人机工程学在汽车设计中的应用
人机工程学在车身设计中的运用
以5%和95%百分位的人 体尺寸确定车身室内各部件
的相对位置关系,而驾驶员
座椅的调节行程应能保证:
当座椅调整至最前端时,能 满足5%百分位的人体尺寸要 求;当座椅调整至最后端时, 能满足95%百分位的人体尺 寸要求
布置设计能满足从5%到95%百分 位之间的人体尺寸要求,即符合90%的 使用对象
《人机工程学在车身设计中的应用》
车身设计中,驾驶员的各种操纵装置应布置在人体 的操纵范围内,并使其驾驶操纵处于最佳的动作和施力 状态
《人机工程学在车身设计中的应用》
4.1 手的操纵范围
手的操纵范围是车身设计中确定方向盘、综合操纵杆、 各种控制按钮、开关键等的必要条件
研究
驾驶员的手伸及界面
人体工程学的手操纵范围中心
汽车室内手操纵装置和操纵钮键的布置
垂直距离
踵点位置 驾驶员人体模型布置 驾驶员人体设计H点位置
人体布置的轮廓形状曲线 座椅靠背的压缩量 座椅靠背的厚度
驾驶员座椅水平及垂直调节量
前座舱布置空间的后部设计界限
■考虑室内长和高设计指标,协 调空间大小与驾驶姿势的关系 ■比较三种百分位人体布置的 各关节角度变化和坐姿位置变
?人体伸腿空间
化的情况,确定各H点位置和
标准ISO4513适于下列尺寸范围的车身
座椅靠背角
5°~40°
最后H点到踵点的垂直距离 127mm~457rm
座椅垂直102rm~165mm
最后H点到踵点的水平距离 ≥508rnm
确定眼椭圆的方位角: 眼椭圆的空间位置是倾斜的,在侧视图上 的眼椭圆倾角为-6.4° (长轴前低后高); 在俯视图上的眼椭圆倾角为5.4° (长轴向 右偏转)
注意: 车身设计应使实际H点位置完 全反映设计的H点位置,只有这样驾 驶员入座后,其驾驶姿势才能是室内 布置设计姿势的反映,即保证舒适 驾驶
汽车机械制造的人机工程学设计
汽车机械制造的人机工程学设计人机工程学是指将人类的认知、生理、心理等因素融入到产品设计中,以提高产品的人机交互性和适用性。
汽车作为一种复杂的机械系统,其设计不仅需要考虑到安全、性能、经济等因素,还要注重人机工程学的原则,以满足用户的需求并提供良好的使用体验。
一、人机工程学在汽车设计中的应用1. 车内布局与控制面板设计在汽车设计中,人机工程学将考虑到驾驶员的舒适性和操作便利性。
合理的座椅布局、采用人体工程学设计的座椅形状,以及合适的控制面板布局,都能提高驾驶员的操作舒适度和工作效率。
2. 仪表盘和显示屏设计仪表盘和显示屏是驾驶员获取车辆信息的重要工具,其设计应根据驾驶员的视觉特性进行合理布局。
通过合适的字体、图标和颜色搭配,以及良好的亮度和对比度设置,能够提高信息的可读性和辨识度,从而减少驾驶员的视觉疲劳。
3. 方向盘和操纵杆设计方向盘和操纵杆是驾驶员与汽车直接接触的部分,其设计应符合人体工程学原则,以保证驾驶员操作的精准度和舒适性。
合适的形状、材质和手感能够提高驾驶员的操控感,并减少驾驶时的疲劳感。
4. 汽车座椅设计汽车座椅是驾驶员和乘客长时间坐在车上的支撑部分,其设计应考虑到人体工程学原则,以提供舒适的乘坐体验。
合适的座椅形状、支撑性和调节功能能够减少驾驶员和乘客的疲劳感,同时也提高了安全性。
二、人机工程学设计在驾驶安全中的应用1. 视觉警示系统人机工程学设计能够在汽车中应用一些视觉警示系统,如倒车雷达、盲区监测等,以提醒驾驶员注意潜在危险。
这些警示系统通常采用颜色、光线和声音等多重感知方式,以提高驾驶员对周围环境的感知和反应能力,从而减少事故的发生。
2. 音频提示系统在汽车设计中,人机工程学设计也可以应用音频提示系统,如导航系统的语音提示、前方车辆和行人的警报声等。
通过合理的音频设计,能够提供驾驶员更加直观和及时的信息反馈,从而降低驾驶员分心的可能性,确保行车安全。
3. 自动驾驶辅助系统自动驾驶辅助系统是近年来的热门研究领域,人机工程学设计在其中扮演着重要的角色。
浅析人机工程学在汽车设计中的运用
浅析人机工程学在汽车设计中的运用摘要:人机工程作为汽车设计开发过程中的重要工具,在现代汽车设计制造业中得到了广泛的应用。
随着技术的不断进步,人们已经不能满足于汽车的代步功能,对汽车的人性化设计提出了更高的要求。
本文从人机工程学角度出发,对人机工程在汽车设计和汽车制造中的应用进行了论述。
关键词:人机工程;汽车设计;应用引言:随着科学技术的进步和社会的发展,汽车作为当今社会常用的交通工具发挥着越来越重要的作用。
近年来,消费者对汽车的操纵稳定性、乘坐舒适性提出了更高的要求。
若解决此类问题就应用到了人机交互原理,这样由原来纯粹的汽车研究转向了人与汽车配合上来,一门新兴的学科即人机工程应运而生。
人机工程既是一种设计理论,也是一种系统评价技术,主要是运用科学理论方法来处理人、机、环境三大因素之间的关系。
汽车工程主要涉及到汽车设计和汽车制造两个方面,其中汽车设计主要从乘坐舒适性、操纵方便性、目视装置便捷性进行人机工程设计,汽车制造则使用人机工程学解决整车装配中的高频重复性操作、工作环境差等问题。
1、汽车人机工程设计的任务与要求汽车的设计开发,必须围绕以人为中心的人性化前提展开。
因此,汽车人机工程设计的任务就是开发出使驾驶者感到操纵方便、高效、不易疲劳,使乘坐者感到舒适、安全的汽车产品。
由于驾驶者身材各异,而一种汽车的布置尺寸只有一种,要使一种操纵件的布置能最大限度地满足不同身材驾驶者的手脚伸及性与姿势舒适性的要求,必须对人机工程进行仔细研究。
例如,同是操纵油门踏板,高个子驾驶者比矮个的座椅要靠后一些,但他们的手臂和腿的长度相差并不大,因此,高大的男人比娇小的女人更不易触到仪表板。
对操作姿势来说,通过试验研究,由座椅、踏板和转向盘的位置以及驾驶者姿势参数的变化得到了驾驶者的舒适特性。
2、人机工程学在汽车设计上的运用2.1基于人体形态的设计和制造人体形态方面,不同的性别、不同的人种、不同地区及年龄等都是影响人体形态的因素,人体的身体尺寸、特点各有不同,因此汽车设计时就需要考虑到目标客户的地区、群体的人体形态特点,这也决定了当今社会中,以一种特定的产品规格同时满足不同地区的市场需求是非常困难的。
汽车设计中的人机工程学:驾驶舒适性与便捷性
汽车设计中的人机工程学:驾驶舒适性与便捷性现代汽车设计不仅仅注重外观和性能,还强调驾驶舒适性与便捷性。
这其中一个重要的方面就是人机工程学。
人机工程学是一门科学,研究如何在人类使用产品或系统时优化互动界面,以提高用户体验。
在汽车设计中,人机工程学的原则可以应用于提升驾驶员的舒适性和驾驶操作的便捷性。
一、座椅设计在汽车设计中,座椅是直接接触驾驶员身体的部件,因此它的设计对于驾驶舒适性至关重要。
座椅的舒适性取决于其人体工程学设计,包括座椅形状、材料选择、头枕和支撑等。
合适的座椅设计可以减少驾驶员在长时间驾驶中的疲劳感,提高驾驶舒适性。
二、仪表盘和控制面板布局汽车仪表盘和控制面板的布局需要符合人机工程学原则,以提供便捷性和易用性。
在设计仪表盘时,需要将常用的控制按钮放置在驾驶员容易触及和操作的位置上,以减少驾驶员的注意力转移。
此外,使用清晰易读的指示器和显示器也可以提高驾驶员的操作便捷性。
三、操控性与人机界面操控性是指驾驶员操作汽车时的手感和反馈感。
人机界面则是指驾驶员操作汽车时与汽车系统进行互动的方式,如方向盘、油门和刹车踏板等。
良好的操控性和人机界面设计可以使驾驶员更加轻松地控制汽车,并提高驾驶的安全性和舒适性。
四、噪音和振动控制在汽车设计中,噪音和振动对于驾驶舒适性的影响不容忽视。
合适的隔音材料和减震措施可以降低汽车内部和外部噪音的传递,提供一个安静和舒适的驾驶环境。
此外,减少汽车的振动也对驾驶员的舒适性具有重要意义。
五、人机交互技术应用随着科技的发展,人机交互技术在汽车设计中得到了广泛的应用。
例如,触摸屏、语音识别和手势控制等技术可以使驾驶员更加方便地操作车辆和访问汽车系统。
这些技术的应用不仅提高了驾驶员的便捷性,也增强了驾驶员与汽车之间的互动体验。
综上所述,人机工程学在汽车设计中扮演着重要的角色,关乎驾驶员的驾驶舒适性和操作便捷性。
通过合理的座椅设计、仪表盘和控制面板布局、操控性和人机界面的优化、噪音和振动的控制,以及人机交互技术的应用,汽车设计师可以为驾驶员提供更好的驾驶体验。
汽车设计中人机工程学的意义及体现
汽车设计中人机工程学的意义及体现汽车设计中人机工程学的意义及体现人机工程学是一门研究人机关系的学科,主要关注如何设计出更加适合人类使用的产品和系统。
在汽车设计中,人机工程学扮演着重要的角色,它能够帮助设计师们更好地了解人们使用汽车时的需求和习惯,从而创新出更加符合市场需求的汽车产品。
在本文中,我们将探讨人机工程学在汽车设计中的意义和体现。
1. 人机工程学在汽车设计中的意义1.1 提升驾驶体验人机工程学能够帮助设计师更好地了解人们的行为和需求,从而根据这些需求设计出更加符合市场需求的汽车产品。
例如,汽车的仪表盘设计需要考虑驾驶员的视野和操作习惯,方便驾驶员查看车速、油耗等相关信息。
同时,座椅的设计需要考虑人体工学和人体力学等知识,确保驾驶员的舒适度和健康。
1.2 提高安全性人机工程学还可以帮助汽车设计师检测车辆的潜在安全隐患,并在设计过程中予以纠正。
例如,汽车的车门设计需要考虑开关灵活度和加强点的设置,防止在事故发生时车门无法打开或者车身过于弱化被破坏等受损情况。
在这种情况下,设计师需要考虑如何使车门易于开启,同时又不会牺牲整车的稳定性和安全性。
1.3 增强品牌竞争力人机工程学可以帮助汽车品牌提高产品的人性化和亲和力,从而增强品牌的竞争力。
在汽车市场上,产品的外观和品质是必要的,但如果没有考虑到消费者的用户体验和需求,则很难达到用户的心理预期。
相反,如果产品在人机工程学方面做得好,很容易让用户产生好感,从而提高产品的品牌忠诚度和口碑。
2. 人机工程学在汽车设计中的体现2.1 控制系统设计汽车在行驶中涉及到复杂的控制系统,人机工程学可以帮助设计师们设计出更加直观、精确和易于掌握的控制系统。
例如,汽车的方向盘和脚踏板的设计需要充分考虑人体工程学和人体力学等因素,以确保驾驶员在紧急情况下能够快速正确地反应。
2.2 人机界面设计汽车的人机界面设计非常重要,它包括汽车仪表盘、多媒体娱乐系统、导航系统等。
人机工程学可以帮助设计师们优化汽车人机界面设计,使其更加直观、易用和易懂。
汽车设计中的人机工程学
汽车设计中的人机工程学嘿,朋友们!咱今儿来聊聊汽车设计里那特别重要的人机工程学。
你想想看,咱每天开着车到处跑,要是这车里的设计不贴心,那得多别扭呀!这人机工程学就像是给汽车和咱人的关系牵红线呢!比如说那座椅吧,要是设计得不合理,坐久了不是这儿疼就是那儿酸。
好的人机工程学设计出来的座椅,那得让人感觉就像坐在自家舒服的大沙发上一样,软软的,还能给腰啊背啊足够的支撑,开再久的车也不会觉得累。
这不就跟咱穿一双合脚的鞋子一样嘛,舒舒服服的才能走得远呀!还有那方向盘,大小得合适,握起来得顺手。
要是太大了,咱转起来费劲;太小了,又感觉使不上劲。
而且位置也得恰到好处,不能太高也不能太低,得让咱开着顺手又自然。
这就好比咱拿筷子吃饭,那筷子得长短合适、手感好,咱才能吃得香呀!再说说那仪表盘,上面的信息得一目了然。
咱开车的时候可没功夫盯着它使劲瞅,那些数字啊、指示灯啊得清清楚楚地摆在咱眼前,让咱一下子就能知道车的状况。
这就像咱看手机屏幕,字太小了或者不清晰,那多闹心呀!车内的空间布局也很重要呢!各种按钮、开关啥的,都得在咱伸手就能够到的地方,不能让咱为了按个按钮还得费劲地去够。
这就像咱家里的电灯开关,肯定得在顺手的地方,不然晚上抹黑找开关多麻烦呀!而且,储物空间也得设计得合理,咱的手机呀、钱包呀、水呀这些东西都得有地方放,不能乱糟糟地堆在车里。
咱中国人讲究个舒服、自在,这人机工程学在汽车设计里就得把这些都考虑进去。
让咱开车的时候感觉就像在家里一样自在,而不是别扭难受。
你想想,如果一辆车开起来让你这儿不舒服那儿不对劲的,你还会喜欢开它吗?肯定不会呀!所以说呀,这人机工程学真的是太重要啦!咱买车的时候可不能光看外表漂不漂亮,还得仔细感受感受这人机工程学设计得好不好。
只有真正符合咱人体需求的车,才能让咱开得开心、开得安全。
可别小瞧了这些细节,它们可是能大大影响咱的驾驶体验呢!一辆好车,人机工程学一定得过硬,这是毋庸置疑的呀!。
人机工程在汽车设计中的应用
35
三、人机设计主要方法
24
二、人机工程主要工作内容
6、上下车方便性:
上下车方便性是汽车人机设计中必须考虑的重要因素之一。整车的布置设计必须满足乘员上下车方便性 的要求。 通过对人体生理和汽车结构相互关系的研究,可以得到人体的上下车方便性的角度和相关尺寸范围,作 为设计校核参考的依据。
25
二、人机工程主要工作内容
7、显示:
1、人体坐姿设计方法:
驾驶员坐姿通常由以下参数确定:
H30-1 ——R点到踵点垂直距离 L99-1——R点到踏点水平距离
A40-1
A40-1——座椅靠背角 A46-1——踝角
二、人机工程主要工作内容
9、空间:
位置/ 标识、 手部伸及、舒适
储物空间 乘坐空间
29
二、人机工程主要工作内容
10、其他方面:
30
目录
一、人机工程概述 二、人机工程主要工作内容 三、人机设计主要方法 四、人机工程在开发各阶段的验证方法
31
三、人机设计主要方法
1、人体坐姿设计方法:
驾驶员坐姿设定是整车人机工程中非常重要一项内容。人在驾驶车辆的时候,驾驶员、座椅、踏板(油 门、制动、离合)、方向盘、换挡器等构成一个约束系统。在驾驶员坐姿设定过程中,不仅需要考虑乘 坐舒适性、还需要考虑操纵方便、轻巧,此外还需综合考虑视野、上下车方便性、空间、车型定位等。
机
汽车设计与人机工程学的关系
汽车设计与人机工程学的关系在现代社会中,汽车设计与人机工程学的关系变得越来越密切。
汽车设计不仅仅是关于外观和功能的设计,更是关于如何使驾驶员和乘客在车内获得最佳的体验和安全性。
人机工程学的原则和理念应该贯穿于整个汽车设计的过程中,以提高汽车驾驶的效率和舒适性。
本文将探讨汽车设计与人机工程学的关系,并分析其在汽车设计领域中的应用。
首先,人机工程学是关于人类与机器系统之间的交互关系的科学。
在汽车设计中,人机工程学考虑的是驾驶员和乘客与汽车内部环境的交互。
这包括座椅的舒适性、仪表盘的布局和易读性、控制按钮的位置和触感等。
通过应用人机工程学原则,设计师可以创造出符合人体工学和认知心理学原理的汽车内部环境,使驾驶员和乘客在长时间驾驶或乘坐过程中感到舒适和便捷。
其次,人机工程学还对汽车的人机界面进行研究和改进。
人机界面是指驾驶员与车辆之间进行信息交互的界面,包括仪表盘、控制按钮、显示屏等。
通过合理设计人机界面,可以提高驾驶员对车辆状态的感知和控制能力,从而增加驾驶的安全性。
例如,可在仪表盘上设置易读的数字显示和图标,将最重要的信息置于驾驶员的视线范围内,减少驾驶员分散注意力的可能性。
此外,人机界面还可以应用语音识别和手势控制等技术,提供更便捷的操作方式。
再次,人机工程学在汽车安全性方面发挥着重要作用。
通过合理的汽车设计和人机界面布局,可以降低驾驶员疲劳和错误操作的风险,提高驾驶员对危险情况的预警能力。
例如,驾驶员座椅的舒适性设计,可以减少长时间驾驶带来的疲劳感,提高驾驶员的专注度;而智能辅助驾驶系统的设计,则可以通过传感器和摄像头实时监测车辆周围情况,及时提醒驾驶员注意前方障碍物或变道的车辆,预防潜在的交通事故。
此外,人机工程学还可以帮助汽车制造商进行客户需求研究和用户体验评估。
通过收集和分析用户的反馈意见,制造商可以根据人机工程学的原则,改进汽车设计并提升用户满意度。
例如,在车内音响系统方面,制造商可以进行用户调研,了解用户对音质、音量和控制功能的需求,从而设计出更符合用户期望的音响系统。
人机工程学在车身设计中的应用
第四章人机工程学在车身设计中旳应用§4-1 概述人机工程学是近40年来发展旳一门新兴学科, 在车身设计中得到了大量旳应用。
一、人机工程旳概念研究对象: 人—机—环境系统旳整体状态和过程。
任务:使机器旳设计和环境条件旳设计适应于人, 以保证人旳操作简便省力、迅速精确、安全舒适, 充足发挥人、机效能, 使整个系统获得最佳经济效益和社会效益。
研究范围:①人旳生理、心理特性和能力极限——能承受旳极限;②人机功能旳合理分派——充足发挥各自专长;③人机互相作用及人机界面设计;互相作用——运用信息显示屏和控制器实现人—机间信息互换旳过程;人机界面——使显示屏与人旳感觉器官旳特性相匹配, 使控制器与人旳效应器官相匹配, 以保证人、机之间旳信息互换迅速、精确。
④研究环境及其改善——温度、湿度、照明、噪声、振动、尘埃、有害气体等对人旳作业活动和健康旳影响。
以及控制、改善不良环境旳措施和手段;⑤研究作业及其改善——人从事体力和脑力作业时生理、心理变化, 由此确定作业时旳合理负荷及耗能量、合理旳作业和休息制度、合理旳操作措施→↓疲劳, 保障健康, ↑作业效率;⑥研究人旳可靠性与安全——工程系统日益复杂和精密, 操作人员面对大量旳显示屏、控制器, 轻易出现人为差错而导致事故发生。
→研究人旳可靠性及影响原因, 寻求减少人为差错, 防止事故发生旳途径和措施。
二、人机工程学与车身设计旳关系1.人机工程学旳研究目旳——要处理旳问题①怎样减少汽车旳多种物理性能对人生理、心理所产生旳影响;②怎样减少驾驶操作旳失误而导致旳事故。
2.在汽车工程中旳应用——对既有条件下驾驶汽车和乘坐汽车在生理、心理及社会等各方面进行大量记录与调查, 引入生理学、医学、心理学、人体解剖学、运动生物学、人体测量学、工程学、机械学、环境科学、信息工程、系统工程等学科旳观点和措施, 开展全面研究和分析→改善汽车旳多种性能。
目旳:为汽车设计、改善提供多种调查、改善、试验与分析成果, 使汽车更好地、尽善尽美地为人服务。
人机工程在汽车设计中的应用
人机工程在汽车设计中的应用一、引言人机工程学是研究人类与机器之间的交互作用,旨在创造更好的用户体验和提高生产效率。
在汽车设计中,人机工程学的应用越来越受到重视。
本文将从汽车设计的角度探讨人机工程学在汽车设计中的应用。
二、驾驶员座椅驾驶员座椅是与驾驶员直接接触的部位,其舒适性和安全性对于驾驶员的健康和安全至关重要。
因此,在汽车设计中,人机工程学被广泛应用于驾驶员座椅的设计。
1. 舒适性舒适性是衡量一个座椅是否合格的重要标准之一。
根据人体工程学原理,理想的座位应该具有以下特点:支持腰部、颈部和头部;能够分散压力;能够调节高度、角度和深度等。
因此,在设计座椅时,需要考虑这些因素,并采取相应措施来提高座椅的舒适性。
2. 安全性安全性是另一个重要因素。
根据统计数据,许多交通事故都是由于驾驶员在长时间驾驶后疲劳或不适造成的。
因此,座椅的设计需要考虑到这些因素,并采取相应措施来提高座椅的安全性,例如增加头枕和侧面支撑等。
三、仪表盘设计仪表盘是汽车内部最重要的部分之一,它提供了有关车辆状态和性能的信息。
在设计仪表盘时,需要考虑到人机工程学原理,以确保它易于使用和理解。
1. 显示器显示器是仪表盘中最重要的部分之一。
根据人机工程学原理,显示器应该具有以下特点:易于读取、易于理解、易于操作。
因此,在设计显示器时,需要考虑到这些因素,并采取相应措施来提高显示器的可读性和可操作性。
2. 控件布局控件布局是另一个重要方面。
根据人机工程学原理,控件应该布置在易于访问和操作的位置,并且应该具有直观和易于理解的标签和符号。
因此,在设计控件布局时,需要考虑到这些因素,并采取相应措施来提高其可访问性和可操作性。
四、车门设计车门是汽车外部最重要的部分之一,它提供了进入和离开车辆的通道。
在设计车门时,需要考虑到人机工程学原理,以确保它易于使用和安全。
1. 手柄位置手柄位置是一个重要因素。
根据人机工程学原理,手柄应该布置在易于访问和操作的位置,并且应该具有直观和易于理解的标签和符号。
汽车设计中的人机工程学原理
汽车设计中的人机工程学原理人机工程学是一门研究人类与机器交互的科学,也被广泛应用于汽车设计领域。
在汽车设计中,人机工程学原理有助于提升汽车的人性化、便利性和舒适性。
本文将探讨汽车设计中应用的人机工程学原理,并分析其对汽车设计的影响。
一、人体工学设计原则人体工学设计原则是人机工程学的核心原理之一,旨在确保汽车内部的布局、控制和操作与人的身体特征和功能相匹配。
比如,汽车座椅的设计应考虑人体工程学,确保舒适度和支持度,减少驾驶员在长时间驾驶时的疲劳感。
此外,车门、按钮、调节杆等控制组件的位置和形状也需要符合人体工学原则,以方便驾驶员和乘客的实际操控。
二、可用性设计原则可用性是指汽车的设计是否易于操作和理解,符合用户的认知和期望。
人机工程学原理可以帮助设计师进行用户界面设计,以确保操作面板的布局和标识符合人类相关的认知规律。
例如,汽车仪表盘的设计应该清晰直观,信息显示简明,驾驶员能够迅速获取所需信息,避免分散注意力。
此外,人工智能辅助系统、语音识别和手势控制等技术的应用,也是提升汽车可用性的重要手段。
三、驾驶员注意力与认知负荷管理原则驾驶员注意力与认知负荷管理原则是人机工程学在汽车设计中的重要应用。
合理的汽车设计应将驾驶员的注意力集中在驾驶任务上,减少分散驾驶员注意力的因素。
例如,尽可能减少驾驶过程中需要进行频繁操作的控制件数量,避免通过复杂的操作流程完成简单的操作。
此外,智能驾驶、自动辅助系统等新技术的引入,也有助于降低驾驶员的认知负荷,提升驾驶安全性。
四、人机界面交互设计原则人机界面交互设计原则旨在确保用户与汽车的交互过程简单、高效、直观。
例如,触摸屏和旋钮控制的设计应该符合人的触觉感知和手指灵活性,使用界面的布局应简明易懂,标识符和按钮大小合适,以便用户能够轻松操作。
五、可访问性设计原则可访问性设计原则是人机工程学原理中的一个重要方面,强调汽车应该适应各类用户的需求,包括身体障碍、运动能力受限、视觉或听觉障碍等。
基于人机工程学的汽车座椅设计研究
基于人机工程学的汽车座椅设计研究汽车座椅是汽车内部重要的组成部分,它不仅是提供乘客舒适性的重要设施,更是保障乘客安全的重要工具。
在汽车设计中,人机工程学起着至关重要的作用,它可以帮助设计师更好地理解用户的需求,并将这些需求转化为实际的产品设计。
本文将围绕基于人机工程学的汽车座椅设计展开研究,探讨其在汽车座椅设计中的应用和意义。
一、人机工程学在汽车座椅设计中的应用1.1 人体工程学的原理人体工程学是研究人体和工作环境之间的关系,以确保产品设计符合人体特征和需求。
在汽车座椅设计中,人体工程学原理帮助设计师分析人体的生理和心理特征,包括人体的尺寸、姿势、运动特征等,以便更好地设计符合人体工程学原理的汽车座椅。
1.2 座椅设计的人体测量数据通过人体测量数据,设计师可以了解不同人群的坐姿、身体尺寸等特征,从而为汽车座椅的设计提供准确的数据支持。
这种数据包括身高、坐高、背长、体重等参数,设计师可以根据这些数据更好地设计符合不同人群需求的汽车座椅。
1.3 动态人机工程学评估在汽车座椅设计中,动态人机工程学评估帮助设计师了解人体在坐姿状态下的动作、姿势变化等情况,以便更好地设计适应这些动作的座椅。
乘客在长途旅行时的坐姿变化,需要设计出符合人体工程学的座椅,使乘客在不同坐姿下都能获得舒适的体验。
2.1 提高乘坐舒适性基于人机工程学的汽车座椅设计可以提高乘坐的舒适性,使乘客在长时间的行驶中也能感到舒适和放松。
符合人体工程学原理的座椅设计可以减少身体的疲劳和不适感,使驾驶过程更加愉悦。
2.2 提高安全性人机工程学原理帮助设计师更好地理解人体的姿势、动作特征,从而设计出更加符合乘客需要的座椅。
这种设计可以提高座椅的支撑性和固定性,使乘客在行驶过程中更加稳定,减少受伤的可能性。
2.3 个性化设计3.1 挑战基于人机工程学的汽车座椅设计需要考虑众多的因素,包括人体的尺寸特征、坐姿状态、动态变化等,这需要设计师具备深厚的人机工程学知识和经验。
汽车设计中的人机工程学考虑
汽车设计中的人机工程学考虑在汽车设计中,人机工程学是一个至关重要的考虑因素。
人机工程学是研究人类与机器交互的学科,旨在改善人类的工作效率、安全性和舒适度。
在汽车设计中应用人机工程学的原则,有助于提升驾驶员和乘客的体验,减少驾驶误差,提高整体交通安全性。
首先,汽车的控制与仪表板布局是人机工程学考虑的核心。
控制器和按钮的布局应该简洁明确,以方便驾驶员操作。
应该根据人体工程学的原则,将最常用的控制元素放在最容易到达的位置,以避免驾驶员的分散注意力。
此外,驾驶员安全席位的设计也是人机工程学的重要考虑因素之一。
驾驶员座椅应具备调节性和支持性,以适应不同身高和体型的驾驶员。
座椅的支持功能有助于减轻长时间驾驶造成的疲劳感和不适感。
另外,座椅应该设计符合人体工程学的曲线,以提供最佳的支持和舒适度。
此外,视觉和听觉因素也在汽车设计中扮演着重要的角色。
为了确保安全驾驶和减少驾驶者疲劳,汽车设计师应考虑到可视化和声音反馈的重要性。
例如,仪表板上的仪表和指示灯应设计成易于辨认,并且给予明确的反馈。
同时,车辆的灯光和声音信号也应充分考虑到驾驶者的可辨识度和反应时间。
在驾驶员的注意力和集中力方面,人机工程学可以为设计师提供指导。
例如,在汽车设计中应考虑到驾驶员眼睛的移动范围,以最大程度地减少驾驶员的注意力转移。
此外,驾驶员的乘坐姿势和仪表板之间的距离也是需要考虑的因素,因为不良的姿势可能会导致颈部和背部的不适。
此外,与智能系统的集成也是现代汽车设计中的趋势。
考虑到驾驶员的舒适度和安全性,汽车设计师应该关注于智能驾驶助手系统的可用性。
这些系统应该易于使用和理解,并且应该提供足够的信息,以帮助驾驶员做出明智的决策。
最后,人机工程学在乘客区域的设计中也起着重要的作用。
乘客区域的座椅和娱乐系统应该考虑到乘客的舒适度和娱乐需求。
此外,应提供足够的腿部空间和储存空间,以增加乘客的舒适性。
在汽车设计中,人机工程学的考虑是为了改善驾驶员和乘客的体验,提高交通安全性。
人机工程案例分析3篇
人机工程案例分析3篇案例一:人机工程在汽车设计中的应用人机工程(Human Factors Engineering)是一门研究人类与机器系统之间交互关系的学科,它旨在通过改进人机接口设计,提高人类在操作、控制和使用机器系统时的效率、安全性和舒适性。
在汽车设计中,人机工程的应用至关重要,本文将通过分析三个案例,探讨人机工程在汽车设计中的具体应用。
案例一:汽车座椅设计汽车座椅是人机接触最密切的部分之一,其设计直接影响驾驶员和乘客的舒适性和安全性。
在人机工程的指导下,汽车座椅的设计应考虑以下几个方面:1. 人体工学:座椅的形状、尺寸和角度应符合人体工学原理,以确保驾驶员和乘客的身体得到良好的支撑和舒适性。
2. 调节性能:座椅应具备多种调节功能,以适应不同驾驶员和乘客的身体特征和喜好。
例如,座椅的高度、倾斜角度、靠背角度和腰部支撑的调节。
3. 材料选择:座椅的材料应具备舒适性、透气性和耐久性。
同时,要避免使用过于滑腻或粗糙的材料,以防止驾驶员和乘客在行驶过程中滑动或受伤。
4. 安全性:座椅的设计应考虑到碰撞时的保护性能,如头枕的高度和角度、座椅背部的支撑性能等。
案例二:汽车仪表盘设计汽车仪表盘是驾驶员获取车辆信息的主要途径,其设计直接影响驾驶员对车辆状态的感知和操作的便利性。
在人机工程的指导下,汽车仪表盘的设计应考虑以下几个方面:1. 信息呈现:仪表盘上的信息应清晰、易读,以便驾驶员在行驶过程中快速获取所需信息。
例如,速度表、转速表、油量表等的位置、大小和颜色应符合驾驶员的视觉习惯。
2. 操作便利性:仪表盘上的控制按钮和开关应布局合理,易于驾驶员操作。
例如,音响控制、空调控制等功能的按钮应根据使用频率和操作顺序进行布置。
3. 反馈机制:仪表盘上的指示灯和警示器应具备明确的反馈机制,以便驾驶员在车辆故障或异常情况下及时采取相应措施。
4. 夜间可视性:仪表盘的设计应考虑到夜间行驶时的可视性,如采用背光设计、调节亮度等。
汽车设计中的人机工程学分析
汽车设计中的人机工程学分析一、概述人机工程学可以定义为研究人与机器或系统之间交互的科学和技术领域。
在汽车设计中的人机工程学分析中,研究人与汽车之间的交互,着重于汽车设计和人的人体工学特性的匹配。
人机工程学可通过减少人员疲劳、错误和增加工作效率、安全性以及用户满意度,从而提高汽车的质量和可用性。
二、人体测量汽车设计时需要考虑人的身体尺寸变化。
密集的人体测量以确保汽车的舒适和安全性是必需的,这方面已经有了许多研究。
最普遍的方法是通过人类模型进行人体测量和建模。
使用这种方法,汽车制造商可以捕捉不同族裔和文化之间的尺寸差异。
人体测量也可以用于确定座椅高度、踏板高度和方向盘高度以及其他控制面板的位置,通常使用因人体尺寸而异的平均值。
三、人的行动汽车的设计必须考虑到人的行动。
例如,将机器部件放到人可以方便访问的位置,同时保持安全。
控制面板的位置和配置必须适合驾驶员的身体类型和位置,以确保对所有人具有较好的可访问性和易用性。
汽车也必须尽可能地减少司机的分心。
四、人的感知在设计中需要对人的感知做出考虑,这可以帮助产生最能满足人类需求的产品。
例如,材料质地、颜色和视觉效果等可以影响最终的汽车印象。
而且,音响、香气和触感等因素也可以影响汽车到达用户的整体感知。
五、综合评价在进行人机工程学分析后,需要进行综合评价,以确保汽车的设计最终能够满足人们的需求。
这样能够降低驾驶员的错误率和疲劳感,并使汽车变得更加舒适和易用。
汽车制造商通常会进行试乘试驾和模拟测试来评估汽车设计的人机工程学。
六、结论人机工程学在汽车设计中起着极其重要的作用。
在整个设计阶段,汽车制造商都应该特别关注驾驶员和其他乘客的需求。
通过毫不妥协地将人机工程学原则应用于汽车设计中,可以减少疲劳和错误率,促进安全和舒适性,并增加用户满意度。
汽车设计中的人机工程学研究
汽车设计中的人机工程学研究在现代社会,汽车已经成为人们生活中不可或缺的一部分。
随着科技的不断进步和人们对舒适性、安全性及便利性要求的提高,汽车设计中的人机工程学愈发受到重视。
人机工程学旨在研究人、机器及其工作环境之间的相互关系和相互作用,以实现系统的高效、舒适和安全。
在汽车设计领域,运用人机工程学原理可以优化车内空间布局、驾驶操作界面、座椅舒适度等方面,从而提升驾驶者和乘客的体验。
汽车座椅的设计是人机工程学在汽车领域的重要应用之一。
一个好的汽车座椅应当能够为驾驶者和乘客提供良好的支撑,减轻长时间乘坐带来的疲劳感。
座椅的形状、尺寸和材质都需要经过精心考量。
座椅的靠背角度和高度应可调节,以适应不同身材的人群。
同时,座椅的坐垫长度和宽度也要合适,能够均匀地支撑腿部,避免局部压力过大。
此外,座椅的材质应具有良好的透气性和吸湿性,以保持舒适的坐感。
驾驶操作界面的设计也是人机工程学研究的重点。
仪表盘、中控台、方向盘等部件的布局和操作方式应符合人体的生理特征和操作习惯。
仪表盘上的信息显示要清晰易读,重要的信息如车速、转速、油量等应位于显眼位置。
中控台的按键和旋钮应易于操作,避免驾驶者在操作时分散注意力。
方向盘的握感要舒适,其直径和转向力度也要适中,以保证驾驶者能够轻松准确地控制车辆的行驶方向。
车内空间的布局同样离不开人机工程学的指导。
车门的开启角度和门槛高度要方便乘客上下车,尤其是对于老年人和儿童。
车内的头部空间、腿部空间和肩部空间要足够宽敞,以避免乘客感到压抑和局促。
此外,储物空间的设计也要合理,方便乘客存放物品。
人机工程学还在汽车的视野设计方面发挥着重要作用。
良好的视野对于行车安全至关重要。
挡风玻璃的尺寸和形状应能够提供广阔的前方视野,减少盲区。
后视镜的位置和角度应经过精心调整,确保驾驶者能够清晰地观察到车辆后方和侧方的情况。
A 柱的设计也需要在保证车身结构强度的前提下,尽可能减小对视野的遮挡。
除了舒适性和便利性,人机工程学在汽车的安全性设计方面也有着不可替代的作用。
人机工程学在汽车制造中的应用
人机工程学在汽车制造中的应用随着科技的不断发展,新兴技术在各行各业得到了越来越广泛的应用。
其中,人机工程学是一门涉及人体工程、生物力学、运动学、认知心理学等多个领域的综合学科。
在汽车制造领域,人机工程学发挥着非常重要的作用。
本文将介绍人机工程学在汽车制造中的应用。
第一部分:人机工程学在汽车设计中的应用人机工程学在汽车设计中的应用非常广泛。
在汽车设计时,需要考虑到驾驶员的身体特征、生理和心理特征等因素。
比如,汽车操控系统的设计,需要考虑驾驶员的人体工学特征,包括驾驶员的身高、体重、臂长、腿长等因素。
要保证驾驶员在驾驶时能够舒适地操作汽车,并且掌握好车辆的各项参数。
另外,在汽车驾驶员舱内,还需要考虑到驾驶员的心理特征。
比如,对汽车仪表盘的设计,不仅要实现直观简洁,更要让驾驶员能够轻松获取所需的信息,进而提高驾驶员驾驶的安全性和舒适度。
除了外部的驾驶员舱设计之外,车辆内饰的设计也需要考虑到人机工程学。
例如,车座的设计应该能够提供疲劳减轻的作用,特别是长途驾驶时。
这就需要我们对人体工程学的认识,重新构思座椅的材料和外形,使其更符合人体工学原理。
此外,还需要考虑车辆内部空调和音响等舒适性设备。
这些设备的设计需要考虑到驾驶员的感知能力、听力范围等因素,从而提高驾驶员的驾驶舒适性。
第二部分:人机工程学在汽车制造中的应用在汽车制造的流程中,人机工程学也有很多的应用。
一般来说,汽车制造的流程和人体的各项运动有很多的相似之处。
因此,人机工程学研究运动学、力学、人体工程学等方面的理论和方法,可以对流程中各个环节进行分析和改善。
例如,在汽车生产流程中,人员安排和生产线的搭配十分重要。
生产线的设计需要考虑到工人作业空间的大小、作业高度、作业时间等因素,以保证工人的劳动保护和生产效率。
此外,工人的工作服设计也是一个重要的人机工程学问题。
工人的工作服需要符合人体工学设计,不能过紧或不透气,要保证工人在作业时拥有合适的舒适度和安全性。
人机工程学在汽车设计中应用(精选五篇)
人机工程学在汽车设计中应用(精选五篇)第一篇:人机工程学在汽车设计中应用题目:人机工程学在汽车设计中的应用学生姓名:学生学号:专业名称:机械工程所属学院:机械工程2015年6月人机工程课程论文人机工程学在汽车设计中的应用摘要:随着科学技术的发展,人机工程学理论在产品设计中占有越来越高的地位。
而作为与人类生活息息相关的汽车,人机工程学在汽车设计之中的应用显得尤为重要。
无论是以驾驶员为中心还是以乘坐人员为中心,都应最大限度地满足人们的需求。
并且各种主、被动保护措施也使人们在突发危险时,能最大限度地减小伤害,确保人的安全。
总之,汽车设计中的各种设计都应该将人的因素考虑其中,确保了以人为主的设计原则,使汽车更完美地服务于人们。
本文主要阐述了人机工程学概念以及人机工程理论在汽车车身设计、汽车座椅设计、安全方面的设计中的应用。
关键字:人机工程学;汽车车身设计;汽车座椅设计;安全性设计Abstract:With the development of science and technology, ergonomics theory occupies more and more high status in the product design.As a car is closely related to human life, the application of ergonomics in automobile design is particularly important.Both for the center with the driver to take people as the center, should be maximally satisfy people’s needs.And all sorts of main and passive measures also make people safety and minimize harm in immediate danger, Anyhow, all sorts of designshould consider including the human factor, to ensure that the design principle is given priority to people and make the car perfectly serve the people.This article mainly expounds the concept and the theory of ergonomics in the automobile body design, automotive seat design, the application of the safety aspects of the design.Key word:ergonomics;automobile body design;automotive seat design;security design人机工程课程论文0.绪论人机工程学是工业工程研究的众多重要学科领域之一。
人机工程学在汽车设计中的应用研究
人机工程学在汽车设计中的应用研究摘要:随着科学技术的发展, 人们已经不满足于汽车的代步功能, 越来越多地追求驾驶的操纵性与舒适性, 人机工程学理论在汽车设计中占有越来越高的地位。
文章主要阐述了人机工程学概念以及人机工程学理论在汽车信号灯设计、仪表盘设计、方向盘设计、汽车座椅设计、操纵装置设计及安全系统设计中的应用。
关键词:汽车设计; 人机工程学; 应用;前言随着科技的发展, 汽车的变化也是日新月异, 人们对汽车的操作稳定性和乘坐舒适性也提出了更高的要求。
在汽车设计研究中, 越来越多地考虑到人的主体性地位, 我们必须坚定让人在使用汽车过程中感到安全、舒适的目标。
人机工程学就是这样一门新兴的学科, 它是一门从人的心理和生理角度来研究人机环境之间的相互配合规律的学科, 而汽车人机工程学则是研究人汽车环境之间优化配合的学科, 本学科的人机系统设计理论, 就是科学地利用三个要素间的有机联系来寻求系统的最佳参数。
1 人机工程学在汽车设计的应用1.1 信号灯的设计在汽车信号灯设计时, 信号灯必须清晰醒目, 以使用目的的不同为区分, 信号灯在满足要求的情况下要放在鲜艳的位置, 与操纵机构不能发生干涉, 比如信号灯背景色首选灰暗色, 警示灯不利因素信号灯用红色, 提醒信号灯用黄色, 运行正常用绿色。
1.2 仪表盘的设计当前仪表盘的布置形式通常分为集中布置, 置于方向盘下, 设计基本原则是确保转速、车速、水温、油箱油量、报警指示灯等重要信息能直接明了地出现在驾驶员可视范围内, 减少方向盘与转动头部的影响, 绕开由按钮、手柄、操作杆等造成的视野盲区, 及时提供汽车状态信息, 准确反映情况, 使驾驶员能立即做出反应, 减少安全事故发生几率, 提高行驶安全性。
另外, 在设计仪表盘具体位置时还要考虑仪表盘平面的目视距离以及仪表盘平面的角度。
研究经验表明【2】:仪表盘的目视距离在460~710mm之间, 以550mm为最佳目视距离;仪表盘中心和驾驶员眼球中心连线与仪表盘平面角度设计呈90°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人机工程学在汽车设计中的应用【文章摘要】随着人们生活水平的不断提高,生活节奏的不断加快,我们不得不承认汽车正在悄然改变着我们的生活方式。
私人汽车在我们的日常生活中已经变得非常普遍,汽车也与我们的日常生活变得越来越密切。
但是,随着一起起交通事故的发生,致使我们不得不关注这种既给我们的生活带来便利,同时又给我们的生命带来危险的交通工具——汽车。
本文着重从人体测量与数据应用﹑坐姿生物力学﹑作业空间的布置﹑视觉机能﹑视觉信息显示﹑操纵装置﹑人与声环境﹑人与光环境﹑用户﹑汽车色彩以及汽车安全性等方面来着手分析人机工程学在汽车设计中的应用。
With the continuous improvement of living standards, accelerating the pace of life, we have to admit that cars are quietly changing our way of life. Private cars in our daily life has become very common, cars and our daily lives become more and more closer. However, as with the occurrence of traffic accidents, leading to concerns that we have not only brought convenience to our life, and gave our lives at risk of transport - cars. This article focuses on measurement and data applications from the human body biomechanical sitting position ﹑visual layout of the operating room visual information display function ﹑control device and the acoustic environment of people with light environment ﹑human user﹑automotive colors and other aspects of vehicle safety proceed with an analysis of ergonomics in the automotive design.【序言】人体测量学是一门新兴学科,它是通过测量人体各部分尺寸来确定个体之间和群体之间在人体尺寸上的差别,用以研究人的形态特征,从而为各种工业设计和工程设计提供人体测量数据。
人机工程学范围内的人体形态测量数据主要有两类,即人体构造尺寸和功能尺寸的测量数据。
人体构造上的尺寸是指静态尺寸;人体功能上的尺寸是指动态尺寸,包括人在工作姿势下或在某种操作活动状态下测量的尺寸。
本文着重从坐姿状态下人体尺寸测量数据在汽车驾驶室设计中的应用分析。
人体测量与数据、作业空间布置以及坐姿生物力学的应用驾驶室的分析人在驾驶车辆时几乎所有的动作都是在坐姿状态下完成的,因此驾驶室是坐姿活动空间。
坐姿活动空间的人体尺寸见图-1(a)为正视图,零点在正中央矢状面上。
图-1(b)为侧视图,零点在经过臀点的垂直线上,并以该垂线与脚底平面的交点作为零点。
图-1在汽车的坐姿活动空间设计时,放松坐高是确定驾驶室高度的主要参考依据,但在设计时要综合考虑座椅的倾斜、座椅垫的弹性、衣服的厚度以及人坐下和站起来的活动等重要因素。
驾驶室的视线设计是设计问题的一个重点,只有在一个很好的视觉条件下才能保证人机的安全。
因此,坐姿眼高是确定视线和最佳视区时所需要考虑的重要因素。
臀部宽度和臀部至腿弯长度的综合考虑来确定座椅面尺寸。
肘部平方高度和大腿厚度是方向盘设计的一个依据,而容膝空间的设计则离不开膝盖高度和腿弯高度尺寸。
以上简单介绍了空间尺寸的设计,而空间的舒适度和美感则从坐姿生物力学和作业面的空间布置来探讨。
汽车座椅分析脊椎骨依靠其附近的肌肉和腱连接,椎骨的定位正是借助与肌腱的作用力。
一旦脊椎偏离自然状态,肌腱组织就会受到相互压力(拉或压)的作用,使肌肉活动度增加,导致疲劳酸痛。
肌腱组织受力时,产生一种活动电势。
根据肌电图记录结果可知,在挺直坐姿下,腰椎部位肌肉活动度高,因为腰椎前向拉直使肌肉组织紧张受力。
在提供靠背支撑腰椎后,活动力则明显减小;当躯干前倾时,背上方和肩部肌肉活动度高。
因此在汽车设计时,汽车座椅的靠背缓解了肌腱组织之间的压或拉力,使人处于一种低能耗状态。
在汽车的坐垫设计时,通常采用压力不均匀的原则。
这是因为人体坐骨粗壮,与其周围的肌肉相比,能承受更大的压力。
而大腿的底部有大量的血管和神经系统,压力过大会影响血液循环和神经传导而感到不适。
所以坐垫上的压力应按照臀部不同的部位承受不同的压力原则来设计,即在坐骨处压力最大,向四周逐渐减小,之大腿部位时压力降为最低值。
如图-2(a)所示,人体结构在骨盆下面有两块圆骨,称为坐骨结节。
坐姿时图-2这两块面积很小的坐骨结节能承受上身的大部分重量。
坐骨结节下面的座面呈近似水平时,可以使两坐骨结节外侧的股骨处于正常的位置而不受过分的压迫,故而人体感到舒服。
如图-2(b)所示,当坐面呈斗形时,会使股骨向上转动,见图中箭头指向。
这种状态除了使股骨处于压迫位置而承受载荷外,还造成髋部肌肉承受反常压迫,并使肘部和肩部受力,从而引起不舒适感。
因此,在汽车座椅设计时,避免斗形坐面设计,提高座椅的舒适感。
当坐姿腰弧曲线正常时,椎间盘上受的压力均匀而轻微,几乎无推力作用于韧带,韧带不拉伸,腰部无不舒适感,见图-3(a)。
图-3但是,当人体处于前弯坐姿时,椎骨之间的间距发生变化,相邻两椎骨前端间隙缩小,后端间隙增大,见图-3(b)。
椎间盘在间隙缩小的前端受推挤和摩擦,迫使它向韧带作用以推力,从而引起腰部不适感,长期积累作用,可造成椎间盘病变。
综合来看,从坐姿生理学角度,应保证腰弧曲线正常;从坐姿生物力学角度,应保证肢体免受异常力作用,依据两方面的要求,研究了人体作业的舒适坐姿。
如图-3(c)是汽车驾驶员舒适驾驶姿势,因此,在汽车设计时汽车座椅应满足驾驶员的各种生理需求。
驾驶室仪表空间布置分析作业空间的布置是指在限定的作业空间内,设定合适的作业面后,显示器与控制器(或其他作业设备,元件)的定位与安排。
作业空间或设施的设计对人的行为,舒适感与心理满足感有相当大的影响,而其设计的重要方面之一就是各组成元素在人们使用的空间或设施中的布置问题。
任何元件都有可能有其最佳位置,这取决于人的感受特征,人体测量学与生物力学特性以及作业的性质。
对于汽车里的显示器而言,因为显示器众多,不可能使每一个元件都处于其本身理想的位置,这时就需要一定原则来安排。
通常情况下,为了方便认读,减少误读和操作认读效率,驾驶室仪表面板上的仪表位置应按照下述原则进行设计。
(1)按仪表重要程度排列常用的主要显示仪器应尽可能的排列在视野中心3°范围内;一般性显示仪器课安排在20°~40°视野范围内;次要的显示仪表可布置在40°~60°视野范围内;对于80°以外的视野范围,因其视觉认读效率低,一般不宜放置显示仪表。
比如汽车驾驶室最大的仪表显示器使汽车速度显示器,它就放在人的视域的正中央,而且表盘的设置足够大,能够避免汽车在颤动状态下使用时误读。
其他的都排列在其周围,但都不超过80°的视野范围。
(2)按使用顺序排列显示仪表的排列顺序应与仪表的操作过程中的使用顺序一致,同时,排列顺序还应注意仪表之间在逻辑上的联系。
彼此有联系的仪表应尽量靠近,以提高认读效率和降低误读率。
(3)按最佳零点方位排列由于标量显示器在系统中处于正常状态下,其指针位置基本保持不变,仅在异常状态下,指针才发生变化。
因此,在多个标量显示器的设计时,应使其在正常工作状态下指针全部指向同一方向,这样便于发现异常情况和提高认读速度。
(4)按视觉特性排列由于人眼的水平运动比垂直运动的速度快而幅度宽。
因而仪表排列的水平范围大于垂直范围。
自左至右﹑自上而下和顺时针方向圆周运动扫视,这是人的视觉习惯,仪表的排列顺序和方向也应遵循这一视觉特性。
此外,排列尽量紧凑,以缩小搜索视野范围,降低视觉疲劳速度。
汽车安全性、使用环境、驾驶者以及汽车色彩的应用汽车安全性驾驶分析高速路上令人难以置信的事故高发率和一桩桩惨不忍睹的交通事故,以及给人们带来的财产和生命损失,是驾驶安全成为一个国家的重要问题。
人是大部分事故的参与者,而且绝大部分事故可归结于人误,从而将这个问题直接引入了人机工程学。
驾驶通常包含各种各样的驾驶和非驾驶任务,我们可以把主要的任务定义为车道的保持和道路危险的监控,两者都主要依赖信息加工过程中的主要视觉注意带,见图-4中为阴影部分,指的是从车前几米延伸到几百米的区域。
图-4图-5图-5显示了这一区域的侧视、前视和俯视图。
驾驶安全最关注的是任何视觉注意离开主要的视觉注意突出部分区域的任务。
图-4显示了策略驾驶任务(如对路边出口情况的扫视)也可以使视觉注意离开主要视觉区域;同样,在车内看地图也会和视觉注意产生竞争;其他任务,如收音机调台、换CD碟与乘客说话或吃东西,也都具有视觉成分,会与视觉注意产生竞争。
视觉通道是驾驶者最重要的通道,但与调整控制、打电话以及拉伸有关的次要车内活动也是重要的,它们会和有效手动驾驶资源产生竞争。
任何同时发生的任务(听觉、认识、运动)都会使监控、加工和主要视觉注意区域的视觉信息产生一些冲突,进而干扰驾驶者的判断而引发事故。
几乎所有导致伤亡的车祸都有两种来源之一产生:失去控制和高速离开道路或者与道路的危险碰撞。
后者会由于没有发现危险或对接触路障或交叉点的时间的错误判断而产生。
据调查显示,追尾是频率最高的碰撞,占所有碰撞的30﹪;偏离道路的碰撞会引起最大数量的伤亡,占与驾驶有关的死亡人数的40﹪以上。
超速行驶也给驾驶安全带来了重大的威胁,每年有35﹪的车祸与超速有关。
同样重要的因素还有驾驶员的危险行为,这些危险行为大都有驾驶者的认识偏差造成的。
比如导致超速行驶,过分自信产生了对风险的低估,也就是说大多数驾驶者没有经历过碰撞,所以在他们关于外界的心理模型中将这描绘成不可能的或多半“不发生的”。
例如,一般驾驶者在遇到前车突然刹车或者在前方有一辆静止的车时,都会感到不悦或者失去耐心而超车。
另外,问题驾驶员也是产生车祸的另一大罪魁祸首。
疲劳驾驶、酒后驾车、老龄驾驶者等一些问题驾驶员往往在这种非正常的状态下,对汽车的性能的判断,以及他们的对危险的认识、判断和反应能力都有所下降。