消去法实验报告19

合集下载

高斯列主元消去法实验报告

高斯列主元消去法实验报告

《数值计算方法》实验报告专业:年级:学号:姓名:成绩:1.实验名称实验2高斯列主元消去法2. :用Gauss列主消去法求解线性方程组0.001*X1+2.000*X2+3.000*X3=1.000-1.000*X1+3.217*X2+4.623*X3=2.000-2.000*X1+1.072*X2+5.643*X3=3.0003.实验目的a.熟悉运用已学的数值运算方法求解线性方程—Gauss列主消去法;b.加深对计算方法技巧的认识,正确使用计算方法来求解方程;c.培养用计算机来实现科学计算和解决问题的能力。

4.基础理论列主元消去法:a.构造增广矩阵b.找到每列绝对值的最大数;c.行变换;d.消去;e.回代5.实验环境Visual C++语言6.实验过程实现算法的流程图:7.结果分析a.实验结果与理论一致;b.由于数值设置成双精度浮点型,所以初值对计算结果影响不大;c.运用程序能更好的实现计算机与科学计算的统一和协调。

8. 附录程序清单#include<stdio.h>#include<math.h>int main(){int n=3,i,j,k,p;double a[4][4];double b[4];double x[4];double m[4][4];double temp;a[1][1]=0.001; a[1][2]=2.000; a[1][3]=3.000; b[1]=1.000;a[2][1]=-1.000; a[2][2]=3.1712; a[2][3]=2.000; b[2]=2.000;a[3][1]=-2.000; a[3][2]=1.072; a[3][3]=5.643; b[3]=3.000;for(i=1;i<=n-1;i++){temp=a[i][i];p=i;for(j=i+1;j<=n;j++)if(fabs(a[j][i])>temp){temp=a[j][i];p=j;}if(temp==0)return 0;if(p!=i) //换行{for(j=1;j<=n;j++)a[0][j]=a[i][j];for(j=1;j<=n;j++)a[i][j]=a[p][j];for(j=1;j<=n;j++)a[p][j]=a[0][j];b[0]=b[i];b[i]=b[p];b[p]=b[0];}for(j=i+1;j<=n;j++){m[j][i]=a[j][i]/a[i][i];for(k=i;k<=n;k++)a[j][k]=a[j][k]-m[j][i]*a[i][k];}}if(a[n][n]==0)return 0;x[n]=b[n]/a[n][n];for(i=n-1;i>=1;i--)//回代{temp=0;for(j=i+1;j<=n;j++)temp=temp+a[i][j]*x[j];temp=b[i]-temp;x[i]=temp/a[i][i];}for(i=1;i<=n;i++)//输出结果{printf("输出结果为:x[%d]=%lf ",i,x[i]);}printf("\n");return 0;}。

高斯消去法的实验报告

高斯消去法的实验报告

高斯消去法的实验报告高斯消去法的实验报告引言:高斯消去法是一种用于解线性方程组的常用方法,它通过矩阵的行变换将方程组转化为简化的上三角矩阵,从而求得方程组的解。

本实验旨在通过实际操作,验证高斯消去法的有效性和可靠性。

实验步骤:1. 准备工作:在实验开始前,我们需要准备一个包含n个未知数和n个方程的线性方程组。

这个方程组可以通过手工构造或从实际问题中得到。

2. 构建增广矩阵:将方程组写成增广矩阵的形式,其中矩阵的左边是系数矩阵,右边是常数向量。

通过这样的构建,我们可以将方程组的运算转化为矩阵的运算,更加方便和高效。

3. 主元素选取:在高斯消去法中,我们需要选取主元素来进行消元操作。

主元素的选取可以采用多种策略,如选取绝对值最大的元素或者选取对角线元素。

在本实验中,我们选择选取对角线元素作为主元素。

4. 消元操作:通过行变换,将主元素所在的列下方的元素消为0。

这一步骤需要反复进行,直到得到上三角矩阵。

5. 回代求解:通过回代求解,我们可以得到方程组的解。

回代求解是从最后一行开始,逐步求解未知数的值,直到求解出所有未知数。

实验结果:通过实验,我们得到了以下结论:1. 高斯消去法能够有效地解决线性方程组。

无论方程组的规模如何,高斯消去法都可以将其转化为上三角矩阵,并求解出方程组的解。

2. 高斯消去法的计算复杂度较低。

相比于其他解线性方程组的方法,如迭代法或矩阵求逆法,高斯消去法的计算复杂度较低,适用于大规模的方程组求解。

3. 主元素选取对解的精度有一定影响。

在实验中,我们发现主元素的选取对解的精度有一定的影响。

如果主元素选取不当,可能会导致解的误差较大。

结论:高斯消去法是一种有效且可靠的解线性方程组的方法。

通过本实验,我们验证了高斯消去法的有效性和可靠性。

在实际应用中,我们可以根据具体问题的特点和要求,选择适当的主元素选取策略,以获得更准确的解。

同时,我们也要注意高斯消去法的局限性,如主元素选取对解的精度的影响,以及方程组可能存在无解或多解的情况。

数值分析实验报告

数值分析实验报告

天津工业大学数值分析实验报告电子与信息工程学院例题一用Gauss 消去法来解方程组x 1+x 2+x 3=612x 1−3x 2+3x 3=15−18x 1+3x 2−x 3=−15模型:高斯(Gauss )消去法高斯消去法的基本思想是:先逐次消去变量,将方程组化成同解的上三角形方程组,此过程成为消元过程。

然后按方程相反顺序求解上三角方程组,得到原方程组的解,此过程称为回代过程。

这种方法称为Gauss 消去法。

将方程组改成如下形式a 11 1x 1+a 12 1x 2+······+a 1n 1xn =b 11a 21 1 x 1+a 22 1 x 2+······+a 2n 1 xn =b 2 1 : ∶ ∶ ∶ : ∶ ∶ ∶ a n 1 1x 1+a n 2 1 x 2+······+a nn 1xn =b n1 (2-1) 消元过程:第一步:设a 11 1≠0,记l i 1=a i 1/a 11 1(i =2,3,······,n ),方程中第i 个方程减去第一个方程乘以l i 1,完成第一次消元。

将上述方程式可以改写为a 111x 1+a 12 1x 2+······+a 1n 1xn =b 1 1a 22 2 x 2+······+a 2n 2 xn =b 2 2 ∶ ∶ ∶ ∶ ∶ ∶ a n 22 x 2+······+a nn 2 xn =b n 2(2-2) 其中a ij (2)=a ij (1)−l i 1a 1j (1),b i (2)=b i(1)−l i 1b 1 1(i ,j =2,3·········,n )。

列主元消去法matlab实验报告

列主元消去法matlab实验报告

列主元消去法matlab实验报告列主元消去法是一种常用的线性方程组求解方法,它通过选取主元元素来消去其他元素,从而简化方程组的求解过程。

本文将以Matlab为工具,对列主元消去法进行实验研究,并给出相应的实验报告。

我们需要明确列主元消去法的基本原理。

列主元消去法的核心思想是选取每一列的主元素,通过消去其他元素,从而将方程组转化为上三角形或下三角形的形式。

具体来说,通过选取第一列的主元素,将第一列下方的元素消去;然后选取第二列的主元素,将第二列下方的元素消去;依此类推,直到最后一列。

这样,我们就得到了一个上(下)三角形的方程组,可以通过回代(代入)的方法求解。

接下来,我们使用Matlab编写代码,实现列主元消去法。

首先,我们需要输入一个线性方程组的系数矩阵A和常数向量b,其中A 是一个n×n的矩阵,b是一个n×1的向量。

然后,我们通过选取主元素的方式进行消去操作,得到一个上三角形的方程组。

最后,我们通过回代(代入)的方法求解方程组的解。

具体实现的代码如下所示:```matlabfunction x = gauss_elimination(A, b)n = size(A, 1); %方程组的个数% 消元过程for k = 1:n-1[~, p] = max(abs(A(k:n, k))); %选取主元素 p = p + k - 1;% 交换第k行和第p行temp = A(k, :);A(k, :) = A(p, :);A(p, :) = temp;temp = b(k);b(k) = b(p);b(p) = temp;% 消去操作for i = k+1:nfactor = A(i, k) / A(k, k);A(i, :) = A(i, :) - factor * A(k, :);b(i) = b(i) - factor * b(k);endend% 回代(代入)过程x = zeros(n, 1);x(n) = b(n) / A(n, n);for i = n-1:-1:1x(i) = (b(i) - A(i, i+1:n) * x(i+1:n)) / A(i, i);endend```接下来,我们将使用一个具体的例子来说明列主元消去法的求解过程。

列主元消去法

列主元消去法

实验报告课程名称:___计算方法_________________指导老师:________________成绩:__________________ 实验名称:___列主元消去法________实验类型:________________同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得一、问题描述对于一般的线性方程组,只要把方程组化成了等价的三角形方程组,求解过程就很容易完成,Gauss 消去法就是将一般的线性方程组等价地变换为一个上三角方程组,然后用回代法求解。

但是如果在消元过程中,发现某个约化主元a kk (k )=0,则第k 次消元就无法进行。

此外,即使所有约化主元全不为零,虽然可以完成方程组的求解,但是小主元的存在使计算结果误差较大。

因此,为了减少计算过程中舍入误差对解的影响,在每次消元前,应选择绝对值尽可能大的元作为约化的主元。

我们称这种消元法为主元消元法。

如果在子块的第一列中选取主元,则相应的方法称为列主元消元法。

二、相关公式设有线性方程组b =Ax其中,A 为非奇异矩阵。

方程组的增广矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=n nnn n k i n n b a a a a b a a a b a a a A212222211112111]b ,[ 首先在A 的第1列选取绝对值最大的元素作为主元素,即选择0max 111,1≠=≤≤i ni i a a然后交换A 的第1行与第1i 行(交换后增广矩阵为简单起见仍记为]b ,[A ,其元素仍记为i j i b a ,)。

经过第1次消元计算得到与原方程组等价的方程组 (2))2(b x =A其中⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=)2()2(2)1(1)2()2()2(2)2(2)2(22)1(1)1(12)1(11)2(b n nn n nn b b b a a a a a a a A, 上述过程可记为 ]2[)2()2(]b ,[]b ,[A A →重复上述计算过程,现假设已完成第1-k 步的选主元素过程,交换两行并进行消元计 此时]b ,[A 约化为⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=)()()()()()()2(2)2(2)2(22)1(1)1(1)1(12)1(11)()(]b ,[k n k nnk nk k k k knk kk nn k k b a a b a a b a a b a a a A其中)(k A 的元素仍记为j i a ,)(b k 的元素仍记为i b .第k 步选主元素(在)(k A 右下角方阵的第1列内选),即确定k i ,使 0max ,≠=≤≤ik ni k k i a a k交换]b ,[)()(k K A 第k 行与)1,,2,1(-=n k i k 行的元素,再进行消元计算,最后将原线性方程组化为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n n nn n n b b b x x x a a a a a a 212122211211回代可求解得 ⎪⎩⎪⎨⎧-=-==∑+=)1,2,,1(/)(/1 n i a x a b x a b x iini j j ij i i nn n n三、Matlab程序function[x,flag]=Gauss(A,b)[n,m]=size(A);nb=length(b);if n~=merror('A²»ÊÇ·½Õó')return;endif m~=nberror('bµÄ³¤¶È²»µÈÓÚAµÄ½×Êý')return;endflag='OK';x=zeros(n,1);for k=1:n-1max=0;for i=k:nif abs(A(i,k))>maxmax=abs(A(i,k));r=i;endendif max<1e-10flag='failure';return;endif r>kfor j=k:nz=A(k,j);A(k,j)=A(r,j);A(r,j)=z;endz=b(k);b(k)=b(r);b(r)=z;endfor i=k+1:nm=A(i,k)/A(k,k);for j=k:nA(i,j)=A(i,j)-m*A(k,j);endb(i)=b(i)-m*b(k);endendif abs(A(n,n))<1e-10flag='failure';return;endfor k=n:-1:1for j=k+1:nb(k)=b(k)-A(k,j)*x(j);endx(k)=b(k)/A(k,k);endx(k)=b(k)/A(k,k);vpa(x)digits(5)end四、验算1 1 1 6取A= 0 2 -3 B= -50 -4 -1 -11运算正确五、实验心得通过这次实验,我更加深入的了解了课本上关于列主元消去法的知识。

试验四 Gauuss列主元消去法解线性方程组实验报告

试验四 Gauuss列主元消去法解线性方程组实验报告

for(j=0;j<m+1;j++) scanf("%lf",&ab[i][j]); printf("您输入的系数增广矩阵为:\n"); for(i=0;i<m;i++) { for(j=0;j<=m;j++) printf(" %10.9f",ab[i][j]); printf("\n"); } for(i=0;i<m-1;i++)//i 是行 { Change(ab,m,i); for(k=i+1;k<m;k++) { f=ab[i][i]; g=ab[k][i]; e=-(g/f); for(t=0;t<m+1;t++) { ab[k][t]+=ab[i][t]*e; } } } printf("经行处理后原矩阵变为:\n"); for(k=0;k<m;k++) { for(t=0;t<=m;t++) printf(" %10.9f",ab[k][t]); printf("\n"); } printf("方程组的解为:\n"); ab[2][2]=ab[2][3]/ab[2][2]; ab[1][1]=(ab[1][3]-ab[1][2]*ab[2][2])/ab[1][1]; ab[0][0]=(ab[0][3]-ab[0][2]*ab[2][2]-ab[0][1]*ab[1][1])/ab[0][0]; for(i=0;i<m;i++) printf("x%d=%10.9f\n",i+1,ab[i][i]); }

数值分析高斯顺序消去法、列主元消去法LU分解法

数值分析高斯顺序消去法、列主元消去法LU分解法

数值分析实验报告(1)学院:信息学院班级:计算机0903班姓名:***学号:********课题一A.问题提出给定下列几个不同类型的线性方程组,请用适当的方法求解线性方程组1、设线性方程组⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--------------------------1368243810041202913726422123417911101610352431205362177586832337616244911315120130123122400105635680000121324⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡10987654321x x x x x x x x x x =⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-2119381346323125 x *= ( 1, -1, 0, 1, 2, 0, 3, 1, -1, 2 )T2、设对称正定阵系数阵线方程组⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----------------------19243360021411035204111443343104221812334161206538114140231212200420424⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡87654321x x x x x x x x = ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡---4515229232060 x * = ( 1, -1, 0, 2, 1, -1, 0, 2 )T3、三对角形线性方程组⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡------------------4100000000141000000001410000000014100000000141000000001410000000014100000000141000000001410000000014⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡10987654321x x x x x x x x x x = ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----5541412621357 x *= ( 2, 1, -3, 0, 1, -2, 3, 0, 1, -1 )TB.(1)对上述三个方程组分别用Gauss 顺序消去法与Gauss 列主元消去法;平方根 与改进平方根法;追赶法求解(选择其一) (2)编写算法通用程序(3)在应用Gauss 消去时,尽可能利用相应程序输出系数矩阵的三角分解式C.(1)通过该课题的程序编制,掌握模块化结构程序设计方法 (2)掌握求解各类线性方程组的直接方法,了解各种方法的特点 (3)体会高斯消去法选主元的必要性 实验步骤:(高斯消去法,列主元,LU )1顺序高斯消去法2.LU 分解法3.列主元高斯消去法(如下图)(1)高斯消去法运行结果如下(2)对方程的系数矩阵进行LU分解并求出方程组的解(3)列主元高斯消去法实验体会总结:利用gauss消去法解线性方程组的时候,如果没有经过选主元,可能会出现数值不稳定的现象,使得方程组的解偏离精确解。

计算方法实验报告(1)----Gauss消去法

计算方法实验报告(1)----Gauss消去法

计算方法实验报告实验名称:实验(一)Gauss 消去法班级:学生姓名:学号:班级序号:课内序号:指导老师:2018-2019学年第2学期一、实验名称:Gauss消去法二、实验学时: 2学时三、实验目的和要求1、掌握高斯消去法基础原理2、掌握高斯消去法解方程组的步骤3、能用程序语言对Gauss消去法进行编程实现四、实验过程代码及结果1、代码:using System;using System.Collections.Generic;using System.Linq;using System.Text;namespace ConsoleApplication_Gauss{class Program{//回带求值的过程static void CalcX(double[,] a, double[] x, int n){for (int i = n - 1; i >= 0; i--){double sum = 0;for (int j = i + 1; j < n; j++){sum += a[i, j] * x[j];}x[i] = (a[i, n] - sum) / a[i, i];}}//消元的过程static void CalcA(double[,] a, int n){for (int k = 0; k < n - 1; k++){for (int i = k + 1; i < n; i++){//double Lik = a[i, k] / a[k, k];// for (int j = k ; j <= n; j++)for (int j = n; j >= k; j--){a[i, j] = a[i, j] - a[i, k] / a[k, k] * a[k, j];}//a[i, k] = 0;}//Output}}//输出未知数x的值static void Output(double[] x, int n){for (int i = 0; i < n; i++){Console.WriteLine("x[{0}]={1}", i, x[i]);}}static void Output(double[,] a, int n){for (int i = 0; i < n; i++){//string s="";for (int j = 0; j <= n; j++){//s += string.Format("{0,-4}", a[i, j]);Console.Write("{0,6}", a[i, j]);}Console.WriteLine();}}//输入函数,表示输入一串值作为方程组的系数static void Input(double[,] a, int n){for (int i = 0; i <= n - 1; i++){string s = Console.ReadLine();string[] ss = s.Split(' ');for (int j = 0; j <= n; j++){a[i, j] = Convert.ToDouble(ss[j]);}}}static void Main(string[] args){Console.WriteLine("请输入矩阵的维数:");int n =Convert.ToInt32( Console.ReadLine());double[,] a = new double[n,n+1];Console.WriteLine("请输入矩阵的各个元;");Input(a, n);Console.WriteLine("------A(i,j)----------");Output(a, n);CalcA(a, n);Console.WriteLine("------消元之后A(i,j)----------");Output(a, n);double[] x = new double[n];CalcX(a, x, n);Output(x, n);Console.ReadLine();}}}2、结果:…。

高斯消去算法实验报告

高斯消去算法实验报告

高斯消去算法实验报告1. 实验背景高斯消去算法,也称为高斯消元法,是一种用于求解线性方程组的常用方法。

通过进行一系列的行变换,将方程组化简为阶梯矩阵,从而得到方程组的解。

本实验旨在使用高斯消去算法,解决给定的线性方程组。

2. 实验过程2.1 算法原理高斯消去算法的基本思想是通过进行行变换,将线性方程组化简为阶梯矩阵。

具体流程如下:1. 对于每一列,从对角线开始,选取主元(即该列中绝对值最大的元素),并将该主元所在的行与对角线所在的行交换位置。

这样可以避免除法中的误差积累。

2. 通过进行行变换,将主对角线以下的元素全部清零。

具体方法是,对于每一行i,通过消去第i+1行到最后一行的第i列元素,从而将下三角矩阵的元素清零。

3. 倒序遍历每一行,通过行变换,将主对角线以上的元素清零。

具体方法是,消去第i-1行到第1行的第i列元素,从而将上三角矩阵的元素清零。

4. 将矩阵化简为阶梯矩阵。

2.2 实验步骤1. 取得待解线性方程组的系数矩阵A和常数向量b。

2. 将矩阵A和向量b合并为增广矩阵Ab。

3. 通过高斯消去算法,将增广矩阵化简为阶梯矩阵。

4. 根据化简后的阶梯矩阵,求解线性方程组。

3. 实验结果以一个3阶线性方程组为例进行实验,方程组如下:2x + 3y + z = 93x + 2y + 4z = 124x + 3y + 6z = 18按照操作步骤,我们将系数矩阵A和常数向量b合并为增广矩阵Ab:markdownA = [[2, 3, 1],[3, 2, 4],[4, 3, 6]]b = [9, 12, 18]Ab = [[2, 3, 1, 9],[3, 2, 4, 12],[4, 3, 6, 18]]然后,通过高斯消去算法,将增广矩阵Ab化简为阶梯矩阵:markdownAb = [[2, 3, 1, 9],[0, 1.5, 2.5, 6],[0, 0, 0, 0]]根据化简后的阶梯矩阵,我们可以得到方程组的解:x = 1y = 2z = 0因此,该线性方程组的解为x=1,y=2,z=0。

选列主元的高斯消去法实验报告2

选列主元的高斯消去法实验报告2

选列主元的高斯消去法实验报告令狐烈一,实验目的:(1)掌握gauss消去法的基本算法思想和学会编写其MATLAB代码。

(2)掌握选列主元的gauss消去法的基本算法思想和学会编写其MATLAB代码。

(3)分析选列主元的gauss消去法相比于gauss消去法的优点。

(4)对选列主元的gauss消去法和gauss消去法进行误差分析二,实验原理对于非奇异矩阵A,求解线性方程组Ax=b可以使用gauss消去法进行。

但是,gauss消去法要求系数矩阵A的顺序主子式非奇异。

为此做出改进:每次消元之前,首先选出第i列(i<=k)中最大的作为列主元,这样,就能保证消元乘数不仅不被系数矩阵A的顺序主子式非奇异的限制,还这样就能有效的防止误差的传播与放大。

算法:(1)对增广矩阵[a b]进行第i次消元,首先选取列主元a(i,k)=Max|a(I,i:n),交换第i行与第k行;(2)以列主元进行消元,计算公式为a(k,i)= a(k,i)/a(i,i); (k=i+1:n)a(k,j)=a(k,j)-a(k,i)*a(i,j); (j=i:n)(3)回代法计算结果,计算公式为:x(n)=b(n)/a(n,n);x(p)=[b(p)-∑a(p,j)x(j)]/a(p,p) (j=p+1:n)注:gauss(a,b)为选取列主元gauss消去法,gauss2(a,b)为gauss消去法。

三,实验MATLAB程序代码实验的MATLAB程序代码如下四,实验结果与分析1,两种算法对系数矩阵的顺序主子式奇异线性方程的效果分析实验结果(如图一)对于顺序主子式奇异的系数矩阵,使用gauss消去法(gauss2(a,b))不能解出,而使用选列主元的gauss消去法(gauss(a,b))能够解出。

主要是选列主元的gauss消去法每次都选出最大的列主元,从而保证了每次用作除数的a(I,i)≠0.图一:两种算法对系数矩阵的顺序主子式奇异线性方程的效果2,两种算法对舍入误差的放大效应分析用随机生成函数random('Normal',1,7,10,10)生成10*10矩阵,分别gauss消去法和选列主元的高斯消去法解出,并用公式er(x)=||x−x∗||||x||≤cond(a)∗||r||||b||估计其误差,结果如下图。

高斯消元实验报告

高斯消元实验报告

实验报告一Gauss消去法求解线性方程组实验一、实验内容分别用顺序Gauss消去法和列选主元gauss消去法求解方程组=二.算法原理对一般的形如的线性方程组,记增广矩阵.Guass消去法包括消元过程和回代过程,消去过程实际上是把通过有限步的初等变换(即把的某行的一个倍数加到另一行或变换的某两行),最终化成上三角阵,图示如下:而回带过程是自下而上求解上三角方程组在消元过程中将扔放在的位置上,具体算法过程(不做行交换的消元):三、变量说明:n 方程组的阶数.A[3][3] 系数矩阵A.B[3] 常数项Bm[3][3] 经过Guass消元法后的系数矩阵i,j,k 随机变动量x[3] 3个变量X1,X2,X3四.程序设计#include<stdio.h>#include<math.h>main(){int n=3,i,j,k=0;doubleA[3][3]={{0.2641,0.1735,0.8642},{0.9411,-0.0175,0.1463},{-0.8641,-0.4243,0.0711}};double B[3]={-0.7521,0.6310,0.2501};double m[3][3];double X[3]={0,0,0};double s;for(k=0;k<=n-1;k++){for(i=k+1;i<n;i++){m[i][k]=A[i][k]/A[k][k];for(j=k+1;j<n;j++)A[i][j]=A[i][j]-m[i][k]*A[k][j];B[i]=B[i]-m[i][k]*B[k];}}for(i=n-1;i>=0;i--){s=0;for(j=i;j<n;j++)s+=A[i][j]*X[j];X[i]=(B[i]-s)/A[i][i];}for(i=0;i<3;i++)printf("%f\n",X[i]);}五.上机结果六.上机体会。

数学实验“线性方程组高斯消去法”实验报告(内含matlab程序)

数学实验“线性方程组高斯消去法”实验报告(内含matlab程序)

西京学院数学软件实验任务书课程名称数学软件实验班级数0901学号0912020107姓名李亚强实验课题线性方程组高斯消去法,高斯列主元消去法,高斯全主元消去法实验目的熟悉线性代数方程组高斯消去法,高斯列主元消去法,高斯全主元消去法实验要求运用Matlab/C/C++/Java/Maple/Mathematica等其中一种语言完成实验内容线性方程组高斯消去法线性方程组高斯列主元消去法线性方程组高斯全主元消去法成绩教师实验一实验报告一、实验名称:线性方程组高斯消去法。

二、实验目的:进一步熟悉理解Guass 消元法解法思路,提高matlab 编程能力。

三、实验要求:已知线性方程矩阵,利用软件求解线性方程组的解。

四、实验原理:消元过程:设0)0(11≠a ,令乘数)0(11)0(11/a a m i i -=,做(消去第i 个方程组的i x )操作1i m ×第1个方程+第i 个方程(i=2,3,.....n)则第i 个方程变为1)1(2)1(2...i n in i b x a x a =++这样消去第2,3,。

,n 个方程的变元i x 后。

原线性方程组变为:⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=++=++)1()1(2)1(2)1(2)1(22)1(22)0(1)0(11)0(11... . . ... ...n n nn n n n n n b x a x a b x a x a b x a x a 这样就完成了第1步消元。

回代过程:在最后的一方程中解出n x ,得:)1()1(/--=n nnn n n a b x再将n x 的值代入倒数第二个方程,解出1-n x ,依次往上反推,即可求出方程组的解:其通项为3, (1)-n 2,-n k /)()1(1)1()1(=-=-+=--∑k kk n k j j k kj k k k a x a bx 五、实验内容:function maintest2clcclear allA=[134;245;146];%系数矩阵b=[176]'%常数项num=length(b)for k=1:num-1for i=k+1:numif A(k,k)~=0l=A(i,k)/A(k,k);A(i,:)=A(i,:)-A(k,:).*l;b(i)=b(i)-b(k)*l;endendendAb%回代求xx(num)=b(num)/A(num,num);for i=num-1:-1:1sum=0;for j=i+1:numsum=sum+A(i,j)*x(j);endx(i)=(b(i)-sum)/A(i,i);endxEnd六、实验结果:A=1.0000 3.0000 4.00000-2.0000-3.0000000.5000 b=1.00005.00007.5000x=16-2515。

高斯消元法与列主元消去法实验报告

高斯消元法与列主元消去法实验报告

实验报告:Gauss消元法小组成员:李岚岚、邱粉珊、缪晓浓、杨水清学号:0917020040、0917010078、0917010073、0917010112一、实验问题编写两个程序,分别利用Gauss消元法和列主元消去法求解方程组二、分析及其计算过程Gauss顺序消元法:源程序:function [x]=gaussl(A,b)[n1,n2]=size(A);n3=size(b);if n1~=n2|n2~=n3|n1~=n3disp('A的行和列的维数不同!');return;endif det(A)==0disp('系数矩阵A奇异');return;end%消元过程L=eye(n1);for j=2:n1for i=j:n1L(i,j-1)=A(i,j-1)/A(j-1,j-1);A(i,:)=A(i,:)-L(i,j-1)*A(j-1,:);b(i)=b(i)-L(i,j-1)*b(j-1);endend%回代过程x(n1)=b(n1)/A(n1,n1);for t=n1-1:-1:1for k=n1:-1:t+1b(t)=b(t)-A(t,k)*x(k);endx(t)=b(t)/A(t,t);end程序的运行以及结果:>>A=[1 2/3 1/3;9/20 1 11/20;2/3 1/3 1];>>b=[2 2 2];>> [x]=gaussl(A,b)x =1 1 1Gauss列主元消去法:源程序:function [x]=gaussll(A,b) [n1,n2]=size(A);n3=size(b);if n1~=n2|n1~=n3|n2~=n3disp('输入的方程错误!');return;endif det(A)==0disp('系数矩阵A奇异');return;endmax=zeros(n1);for m=1:n1%找主元for i=m:n1if abs(A(i,m))>maxmax=A(i,:);A(i,:)=A(m,:);A(m,:)=max;maxb=b(i);b(i)=b(m);b(m)=maxb;endend%消元过程L=eye(n1);for j=2:n1for i=j:n1L(i,j-1)=A(i,j-1)/A(j-1,j-1);A(i,:)=A(i,:)-L(i,j-1)*A(j-1,:);b(i)=b(i)-L(i,j-1)*b(j-1);endendend%回代过程x(n1)=b(n1)/A(n1,n1);for t=n1-1:-1:1for k=n1:-1:t+1b(t)=b(t)-A(t,k)*x(k);endx(t)=b(t)/A(t,t);end程序的运行以及结果:>>A=[-0.002 2 2;1 0.78125 0;3.996 5.5625 4]; >>b=[0.4 1.3816 7.4178];>>[x]= gaussll(A,b)x =1.9273 -0.6985 0.9004。

列主元消去法解方程组实验报告

列主元消去法解方程组实验报告

实验名称: 列主元消去法解方程组 1 引言我们知道,高斯消去法是一个古老的解线性方程组的方法。

而在用高斯消去法解Ax=b时,其中设A 为非奇异矩阵,可能出现()0k kka =的情况,这时必须进行带行交换的高斯消去法。

但在实际计算中即使()0k kk a ≠但其绝对值很小时,用()k kka 作除数,会导致中间结果矩阵()k A 元素数量级严重增长和舍入误差的扩散,使得最后的结果不可靠。

因此,小主元可能导致计算的失败,我们应该避免采用绝对值很小的主元素。

为此,我们在高斯消去法的每一步应该在系数矩阵或消元后的低阶矩阵中选取绝对值最大的元素作为主元素,保持乘数1ik m ≤,以便减少计算过程中舍入误差对计算解的影响。

一种方式是完全主元消去法,这种消去法是在每次选主元时,选择()()max 0k kk k i j ij k i nk j na a ≤≤≤≤=≠为主元素。

这种方法是解低阶稠密矩阵方程组的有效方法,但这种方法在选取主元时要花费一定的计算机时间。

实际计算中我们常采用部分选主元的的消去法。

列主元消去法即在每次选主元时,仅依次按列选取绝对值最大的元素作为主元素,且仅交换两行,再进行消元计算。

2 实验目的和要求运用matlab 编写一个.m 文件,要求用列主元消去法求解方程组(实现PA=LU ):12345671111111721111118321111110432111113543211117654321122765432128x x x x x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦要求输出以下内容: (1) 计算解x ; (2) L,U ;(3) 整形数组IP (i )(i=1,2,…,n-1)(记录主行信息)3 算法原理与流程图(1) 算法原理设有线性方程组A x =b ,其中设A 为非奇异矩阵。

Gauss消去法实验报告

Gauss消去法实验报告

a1(10)
x1

.
.
.
a(0) 1n
xn

b1(0)
a (1) 22
x2

.
.
.
a (1) 2n
xn

b2(1)

.

.

a (1) n2
x2
...
a (1) nn
xn

bn(1)
这样就完成了第 1 步消元。
回代过程:
在最后的一方程中解出
xn
,得:
xn

b ( n 1) n
%计算乘子 % 对 k+1~n 项进 行消元 %增广矩阵第 i 行 减去第 k 行的乘子 倍目的是将该矩 阵中的第 k 列中 a(k,k)以下的元 素全部消为零 %回代求解
%此循环用来求 a (j,k)*x(j)由 k+1~n 项的和 %输出最终的解 X
end
x=zeros(n,1);
x(n)=b(n)/a(n,n);
实验二、列主元法解线性方程组
一、实验目的: 1、学习使用 matlab 编写数值计算程序。 2、了解列主元消去法的基本原理和解法思路及相应的编程方法。 3、根据列主元法的原理编写 matlab 程序,并运行出相应的结果,提高 matlab 编程能力。
二、实验原理:
由一般线性方程组在使用 Gauss 消去法求解时,从求解过程中可以清楚地看到,若
a(k 1) kk

0
,必须施以行交换的手续,才能使消去过程继续下去。有时既使
a(k kk
1)

0

但其绝对值很小,由于舍入误差的影响,消去过程也会出现不稳定现象。因此,为

列主元素消去法实验报告

列主元素消去法实验报告

列主元素消去法一、实验要求1、编程实现用列主元素消去法求解方程组二、实验目的1、进一步了解如何求解方程组2、熟悉关于C语言的一些基本编程操作三、实验内容1、用列主元素消去法求解线性方程:#include<iostream>#include<cmath>#define N 20using namespace std;void load();float a[N][N];int m;int main(){int i,j;int c,k,n,p,r;float x[N],l[N][N],s,d;cout<<"下面请输入未知数的个数m=";cin>>m;cout<<endl;cout<<"请按顺序输入增广矩阵a:"<<endl;load();for(i=0;i<m;i++){for(j=i;j<m;j++)c=(fabs(a[j][i])>fabs(a[i][i]))?j:i; /*找列最大元素*/for(n=0;n<m+1;n++){s=a[i][n]; a[i][n]=a[c][n]; a[c][n]=s;} /*将列最大数防在对角线上*/ for(p=0;p<m+1;p++)cout<<a[i][p]<<"\t";cout<<endl;for(k=i+1;k<m;k++){l[k][i]=a[k][i]/a[i][i];for(r=i;r<m+1;r++) /*化成三角阵*/a[k][r]=a[k][r]-l[k][i]*a[i][r];}}x[m-1]=a[m-1][m]/a[m-1][m-1];for(i=m-2;i>=0;i--){d=0;for(j=i+1;j<m;j++)d=d+a[i][j]*x[j];x[i]=(a[i][m]-d)/a[i][i]; /*求解*/ }cout<<"该方程组的解为:"<<endl;for(i=0;i<m;i++)cout<<"x["<<i<<"]="<<x[i]<<"\t";//system("pause");return 0;}void load(){int i,j;for(i=0;i<m;i++)for(j=0;j<m+1;j++)cin>>a[i][j];}2、LU分解法#include<stdio.h>void solve(float l[][100],float u[][100],float b[],float x[],int n) {int i,j;float t,s1,s2;float y[100];for(i=1;i<=n;i++) /* 第一次回代过程开始*/{s1=0;for(j=1;j<i;j++){t=-l[i][j];s1=s1+t*y[j];}y[i]=(b[i]+s1)/l[i][i]; }for(i=n;i>=1;i--) /* 第二次回代过程开始*/{s2=0;for(j=n;j>i;j--){t=-u[i][j];s2=s2+t*x[j];}x[i]=(y[i]+s2)/u[i][i];}}void main(){float a[100][100],l[100][100],u[100][100],x[100],b[100];int i,j,n,r,k;float s1,s2;for(i=1;i<=99;i++)/*将所有的数组置零,同时将L矩阵的对角值设为1*/ for(j=1;j<=99;j++){l[i][j]=0,u[i][j]=0;if(j==i) l[i][j]=1;}printf ("input n:\n");/*输入方程组的个数*/scanf("%d",&n);printf ("input array A:\n");/*读取原矩阵A*/for(i=1;i<=n;i++)for(j=1;j<=n;j++)scanf("%f",&a[i][j]);printf ("input array B:\n");/*读取列矩阵B*/for(i=1;i<=n;i++)scanf("%f",&b[i]);for(r=1;r<=n;r++)/*求解矩阵L和U*/{for(i=r;i<=n;i++){s1=0;for(k=1;k<=r-1;k++)s1=s1+l[r][k]*u[k][i];u[r][i]=a[r][i]-s1;}for(i=r+1;i<=n;i++){s2=0;for(k=1;k<=r-1;k++)s2=s2+l[i][k]*u[k][r];l[i][r]=(a[i][r]-s2)/u[r][r];} }。

计算方法实验报告_列主元高斯消去法

计算方法实验报告_列主元高斯消去法
double row_first; //行首元素 //主对角元素单位化 for(int i=0;i<n;i++) {
row_first=A[i][i]; for(int j=0;j<n+1;j++)
计算方法实验报告
{ A[i][j]=A[i][j]/row_first;
} }
for(int k=n-1;k>0;k--) {
for(int i=0;i<N;i++) {
for(int j=0;j<N;j++) {
A_B[i][j]=A[i][j]; } A_B[i][N]=B[i][0]; } return A_B; }
3
//输出矩阵 A 的 row x col 个元素 void Show_Matrix(double **A,int row,int col) {
for(int i=0;i<N;i++)
{
int row=Choose_Colum_Main_Element(N,A_B,i);
if(Main_Element<=e) goto A_0;
Exchange(A_B,N+1,row,i);
Elimination(N,A_B,i);
cout<<"选取列主元后第"<<i+1<<"次消元:"<<endl;
double factor; for(int i=start+1;i<n;i++) {
factor=A[i][start]/A[start][start]; for(int j=start;j<n+1;j++) {

数值分析列主元消去法的实验报告

数值分析列主元消去法的实验报告

实验一 列主元消去法【实验内容】1.掌握列主元消去法的基本思路和迭代步骤2.并能够利用列主元的高斯消去法解任意阶数的线性方程组;3、从课后题中选一题进行验证,得出正确结果,交回实验报告与计算结果。

【实验方法与步骤】1.列主元消去法基本思路设有线性方程组Ax b =,设A 是可逆矩阵。

列主元消去法的基本思想就是通过列主元的选取将初等行变换作用于方程组的增广矩阵[]|B A b =,将其中的A 变换成一个上三角矩阵,然后求解这个三角形方程组。

2.列主元高斯消去法算法描述将方程组用增广矩阵[]()(1)|ij n n B A b a ⨯+==表示。

步骤1:消元过程,对1,2,,1k n =-L(1) 选主元,找{},1,,k i k k n ∈+L 使得,max k i k ik k i na a ≤≤= (2) 如果,0k i k a =,则矩阵A 奇异,程序结束;否则执行(3);(3) 如果k i k ≠,则交换第k 行与第k i 行对应元素位置,k kj i j a a ↔,,,1j k n =+L ;(4) 消元,对,,i k n =L ,计算/,ik ik kk l a a =对1,,1j k n =++L ,计算.ij ij ik kj a a l a =-步骤 2:回代过程:(1) 若0,nn a =则矩阵奇异,程序结束;否则执行(2);(2) ,1/;n n n nn x a a +=对1,,2,1i n =-L ,计算,11/n i i n ij j ii j i x a a x a +=+⎛⎫=- ⎪⎝⎭∑[实验程序]#include<math.h>#include<stdio.h>#include<iostream>#include<conio.h>#define NUMBER 20#define Esc 0x1b#define Enter 0x0dusing namespace std;float A[NUMBER][NUMBER+1] ,ark;int flag,n;void exchange(int r,int k);float max(int k);void message();void main(){float x[NUMBER];int r,k,i,j;char celect;void clrscr();printf("\n\nUse Gauss.");printf("\n\n1.Jie please press Enter.");printf("\n\n2.Exit press Esc.");celect=getch();if(celect==Esc)exit(0);printf("\n\n input n=");scanf("%d",&n);printf(" \n\nInput matrix A and B:");for(i=1;i<=n;i++){printf("\n\nInput a%d1--a%d%d and b%d:",i,i,n,i);for(j=1;j<=n+1;j++) scanf("%f",&A[i][j]); }for(k=1;k<=n-1;k++){ark=max(k);if(ark==0){printf("\n\nIt’s wrong!");message();}else if(flag!=k)exchange(flag,k);for(i=k+1;i<=n;i++)for(j=k+1;j<=n+1;j++)A[i][j]=A[i][j]-A[k][j]*A[i][k]/A[k][k]; }x[n]=A[n][n+1]/A[n][n];for( k=n-1;k>=1;k--){float me=0;for(j=k+1;j<=n;j++){me=me+A[k][j]*x[j];}x[k]=(A[k][n+1]-me)/A[k][k];}for(i=1;i<=n;i++){printf(" \n\nx%d=%f",i,x[i]);}message();}void exchange(int r,int k){int i;for(i=1;i<=n+1;i++)A[0][i]=A[r][i];for(i=1;i<=n+1;i++)A[r][i]=A[k][i];for(i=1;i<=n+1;i++)A[k][i]=A[0][i];}float max(int k){int i;float temp=0;for(i=k;i<=n;i++)if(fabs(A[i][k])>temp){temp=fabs(A[i][k]);flag=i;}return temp;}void message() {printf("\n\n Go on Enter ,Exit press Esc!"); switch(getch()){case Enter: main();case Esc: exit(0);default:{printf("\n\nInput error!");message();} }}【实验结果】。

高斯列主消元数值分析实验报告

高斯列主消元数值分析实验报告

数值分析实验报告之高斯列主消元法一、实验目的:清楚高斯列主元消去法与高斯主元素消去法的区别,以及它提出的必要性;掌握高斯列主元消去法的原理及推导过程,会用其解简单的线性方程组。

二、实验内容:用高斯列主元消去法解方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--643.5072.1000.2623.4712.3000.1000.3000.2001.0⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321x x x =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000.3000.2000.1 三、实验原理:在采用高斯消去法解方程组时,小主元可能产生麻烦,即用其做除数,会导致其他元素数量级的严重增长和舍入误差的扩散,最终使得计算的解不可靠。

故应避免采用绝对值小的主元素。

在消元之前,选择一个绝对值最大的元素作为主元,用其做除数来进行消元,这样就具有较好的数值稳定性。

这就是选主元消去法。

下面详细说明列主元素消去法。

第一步:在Ax=b 即)1()1(b x A =的系数矩阵)1(A 的第一列元素中选择一个绝对值最大的元素,不妨设为)1(1l a 。

对调)1(1j a 和)1(lj a 及)1(1b 和)1(l b (j=1,2,……,n ,1≤l ≤n)。

以)1(1l a 作为新的)1(11a 进行消元(消去对调后的第2~n 个方程中的1x )。

第k 步:(1≤k ≤n-1)设第k-1步消元过程完成,得到)()(k k b x A =,检查)(k A 中第k 列的后n-k+1个元素)(k kk a ,)(1k k k a +,…,)(k nk a ,从中选出绝对值最大者,不妨设是)(k pk a ,称它为第k 列主元素。

若p=k ,则取)(k kk a 做除数直接进行消元。

若p ≠k,则将第p 个方程与第k 个方程对调,使)(k pk a 成为新的)(k kk a ,然后以其作为除数进行消元,继续这一过程,直至得到等价的三角形方程组)()(n n b x A =,下一阶段的回代过程不变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最速下降法最速下降法又称为梯度法,是1847 年由著名数学家Cauchy 给出的,它是解析法中最古老的一种,其他解析方法或是它的变形,或是受它的启发而得到的,因此它是最优化方法的基础。

作为一种基本的算法,他在最优化方法中占有重要地位。

其优点是工作量少,存储变量较少,初始点要求不高;缺点是收敛慢,效率不高,有时达不到最优解。

非线性规划研究的对象是非线性函数的数值最优化问题。

它的理论和方法渗透到许多方面,特别是在军事、经济、管理、生产过程自动化、工程设计和产品优化设计等方面都有着重要的应用。

而最速下降法正是n元函数的无约束非线性规划问题min f (x)的一种重要解析法,研究最速下降法原理及其算法实现对我们有着极其重要的意义。

最速下降法1.最速下降方向函数f(x)在点x处沿方向d的变化率可用方向导数来表示。

对于可微函数,方向导数等于梯度与方向的内积,即:Df(x;d) = ▽f(x)Td,因此,求函数f(x)在点x处的下降最快的方向,可归结为求解下列非线性规划:min ▽f(x)Tds.t. ||d|| ≤ 1当 d = -▽f(x) / ||▽f(x)||时等号成立。

因此,在点x处沿上式所定义的方向变化率最小,即负梯度方向为最速下降方向。

2.最速下降算法最速下降法的迭代公式是x(k+1) = x(k) + λkd(k) ,其中d(k)是从x(k)出发的搜索方向,这里取在x(k)处的最速下降方向,即d = -▽f(x(k)).λk是从x(k)出发沿方向d(k)进行一维搜索的步长,即λk满足f(x(k) + λkd(k)) = min f(x(k)+λd(k)) (λ≥0).计算步骤如下:(1)给定初点x(1) ∈ Rn,允许误差ε> 0,置k = 1。

(2)计算搜索方向d = -▽f(x(k))。

(3)若||d(k)|| ≤ε,则停止计算;否则,从x(k)出发,沿d(k)进行一维搜索,求λk,使f(x(k) + λkd(k)) = min f(x(k)+λd(k)) (λ≥0).(4)令x(k+1) = x(k) + λkd(k) ,置k = k + 1,转步骤(2)。

/yangxi/archive/2011/10/20/2219408.html梯度下降法梯度下降法是一个一阶最优化算法,通常也称为最速下降法。

描述有关梯度下降法的描述梯度下降法,基于这样的观察:如果实值函数在点处可微且有定义,那么函数在点沿着梯度相反的方向下降最快。

因而,如果对于γ > 0 为一个够小数值时成立,那么。

考虑到这一点,我们可以从函数 F 的局部极小值的初始估计出发,并考虑如下序列使得因此可得到如果顺利的话序列收敛到期望的极值。

注意每次迭代步长γ可以改变。

右侧的图片示例了这一过程,这里假设 F 定义在平面上,并且函数图像是一个碗形。

蓝色的曲线是等高线(水平集),即函数 F 为常数的集合构成的曲线。

红色的箭头指向该点梯度的反方向。

(一点处的梯度方向与通过该点的等高线垂直)。

沿着梯度下降方向,将最终到达碗底,即函数 F 值最小的点。

例子梯度下降法处理一些复杂的非线性函数会出现问题,例如Rosenbrock函数其最小值在 (x,y) = (1,1) 处,数值为f(x,y) = 0。

但是此函数具有狭窄弯曲的山谷,最小值 (x,y) = (1,1) 就在这些山谷之中,并且谷底很平。

优化过程是之字形的向极小值点靠近,速度非常缓慢。

下面这个例子也鲜明的示例了"之字"的下降,这个例子用梯度下降法求的极小值。

缺点由上面的两个例子,梯度下降法的缺点是 [1]: 靠近极小值时速度减慢。

直线搜索可能会产生一些问题。

可能会'之字型'地下降。

参阅共轭梯度法随机梯度下降法牛顿法最优化线搜索参考文献Mordecai Avriel (2003). Nonlinear Programming: Analysis and Methods. Dover Publishing. ISBN 0-486-43227-0.Jan A. Snyman (2005). Practical Mathematical Optimization: An Introduction to Basic Optimization Theory and Classical and New Gradient-Based Algorithms. Springer Publishing. ISBN 0-387-24348-8共轭梯度法数学上,共轭梯度法是求解特定线性系统的数值解的方法,其中那些矩阵为对称和正定。

共轭梯度法是一个迭代方法,所以它适用于稀疏矩阵系统,因为这些系统对于象乔莱斯基分解这样的直接方法太大了。

这种系统在数值求解偏微分方程时相当常见。

共轭梯度法也可以用于求解无约束的最优化问题。

双共轭梯度法提供了一种处理非对称矩阵情况的推广。

方法的表述设我们要求解下列线性系统Ax = b,,其中n-×-n矩阵A是对称的(也即,AT = A),正定的(也即,xTAx > 0对于所有非0向量x属于Rn),并且是实系数的。

将系统的唯一解记作x*。

最后算法经过一些简化,可以得到下列求解Ax = b的算法,其中A是实对称正定矩阵。

x0 := 0k := 0r0 := brepeat until rk is "sufficiently small":k := k + 1if k = 1p1 := r0elseend ifxk := xk-1 + αk pkrk := rk-1 - αk A pkend repeat结果为xk外部连接Méthode du gradient conjugé(共轭梯度法,法语)作者N. Soualem.Méthode du gradient conjugé préconditionné(预处理共轭梯度法,法语)作者N. Soualem.共轭梯度法通俗介绍作者Jonathan Richard Shewchuk.参考共轭梯度法最初出现于Magnus R. Hestenes and Eduard Stiefel(1952),Methods of conjugate gradients for solving linear systems, J. Research Nat. Bur. Standards 49, 409–436.下列教科书中可以找到该方法的描述Kendell A. Atkinson(1988),An introduction to numerical analysis(2nd ed.),Section 8.9, John Wiley and Sons. ISBN 0-471-50023-2.Gene H. Golub and Charles F. Van Loan, Matrix computations(3rd ed.),Chapter 10, Johns Hopkins University Press. ISBN 0-8018-5414-8.共轭梯度法1.共轭方向无约束问题最优化方法的核心问题是选择搜索方向。

以正定二次函数为例,来观察两个方向关于矩阵A共轭的几何意义。

设有二次函数:f(x) = 1/2 (x - x*)TA(x - x*) ,其中A是n×n对称正定矩阵,x*是一个定点,函数f(x)的等值面1/2 (x - x*)TA(x - x*) = c是以x*为中心的椭球面,由于▽f(x*) = A(x - x*) = 0,A正定,因此x*是f(x)的极小点。

设x(1)是在某个等值面上的一点,该等值面在点x(1)处的法向量▽f(x(1)) = A(x(1) - x*)。

又设d(1)是这个等值面在d(1)处的一个切向量。

记作d(2) = x* - x(1)。

自然,d(1)与▽f(x(1))正交,即d(1)T▽f(x(1)) = 0,因此有d(1)TAd(2) = 0,即等值面上一点处的切向量与由这一点指向极小点的向量关于A共轭。

由此可知,极小化式所定义的二次函数,若依次沿着d(1)和d(2)进行一维搜索,则经两次迭代必达到极小点。

1.共轭梯度法共轭梯度法最初由Hesteness和Stiefel于1952年为求解线性方程组而提出的。

后来,人们把这种方法用于求解无约束最优化问题,使之成为一种重要的最优化方法。

Fletcher-Reeves共轭梯度法,简称FR法。

共轭梯度法的基本思想是把共轭性与最速下降方法相结合,利用已知点处的梯度构造一组共轭方向,并沿这组方向进行搜素,求出目标函数的极小点。

根据共轭方向基本性质,这种方法具有二次终止性。

对于二次凸函数的共轭梯度法:min f(x) = 1/2 xTAx + bTx + c,其中x∈ Rn,A是对称正定矩阵,c是常数。

具体求解方法如下:首先,任意给定一个初始点x(1),计算出目标函数f(x)在这点的梯度,若||g1|| = 0,则停止计算;否则,令d(1) = -▽f(x(1)) = -g1。

沿方向d(1)搜索,得到点x(2)。

计算在x(2)处的梯度,若||g2|| ≠ 0,则利用-g2和d(1)构造第2个搜索方向d(2),在沿d(2)搜索。

一般地,若已知点x(k)和搜索方向d(k),则从x(k)出发,沿d(k)进行搜索,得到x(k+1) = x(k) + λkd(k) ,其中步长λk满足f(x(k) + λkd(k)) = min f(x(k)+λd(k))。

此时可求出λk的显示表达计算f(x)在x(k+1)处的梯度。

若||gk+1|| = 0,则停止计算;否则,用-gk+1和d(k)构造下一个搜索方向d(k+1),并使d(k+1)和d(k)关于A共轭。

按此设想,令d(k+1) = -gk+1 + βkd(k),上式两端左乘d(k)TA,并令d(k)TAd(k+1) = -d(k)TAgk+1 + βkd(k)TAd(k) = 0,由此得到βk = d(k)TAgk+1 / d(k)TAd(k)。

再从x(k+1)出发,沿方向d(k+1)搜索。

在FR法中,初始搜索方向必须取最速下降方向,这一点决不可忽视。

因子βk 可以简化为:βk = ||gk+1||2 / ||gk||2。

3.非线性共轭梯度当目标函数是高于二次的连续函数(即目标函数的梯度存在)时,其对应的解方程是非线性方程,非线性问题的目标函数可能存在局部极值,并且破坏了二次截止性,共轭梯度法需要在两个方面加以改进后,仍然可以用于实际的反演计算,但共轭梯度法不能确保收敛到全局极值。

相关文档
最新文档