非欧几何的诞生讲解

合集下载

非欧几何的诞生

非欧几何的诞生

非欧几何的诞生
过直线外一点可作无数条直线与该直线不相交,你相信吗?这一与中学教科书相矛盾的命题是正确的,因为它是在另外一种几何学——非欧几何中讨论的。

自古以来,人们都认为过直线L外一点,能且只能作一条直线与L平行,即有且只有一条直线和L不相交。

这就是古希腊数学家欧几里得在《几何原本》中提出的几何,即欧氏几何。

1823年,罗巴切夫斯基提出了一种新的几何,其中有一条公理称为非欧公设:过直线外一点,可作多于一条的直线与该直线不相交。

这一公设和欧氏几何的其它公设、公理组合在一起,发展成一门非欧几何——一个与欧氏几何有同样规模,而没有发现任何矛盾的新几何体系。

我们可以用具体的模型来解释罗氏几何。

普通的平面可以看作罗氏平面,罗氏几何中的点和普通的点一样,但罗氏几何学中的直线就和普通直线不一样了。

平面上任取一直线a将平面分为两半,上半平面上,圆心在直线a上的半圆或垂直于a的半直线即为罗氏几何中的直线。

现任取一条罗氏几何中的直线AB,直线外任取一点P,如图2,可作很多条的罗氏直线与AB不相交。

这是因为圆心在a上,过P 点的半圆多得很,和AB半圆不相交的半圆也多得很!
在罗氏非欧几何产生后,又产生了许多新的几何,如黎曼的非欧几何。

非欧几何和欧氏几何都是客观实在的反映,只是反映现实的不同范围和方面,例如爱因斯坦在广义相对论的研究中就必须用黎曼几何来描述物理空间。

当然,在日常生活中,我们使用的还是欧氏几何。

非欧几何的创立

非欧几何的创立

非欧几何的创立1893年,喀山大学树立起世界上第一个数学家的塑像,他就是俄国著名学者,非欧几何的创始人之一罗巴切夫斯基。

那么,罗巴切夫斯基是怎么走上非欧几何的创立之路的呢?这就要说到公元前3世纪欧几里得在《几何原本》里给出的五个公设了,从那个世纪开始一直到19世纪初,无数数学家们都想要证明一直被证明不了的第五个公设—平行线理论,也就是我们所熟悉的“一个三角形不可能有两个内角都是90度”的说法,而罗巴切夫斯基,可能也想用这个公设的被证明来体现自己的价值,或是表达自己对学术的不懈追求,他也尝试去证明欧氏第五公设。

最初,他也是在前人的思路上继续求证,但是,当经历了无数次失败之后,他开始接受失败这一事实,开始反思,开始打破传统并换个角度思考问题,可能这个为人们千思万想要证明的权威公设根本就不可证。

于是,他大胆地进行了尝试,创造性的在这个问题上用了处理复杂数学问题的反证法。

他将“第五公设不可证”这一命题与其他公理公设组成新的公理系统,并展开逻辑推演,结果没有得出逻辑矛盾。

于是就这样证明了第五公设不可证。

因此,非欧几何的大门开始向世人打开。

1826年,随着他的论文《几何学原理和平行线定理严格证明的摘要》在喀山大学的宣读,非欧几何诞生。

可想而知,一个新的重大成果的问世,总是要受到一些批判与反对,甚至是无视;当然,罗巴切夫斯基没有停止研究,支持这一理论的部分学者们也在尝试证明非欧几何,终于,1868年,也就是罗逝世后12年,意大利数学家贝特拉米发表论文《非欧几何解释的尝试》,证明了非欧几何可以在欧几里得空间的曲面比如球面上实现,也就意味着人们既然相信欧几里得没有矛盾,那么非欧几何就没有矛盾,于是,人们自然就开始尝试进入罗巴切夫斯基打开的那扇门内,若干年后,还称赞罗为“几何学中的哥白尼”。

那么非欧几何的创立告诉了我们什么呢?就是面对失败的时候,我们首先要承认失败,再自我反省,适当地改变自己的思维方向,更要勇于迈出第一步,并不轻易放弃,这样,就能离成功更近。

非欧几何简介

非欧几何简介

非欧几何简介欧氏几何与球面几何的区别与联系比较球面上的几何图形与平面上的几何图形的性质,我们可以总结出以下显著的差别,见表6-1:表6-1 球面上的几何图形与平面上的几何图形的性质差异,其中A、B、C为单位球面上三角形的三个内角(弧度制)通过上面的比较,我们看到,球面上的几何是与平面几何不同的一种几何理论。

平面几何最早由希腊数学家欧几里德(Euclid,公元前300年左右)整理成系统的理论。

他的不朽之作《几何原本》不仅包含了平面几何,也包含了立体几何。

为了纪念他对人类做出的伟大贡献,后来就把这种几何称为欧氏几何。

球面上的几何是与欧氏几何不同的几何,所以叫做非欧几何。

球面上的几何与欧氏几何有不相同之处,但他们之间也有一些共同特征,见表6-2。

表6-2 球面上的几何与欧氏几何的共同特征两种几何的这些相同之处,说明它们之间应该有某种内在的联系。

首先分析一下球面三角形的面积公式把这个公式改写成这个等式的左端称为球面三角形的角超,它反映出球面上的几何与平面几何的差距。

在平面几何中三角形三内角之和等于,角超等于零。

在球面上的几何中角超大于零。

不难看出当球面半径R无限增大时,球面逐渐趋向于平面,越来越小,即三角形的角超越来越小,球面三角形逐渐趋向于平面三角形,球面几何的性质逐渐接近于平面几何的性质。

所以我们可以说:当球面半径趋向于无穷大时,球面上的几何以平面几何为极限。

因为地球的半径非常大,当我们研究的范围相对于地球半径很小时,三角形的角超就一定很小。

因此,可以用平面几何的知识来代替球面几何知识,所产生的误差很小。

另一种非欧几何通过前一小节的分析,我们发现三角形的三个内角之和的大小,在很大程度上反映了平面欧氏几何与球面几何的差别。

当三角形的三个内角之和等于时,就是欧氏几何,当三角形的三个内角之和大于时,就反映出球面几何的主要特征。

有没有三角形三个内角之和小于的几何呢?我们简单回顾一段几何发展史。

在十七世纪以前,人们认为只有一种几何,就是欧氏几何,它是一切科学的基础。

非欧几里得几何学(non-Euclidean

非欧几里得几何学(non-Euclidean

⾮欧⼏⾥得⼏何学(non-Euclidean geometry)⾮欧⼏⾥得⼏何学(non-Euclidean geometry)不同于欧⼏⾥得⼏何学的⼏何体系。

简称为⾮欧⼏何。

⼀般是指罗巴切夫斯基⼏何(双曲⼏何)和黎曼的椭圆⼏何。

它们与欧⽒⼏何最主要的区别在于公理体系中采⽤了不同的平⾏公理。

⾮欧⼏何起源于对欧⼏⾥得平⾏公设的讨论。

公元前3世纪初,欧⼏⾥得《⼏何原本》问世,开篇列出定义、公理和公设,其中第五公设是:同⼀平⾯内⼀条直线与另外两条直线相交,若在某⼀侧的两个内⾓之和⼩于⼆直⾓,则这⼆直线经过⽆限延长后在这⼀侧相交。

它不像其他公设那样显然,因此很快就引起⼈们的争议,认为欧⼏⾥得把它放在公理(公设)之列,不是因为它不能证明,⽽是找不到证明,这是欧⼏⾥得⼏何体系的唯⼀“污点”。

2000多年来,许多⼏何学家⽤不同的⽅法试图证明第五公设,可是都失败了,因为在他们的每⼀个所谓“证明”中都引进⼀个新的假定,⽽这个假定等价于第五公设。

公元2世纪,古希腊数学家托勒密试图从欧⼏⾥得其他9个公理、公设以及与平⾏公设⽆关的欧⼏⾥得命题1~28来证明平⾏公设,但假设了两直线平⾏后,另⼀与之相交直线⼀侧内⾓成⽴的东西也必在另⼀侧同样成⽴。

公元5世纪的普罗克洛斯基于亚⾥⼠多德⽤于证明宇宙有限的公理来证明平⾏公设,实际上是把⼀个有问题的公理⽤另⼀个来代替09世纪阿拉伯数学家塔⽐·伊本·库拉在《欧⼏⾥得著名的公设证明》中假设:如果两条直线与第三条直线相交,并且它们在(第三条直线的)某⼀侧靠近或相离,则它的(在第三条直线的)另⼀侧就相离或靠近。

13世纪的纳西尔丁在《平⾏线问题释疑》中也应⽤了这样的假设:同⼀平⾯上的若⼲直线,若在⼀个⽅向上是分离的,则它们在这个⽅向上就不会靠近。

他在此基础上证明了垂线与斜线⼀定相交,⾃⾓内任⼀点必可作⼀直线与⾓的两边都相交等命题,这些都与第五公设等价。

纳西尔丁的⼯作于1663年由英国数学家沃利斯重新阐发,引起欧洲⼈的重视。

非欧几何的产生是认识论的转变

非欧几何的产生是认识论的转变

非欧几何的产生是认识论的转变欧几里德几何学体系在公元前300年被创立,发展了近两千年,成为近代几何学的基础。

然而,在19世纪中叶,随着数学研究的深入,人们开始怀疑欧几里德几何学的公理系统的完备性。

这引发了数学领域中的一场认识论革命,与欧几里德几何学相对立的,是非欧几何学的产生。

非欧几何学的诞生是认识论的转变的产物,其中最重要的一个认识论转变就是关于公理和证明的看法的变化。

在欧几里德几何学体系中,公理是被认为是不言自明、不可证明、不可疑问的真理。

公理的存在使得欧几里德几何学体系具有了确定性和严谨性,并且从公理出发可以推导出一系列定理。

然而,随着数学的发展,人们发现有些公理在不同的情境下会产生矛盾,这导致了公理系统的不完备性和不确定性。

因此,人们逐渐开始认识到,公理不是一种绝对的真理,而是人们基于经验和直觉得出的一种假设。

换而言之,公理需要验证,且验证的方法并不只是基于逻辑和推理,更需要实践的检验和验证。

非欧几何学的另一个重要认识论转变是对数学语言和符号的看法的变化。

传统的欧几里德几何语言非常形式化和抽象,只关注定理的证明,而不关注其意义和内涵。

相反,非欧几何学家开始关注符号的内涵和意义,强调语言与现实之间的联系。

他们认为,符号和语言只是智力的工具,不能将其与实际对象完全等同起来。

人们需要透过符号和语言,寻找真实的数学实体。

非欧几何的产生标志着数学的新阶段,即从认识论的角度看待数学的发展。

这种认识论的转变,推动了数学中心由公理和定理向实践和应用的转移,以及对数学本身和其在实践中的应用进行更深入的思考和研究。

与此同时,非几何学还提供了新的数学工具和思想,推动了数学的发展,并对其他领域的学科产生了深远的影响。

非欧几何的产生是认识论的转变

非欧几何的产生是认识论的转变

非欧几何的产生是认识论的转变欧几里德几何学是古代希腊人所发明的一种几何学,它是一种欧几里德空间上的几何学。

欧几里德空间指的是三维实数空间,也就是我们通常所说的三维空间。

欧几里德几何学主要研究空间中的点、线、面以及它们之间的关系。

在欧几里德几何学中,所有的几何命题都可以推导出来,不需要进行测量或实验。

因此,它被认为是一种完美的几何学。

然而,在欧几里德几何学发明之后的几百年里,一些问题逐渐浮现出来,这些问题在欧几里德几何学中无法回答。

这些问题包括:1.平面上的平行线是否会相交?3.如果将一条线段无限地延长,它会有多远?这些问题最终导致了非欧几何的产生。

非欧几何学是指不符合欧几里德公设的几何学,例如在非欧几何学中,平面上的平行线可能相交,球面上也可能存在平行线。

由于非欧几何学不再遵守欧几里德公设,因此有时也被称为“超几何学”。

非欧几何学的产生,标志着人类对于数学的认识和理解发生了重大的转变。

传统的欧几里德几何学基于直觉和想象力,而非欧几何学则需要更为抽象的思维方式和更深入的数学思考,因为非欧几何学的公设不再可以通过直觉和感性的判断得出结论,需要更为精密的推导和证明。

在认识论的角度来看,非欧几何学的产生也体现了人类对于现实世界的认识和理解的深入。

欧几里德几何学是基于人类对于三维空间的感性认识和直觉理解,而非欧几何学则考虑了更为复杂的空间维度和它们之间的关系。

非欧几何学的发展,也给人类对于世界本质的认识以启示,即我们所看到的现实世界并不是唯一的,也可能有许多我们无法想象的空间维度和规律。

不仅如此,非欧几何学在其它数学和科学领域也有着广泛的应用。

在物理学中,相对论理论也是一种非欧几何学,它改变了人类对于时空的理解。

在信息科学和计算机科学中,非欧几何学也有广泛的应用,例如在计算机图形学和计算机视觉中,利用非欧几何学的理论和方法可以更为准确地描述和处理物体的形状和几何特征。

总之,非欧几何学的产生,不仅是数学领域发展的一个里程碑,也是人类对于世界本质的认识和理解之一,它深刻地影响了人类对于数学、科学和哲学等领域的认识和理解。

非欧几何的诞生及其给我们的启示论文

非欧几何的诞生及其给我们的启示论文

非欧几何的诞生及其给我们的启示摘要:数学史上,非欧几何占有特殊的地位.以非欧几何的发明过程为基本线索,探讨了其对数学学科本身、人类文化、哲学思想的影响;对数学科研者、数学教育工作者及高校学生的启示.关键词:非欧几何;罗巴切夫斯基几何;黎曼几何1 非欧几何的发展史1.1 问题的提出非欧几何的发展源于2 000 多年前的古希腊数学家的欧几里得的《几何原本》.其中公设五是欧几里得自己提出的,它的内容是“若一条直线与两直线相交,且若同侧所交两内角之和小于两直角,则两直线无限延长后必相交于该侧的一点”.这一公设引起了广泛的讨论,因为它不如其他公理、公设那样简明,欧几里得本人也不满意这条公设,他在证完了所有不需要平行公设的定理后才使用它,怀疑它可能不是一个独立的公设,或许能用其它公设或公理代替.从古希腊时代开始到19 世纪的2000 多年来数学家们始终对这条公设耿耿于怀,孜孜不倦的试图解决这个问题.数学家们主要沿2 条研究途径前进:一条途径是寻找一条更为自明的命题代替平行公设;另一条途径是试图从其他9 条公理、公设推导出平行公设来.沿第一条途径找到的第五公设最简单的表述是1795 年苏格兰数学家普雷菲尔(J.Playfair 1748-1819)给出的:“过直线外一点,有且只有一条直线与原直线平行”也就是我们今天中学课本里使用的平行公理.但实际上古希腊数学家普罗克鲁斯在公元5 世纪就陈述过它.然而问题是,所有这些替代公设并不比原来的第五公设更好接受,更“自然”.历史上第一个证明第五公设的重大尝试是古希腊天文学家托勒玫(Ptolemy,约公元150 年)做出的,后来普罗克鲁斯指出托勒玫的“证明”无意中假定了过直线外一点只能作一条直线与已知直线平行,这就是上面提到的普雷菲尔公设.1.2 问题的解决1.2.1 非欧几何的萌芽沿第二条途径论证第五公设的工作在18 世纪取得突破性进展.首先是意大利人萨凯里(Saccharin 1667-1733)提出用归谬法证明第五公设,萨凯里从四边形ABCD开始,如果角A 和角B 是直角,且AC=BD,容易证明角C等于角D.这样第五公设便等价于角C 和角D 是直角这个论断.萨凯里提出另2 个假设:(1)钝角假设:角C 和角D 都是钝角;(2)锐角假设:角C 和角D 都是锐角.最后在锐角假设下,萨凯里导出了一系列结果,因为与经验认识违背,使他放弃了最后结论.但是从客观上为非欧几何的创立提供了极有价值的思想方法,开辟了一条不同于前人的新途径.其后瑞士数学家兰伯特(Lambert1728-1777)所做的工作与萨凯里相似.他也考察了一类四边形,其中3 个角为直角,而第5 个角有3 种可能性:直角、钝角和锐角.他同样在锐角假设下得到“三角形的面积取决于其内角和;三角形的面积正比于平角与内角和的差.他认为只要一组假设相互没有矛盾,就提供了一种几何的可能.著名的法国数学家勒让德(A.M.Legendar1752-1833)对平行公设问题也十分关注,他得到的一个重要定理:“三角形内角之和不能大于两直角”.这预示着可能存在着一种新几何.19 世纪初,德国人萨外卡特(schweikart 1780-1859)使这种思想更加明朗化.他通过对“星形几何”的研究,指出:“存在两类几何:狭义的几何(欧氏几何)星形几何.在后一个里面,三角形有一个特点,就是三角形内角之和不等于两直角”.1.2.2 非欧几何的诞生前面提到的一些数学家尤其是兰伯特,都是非欧几何的先驱,但是他们都没有正式提出一种新几何并建立其系统的理论.而著名的数学家高斯(Gauss 1777-1855)、波约(Bolyai 1802-1860)、罗巴切夫斯基(Lobatchevsky1793-1856)就这样做了,成为非欧几何的创始人.高斯是最早指出欧几里得第五公设独立于其他公设的人.早在1792 年他就已经有一种思想,去建立一种逻辑几何学,其中欧几里得第五公设不成立.1794 年高斯发现在他的这种几何中,四边形的面积正比于2 个平角与四边形内角和的差,并由此导出三角形的面积不超过一个常数,无论其顶点相距多远.后来他进一步发展了他的新几何,称之为非欧几何.他坚信这种几何在逻辑上是无矛盾的,并且是真实的,能够应用的,为此他还测量了3个山峰构成的三角形内角,他相信内角和的亏量只有在很大的三角形中才能显露出.但他的测量因为仪器的误差而宣告失败.遗憾的是高斯在生前没有任何关于非欧几何的论著.人们是在他逝世后,从他与朋友的来往函件中得知了他关于非欧几何的研究结果和看法.匈牙利青年数学家波约在研究欧几里得第五公设的基础上建立了一种新几何,他称之为“绝对空间中的几何”,并写了一篇26 页的论文《绝对空间的科学》.本论文出版时作为附录附于其父的书《为好学青年的数学原理论著》.当时的波约已建立起非欧几何的思想,并且相信新几何不是自相矛盾的,在1823-11-23 给他父亲的信中,波约写道:“我已得到如此奇异的发现,使我自己也为之惊讶不止”[1],在非欧几何的3 个发明人中,只有罗巴切夫斯基最早且系统地发表了自己的研究成果.罗巴切夫斯基曾卓越的指出:“直到今天,几何学中的平行线理论还是不完善的,从欧几里得时代以来,两千多年来徒劳无益的努力,促使我们怀疑在概念本身之中并未包括那样的真实情况,它是大家想要证明的,也是可以像别的物理规律一样单用实验(如天文检测)来检验.最后,我肯定了推测的真实性,而且认为困难的问题完全解决了”,“不论是如何给出的,只可以认为是说明,而且数学证明的完整意义不是不应该获得尊重的”[2].他的工作是在前人的基础上,引用与欧氏第五公设相矛盾的命题,即直线外1 点可作2 条平行线为假设,并且把他同欧氏几何中其它公设和公理相联系.经过推理后,得出3 个结论:(1)用欧氏几何其它公设和公理不能证明欧氏第五公设,即第五公设是独立的;(2)与第五公设相矛盾的公设同欧氏几何其它公设、公理相结合,展开一系列推理,获得了许多在逻辑上无矛盾的定理,构成了不同于欧氏几何的新的几何学;(3)这种逻辑上无矛盾的几何学的真理性同物理学中的定理一样,只能凭实验,例如用天文观测来检验.这3条结论显然与欧氏几何不同,是一种全新的几何体系,是罗氏独创性思维的结晶.他的结论是在1826 年2 月的一次学术报告上以《简要叙述平行定理的一个严格证明》为题报告的.由于罗巴切夫斯基对非欧几何的特殊贡献,人们把这种几何称为罗氏几何.1.2.3 非欧几何的发展与确认非欧几何要获得人们的普遍接受,需要确实的建立非欧几何自身的无矛盾性和现实意义.罗巴切夫斯基终其一身努力最后并没有实现这个目标.1854 年,黎曼(G.F.B.Riemann 1826-1866)摆脱高斯等前人把几何对象局限在3 维欧几里得空间的曲线和曲面的束缚,从维度出发,建立了更一般的抽象几何空间.黎曼仿照传统的微分几何定义流形上2 点之间的距离、流形上的曲线和曲线之间的夹角.并以这些概念为基础,展开对n 维流形几何性质的研究.在n 维流形上他也定义类似于高斯在研究一般曲面时刻画曲面弯曲程度的曲率.他指出对于3 维空间,有以下3 种情形:(1)曲率为正常数;(2)曲率为负常数;(3)曲率恒等于0.黎曼指出后2 种情形分别对应于罗巴切夫斯基的非欧几何和通常的欧氏几何学,而第一种情形则是黎曼本人的创造,它对应于另一种非欧几何学.黎曼创造的几何中的一条基本规定是:在同一平面内任何2 条直线都有公共点(交点).在黎曼几何学中不承认平行线的存在.它的另一条公设讲:直线可以无限延长,但总的长度是有限的.黎曼几何的模型是一个经过适当“改进”的球面.19 世纪70 年代以后,意大利数学家贝尔特拉米、德国数学家克莱茵和法国数学家庞加莱等人先后在欧几里得空间中给出了非欧几何的直观模型,从而揭示出非欧几何的现实意义.贝尔特拉米的模型是一个叫“伪球面”的曲面,它由平面曳物线绕其渐近线旋转一周而得.贝尔特拉米证明,罗巴切夫斯基平面片上的所有几何关系与适当的“伪球面”片上的几何关系相符合:也就是说,对应于罗巴切夫斯基几何的每一断言,就有一个伪球面上的内蕴几何事实.这使罗巴切夫斯基几何立刻就有了现实意义.克莱茵的模型比贝尔特拉米的简单明了.在普通欧氏平面上取1 个圆,并且只考虑整个圆的内部.他约定把圆的内部叫“平面”,圆的弦叫“直线”(根据约定将弦的端点除外).可以证明,这种圆内部的普通(即欧氏)几何事实就变成罗巴切夫斯基几何的定理,而且反过来,罗巴切夫斯基几何中的每个定理都可以解释成圆内部的普通几何事实.在克莱茵之后,庞加莱也对罗巴切夫斯基几何给出了模型:在欧氏平面内划1 条直线,而使之分为上、下2 个平面,把不包括这条直线在内的上半平面作为罗氏平面,其上的欧氏点当作罗氏几何的点,把以该直线上任一点为中心,任意长为半径所做出的半圆作为罗氏几何的直线,然后对如此规定了的罗氏元素一一验证罗氏几何诸公理全部成立.这样一来,如果罗氏系统在今后出现了正、反2 个相互矛盾的命题的话,则只要按上述规定之几何元素之间的对应名称进行翻译,立即成为相互矛盾的2 个欧氏几何定理,从而欧氏几何就有矛盾了.因此,只要承诺欧氏几何是无矛盾的,那么罗氏几何一定也是相容的,这就把罗氏几何的相容性证明通过上述庞家莱模型转化为欧氏系统的相容性证明.由于人们承认欧氏几何是相容的,因此,罗氏几何也是相容的.这样一来,就使非欧几何具有了至少与欧氏几何同等的真实性.至此,历经2 000 余a,非欧几何学作为一种几何的合法地位可以说充分建立起来了,也真正获得了广泛的理解,人们最初的愿望终于变成了现实.2 非欧几何发展史的启示非欧几何的诞生,是自希腊时代以来数学中一个重大的革新步骤.在这里我们将沿着事物的历史发展过程来叙述这一历史的重要意义.M.克莱茵(M. Klein)在评价这一段历史的时候说:“非欧几何的历史以惊人的形式说明数学家受其时代精神影响的程度是那么厉害.当时萨凯里曾拒绝过欧氏几何的奇异定理,并且断定欧氏几何是唯一正确的.但在一百年后,高斯、罗巴切夫斯基和波约满怀信心地接受了新几何”.2.1 对数学学科本身2.1.1 数学发展的相对独立性通过逻辑演绎法建立的非欧几何体系为数学的发展提供了一种模式,使人们清楚地看到数学可以有自己的逻辑体系存在,从而独立发展.数学发展的相对独立性突出表现为:数学理论的发展往往具有超前性,它可以独立于物理世界而进行,可以超前于社会实践,并反作用于社会实践,推动数学乃至于整个科学向前发展.19 世纪前,数学始终与应用数学紧密结合在一起,即数学不能离开实用学科而独立发展,研究数学的最终目的是为了解决实际问题.但是非欧几何第一次使数学的发展领先于实用科学,超越人们的经验.非欧几何为数学创造了一个全新的世界:人类可以利用自己的思维,按照数学的逻辑要求自由自在的进行思考.于是数学被认为应当是那些并不是直接地或间接地由于研究自然界的需要而产生出来的任意结构.这种观点逐渐被人们了解,于是造成了今天的纯粹数学与应用数学的分裂[1].2.1.2 数学的本质在于它的充分自由非欧几何的创立,使一直为人们意识到但未曾清楚地认识的区别呈现出来了即数学空间与物理空间的不同.数学家创造出几何理论,然后由此决定他们的空间观.这种建立在数学理论基础上的空间观、自然观,一般并不能否定客观世界的存在等内容,它仅仅强调这样一些事实:人们关于空间的判断所获得的一系列结论纯粹是自己的创造.物质世界现实与这种现实的理论,永远是两回事.正因为如此,人类探索知识、建立理论的认识活动才永远没有尽头.非欧几何的创立使人们认识到数学是人的精神的创造物,而不是对客观现实的直接临摹,这样就使数学获得了极大的自由,同时也使数学丧失了对现实的确定性.数学从自然界和科学中解脱出来,继续着它自己的行程.对此,M.克莱茵说:“数学史的这一阶段,使数学摆脱了与现实的紧密联系,并使数学本身从科学中分离出来了,就如同科学从哲学中分离出来,哲学从宗教中分离出来,宗教从万物有灵论和迷信中分离出来一样.现在可以利用乔治.康托的话了:‘数学的本质在于它的充分自由’”.2.1.3 几何观念的更新非欧几何的出现打破了欧氏几何一统天下的局面,使几何学的观念得到更新.传统欧氏几何认为空间是唯一的,而非欧几何的出现打破了这种观念,促使人们对欧氏几何乃至整个几何学的基础问题作深入探讨.2.2.1 非欧几何是敢于向传统挑战、勇于为科学献身的人类精神的产物高斯、波约、罗巴切夫斯基几乎同时发现了非欧几何,但3 人对待新几何的态度是不同的.高斯很早就意识到了新几何的存在,但他没有向世人公布他的新思想,他受康特(Kant)唯心思想的影响,不敢向传统几何学界达2 000 a 之久的欧氏几何挑战,以致推迟了非欧几何的诞生.波约致力于平行公设的研究,终于发现了新几何.这其中还有一个故事,当高斯决定将自己的发现秘而不宣时,波约却急切的想通过高斯的评价将自己的研究公诸于世,然而高斯回信给他的父亲F.波约中说:“夸奖他就等于称赞我自己.整篇文章的内容,你儿子采取的思路和获得的结果,与我在30 至35 年前的思考不谋而合”[3],波约对高斯的回答深感失望,认为高斯想剽窃自己的成果,特别是在罗巴切夫斯基关于非欧几何的著作出版后,他更决定从此不再发表论文.罗巴切夫斯基在1826 年公开新几何思想后,并没有得到同代人的理解与赞扬,反而遭到讽刺和攻击,“可是没有任何力量可以动摇罗巴切夫斯基的信心,他像屹立在大海中的灯塔,惊涛骇浪的冲击,十足显出他刚毅的意志,他一生始终为新思想而斗争[4]”.在他双目失明时,还口授完成了《泛几何学》.3 人们发现新几何的过程启示我们:只有突破了对传统、对权威的迷信,才能充分发挥科学的创造性;只有不畏艰难困苦,勇于为科学献身,才能追求、捍卫超越时代的真理.一般认为高斯、波约、罗巴切夫斯基3 人们同时发现了新几何,这是人们对历史的公正,但人们更喜欢称新几何为罗氏几何,这正是人们对罗巴切夫斯基为科学献身精神的高度赞扬.2.2.2 非欧几何精神促使人们树立宽容、包容一切的产物非欧几何的创立,解放了人类思想,新见解、新观点不断涌现,“数学显现为人类思想的自由创造物”[5].数学的发展使康托由衷的说道:“数学的本质在于其自由”.这种思想活跃而且民主的艺术气氛,使数学以前所未有的速度向前发展.非欧几何曲折的创建历程及其所带来的数学的发展,使人们意识到自由创造、百家争鸣对科学发展的重要性,促使人们树立宽容、包容一切的精神与美德[6].2.3 哲学思想方面2.3.1 认识论的变革法国哲学家、数学家彭加莱(Henri Poincare)说过[7]:非欧几何的发现,是认识论一次革命的根源.简单讲,人们可以说,这一发现已经胜利的打破了那个为传统逻辑所要求的,束缚住任何理论的两难论题:即科学的原理要么(感官观察的事实).他指出:原理可能是简单的任意约定,但是这些约定决不是同我们的心灵和自然界无关的,它们只能靠着一切人的默契才能存在,它们并且紧密地依赖着我们所生活的环境中的实际外界条件.事实上正是由于这一点,对于探索未知或目前无法感知的事物,我们可对自然界的认识作某种“默契约定”,这是认识一切事物的开始和基础.另外,我们在理论评判中,放弃非彼即此的评判,爱因斯坦就说过[8]:这种非彼即此的评判是不正确的.这些评判家、数学家的评判无疑是非欧几何创立后,其对思想、理论建立,特别是对认识论有最为直接的影响;更进一步的近代的理论和技术的进步均离不开它的内在影响,像“相对论”的产生、特别是对时空的进一步认识,集合论、现代分析基础、数理逻辑、量子力学等学科建立与发展均可以看成是非欧几何的直接结果.非欧几何的创立所产生的震荡至今余波未消[9,10].2.3.2 打破人类的传统思维方式分析和评价一种理论的首要依据应该是看其是否有“相容性”,即它是否有或会得出自相矛盾的结论.如果一个理论尚不能“自圆其说”,说明这一理论要么还只是人类经验的一种简单表述和列举,还没有进化到“理论”的高度;要么至少还需要进一步完善和改进.本来非欧几_何与欧氏几何理论建立的前提是矛盾的,而欧氏几何已被普遍接受.是否接受非欧几何势必产生这样的问题,矛盾的前提是否一定能够导出矛盾的结果?传统的思维方式认为这是一定的,即矛盾的前提必然导致矛盾的结果.接受非欧几何就意味着要冲破这一传统思维方式的束缚.随着时间的推移,特别是非欧几何的成果的广泛应用,使人们认识到:我们在建立理论的过程中不能保证矛盾的前提一定能导出矛盾的结果.因此,在理论的建立过程中,相容性是必须具备的[11],特别是在导出某个结论的过程中,我们必须清醒的认识到建立的理论体系是否具有无矛盾性、是否具有排中性.2.4 对数学科研者2.4.1 勇敢面对在科学探索路途上的暴风雨在科学探索的征途上,一个人经得住一时的挫折和打击并不难,难的是勇于长期甚至终生在逆境中奋斗.罗巴切夫斯基的新学说,违背了2 000 多a 来的传统思想,动摇了欧氏几何“神圣不可侵犯”的权威基础,同时也违背了人们的“常识”.他的学说一发表,社会上的嘲弄、攻击,甚至侮辱、谩骂,暴雨般地袭来:科学院拒绝接受他的论文;大主教宣布他的学说是“邪说”;大多数的权威们称罗巴切夫斯基的学说是“伪科学”,是一场“笑话”;即使那些心肠比较好的人最多也只能抱着“对一个错误的怪人的宽容和惋惜态度”;连不少著名的文学家也起来反对这种新的几何,如德国诗人歌德,在他的名著(浮士德)中写下了这样的诗句:“有几何兮,名曰:‘非欧’,自己嘲笑,莫名其妙”.面对种种攻击、嘲笑,罗巴切夫斯基毫不畏惧,寸步不让,他像屹立在大海中的灯塔,表现出一个科学家“追求科学需要的特殊勇敢”.罗巴切夫斯基坚信自己学说的正确性,为此奋斗一生.从1826 年发表了非欧几何体系后,又陆续出版了《关于几何原本》等8本著作.在他逝世前1 a,他的眼睛差不多瞎了,还口述,用俄、法2 种文字写成他的名著《泛几何学》.罗巴切夫斯基就是在逆境中奋斗终生的勇士.同样,一名数学工作者,特别是声望较高的学术专家,正确识别出那些已经成熟的或具有明显现实意义的科技成果并不难,难的是及时识别出那些尚未成熟或现实意义尚未显露出来的科学成果.数学的发展决不是一帆风顺的,在更多的情况下是充满犹豫、徘徊,要经历艰难曲折甚至会面临更多危机的.我们每一位科学工作者,既应当作一名勇于在逆境中顽强点头的科学探索者,又应当成为一个科学领域中新生事物的坚定支持者.2.4.2 正确对待数学领域里的成就数学是一门历史性或者说积累性很强的学科.重大的数学理论总是在继承和发展原有理论的基础上建立起来的,它们不仅不会推翻原有的理论,而且总是包含原先的理论.如非欧几何可以看成是欧氏几何的拓广.因此,有的数学史家认为“在大多数的学科里,一代人的建筑为下一代人所拆毁,一个人的创造被下一个人所破坏.惟独数学,每一代人都在古老的大厦上添加一层楼”[12].克莱茵在考察第五公设研究的历史特别是从18~19 世纪非欧几何由“潜”到“显”转变的100 多a 的历史过程时指出:“任何较大的数学分支或较大的特殊成果,都不会只是个人的工作,充其量,某些决定性步骤或证明可以归功于个人.这种数学积累特别适用于非欧几何”.事实上,自从《几何原本》以后到19 世纪,第五公设问题就像一块磁石一样广泛地吸引和激励着各个时代有才华的数学家为之奋斗.这就形成了一个在科学史上时间跨度最长、成员最多,并以传播和研究第五公设为范式的数学共同体.在这个共同体中,数学家相互交流思想,交换研究成果,对研究成果进行评议,形成不断竞争和激励的体制.罗巴切夫斯基也是从前人和自己的失败得到启迪,使他大胆思索问题的相反提法:可能根本就不存在第五公设的证明.于是,他便调转思路,着手寻求第五公设不可证的解答.罗巴切夫斯基正是沿着这个途径,在试证第五公设不可证的过程中发现一个新的几何世界的.也可以说,罗氏几何的出现应归功与萨凯里、兰伯特等对第五公设的研究.在今天分支越来越细的数学领域里,精通多个领域的知识的数学家也越来越少.对此,数学科研者应团结,相互进行交流;用平和的心态对待已取得的成绩,不骄不躁.2.5 对数学教师和数学学习者2.5.1 在质疑问难中培养创新思维罗巴切夫斯基认为,作为一名优秀的数学教师,讲授数学必须叙述精确、严密,所有概念都应当完全清晰.因为在他看来,数学课程是以概念为基础的,几何学尤其如此.所以他在备课中,通过对欧氏几何的逻辑结构的全面思考,发现了其逻辑体系的缺陷,使他感到非常困惑.他决心在自己的教学实践中消除那些缺陷.后来他确实编写了一本几何教科书《几何学教程》(1883).他不仅在教材中形成并贯彻了他的非欧几何思想,而且他关于非欧几何的研究,始终是和教学活动相结合的.他关于非欧几何的许多定理都是在授课过程中推导出来的,在学生中交流、修改和完善的.我们可以肯定的说,他创立非欧几何的伟大成果是从几何教育改革的角度切入的,是一个数学教育家取得伟大突破的成功范例.正如数学史家鲍尔加斯指出的“罗巴切夫斯基希望建立起在教学法意义上无可指责的几何学”,“这是促使他改革新几何的重要原因”.“他对教学法的探讨,获得了出色的、开创几何学发展新阶段的、作为人类研究和征服周世界围新方法的科学结论”.所以作为一名21 世纪的数学教师,在平时的教学过程中要不断的学习这个时代的新的知识,要勇于质疑你已经掌握的知识;教学中要引导学生广开思路,重视发散思维;教师要精选一些典型问题,鼓励学生标新立异、大胆猜想、探索,培养学生的创新意识.2.5.2 在教学中训练学生的创新思维罗巴切夫斯基刚开始是循着前人的思路,试图给出第五公设的证明.在仅存下来的他的学生听课笔记中,就记载着他在1816-1817 学年度几何教学中给出的几个证明.但他很快就意识到证明是错误的.前人和自己的失败从反面启迪了他,使他大胆思索问题的相反提法:可能根本就不存在第五公设的证明.于是,他便调转思路,着手寻求第五公设不可证的解答.罗巴切夫斯基正是沿着这个途径,在试证第五公设不可证的过程中发现一个新的几何世界的.“学起于思,思源于疑”,我们在探索知识的思维过程总是从问题开始,又在解决问题中得到发展.教师不仅要善于设。

论非欧几何的诞生

论非欧几何的诞生

论非欧几何的诞生Non-Euclidean geometry又名非欧几里得几何,简称非欧几何。

通常意义的非欧几何,就是指罗氏几何和黎曼几何这两种几何。

非欧几何的发展源于2000多年前的古希腊著名数学家欧几里得的《几何原本》,其中的公式五“若一条直线与两直线相交,且若同侧所交两内角之和小于两直角,则两直线无限延长后必相交于该侧的一点。

”从古希腊时代开始到19世纪的2000对年来,数学家们始终对这条公设耿耿于怀,试图解决并证明它,但对第五公设既无法正面证明,也无法从反面推出矛盾。

从《几何原本》出现到19世纪初非欧几何问世,许多杰出的数学家提出了各种“证明”,然而结果却都是错误的。

因为所有这些“证明”中都默认了一条与第五公设相互等价的命题。

通俗地说所谓等价是指含义与本质完全一样只是表述的形式不同而已。

在长达两千年的漫长岁月中整个数学面貌已经焕然一新。

继解析几何和微积分诞生之后,新的数学分支纷纷脱颖而出。

无数困难问题得以解决。

许多数学家创立了复杂艰深的数学理论。

但是人们在看上去极其简单的第五公设问题面前却仍然一筹莫展。

大数学家们也不例外。

法国数学家达朗贝尔在1759年说。

第五公设问题是“几何原理中的家丑”。

18世纪,意大利的萨凯里提出用归谬法试图证明第五公设,萨凯里从四边形开始,如果角A和角B是直角,且AC=BD,容易证明角C等于角D,这样第五公设便等价于角C和角D是直角这个论断。

萨凯里还提出了钝角和锐角的假设,但是因为与经验认识违背,但是放弃了最后结论,但是从客观上为非欧几何的创立提供了极有价值的思想方法。

其后瑞士数学家兰伯特所作的工作与萨凯里相似,他也考察了一类四边形,其中3个角为直角,而第四个角有三种可能性:锐角,直角,钝角。

之后兰贝特否定了钝角假设,也没有轻率地做出锐角假设导致矛盾的结论。

他没有像萨开里那样囿于第五公设真实性的顽固想法,而是大胆对第五公设的可证明性提出了怀疑。

在他的思想中甚至包含了非欧几何学可以存的想法,这是观念上的一个重要冲破。

非欧几何的诞生

非欧几何的诞生

1.第五公设的疑问及其研究
人们主要从三个方面研究平行公理。 1. 试图给出新的平行线定义以绕开这个
困难; 2. 试图用比平行公理缺点更少的其他公
理取代它;(等价或包含); 3. 用其它9个公理或公设去证明它!
1.第五公设的疑问及其研究
在进行第二项工作的研究中,人们发现了 许多与第五公设等价的命题,证明其一便 相当于证明了第五公设。
数学欣赏
1.第五公设的疑问及其研究
欧氏几何的公理体系出现在欧几里 得的《几何原本》中,在其之后的2200 后,希尔伯特在《几何基础》加以完善。 其间,许多数学家作了许多公理体系的 完备性工作。
1.第五公设的疑问及其研究
在欧氏几何体系中,作为其基石的五 个公理以及五个公设中的前4个都是容易被 认同的。但是,对于第五公设,却没有那 么简单明了,它很像一条定理,而且很少 被使用,因为人们发现即使欧几里德本人 也尽量避免使用它。于是,《几何原本》 一问世,人们很快就希望能够消除这种困 惑。
比如:
平行公理:过直线外一点可以作唯一一条 直线与之平行;
三角形内角和定理:三角形内角和等于 180度。
1.第五公设的疑问及其研究
第三项问题得到的研究最多,人们 为此努力了两千多年,花费了无数数学 家的心血,但终究没有成功。
2.非欧几何的诞生
19世纪,德国数学家高斯、俄罗斯数学 家罗巴切夫斯基和德国数学家黎曼等人,在 用反证法研究第三项问题时,试图推出矛盾, 但却没有。即,假设第五公理不成立,结果 并不会出现矛盾!
数学欣赏
2.非欧几何的诞生
鲍 耶 (Bolyai﹐ Janos)
1802 年12月15 日生于匈牙 利特兰尼西瓦亚的科罗日 瓦 (Kolozsvar)( 今 罗 马 尼 亚 卢日);1860 年1 月17 日卒 于匈牙利毛罗什瓦萨尔海 伊 (今罗马尼亚特古穆列什)。

几何中的非欧几何和几何证明

几何中的非欧几何和几何证明

几何中的非欧几何和几何证明几何学作为数学的一个重要分支,研究着空间和形状的关系。

传统欧几何中,我们通常研究的是平面几何和立体几何,但在20世纪,人们开始发现了非欧几何的存在,它颠覆了我们对传统几何的认识并带来了新的思维方式。

非欧几何的出现不仅丰富了几何学的研究领域,也对几何证明提出了新的挑战。

一、非欧几何的基本概念非欧几何诞生于19世纪,它与欧几何最大的区别在于第五公设的不同。

在欧几何中,第五公设也被称为平行公设,它规定了通过一点外一直线上的平行线只有一条。

而在非欧几何中,第五公设被拓展了,提出了多种关于平行线的不同假设。

这就导致了非欧几何与欧几何有着不同的几何性质。

非欧几何的两个经典例子是椭圆几何和双曲几何。

椭圆几何是典型的非欧几何,它的特点是不存在平行线,任意两条直线都会相交。

而双曲几何则是另一种非欧几何,它的特点是存在无数条平行线,且相交角的和小于180度。

二、非欧几何的影响和应用非欧几何的提出对几何学的发展产生了深远的影响。

首先,非欧几何推动了数学的发展。

它挑战了传统几何的思维方式,促使数学家们重新思考几何的基本原理和公设。

这对后来的研究起到了积极的推动作用,并且促成了更加深入的几何学研究。

其次,非欧几何对物理学的发展也有一定的贡献。

爱因斯坦的广义相对论理论中,空间被看作是弯曲的,而非欧几何正是提供了一种新的模型来描述这种弯曲的空间,从而有助于解释物理现象。

因此,非欧几何为物理学的发展提供了新的视角。

此外,非欧几何还在现代通信、计算机图形学等领域得到了广泛应用。

在通信领域,非欧几何被用来研究信号传输中的误差控制和编码技术。

在计算机图形学中,非欧几何被应用于三维模型的建模和渲染,能够更加真实地反映物体之间的关系。

三、几何证明的挑战几何证明是几何学的重要部分,它通过推理和逻辑推断来证明几何定理的正确性。

在传统欧几何中,几何证明的过程通常基于欧几里德几何的公理和定理,逻辑推理比较简单明确。

然而,在非欧几何中,几何证明面临着更大的挑战。

非欧几何(Non-Euclidean.

非欧几何(Non-Euclidean.

非欧几何(Non-Euclidean geometry)简介福州大学林鸿仁非欧几何就是非欧几里得几何,是针对欧几里得几何而言的,非欧几何通常指的是罗巴切夫斯基几何和黎曼几何。

众所周知,素有“几何之父”之称的古希腊的数学家欧几里得( Euclid,希腊文:Ευκλειδης,约公元前330年-前275年)有一本传世之作叫《几何原本》,已经传了两千多年了。

其中的基本内容,至今还是我们孩子们学习的课程,包括《平面几何》和《立体几何》。

西方的几何学大概兴于公元前7世纪的古埃及,对古代埃及人来说,几何学就是“测地术”,几何是在测量地块中获得的,是一种经验的几何知识,所以大都十分零散杂乱,缺乏系统。

古希腊的欧几里得首先觉察到,很有必要对这些“上帝的杰作”进行整理,于是特地到古埃及的亚历山大,收集整理并于公元前3世纪写成《几何原本》这一巨著,开创了数学理论的系统化逻辑化的先河,除了使几何成为一门独立学科之外,也成为西方科学研究方法的典范。

欧几里得的《几何原本》全书共分13卷,包含了5条“公理”、5条“公设”、23个定义和467个命题。

在每一卷中,欧几里得都采用了完全不同的叙述方式,先提出公理、公设和定义,再将命题进行逻辑推理和证明。

他先后对直边形、圆、比例论、相似形、数、立体几何等进行系统的论述。

在这里,作为定义的基本概念,如点、线、面、直角等,已不是具体的图形或图像,而是抽象的一般概念;推演定理的方法,也尽量避开直观,而采用“三段论式”的逻辑方法。

欧几里得的成功之处在于,从一些被认为是不证自明的事实出发,通过逻辑演绎,用很少的几个公理公设,令人信服地推出了很多的定理,而且它们与现实世界又是一致的。

欧几里得建立的这一个几何学公理体系一直受到后世数学家的普遍称颂,被公认为数学严格性的典范。

因此,在相当长的历史时期里,人们一直把几何称为“欧几里得几何”简称“欧氏几何”,并把它奉为金科玉律。

但由于时代的局限,他的5条公设中的第5条一直被质疑。

非欧几何

非欧几何

非欧几何19世纪,由于各国数学家对欧几里得《几何原本≮五公设(见第五公设)的怀疑和探索,出现了许多不同于欧几里得几何的几何。

通常把这些称为非欧几何。

第一非欧几何——罗巴切夫基几何,就是在对平行公设的研究中诞生的。

罗巴切夫斯基是俄国数学家,1792年生于高尔基城的一个穷职员家庭。

他从小聪明好学,才思过人,15岁时以高材生的资格进入喀山大学,毕业即获硕士学位,后留校任教,历任教授、数学—物理系系主任、校长等职。

从1816年起,罗巴切夫斯基开始像他的前人一样尝试证明第五公设,但很快发现他的证明无法逃脱循环论证的错误。

于是他改变了研究方法。

罗巴切夫斯基首先提出两个不同的假设:(1)过直线AB外一点P只能作一条直线与AB不相交;(2)过直线AB外一点P不止作一条直线与AB不相交。

如采用(1)作公理,可以导出我们熟悉的欧几里得几何。

罗巴切夫斯基从(2)出发,推导出一系列前后一贯的命题,构成了逻辑上没有矛盾,但与欧几里得几何完全不同的另外一种几何。

罗巴切夫斯称这种新的几何系统为“虚几何学”。

1826年2月23日,俄国喀山大学物理—数学系的学术会议上,罗巴切夫斯基宣读了他的论文《几何原理概述及平行线定理的严格证明》,向被称颂为“几何学经典”的欧氏几何发出了挑战:“直到今天为止,几何学中的平行线理论是不完全的。

从欧几里得时代以来,两千年徒劳无益的努力,使我怀疑在概念(指…第五公设‟)本身之中,并未包含那样的真实情况!”1829—1830年他在《喀山学报》上发表《论几何基础》,这是世界上最早的非欧几何的文献;1837年他用法文发表了《虚几何学》;1840年用德文写他影响最大的专著《平行理论的几何研究》。

但由于罗巴切夫斯基的新学说背离了几千年的传统思想,动摇了欧氏几何“神圣不可侵犯”的权威,也违反了人们的“常识”,因此,他的学说一发表,就遭到社会上的攻击、侮辱和谩骂。

科学院拒绝接受他的论文,大主教宣布他的学说是“邪说”,有人在杂志上谩骂罗巴切夫斯基是“疯子”。

数学概览课程 第四章 数学发展中的非欧几何发展历程

数学概览课程  第四章 数学发展中的非欧几何发展历程
《几何原本》是一部在科学史上千古流芳的巨著。它不仅保存 了许多古希腊早期的几何学理论,而且通过欧几里得开创性的系统 整理和完整阐述,使这些远古的数学思想发扬光大。
它开创了古典数论的研究,在一系列公理、定义、公设的基 础上,创立了欧几里得几何学体系,成为用公理化方法建立起来 的数学演绎体系的最早典范。
预见到非欧几何的第二人鲍耶.在青年时代就醉心于第五公 设的证明.他不顾父亲的劝告,坚持研究,终于建立了非欧几何 .1823年11月3日,他高兴地写信告诉父亲:“我已从乌有中创 造了另一个新奇的世界.”当他父亲把鲍耶的研究成果写信告诉 高斯的时候,高斯感到十分吃惊,回信说:“这和我40年来沉思 的结果不谋而合.”鲍耶看到高斯的回信,大大刺伤了自己的自 尊心,反而怀疑高斯剽窃他的成果.从此消沉下去,不再研究这一 问题.
尽管萨开里没有证明欧几里得第五公设,但是他的讨论去告 诉人们,从逻辑上,如果更换欧几里得第五公设可能导致一些新 的几何现象。
萨凯里本想通过逻辑证明来排除钝角和锐角两种情况,从而 间接证明转角假设为真,即平行公设为真。结果他却得到了一个 没有矛盾的新几何体系——双曲几何。
但他却以“结论不合情理”而否认了,并在书末写到“欧式 几何无懈可击”。为什么呢?有两种说法。
此外,萨开里还在锐角假设下,导出 了过线外一点可以有多条直线与已知 直线平行。萨开里的推导是完全正确 的,但是他认为由锐角导出了什么矛 盾,这是错误的。事实上,无论是三 角形内角和小于180。或过线外一点 有多条直线与给定直线平行,这些现 象并不与第五公设之外的其他公设或 者公理矛盾。
萨开里在锐角假设下所导致的现象只是与通常人们的观念相 矛盾,而非逻辑上的矛盾。因此萨开里并没有证明欧几里得,第 五公设,最早指出这一点的是德国数学家克吕格尔。克吕格尔对 欧几里得第五公设能否由其他公设来证明产生了怀疑。

非欧几何的由来

非欧几何的由来

非欧几何的由来非欧几何的由来作者:彭林文章来源:《中学数学教学参考》点击数:5450 更新时间:2007-3-17在数学史乃至整个科学史中,很少有一个分支能像非欧几何一样对人类认识史发生如此直接的影响。

它的创立,不仅决定了近百年来数学许多领域的发展。

而且对现代人文学、宇宙学、物理学的进步以及人类时空观念的变革都产生深远影响。

正如伟大的物理学家爱因斯坦所指出的:“已经有大量的根据可以说:从非欧几何发展起来的思想是极富有成效的”。

1、第五公设问题的发生非欧几何的产生与著名的欧几里得第五公设密切相关,它是数学家们为解决这个问题而进行长期努力的结果。

公元前三世纪欧几里得( Euclid)在其著作《原本》中从一些被认为是不证直明的事实出发,通过逻辑演绎建立了第一个几何学公理体系一一欧几里得几何学。

这个理论受到后世数学家的普遍称颂,被公认为是数学严格性的典范。

但是人们感到欧氏几何中仍然存在着某些瑕疵,其中最使数学家们关注的是欧氏公理系统中的所谓“第五公设”一一若两条直线被一直线截得的一组同侧内角之和小于二直角,则若适当延长这两条直线必在和小于二直角的一侧相交。

数学家们普遍认为这条公理所说明的事实并不像欧几里得的其他公理那样显而易见,它们似乎缺少作为一条公理所必需的直明性。

因此尽管人们并不怀疑第五公设本身的真实性,但却怀疑它作为公理的资格。

此便发生了数学史上有名的第五公设问题。

2、证明尝试的失败于是以证明第五公设为目的的种种尝试出现了。

从《原本》出现到19世纪初非欧几何问世,许多杰出的数学家提出了各种“证明”,然而结果却都是错误的。

因为所有这些“证明”中都默认了一条与第五公设相互等价的命题。

通俗地说所谓等价是指含义与本质完全一样只是表述的形式不同而已。

曾经用来证明第五公设的等价命题有许多。

其中较简单的有芬恩( Fenn)1769年提出的:“两相交直线不能同时平行于第三条直线”还有英国普雷非尔(Playfair, 1748-1819)提出的“过直线外一点有且仅有一条直线与该直线平行”等等。

大学 数学专业 空间解析几何第五章 非欧几何简介 PPT

大学 数学专业 空间解析几何第五章  非欧几何简介 PPT

19世纪初,俄罗斯人罗巴切夫斯 基在否定第五公理的同时,假设其 反面之一:“过已知直线外一点, 可作多于一条的直线与已知直线平 行”,得到了一系列定理,并且认 为他得到了一门新的几何学。这是 过去2000年以来的重大突破。
π(α)
罗巴切夫斯基1826年2月11日宣布 自己建立了新的几何学之后,得到 了许多数学大家的嘲笑、讽刺,德 国诗人歌德也出来讽刺他。实际上, 罗巴切夫斯基的理论得到世界的认 可是在他去世几十年后的事了.
欧氏几何
欧氏几何在公元前300年就已产生。 欧几里德在他的名著《几何原本》中,以5 个基本假设为基础,把当时人类已经掌握的纷杂 的几何知识变成一个演绎系统,使用逻辑推理方 法,一共推出了465个定埋。 这个系统所依据的只是几个虽然没有加以证 明,但是看起来相当明显,并且合乎人类经验的 假设。这几个“不证自明”的事实叫做公理 (axioms)。
1854年黎曼(德, 1826-1866)《关于 几何基础的假设》
(黎曼非欧几何)

(罗氏几何)
(欧氏几何)
椭圆几何 双曲几何 抛物几何
A+B+C=π
第五平行公理的研究(公元前3世纪至1800年)
欧几里得
普莱菲尔(苏格兰, 1748-1819) 勒让德(法, 1752-1833)
平行公理
A
这个平行公理在所有公理之中是最不明显的, 所以数学家或是对数学有兴趣的人便想从其他的 公理去推得平行公理。 而这努力延持了两千年, 后来证明这是不可能的,于是有了非欧几何学的 发现,这在人类思想史上是非常特别、有意思的 事实,是西方数学和中国数学不同的地方。
这五个公理是
1. 两点间必可连一条直线; 2. 直线可以任意延长; 3. 已知圆心及半径可作一圆; 4. 凡直角皆相等;

非欧几何PPt

非欧几何PPt
1777 - 1855
2012-6-1
6
高斯的生平
C.F,Gauss 是德国著名数学家、物理 学家、天文学家、大地测量学家。他有 数学王子的美誉,并被誉为历史上最伟 大的数学家天赋,据载他9岁时,用很 短的时间计算出了小学老师布置的任务: 对自然数从1到100的求和。但是据更 为精细的数学史书记载,高斯所解的并 不止1架到100那么简单,而是 81297+81095+….+100899(公差198, 项数100)的一个等差数列。
3
非欧几何的诞生
欧几里得第五公理是说:过已知直线外 一点,有且只有一条直线与已知直线平 行。 19世纪初,俄罗斯人罗巴切夫斯基在 否定第五公理的同时,假设其反面之一: “过已知直线外一点,可作多于一条的 直线与已知直线平行”,得到了一系列 定理,并且认为他得到了一门新的几何 学。这是过去2000年以来的重大突破。
非欧几何
2012-6-1
1
非欧几里得几何
Non-Euclidean geometry 非欧几里 得几何是一门大的数学分支,一般来讲, 它有广义、狭义、通常意义这三个方面 的不同含义。所谓广义是泛指一切和欧 几里得几何不同的几何学,狭义的非欧 几何只是指罗氏几何,至于通常意义的 非欧几何,就是指罗氏几何和黎曼几何 这两种几何。
2012-6-1
2
非欧几何的诞生
最先认识到非欧几何是一种逻辑上相容 并且可以描述物质空间、像欧式几何一 样正确的新几何学的是高斯。但是高斯 害怕这种理论会遭到当时教会力量的打 击和迫害不敢公开发表了自己的看法, 也是在书信中向自己的看法,也不敢站 出来公开支持罗巴切夫斯基、鲍耶他们 的新理论。
2012-6-1
2012-6-1 7

并不神秘的非欧几何,它究竟讲的是什么?今天带你搞懂

并不神秘的非欧几何,它究竟讲的是什么?今天带你搞懂

并不神秘的非欧几何,它究竟讲的是什么?今天带你搞懂欧氏几何是人类创立的第一个完整的严密的(相对而言)科学体系。

它于公元前三世纪由古希腊数学家欧几里得完成,欧洲数学2000年发展史,几乎有四分之三的时间里欧氏几何一统天下,对科学和哲学的影响极其深远。

直到魏尔斯特拉斯发起的分析算术化运动使代数从欧氏几何中完全脱离以及非欧几何的诞生才结束了欧氏几何的统治地位。

其中,非欧几何的诞生影响着现代自然科学、现代数学和数学哲学的发展,今天我们就来谈一下非欧几何与发展。

欧氏几何第五公设问题掀起的风波欧几里得的《几何原本》标志着非欧几何的诞生,在《几何原本》里,欧几里得给出了 23 条定义、5条公理、5条公设,由此推证出48个命题。

公理是指在任何数学学科里都适用的不需要证明的基本原理,公设则是几何学里的不需要证明的基本原理。

近代数学则对此不再区分,都称“公理”。

这五大公设中,由于第五公设的内容和叙述比前四条公设复杂,所以引起后人的不断研究和探讨。

因为前四条公设都可以用《几何原本》中的其余公设、公理和推论证明,而人们始终相信欧氏几何是物理空间的正确理想化,所以众多数学家就尝试用前4个公设、5个公理以及由它们推证出的命题来证明第五公设,然而都没有成功。

第五公设难题:如果一条线段与两条直线相交,在某一侧的内角和小于两直角和,那么这两条直线在不断延伸后,会在内角和小于两直角和的一侧相交。

论证的不成功引发了数学家的疑义,数学界由此开始了对“第五公设难题”的讨论。

数学家还尝试用更简单、明畅的语言来叙述这条公设,从而更好地理解它并解决它,古希腊数学家普罗克鲁斯在公元5世纪就曾经试图重现陈述它,然而这些替代性陈述效果并不比原来的文字更好。

直到 18 世纪普莱菲尔才算总结出一个比较简单的替代性公设:过已知直线外一点能且只能作一条直线与已知直线平行”。

(我们中学教材就常用这个叙述形式来替代第五公设。

)从公元前三世纪一直到公元十八世纪期间,近2000 年的时光过去,整个数学体系已经初具雏形。

非欧几何与极限思想3

非欧几何与极限思想3

罗氏几何的五条公设:
(1)由任意一点到另外任意一点可以画直线。 (2)一条有限直线可以继续延长。 (3)以任意点为心及任意的距离可以画圆。 (4)凡直角都彼此相等。 (5)过直线外的一点至少可以引两条直线与已 知直线平行。
8
非欧几何与相对论
我们的 宇宙是 什么样 的空间?
适用于 一种什 么样的 几何理 论?
球面三角形面积:
公式改写: 这个等式的左端称为球面三角形的角超,它反映出球面上的几何与平面几何的 差距。 在平面几何中三角形三内角之和等于 ,角超等于零。 在球面上的几何 中角超大于零。 不难看出当球面半径R无限增大时,球面逐渐趋向于平面, 越来越小,即 三角形的角超越来越小,球面三角形逐渐趋向于平面三角形,球面几何的性质 逐渐接近于平面几何的性质。所以我们可以说: 当球面半径趋向于无穷大时,球面上的几何以平面几何为极限。
宇宙还 是3维 空间吗?
宇宙应该使用一种非欧几何,爱因斯坦广义相对论
P
P
P
圆C是一个非欧平面
圆内任一点z1都是 非欧平面内的点
圆上任一点 2都是无穷远点 z
非欧几何的魅力
欧式几何经常被描绘成封闭的和有限的,它避免了无穷。希腊人回避无穷, 认为无穷是不完美的、未完成的,因而是不可想象的,它毫无形状,容易混 乱。而物体 的有限性,确定性,为该物体注入了个性并使之完美。
非欧几何的产生
1、 欧式几何---平面几何;
2、非欧几何---球面几何;
2.1、广义非欧:泛指一切和欧式不同的几何; 2.2、狭义非欧:罗氏几何; 2.3、通常意义非欧:罗氏几何和黎曼几何;
欧式几何
第五公设---平行 公设:若两直线 与第三直线相交, 且在某一侧所成 的两个同侧内角 之和小于两直角, 则将这两直线向 该侧适当延长后 必何 的诞生
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

05级数教
37号
席先贵
式:
cot (a) cot (c)sin A, sin A cos B sin (b), sin (c) sin (a)sin (b).
r k

r k
非欧几何的其他发明人
高斯是最先认识到非欧几 何是一种逻辑上相容并且 可以描述物质空间,像欧氏 几何一样正确的新几何,但 他未发表过任何有关非欧 几何的论著,主要是担心世 俗的攻击.
罗巴切夫斯基几何的其他结果
• 三角形三内角之和小于两直
角,假如三角形变大,使它 的所有三条高都无限增长, 则它的三个内角全部趋向于 零; • 如果两个三角形的三个角相 等,它们就全等; • 不存在面积任意大的三角形; • 圆周长p不于半径r成正比, 而是更迅速地增长,并符合 下面的公式:
p k (e e ) • 罗巴切夫斯基的非欧三角公
第五公设是论及平行线的,它 说的是:如果一直线和两直线 相交,且所构成的两个同侧内 角之和小于两直角,那么,把 这两直线延长,它们一定在那 两内角的一侧相交。
罗巴切夫斯基非欧几何的 基本思想是,即用与欧几里 得第五公设相反的断言:通 过直线外一点,可以引不止 一条而至少是两条直线平 行于已知直线,作为替代公 设,由此出发进行逻辑推导 而得出一连串新几何学的 定理.如(图1).
另一位对非欧几何有研究 的是匈牙利青年波约,
罗巴切夫斯基
当罗巴切夫斯基一开 始公布他的这些新几 何学的定理时,的确 遭到了高斯所预料的 “波哀提亚人的叫 嚣”,面对种种攻击, 罗巴切夫斯基表现出 比高斯更有勇气.他 坚信自己是正确的, 他同时还坚信这种新 的几何终有一天“可 以像别的物理规律一 样用实验来验证”.
非欧几何的诞生
1 宣读他的非欧几何论文的日子。
1893年,在喀山大学树立起了 世界上第一个为数学家雕塑的 塑像。这位数学家就是俄国的 伟大学者、非欧几何的重要创 始人——罗巴切夫期基。罗巴 切夫斯基(Никола́ й Ива́ нович Лобаче́вский, 英文串法 Lobachevsky/Lobachevski i)(1792年12月1日—1856年 2月24日),俄罗斯数学家, 非欧几何的早期发现人之一。
相关文档
最新文档