.设计划租用x 辆车,共有y 名学生.则根据题意列方程组为( )A .453560(2)35x y x y -=⎧⎨-=-⎩B .453560(2)35x y x y =-⎧⎨-+=⎩C .453560(1)35x y x y +=⎧⎨-+=⎩D .453560(2)35x y y x =+⎧⎨--=⎩二、填空题 13.已21x y =⎧⎨=-⎩是关于x 、y 的二次元方程39ax y +=的解,则a 的值为___________ 14.27的立方根为 .15.64的立方根是_______.16.如果点p(3,2)m m +-在x 轴上,那么点P 的坐标为(____,____).17.用适当的符号表示a 是非负数:_______________.18.若a ,b 均为正整数,且a >7,b <32,则a +b 的最小值是_______________.19.结合下面图形列出关于未知数x ,y 的方程组为_____.20.若方程组23133530.9a b a b -=⎧⎨+=⎩的解为8.31.2a b =⎧⎨=⎩,则方程组2(2)3(1)133(2)5(1)30.9x y x y +--=⎧⎨++-=⎩的解为_______.三、解答题21.随着移动计算技术和无线网络的快速发展,移动学习方式越来越引起人们的关注,某校计划将这种学习方式应用到教育学中,从全校1500名学生中随机抽取了部分学生,对其家庭中拥有的移动设备的情况进行调查,并绘制出如下的统计图①和图②,根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为 ,图①中m 的值为 ; (Ⅱ)求本次调查获取的样本数据的众数、中位数和平均数;(Ⅲ)根据样本数据,估计该校1500名学生家庭中拥有3台移动设备的学生人数.22.已知方程组137x y a x y a-=+⎧⎨+=--⎩中x 为非正数,y 为负数. (1)求a 的取值范围;(2)在a 的取值范围中,当a 为何整数时,不等式221ax x a ++>的解集为1x <?23.某商贸公司有A 、B 两种型号的商品需运出,这两种商品的体积和质量分别如下表所示: 体积(立方米/件) 质量(吨/件)A 型商品 0.8 0.5B 型商品 21(1)已知一批商品有A 、B 两种型号,体积一共是20立方米,质量一共是10.5吨,求A 、B 两种型号商品各有几件?(2)物资公司现有可供使用的货车每辆额定载重3.5吨,容积为6立方米,其收费方式有以下两种:①按车收费:每辆车运输货物到目的地收费600元;②按吨收费:每吨货物运输到目的地收费200元.现要将(1)中商品一次或分批运输到目的地,如果两种收费方式可混合使用,商贸公司应如何选择运送、付费方式,使其所花运费最少,最少运费是多少元?24.小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员A:月销售件数200件,月总收入2400元;营业员B:月销售件数300件,月总收入2700元;假设营业员的月基本工资为x元,销售每件服装奖励y元.(1)求x、y的值;(2)若某营业员的月总收入不低于3100元,那么他当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需350元;如果购买甲1件,乙2件,丙3件共需370元.某顾客想购买甲、乙、丙各一件共需多少元?25.如图,平面直角坐标系中,ABCD为长方形,其中点A、C坐标分别为(﹣8,4)、(2,﹣8),且AD∥x轴,交y轴于M点,AB交x轴于N.(1)求B、D两点坐标和长方形ABCD的面积;(2)一动点P从A出发(不与A点重合),以12个单位/秒的速度沿AB向B点运动,在P点运动过程中,连接MP、OP,请直接写出∠AMP、∠MPO、∠PON之间的数量关系;(3)是否存在某一时刻t,使三角形AMP的面积等于长方形面积的13?若存在,求t的值并求此时点P的坐标;若不存在请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】直接利用算术平方根、平方根以及立方根的定义分别化简求出答案.【详解】A93=,此选项错误错误,不符合题意;B2(3)3-=,此选项错误错误,不符合题意;C、3-=-,此选项错误错误,不符合题意;3(3)3D、3273=,此选项正确,符合题意;故选:D.【点睛】本题主要考查了算术平方根、平方根、立方根的概念,正确理解和灵活运用相关知识是解题关键.2.B解析:B【解析】【分析】根据内错角相等,两直线平行,得AB∥CE,再根据性质得∠B=∠3.【详解】因为∠1=∠2,所以AB∥CE所以∠B=∠3=30故选B【点睛】熟练运用平行线的判定和性质.3.A解析:A【解析】1=1303=502=23=100∠︒∴∠︒∴∠∠︒ .故选A.4.C解析:C【解析】【分析】表示出不等式组的解集,由解集中有3个整数解,确定出m的范围即可.【详解】不等式组解集为1<x <m ,由不等式组有3个整数解,且为2,3,4,得到4<m≤5,故选C .【点睛】此题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.5.D解析:D【解析】【分析】根据不等式两边加(或减)同一个数(或式子),不等号的方向不变,不等式两边乘(或除以)同一个正数,不等号的方向不变,不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案.【详解】A. 当0a ≤时,2a a ≥,故A 不一定成立,故本选项错误; B. 当0a ≤时,a a -≥,故B 不一定成立,故本选项错误; C. 若ab >,当0cd =≤时,则ac bd ≤,故C 不一定成立,故本选项错误;D. 若1a b >>,则必有22a b >,正确;故选D .【点睛】主要考查了不等式的基本性质.“0”是很特殊的数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.6.B解析:B【解析】【分析】直接利用三角板的特点,结合平行线的性质得出∠ABD=45°,进而得出答案.【详解】由题意可得:∠EDF=45°,∠ABC=30°,∵AB ∥CF ,∴∠ABD=∠EDF=45°,∴∠DBC=45°﹣30°=15°.故选B.【点睛】本题考查的是平行线的性质,熟练掌握这一点是解题的关键.7.A解析:A试题分析:如图,过A 点作AB ∥a ,∴∠1=∠2,∵a ∥b ,∴AB ∥b ,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A .考点:平行线的性质.8.B解析:B【解析】【详解】设可打x 折,则有1200×10x -800≥800×5%, 解得x≥7.即最多打7折.故选B .【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解. 9.D解析:D【解析】【分析】根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解.【详解】∵正数大于0和一切负数,∴只需比较-π和-4的大小,∵|-π|<|-4|,∴最小的数是-4.故选D .【点睛】此题主要考查了实数的大小的比较,注意两个无理数的比较方法:统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.10.D解析:D【解析】根据点到直线的距离是直线外的点与直线上垂足间的线段的长,再根据垂线段最短,可得答案.【详解】当PC⊥l时,PC是点P到直线l的距离,即点P到直线l的距离2cm,当PC不垂直直线l时,点P到直线l的距离小于PC的长,即点P到直线l的距离小于2cm,综上所述:点P到直线l的距离不大于2cm,故选:D.【点睛】考查了点到直线的距离,利用了垂线段最短的性质.11.C解析:C【解析】【分析】根据A和C的坐标可得点A向右平移4个单位,向上平移1个单位,点B的平移方法与A 的平移方法相同,再根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得点D的坐标.【详解】解:∵点A(0,1)的对应点C的坐标为(4,2),即(0+4,1+1),∴点B(3,3)的对应点D的坐标为(3+4,3+1),即D(7,4);故选:C.【点睛】此题主要考查了坐标与图形的变化——平移,关键正确得到点的平移方法.12.B解析:B【解析】根据题意,易得B.二、填空题13.6【解析】【分析】把x与y的值代入方程组求出a的值代入原式计算即可求出值【详解】解:把代入得解得:故答案为:6【点睛】此题考查了解二元一次方程掌握方程的解是解答本题的关键解析:6【解析】【分析】把x与y的值代入方程组求出a的值,代入原式计算即可求出值.解:把21x y =⎧⎨=-⎩,代入得239a -=, 解得:6a =故答案为:6【点睛】此题考查了解二元一次方程,掌握方程的解是解答本题的关键.14.3【解析】找到立方等于27的数即可解:∵33=27∴27的立方根是3故答案为3考查了求一个数的立方根用到的知识点为:开方与乘方互为逆运算 解析:3【解析】找到立方等于27的数即可.解:∵33=27,∴27的立方根是3,故答案为3.考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算15.【解析】【分析】根据立方根的定义即可求解【详解】∵43=64∴64的立方根是4故答案为4【点睛】此题主要考查立方根的定义解题的关键是熟知立方根的定义解析:【解析】【分析】根据立方根的定义即可求解.【详解】∵43=64,∴64的立方根是4故答案为4【点睛】此题主要考查立方根的定义,解题的关键是熟知立方根的定义.16.0【解析】【分析】根据x 轴上的点的纵坐标为0可得m-2=0即可求得m=2由此求得点P 的坐标【详解】∵点在x 轴上∴m-2=0即m=2∴P (50)故答案为:50【点睛】本题考查了x 轴上的点的坐标的特点熟解析:0【解析】【分析】根据x 轴上的点的纵坐标为0可得m-2=0,即可求得m=2,由此求得点P 的坐标.【详解】∵点p(3,2)m m +-在x 轴上,∴m-2=0,即m=2,∴P(5,0).故答案为:5,0.【点睛】本题考查了x轴上的点的坐标的特点,熟知x轴上的点的纵坐标为0是解决问题的关键. 17.a≥0【解析】【分析】非负数即大于等于0据此列不等式【详解】由题意得a≥0故答案为:a≥0解析:a≥0【解析】【分析】非负数即大于等于0,据此列不等式.【详解】由题意得a≥0.故答案为:a≥0.18.4【解析】【分析】先估算的范围然后确定ab的最小值即可计算a+b的最小值【详解】∵<<∴2<<3∵a>a为正整数∴a的最小值为3∵<<∴1<<2∵b<b为正整数∴b的最小值为1∴a+b的最小值为3+解析:4【解析】【分析】的范围,然后确定a、b的最小值,即可计算a+b的最小值.【详解】∴2<3,∵a,a为正整数,∴a的最小值为3,∴1<2,∵b,b为正整数,∴b的最小值为1,∴a+b的最小值为3+1=4.故答案为:4.【点睛】此题考查了估算无理数的大小,解题的关键是:确定a、b的最小值.19.【解析】【分析】根据图形列出方程组即可【详解】由图可得故答案为【点睛】本题考查了二元一次方程组解题的关键是根据实际问题抽象出二元一解析:250325x y x y +=⎧⎨=+⎩ . 【解析】【分析】根据图形列出方程组即可.【详解】由图可得250325x y x y +=⎧⎨=+⎩. 故答案为250325x y x y +=⎧⎨=+⎩. 【点睛】本题考查了二元一次方程组,解题的关键是根据实际问题抽象出二元一次方程组.20.【解析】【分析】主要是通过换元法设把原方程组变成进行化简求解ab 的值在将ab 代入求解即可【详解】设可以换元为;又∵∴解得故答案为【点睛】本题主要应用了换元法解二元一次方程组换元法是将复杂问题简单化时解析: 6.32.2x y =⎧⎨=⎩【解析】【分析】主要是通过换元法设2,1x a y b +=-=,把原方程组变成23133530.9a b a b -=⎧⎨+=⎩,进行化简求解a,b 的值,在将a,b 代入2,1x a y b +=-=求解即可.【详解】设2,1x a y b +=-=,2(2)3(1)133(2)5(1)30.9x y x y +--=⎧⎨++-=⎩可以换元为23133530.9a b a b -=⎧⎨+=⎩; 又∵8.31.2a b =⎧⎨=⎩, ∴ 28.31 1.2x y +=⎧⎨-=⎩, 解得 6.32.2x y =⎧⎨=⎩. 故答案为 6.32.2x y =⎧⎨=⎩ 【点睛】本题主要应用了换元法解二元一次方程组,换元法是将复杂问题简单化时常用的方法,应三、解答题21.(Ⅰ)50、32;(Ⅱ)4;3;3.2;(Ⅲ)420人.【解析】【分析】(Ⅰ)利用家庭中拥有1台移动设备的人数除以其所占百分比即可得调查的学生人数,将拥有4台移动设备的人数除以总人数即可求得m的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)将样本中拥有3台移动设备的学生人数所占比例乘以总人数1500即可求解.【详解】解:(Ⅰ)本次接受随机抽样调查的学生人数为:48%=50(人),∵1650×100=32%,∴图①中m的值为32.故答案为50、32;(Ⅱ)∵这组样本数据中,4出现了16次,出现次数最多,∴这组数据的众数为4;∵将这组数据从小到大排列,其中处于中间的两个数均为3,有332+=3,∴这组数据的中位数是3;由条形统计图可得142103144165650x⨯+⨯+⨯+⨯+⨯==3.2,∴这组数据的平均数是3.2.(Ⅲ)1500×28%=420(人).答:估计该校学生家庭中;拥有3台移动设备的学生人数约为420人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(1)a的取值范围是﹣2<a≤3;(2)当a为﹣1时,不等式2ax+x>2a+1的解集为x <1.【解析】【分析】(1)先解方程组得342x ay a=-+⎧⎨=--⎩,再解不等式组30420aa-+≤⎧⎨--⎩;(2)由不等式的解推出210a+,再从a的范围中确定整数值.【详解】(1)由方程组:713x y a x y a+=--⎧⎨-=+⎩ ,得 342x a y a=-+⎧⎨=--⎩ , 因为x 为非正数,y 为负数.所以30420a a -+≤⎧⎨--⎩, 解得23a -≤.(2) 不等式221ax x a ++可化为()2121x a a ++,因为不等式的解为1x <,所以210a +,所以在23a -≤中,a 的整数值是-1.故正确答案为(1)2a 3-<≤;(2)a=-1.【点睛】此题是方程组与不等式组的综合运用.解题的关键在于求出方程组的解,再解不等式组;难点在于从不等式的解推出未知数系数的正负.23.(1)A 种型号商品有5件,B 种型号商品有8件;(2)先按车收费用3辆车运送18m 3,再按吨收费运送1件B 型产品,运费最少为2000元【解析】【分析】(1)设A 、B 两种型号商品各x 件、y 件,根据体积与质量列方程组求解即可;(2)①按车付费=车辆数⨯600;②按吨付费=10.5⨯200;③先按车付费,剩余的不满车的产品按吨付费,将三种付费进行比较.【详解】(1))设A 、B 两种型号商品各x 件、y 件,0.82200.510.5x y x y +=⎧⎨+=⎩, 解得58x y =⎧⎨=⎩, 答:A 种型号商品有5件,B 种型号商品有8件;(2)①按车收费:10.5 3.53÷=(辆),但是车辆的容积63⨯=18<20,3辆车不够,需要4辆车,60042400⨯=(元); ②按吨收费:200⨯10.5=2100(元);③先用车辆运送18m 3,剩余1件B 型产品,共付费3⨯600+1⨯200=2000(元), ∵2400>2100>2000,∴先按车收费用3辆车运送18m 3,再按吨收费运送1件B 型产品,运费最少为2000元.【点睛】此题考查二元一次方程组的实际应用,正确理解题意是解题的关键,(2)注意分类讨论,分别求出费用进行比较解答问题.24.(1) 18003x y =⎧⎨=⎩;(2) 434;(3) 180. 【解析】解:(1)依题意,得20024003002700x y x y +=⎧⎨+=⎩解,得18003x y =⎧⎨=⎩(2)设他当月要卖服装m 件.则180033100m +≥ 14333m ≥ 14333m ≥的最小整数是434答:他当月至少要卖服装434件.(3)设甲、乙、丙服装的单价分别为a 元、b 元、c 元.则3235023370a b c a b c ++=⎧⎨++=⎩∴ 444720a b c ++=∴ 180a b c ++=答:购买甲、乙、丙各一件共需180元.25.(1)B (﹣8,﹣8),D (2,4),120;(2)∠MPO=∠AMP+∠PON ;∠MPO=∠AMP-∠PON ;(3)存在,P 点坐标为(﹣8,﹣6).【解析】【分析】(1)利用点A 、C 的坐标和长方形的性质易得B (﹣8,﹣8),D (2,4),然后根据长方形的面积公式即可计算长方形ABCD 的面积;(2)分点P 在线段AN 上和点P 在线段NB 上两种情况进行讨论即可得;(3)由于AM=8,AP=12t ,根据三角形面积公式可得S △AMP =t ,再利用三角形AMP 的面积等于长方形面积的13,即可计算出t=20,从而可得AP=10,再根据点的坐标的表示方法即可写出点P 的坐标.【详解】(1)∵点A 、C 坐标分别为(﹣8,4)、(2,﹣8),∴B (﹣8,﹣8),D (2,4),长方形ABCD 的面积=(2+8)×(4+8)=120;(2)当点P 在线段AN 上时,作PQ ∥AM ,如图,∵AM ∥ON ,∴AM ∥PQ ∥ON ,∴∠QPM=∠AMP ,∠QPO=∠PON , ∴∠QPM+∠QPO=∠AMP+∠PON ,即∠MPO=∠AMP+∠PON ;当点P 在线段NB 上时,作PQ ∥AM ,如图,∵AM ∥ON ,∴AM ∥PQ ∥ON ,∴∠QPM=∠AMP ,∠QPO=∠PON , ∴∠QPM-∠QPO=∠AMP-∠PON ,即∠MPO=∠AMP-∠PON ;(3)存在,∵AM=8,AP=12t ,∴S △AMP =12×8×12t=2t , ∵三角形AMP 的面积等于长方形面积的13, ∴2t=120×13=40,∴t=20,AP=12×20=10, ∵AN=4,∴PN=6∴P 点坐标为(﹣8,﹣6).【点睛】 本题考查了坐标与图形性质,结合图形、运用分类讨论思想进行解答是关键.。