2016年考研数学一真题及详细解析
2016考研数学一真题及解析答案
x
上服从均匀分布,令
(I)写出 ( X ,Y ) 的概率密度; (II)问U 与 X 是否相互独立?并说明理由; (III)求 Z U X 的分布函数 F (z) .
3x2
(23)设总体 X 的概率密度为 f x,
3 ,0 x ,其中 0, 0,
其他 X1, X 2 , X 3 为来自总体 X 的简单随机样本,令T max X1 , X 2 , X 3 。
(3)若 y 1 x2 2 1 x2 , y 1 x2 2 两个解,则 q x ( )
1 x2 是微分方程 y p x y q x
的
A 3x 1 x2
B 3x 1 x2
C
1
x x2
D
x 1 x2
x, x 0
(4)已知函数 f x
1 n
,
n
1
1
x
1 n , n 1,2,
,则(
)
(A) x 0 是 f x 的第一类间断点 (B) x 0 是 f x 的第二类间断点
2
二、填空题:9 14 小题,每小题 4 分,共 24 分,请将答案写在答题纸指定位置上.
x t ln 1 t sint dt
(9) lim 0 x0
1
cos x2
__________
(10)向量场 A x, y, z x y z i xyj zk 的旋度 rotA _________
( 11) 设 函 数 f u,v 可 微 , z z x, y 由 方 程 x 1 z y 2 x2 f x z, y 确 定 , 则 dz 0,1 _________
0 11 2 30 000
(I)求 A
2016年全国硕士研究生招生考试数学(一)真题(含解析)
Cov(x,y)
PXY
VD(X) - VD(Y)
二、填空题
2
---------- X
一9
=----1
94
2'
(9)【答案】
【解】
Zln(l + Zsin t)dt
lim 0
■r f 0
i
1
―
COS
X
2
t ln( 1 + /sin / )dt
lim 0
工f 0
14
—X
2
(10)[答案】_/ +(》一1)4
x ln( 1 + j? sin x )_ 1
lim
j--*0
2工3
【解】rot A
a
a
=j + (y — 1)R.
xyz
N
(11) 【答案】 一djr +2d』・
【解】将x =Q ,y =1代入得n 1.
(工l)z — y2 =x2f (x —nq)两边关于jc求偏导得
n + («z +1)n: = 2jc f Jjc 一 z
:
*:
*
9
)9
)
99
)) 99
))
8
(8
(
:
*
9
)
99
))
8
(
2016年数学(一)真题解析
一、选择题
(1)【答案】(O.
「+°°
【解】
0
dx ( 1 + j? )6
1
cLz
*
o j?"(l +工)"
1
djr
1+ 壬“(
2016考研数学一真题及答案解析(完整版)
2016年全国硕士研究生入学考试数学一一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答.题纸..指定位置上. (1)若反常积分()11badx x x +∞+⎰收敛,则( )()()()()11111111A a bB a bC a a bD a a b <>>><+>>+>且且且且(2)已知函数()()21,1ln ,1x x f x x x -<⎧⎪=⎨≥⎪⎩,则()f x 的一个原函数是( )()()()()()()()()()()()()()()()()22221,11,1ln 1,1ln 11,11,11,1ln 11,1ln 11,1x x x x A F x B F x x x x x x x x x x x C F x D F x x x x x x x ⎧⎧-<-<⎪⎪==⎨⎨-≥+-≥⎪⎪⎩⎩⎧⎧-<-<⎪⎪==⎨⎨++≥-+≥⎪⎪⎩⎩(3)若()()22222211,11y x x y x x =+-+=+++是微分方程()()y px y q x '+=的两个解,则()q x =( )()()()()()()2222313111xx A x x B x x C D x x +-+-++(4)已知函数(),0111,,1,2,1x x f x x n n n n ≤⎧⎪=⎨<≤=⎪+⎩ ,则( ) (A )0x =是()f x 的第一类间断点 (B )0x =是()f x 的第二类间断点(C )()f x 在0x =处连续但不可导 (D )()f x 在0x =处可导 (5)设A ,B 是可逆矩阵,且A 与B 相似,则下列结论错误的是( ) (A )T A 与T B 相似 (B )1A -与1B -相似(C )T A A +与T B B +相似 (D )1A A -+与1B B -+相似(6)设二次型()222123123121323,,444f x x x x x x x x x x x x =+++++,则()123,,2fx x x=在空间直角坐标下表示的二次曲面为( ) (A )单叶双曲面 (B )双叶双曲面 (C )椭球面 (C )柱面 (7)设随机变量()()0,~2>σσμN X ,记{}2σμ+≤=X P p ,则( ) (A )p 随着μ的增加而增加 (B )p 随着σ的增加而增加(C )p 随着μ的增加而减少 (D )p 随着σ的增加而减少(8)随机试验E 有三种两两不相容的结果321,,A A A ,且三种结果发生的概率均为31,将试验E 独立重复做2次,X 表示2次试验中结果1A 发生的次数,Y 表示2次试验中结果2A 发生的次数,则X 与Y 的相关系数为( )二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题..纸.指定位置上. (9)()__________cos 1sin 1ln lim200=-+⎰→x dt t t t xx(10)向量场()()zk xyj i z y x z y x A ++++=,,的旋度_________=rotA (11)设函数()v u f ,可微,()y x z z ,=由方程()()y z x f x y z x ,122-=-+确定,则()_________1,0=dz(12)设函数()21arctan axxx x f +-=,且()10''=f ,则________=a(13)行列式1000100014321λλλλ--=-+____________.(14)设12,,...,n x x x 为来自总体()2,N μσ的简单随机样本,样本均值9.5x =,参数μ的置信度为0.95的双侧置信区间的置信上限为10.8,则μ的置信度为0.95的双侧置信区间为______.三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分)已知平面区域()(),221cos ,22D r r ππθθθ⎧⎫=≤≤+-≤≤⎨⎬⎩⎭,计算二重积分Dxdxdy ⎰⎰.(16)(本题满分10分)设函数()y x 满足方程'''20,y y ky ++=其中01k <<.()I 证明:反常积分0()y x dx +∞⎰收敛;()II 若'(0)1,(0)1,y y ==求0()y x dx +∞⎰的值.(17)(本题满分10分)设函数(,)f x y 满足2(,)(21),x y f x y x e x-∂=+∂且(0,)1,t f y y L =+是从点(0,0)到点(1,)t 的光滑曲线,计算曲线积分(,)(,)()tL f x y f x y I t dx dy x y∂∂=+∂∂⎰,并求()I t 的最小值(18)设有界区域Ω由平面222=++z y x 与三个坐标平面围成,∑为Ω整个表面的外侧,计算曲面积分()zdxdyydzdx dydz x I 3212+-+=⎰⎰∑(19)(本题满分10分)已知函数()f x 可导,且(0)1f =,10'()2f x <<,设数列{}n x 满足1()(1,2...)n n x f x n +==,证明: (I )级数11()n n n x x ∞+=-∑绝对收敛;(II )limn n x →∞存在,且0lim 2n n x →∞<<.(20)(本题满分11分)设矩阵1112221,11112A a B a a a --⎛⎫⎛⎫⎪⎪== ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭当a 为何值时,方程AX B =无解、有唯一解、有无穷多解?(21)(本题满分11分)已知矩阵011230000A -⎛⎫⎪=- ⎪ ⎪⎝⎭(I )求99A(II )设3阶矩阵23(,,)B ααα=满足2B BA =,记100123(,,)B βββ=将123,,βββ 分别表示为123,,ααα的线性组合。
2016考研数学一真题及解析标准答案
2016考研数学(一)真题及答案解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)若反常积分()011b a dx x x +∞+⎰收敛,则( )()()()()11111111A a bB a bC a a bD a a b <>>><+>>+>且且且且 (2)已知函数()()21,1ln ,1x x f x x x -<⎧⎪=⎨≥⎪⎩,则()f x 的一个原函数是( ) ()()()()()()()()()()()()()()()()22221,11,1ln 1,1ln 11,11,11,1ln 11,1ln 11,1x x x x A F x B F x x x x x x x x x x x C F x D F x x x x x x x ⎧⎧-<-<⎪⎪==⎨⎨-≥+-≥⎪⎪⎩⎩⎧⎧-<-<⎪⎪==⎨⎨++≥-+≥⎪⎪⎩⎩(3)若()()222211y x y x =+=+是微分方程()()y p x y q x '+=的两个解,则()q x =( )()()()()()()2222313111xx A x x B x x C D x x +-+-++(4)已知函数(),0111,,1,2,1x x f x x n n n n ≤⎧⎪=⎨<≤=⎪+⎩,则( )(A )0x =是()f x 的第一类间断点 (B )0x =是()f x 的第二类间断点(C )()f x 在0x =处连续但不可导 (D)()f x 在0x =处可导(5)设A,B 是可逆矩阵,且A 与B相似,则下列结论错误的是( )(A)T A 与T B 相似 (B )1A -与1B -相似(C)T A A +与T B B +相似 (D )1A A -+与1B B -+相似(6)设二次型()222123123121323,,444f x x x x x x x x x x x x =+++++,则()123,,2f x x x =在空间直角坐标下表示的二次曲面为( )(A)单叶双曲面 (B)双叶双曲面 (C)椭球面 (C)柱面(7)设随机变量()()0,~2>σσμN X ,记{}2σμ+≤=X P p ,则( ) (A)p 随着μ的增加而增加 (B)p 随着σ的增加而增加(C )p 随着μ的增加而减少 (D)p 随着σ的增加而减少(8)随机试验E 有三种两两不相容的结果321,,A A A ,且三种结果发生的概率均为31,将试验E 独立重复做2次,X 表示2次试验中结果1A 发生的次数,Y 表示2次试验中结果2A 发生的次数,则X 与Y 的相关系数为( )二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9)()__________cos 1sin 1ln lim 200=-+⎰→x dt t t t x x(10)向量场()()zk xyj i z y x z y x A ++++=,,的旋度_________=rotA(11)设函数()v u f ,可微,()y x z z ,=由方程()()y z x f x y z x ,122-=-+确定,则()_________1,0=dz(12)设函数()21arctan axx x x f +-=,且()10''=f ,则________=a (13)行列式1000100014321λλλλ--=-+____________.(14)设12,,...,n x x x 为来自总体()2,N μσ的简单随机样本,样本均值9.5x =,参数μ的置信度为0.95的双侧置信区间的置信上限为10.8,则μ的置信度为0.95的双侧置信区间为______.三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)已知平面区域()(),221cos ,22D r r ππθθθ⎧⎫=≤≤+-≤≤⎨⎬⎩⎭,计算二重积分Dxdxdy ⎰⎰.(16)(本题满分10分)设函数()y x 满足方程'''20,y y ky ++=其中01k <<.()I 证明:反常积分0()y x dx +∞⎰收敛;。
2016考研数学一真题及答案解析完整版
2016考研数学一真题及答案解析(完整版)2016年考研数学一真题及答案解析(完整版)一、单选题1.已知函数 f(x) 在(0, +∞) 上连续,且满足 f(x+y) = f(x) + f(y) +2√[f(x)f(y)],则 f(x) 的解析式是() A. f(x) = x^2 B. f(x) = x^2 + 2x C. f(x) = x^2 + 4x D. f(x) = x^2 + 6x答案:C解析:将 x=y=0 代入方程得到 f(0) = 0,将 y=0 代入方程得到 f(x) = f(x) + f(0),所以 f(0) = 0。
将 y=x 代入方程得到 f(2x) = 4f(x),所以 f(2x) =4f(x) = 4(x^2 + 2x) = (2x + 4)^2。
所以 f(x) = (x + 2)^2 = x^2 + 4x + 4。
2.在等差数列 1, 3, 5, 2015 中,有多少个数能被 3 整除? A. 672 B. 671C. 670D. 669答案:A解析:等差数列的公差是 2,所以第 n 项是 1 + (n-1)2 = 2n-1。
要使 2n-1 能被 3 整除,则 n 必须是 3 的倍数。
2015 ÷ 3 = 671 余 2,所以有 671 个数能被 3 整除。
3.设 A 是m×n 的矩阵,B 是n×m 的矩阵,则 AB 的秩为() A. m B. nC. m + nD. 0答案:D解析:秩的定义是矩阵的非零行的最大数目。
AB 的秩等于 B 的非零行的最大数目,因为 AB 的行是 A 的行与 B 的列的线性组合,所以 AB 的秩不可能超过 B 的非零行的最大数目。
而 B 的非零行的最大数目不可能大于 n,所以 AB 的秩不可能大于 n,所以 AB 的秩为 0。
二、填空题1.设函数 f(x) = x^2 + ax + b,其中 a, b 是常数,f(x) 的图像经过点 (1,2),则 a + b 的值是 ______。
2016考研数一真题答案及详细解析
从而
J I (t)= 盯(x,y )dx+盯(x,y)dy =JO,t) — f(O,O)=e2一t +t.
L
妇
沁
I'(t)=-e2一t +l.令 I'(t)=O得t =2.
由千当 t<2 时, I'(t)<o, Ht) 单调减少;当 t>2 时,I'(t)>O,I(t) 单调增加,所以 J(2)= 3
(x+u式-2y=x气f'1 (x — 之,y)• (— 式)+f�(x -之,y)]. 再将 x = O,y = l 代入原式,可得乏 = 1. 将 x = O,y = l,之 = 1 代入上述两式,得乏: = — 1,式 = 2. 故 dz I <o,u =己 dx +式dy = -dx+2dy.
-1 0 +
。 。 入 -1
入 -1
。 。 入 -1
入 -1
。 。 (-1)4+s X2 0 入
+(— 1)4+4 (A +1)
。 。 。 。 —1
入 -1 入
=入 4 十入 3 +2入 2+3入十4.
04) (8. 2,10.8)
解
(x µ 的置信区间为
— t 旦 (n
2
— 1)
S
—
,
— X
矗
+t 旦 (n
当a =—2 时,由于
—1 —1 2
。。 -26)-(� 。。 。 。 c�(�
3 -3 -3 3 0
— 1 -1 2 2 1 —1 �)
0
所以AX=B无解.
2016考研数学一真题及解析答案
2016考研数学(一)真题及答案解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)若反常积分()11badx x x +∞+⎰收敛,则( )(2)已知函数()()21,1ln ,1x x f x x x -<⎧⎪=⎨≥⎪⎩,则()f x 的一个原函数是( )(3)若()()222211y x y x =+=+是微分方程()()y p x y q x '+=的两个解,则()q x =( )(4)已知函数(),0111,,1,2,1x x f x x n n n n ≤⎧⎪=⎨<≤=⎪+⎩,则( )(A )0x =是()f x 的第一类间断点 (B )0x =是()f x 的第二类间断点 (C )()f x 在0x =处连续但不可导 (D )()f x 在0x =处可导 (5)设A ,B 是可逆矩阵,且A 与B 相似,则下列结论错误的是( ) (A )TA 与TB 相似 (B )1A -与1B -相似 (C )TA A +与TB B +相似 (D )1A A -+与1B B -+相似(6)设二次型()222123123121323,,444f x x x x x x x x x x x x =+++++,则()123,,2f x x x =在空间直角坐标下表示的二次曲面为( )(A )单叶双曲面 (B )双叶双曲面 (C )椭球面 (C )柱面 (7)设随机变量()()0,~2>σσμN X ,记{}2σμ+≤=X P p ,则( )(A )p 随着μ的增加而增加 (B )p 随着σ的增加而增加 (C )p 随着μ的增加而减少 (D )p 随着σ的增加而减少 (8)随机试验E 有三种两两不相容的结果321,,A A A ,且三种结果发生的概率均为31,将试验E 独立重复做2次,X 表示2次试验中结果1A 发生的次数,Y 表示2次试验中结果2A 发生的次数,则X 与Y 的相关系数为( )二、填空题:9?14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上.(9)()__________cos 1sin 1ln lim200=-+⎰→x dt t t t xx(10)向量场()()zk xyj i z y x z y x A ++++=,,的旋度_________=rotA(11)设函数()v u f ,可微,()y x z z ,=由方程()()y z x f x y z x ,122-=-+确定,则()_________1,0=dz(12)设函数()21arctan axxx x f +-=,且()10''=f ,则________=a (13)行列式1000100014321λλλλ--=-+____________.(14)设12,,...,n x x x 为来自总体()2,Nμσ的简单随机样本,样本均值9.5x =,参数μ的置信度为0.95的双侧置信区间的置信上限为10.8,则μ的置信度为0.95的双侧置信区间为______.三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)已知平面区域()(),221cos ,22D r r ππθθθ⎧⎫=≤≤+-≤≤⎨⎬⎩⎭,计算二重积分Dxdxdy ⎰⎰.(16)(本题满分10分)设函数()y x 满足方程'''20,y y ky ++=其中01k <<.()I 证明:反常积分0()y x dx +∞⎰收敛;()II 若'(0)1,(0)1,y y ==求0()y x dx +∞⎰的值.(17)(本题满分10分)设函数(,)f x y 满足2(,)(21),x y f x y x e x-∂=+∂且(0,)1,tf y y L =+是从点(0,0)到点(1,)t 的光滑曲线,计算曲线积分(,)(,)()tL f x y f x y I t dx dy x y∂∂=+∂∂⎰,并求()I t 的最小值(18)设有界区域Ω由平面222=++z y x 与三个坐标平面围成,∑为Ω整个表面的外侧,计算曲面积分()zdxdyydzdx dydz xI 3212+-+=⎰⎰∑(19)(本题满分10分)已知函数()f x 可导,且(0)1f =,10'()2f x <<,设数列{}n x 满足1()(1,2...)n n x f x n +==,证明: (I )级数11()n n n xx ∞+=-∑绝对收敛;(II )lim n n x →∞存在,且0lim 2n n x →∞<<.(20)(本题满分11分)设矩阵1112221,11112A a B a a a --⎛⎫⎛⎫⎪⎪== ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭当a 为何值时,方程AX B =无解、有唯一解、有无穷多解?(21)(本题满分11分)已知矩阵011230000A -⎛⎫⎪=- ⎪ ⎪⎝⎭(I )求99A(II )设3阶矩阵23(,,)B ααα=满足2B BA =,记100123(,,)B βββ=将123,,βββ分别表示为123,,ααα的线性组合。
2016考研数学一真题及解析
2016年考研数学一真题及解析一、选择题:1~8 小题,每小题4 分,共32 分.下列每题给出的四个选项中,只有一个是符合题目要求的,请将所选项前的字母填在答题纸...指定的位置上. (1) 若反常积分1d (1)a bx x x +∞+⎰收敛,则(A )1a <且1b > (B )1a >且1b >(C )1a <且1a b +> (D )1a >且1a b +> 【答】应选(C) 【解】注意到1ax 在0x =为瑕积分,在x =∞为无穷限反常积分, ()11b x +仅在x =∞为无穷限反常积分,所以1,1a a b <+>.(2) 已知函数2(1),1,()ln ,1,x x f x x x -<⎧=⎨⎩则()f x 的一个原函数是 (A)2(1),1()(ln 1),1x x F x x x x ⎧-<=⎨-⎩ (B)2(1),1()(ln 1)1,1x x F x x x x ⎧-<=⎨+-⎩(C)2(1),1()(ln 1)1,1x x F x x x x ⎧-<=⎨++⎩ (D)2(1),1()(ln 1)1,1x x F x x x x ⎧-<=⎨-+⎩【答】应选D .【解】由于原函数一定是连续,可知函数()F x 在1x =连续,而()A 、()B 、()C 中的函数在1x =处均不连续,故选D.(3) 若22(1)y x =+22(1)y x =+()()y p x y q x '+=的两个解,则()q x =( )(A )23(1)x x + (B )23(1)x x -+ (C )21x x + (D )21x x -+ 【答】应选(A)【解】分别将()221y x=+()221y x=+()()y p x y q x '+=,两式做差,可得()21x p x x =-+. 两式做和,并且将()21xp x x =-+带入,可得()q x =()231x x+.(4) 已知函数,0,()111,,1,2,1x x f x x n n n n⎧⎪=⎨<=⎪+⎩则(A )0x =是()f x 的第一类间断点. (B )0x =是()f x 的第二类间断点. (C )()f x 在0x =处连续但不可导. (D )()f x 在0x =处可导. 【答】应选(D)【解】()()'000()limlim 10x x f x f xf x x x ---→→-===- ()()()'000()lim lim 0x x f x f f x f x x x +++→→-==-。
2016考研数学一试题及答案详解
(8) 随机试验 E 有三种两两不相容的结果 A1 , A2 , A3 ,且三种结果发生的概率均为
1 ,将试验 E 独 3
立重复做 2 次, X 表示 2 次试验中结果 A1 发生的次数, Y 表示 2 次试验中结果 A2 发生的次数, 则 X 与 Y 的相关系数为 ( ) (B)
1 2 【答案】(A) 【解析】方法一:
x, x 0, (4) 已知函数 f ( x) 1 则 1 1 , x , n 1,2, , n n 1 n
(A) x 0 是 f ( x )的第一类间断点. (C) f ( x )在 x 0 处连续但不可导. 【答案】(D) 【解析】因为 lim f ( x) lim x 0 , lim f ( x ) lim
2 2 (11) 设函数 f u, v 可微, z z x, y 由方程 x 1 z y x f x z , y 确定,则
dz | 0,1 _____ .
5
【答案】 dx 2dy 【解析】将 x 0, y 1 代入 ( x 1) z y 2 x 2 f ( x z , y ) 得 z 1 .
所以相关系数 XY
Cov ( X , Y ) D( X ) D(Y )
1 2
.
4
方法二: 设 Z 表示 2 次试验中结果 A3 发生的次数,则 X Y Z 2 。 根据方差的性质有 D(Y )=D( 2 X Z ) D( X Z ) D( X ) D( Z ) 2Cov( X , Z ) ,注意 到 D(Y ) D( X )=D( Z ), Cov( X , Z ) Cov( X , Y ) ,从而 D( X )= 2Cov( X , Y ) 。所以根据相关 系数的定义有 XY
2016考研数学一真题及解析参考答案
2016考研数学(一)真题及答案解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.(((()q x =(,则()(的第一类间断点(B )(处连续但不可导(D ) (5)设A ,B 是可逆矩阵,且A 与B 相似,则下列结论错误的是()(A )TA 与TB 相似(B )1A -与1B -相似(C )TA A +与TB B +相似(D )1A A -+与1B B -+相似 (6)设二次型()222123123121323,,444f x x x x x x x x x x x x =+++++,则()123,,2f x x x =在空间直角坐标下表示的二次曲面为()(A )单叶双曲面(B )双叶双曲面(C )椭球面(C )柱面(7)设随机变量()()0,~2>σσμN X ,记{}2σμ+≤=X P p ,则() (A )p 随着μ的增加而增加(B )p 随着σ的增加而增加(少(22(((11)设函数()v u f ,可微,()y x z z ,=由方程()()y z x f x y z x ,122-=-+确定,则()_________1,0=dz(12)设函数()21arctan ax x x x f +-=,且()10''=f ,则________=a(13)行列式1000100014321λλλλ--=-+____________.(14)设12,,...,nx x x 为来自总体()2,N μσ的简单随机样本,样本均值9.5x =,参数μ的置信度为0.95的双侧置信区间的置信上限为10.8,则μ的置信度为0.95的双侧置信区间为______.三、解答题:15—23小题,共94分.请将解答写在((D ⎧=⎨⎩(0,ky +=()I ()II (21),x ye-+且f 积分(,)(,)()tL f x y f x y I t dx dy x y∂∂=+∂∂⎰,并求()I t 的最小值(18)设有界区域Ω由平面222=++z y x 与三个坐标平面围成,∑为Ω整个表面的外侧,计算曲面积分()zdxdyydzdx dydz x I 3212+-+=⎰⎰∑(19)(本题满分10分)已知函数()f x 可导,且(0)1f =,10'()2f x <<,设数列{}nx 满足1()(1,2...)n n xf x n +==,证明:(I )级数11()n n n xx ∞+=-∑绝对收敛;(II )lim nn x →∞存在,且0lim 2nn x→∞<<.(22a ⎫⎪⎪⎪-⎭当a ((I ()将12,,ββ(域D (I (U X (III )求Z U X =+的分布函数()F z . (23)设总体X 的概率密度为()⎪⎩⎪⎨⎧<<=其他,00,3,32θθθx x x f ,其中()∞+∈,0θ为未知参数,321,,X X X 为来自总体X 的简单随机样本,令()321,,m ax X X X T =。
2016考研数学一真题及答案解析(完整版)
2016考研数学(一)真题完整版一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)若反常积分11badx x x收敛,则()(2)已知函数21,1ln ,1x x f xx x ,则f x 的一个原函数是()(3)若22222211,11y x x yxx 是微分方程yp x y q x 的两个解,则q x()(4)已知函数,0111,,1,2,1x xf xxn n n n,则()(A )0x 是f x 的第一类间断点(B )0x 是f x 的第二类间断点(C )f x 在0x 处连续但不可导(D )f x 在0x 处可导(5)设A ,B 是可逆矩阵,且A 与B 相似,则下列结论错误的是()(A )T A 与TB 相似(B )1A与1B 相似(C )TA A 与TBB 相似(D )1A A 与1B B 相似(6)设二次型222123123121323,,444f x x x x x x x x x x x x ,则123,,2f x x x 在空间直角坐标下表示的二次曲面为()(A )单叶双曲面(B )双叶双曲面(C )椭球面(C )柱面(7)设随机变量0,~2N X ,记2XP p,则()(A )p 随着的增加而增加(B )p 随着的增加而增加(C )p 随着的增加而减少(D )p 随着的增加而减少(8)随机试验E 有三种两两不相容的结果321,,A A A ,且三种结果发生的概率均为31,将试验E 独立重复做2次,X 表示2次试验中结果1A 发生的次数,Y 表示2次试验中结果2A 发生的次数,则X 与Y 的相关系数为()二、填空题:914小题,每小题4分,共24分,请将答案写在答题纸...指定位置上.(9)__________cos 1sin 1ln lim2xdt t t t xx(10)向量场zk xyjiz yxz y x A ,,的旋度_________rotA(11)设函数v u f ,可微,y x z z,由方程y z xf x y zx ,122确定,则_________1,0dz(12)设函数21arctan axxx xf ,且10''f ,则________a (13)行列式1000100014321____________.(14)设12,,...,n x x x 为来自总体2,N的简单随机样本,样本均值9.5x ,参数的置信度为0.95的双侧置信区间的置信上限为10.8,则的置信度为0.95的双侧置信区间为______.三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)已知平面区域,221cos ,22Dr r ,计算二重积分Dxdxdy .(16)(本题满分10分)设函数()y x 满足方程'''20,yyky 其中01k .证明:反常积分0()y x dx 收敛;若'(0)1,(0)1,y y 求()y x dx 的值.(17)(本题满分10分)设函数(,)f x y 满足2(,)(21),x yf x y x ex且(0,)1,tf y y L 是从点(0,0)到点(1,)t 的光滑曲线,计算曲线积分(,)(,)()tL f x y f x y I t dx dy xy,并求()I t 的最小值(18)设有界区域由平面222z y x 与三个坐标平面围成,为整个表面的外侧,计算曲面积分zdxdyydzdx dydz xI 3212(19)(本题满分10分)已知函数()fx 可导,且(0)1f ,10'()2f x ,设数列nx 满足1()(1,2...)nn x f x n,证明:(I )级数11()nn n x x 绝对收敛;(II )lim n nx 存在,且0lim 2nnx .(20)(本题满分11分)设矩阵1112221,11112Aa B a aa 当a 为何值时,方程AX B 无解、有唯一解、有无穷多解?(21)(本题满分11分)已知矩阵112300A(I )求99A(II )设3阶矩阵23(,,)B 满足2BBA ,记100123(,,)B将123,,分别表示为123,,的线性组合。
2016考研数学一真题及标准答案解析(完整版)
2016考研数学(一)真题完整版一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)若反常积分()011b a dx x x +∞+⎰收敛,则( )()()()()11111111A a bB a bC a a bD a a b <>>><+>>+>且且且且 (2)已知函数()()21,1ln ,1x x f x x x -<⎧⎪=⎨≥⎪⎩,则()f x 的一个原函数是( ) ()()()()()()()()()()()()()()()()22221,11,1ln 1,1ln 11,11,11,1ln 11,1ln 11,1x x x x A F x B F x x x x x x x x x x x C F x D F x x x x x x x ⎧⎧-<-<⎪⎪==⎨⎨-≥+-≥⎪⎪⎩⎩⎧⎧-<-<⎪⎪==⎨⎨++≥-+≥⎪⎪⎩⎩(3)若()()222211y x y x =+=+是微分方程()()y p x y q x '+=的两个解,则()q x =( )()()()()()()2222313111xx A x x B x x C D x x +-+-++(4)已知函数(),0111,,1,2,1x x f x x n n n n ≤⎧⎪=⎨<≤=⎪+⎩,则( )(A)0x =是()f x 的第一类间断点 (B )0x =是()f x 的第二类间断点(C)()f x 在0x =处连续但不可导 (D)()f x 在0x =处可导(5)设A ,B是可逆矩阵,且A 与B 相似,则下列结论错误的是( )(A )T A 与T B 相似 (B)1A -与1B -相似(C )T A A +与T B B +相似 (D )1A A -+与1B B -+相似(6)设二次型()222123123121323,,444f x x x x x x x x x x x x =+++++,则()123,,2f x x x =在空间直角坐标下表示的二次曲面为( )(A )单叶双曲面 (B)双叶双曲面 (C )椭球面 (C)柱面(7)设随机变量()()0,~2>σσμN X ,记{}2σμ+≤=X P p ,则( ) (A)p 随着μ的增加而增加 (B)p 随着σ的增加而增加(C)p 随着μ的增加而减少 (D)p 随着σ的增加而减少(8)随机试验E 有三种两两不相容的结果321,,A A A ,且三种结果发生的概率均为31,将试验E 独立重复做2次,X 表示2次试验中结果1A 发生的次数,Y 表示2次试验中结果2A 发生的次数,则X 与Y 的相关系数为( )二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9)()__________cos 1sin 1ln lim 200=-+⎰→x dt t t t x x(10)向量场()()zk xyj i z y x z y x A ++++=,,的旋度_________=rotA(11)设函数()v u f ,可微,()y x z z ,=由方程()()y z x f x y z x ,122-=-+确定,则()_________1,0=dz(12)设函数()21arctan axx x x f +-=,且()10''=f ,则________=a (13)行列式1000100014321λλλλ--=-+____________. (14)设12,,...,n x x x 为来自总体()2,N μσ的简单随机样本,样本均值9.5x =,参数μ的置信度为0.95的双侧置信区间的置信上限为10.8,则μ的置信度为0.95的双侧置信区间为______.三、解答题:15—23小题,共94分.请将解答写在答题..纸.指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)已知平面区域()(),221cos ,22D r r ππθθθ⎧⎫=≤≤+-≤≤⎨⎬⎩⎭,计算二重积分Dxdxdy ⎰⎰.(16)(本题满分10分)设函数()y x 满足方程'''20,y y ky ++=其中01k <<.()I 证明:反常积分0()y x dx +∞⎰收敛;。
2016考研数学一真题及解析参考答案
2016考研数学(一)真题及答案解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.(((()q x =(,则()(的第一类间断点(B )(处连续但不可导(D ) (5)设A ,B 是可逆矩阵,且A 与B 相似,则下列结论错误的是()(A )TA 与TB 相似(B )1A -与1B -相似(C )TA A +与TB B +相似(D )1A A -+与1B B -+相似 (6)设二次型()222123123121323,,444f x x x x x x x x x x x x =+++++,则()123,,2f x x x =在空间直角坐标下表示的二次曲面为()(A )单叶双曲面(B )双叶双曲面(C )椭球面(C )柱面(7)设随机变量()()0,~2>σσμN X ,记{}2σμ+≤=X P p ,则() (A )p 随着μ的增加而增加(B )p 随着σ的增加而增加(少(22(((11)设函数()v u f ,可微,()y x z z ,=由方程()()y z x f x y z x ,122-=-+确定,则()_________1,0=dz(12)设函数()21arctan ax x x x f +-=,且()10''=f ,则________=a(13)行列式1000100014321λλλλ--=-+____________.(14)设12,,...,nx x x 为来自总体()2,N μσ的简单随机样本,样本均值9.5x =,参数μ的置信度为0.95的双侧置信区间的置信上限为10.8,则μ的置信度为0.95的双侧置信区间为______.三、解答题:15—23小题,共94分.请将解答写在((D ⎧=⎨⎩(0,ky +=()I ()II (21),x ye-+且f 积分(,)(,)()tL f x y f x y I t dx dy x y∂∂=+∂∂⎰,并求()I t 的最小值(18)设有界区域Ω由平面222=++z y x 与三个坐标平面围成,∑为Ω整个表面的外侧,计算曲面积分()zdxdyydzdx dydz x I 3212+-+=⎰⎰∑(19)(本题满分10分)已知函数()f x 可导,且(0)1f =,10'()2f x <<,设数列{}nx 满足1()(1,2...)n n xf x n +==,证明:(I )级数11()n n n xx ∞+=-∑绝对收敛;(II )lim nn x →∞存在,且0lim 2nn x→∞<<.(22a ⎫⎪⎪⎪-⎭当a ((I ()将12,,ββ(域D (I (U X (III )求Z U X =+的分布函数()F z . (23)设总体X 的概率密度为()⎪⎩⎪⎨⎧<<=其他,00,3,32θθθx x x f ,其中()∞+∈,0θ为未知参数,321,,X X X 为来自总体X 的简单随机样本,令()321,,m ax X X X T =。
2016【考研数一】真题及解析
2016年全国硕士研究生入学统一考试数学一试题答案一、选择题:1〜8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求 的,请将所选项前的字母填在答题纸指定位置上.(1)若反常积分1■干严收敛,则()(A )a <1 且b A1(B 冃 A 1 且b >1 (C )a c 1 且a + b >1 (D )a A I 且a + b >1 【解析】-be I X a (1+x) 1b dx 17a(1 + x)1乂 1 *1时X 严1 1 b[—X 在(p<1时收敛),可知ac1,而此时(1+x)b 不影响 ^0 x p -be 1 -be同理,f --- ----- x=f - ^1 X a(1 + x)b 1 -——dx(1 )1+-j -p dx ( p >1时收敛),而此时|2 f X —1 \ X 吒1(2)已知函数f (x )V * “ ,贝y f (X )的一个原函数是([In x,x>1广2广2|(x -1 2 ,x c 1 |(x -1) ,xv1(A )F (x )=r 丿 (B )F (x )=r 丿[x (lnx-1 )x 却 [x (ln x +1 )- 1,x>1广2广2|(x -1 ) ,X<1 |(X -1) ,x<1(C )F (x 尸r 八 (D )F (x )=r 八1x (1 n x+1 )+1,x >1 1x (1 n x-I ( X —1)2+C X£1【解析】由已知可得, F (X )斗' 1,取C , [x (In X T) + 5+1 X 3 1=0,故选D(3[若 y = (1 +x2 ) - J 1 +x 2, y = (1 + x 2 ) + J 1 +x 2 是微分方程 y + p x y q X 的两个解,q (x )=()2y ,+p (x )y = f (x )的解。
2016年考研数学一试题及解答
B
有唯一解,
X
=
1 0
3a
a a a
+ − +
2 4 2
.
−1 0
21.(本题满分 11 分)
0 −1 1
已知矩阵 A = 2 −3 0 .
000
( I ) 求 A99;
( II ) 设 3 阶矩阵 B = (α1, α2, α3) 满足 B2 = BA, 记 B100 = (β1, β2, β3), 将 β1, β2, β3 分别表示为 α1, α2, α3 的线性组合.
5. 设 A, B 是可逆矩阵, 且 A 与 B 相似, 则下列结论错误的是
[C ]
(A) AT 与 BT 相似.
(B) A−1 与 B−1 相似.
(C) A + AT 与 B + BT 相似.
(D) A + A−1 与 B + B−1 相似.
数学(一) 试题及解答 · 第 1 页(共 7 页)
6. 设二次型 f (x1, x2, x3) = x21 + x22 + x23 + 4x1x2 + 4x1x3 + 4x2x3, 则 f (x1, x2, x3) = 2
( ξn−1介于xn, xn−1之间 ) ( ξn−2介于xn−1, xn−2之间 )
= (· · ·
)
n∏−1
=
f ′(ξi) | x2 − x1 |
i=1
( 1 )n−1
< | x2 − x1 | 2
( ξi介于xi+1, xi之间 ) (1)
∑ ∞ ⇒ 级数 (xn+1 − xn) 绝对收敛.
三、解答题:15 ∼ 23 小题, 共 94 分. 解答应写出文字说明、证明过程或演算步骤.
2016考研数学一真题及答案解析
2016年全国硕士研究生入学统一考试数学一试题一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上.1、若反常积分1(1)a bdx x x +∞+⎰收敛,则(A )1a <且1b >.(B )1a >且1b >.(C )1a <且1a b +>.(D )1a >且1a b +>.2、已知函数2(1),1,()ln ,1,x x f x x x -<⎧=⎨≥⎩则()f x 的一个原函数是(A )2(1), 1.()(ln 1), 1.x x F x x x x ⎧-<=⎨-≥⎩(B )2(1), 1.()(ln 1)1, 1.x x F x x x x ⎧-<=⎨--≥⎩(C )2(1), 1.()(ln 1)1, 1.x x F x x x x ⎧-<=⎨++≥⎩(D )2(1), 1.()(ln 1)1, 1.x x F x x x x ⎧-<=⎨-+≥⎩3、若222(1)1y x x =+-+,222(1)1y x x =+++是微分方程'()()y p x y q x +=的两个解,则()q x =(A )23(1)x x +.(B )23(1)x x -+.(C )21x x +.(D )21xx-+.4、已知函数,0,()111,,1,2,,1x x f x x n nn n≤⎧⎪=⎨<≤=⎪+⎩ 则(A )0x =是()f x 的第一类间断点.(B )0x =是()f x 的第二类间断点.(C )()f x 在0x =处连续但不可导.(D )()f x 在0x =处可导.5、设A ,B 是可逆矩阵,且A 与B 相似,则下列结论错误的是(A )T A 与TB 相似.(B )1A -与1B -相似.(C )TA A +与TB B +相似.(D )1A A -+与1B B -+相似.6、设二次型222123123121323(,,)444f x x x x x x x x x x x x =+++++,则123(,,)2f x x x =在空间直角坐标下表示的二次曲面为(A )单叶双曲面(B )双叶双曲面(C )椭球面(D )柱面7、设随机变量2~(,)(0)X N μσσ>,记2{}p P X μσ=≤+,则(A )p 随着μ的增加而增加(B )p 随着σ的增加而增加(C )p 随着μ的增加而减少(D )p 随着σ的增加而减少8、随机试验E 有三种两两不相容的结果1A ,2A ,3A ,且三种结果发生的概率均为13,将试验E 独立重复做2次,X 表示2次试验中结果1A 发生的次数,Y 表示2次试验中结果2A 发生的次数,则X 与Y 的相关系数为(A )12-(B )13-(C )13(D )12二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上.9、02ln(1sin )lim_______.1cos xx t t t dt x →+=-⎰10、向量场(,,)()A x y z x y z i xyj zk =++++的旋度_______.rotA =11、设函数(,)f u v 可微,(,)z z x y =由方程22(1)(,)x z y x f x z y +-=-确定,则(0,1)|______.dz =12、设函数2()arctan 1xf x x ax=-+,且(0)1f '''=,则a =______.13、行列式100010014321λλλλ--=-+______.14、设12,,,n x x x 为来自总体2(,)N μσ的简单随机样本,样本均值9.5x =,参数μ的置信度为0.95的双侧置信区间的置信上限为10.8,则μ的置信度为0.95的双侧置信区间为______.三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.15、(本题满分10分)已知平面区域{=(,)|22(1cos ),22D r r ππθθθ⎫≤≤+-≤≤⎬⎭,计算二重积分Dxdxdy ⎰⎰.16、(本题满分10分)设函数()y x 满足方程20y y ky '''++=,其中01k <<.(1)证明:反常积分()y x dx +∞⎰收敛;(2)若(0)1y =,(0)1y '=,求0()y x dx +∞⎰的值.17、(本题满分10分)设函数(,)f x y 满足2(,)(21)x y f x y x e x-∂=+∂,且(0,)1f y y =+,t L 是从点(0,0)到点(1,)t 的光滑曲线。
2016年全国硕士研究生入学统一考试数学(一)真题及解析
2016考研真题完整版数学(一)一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)若反常积分()11badx x x +∞+⎰收敛,则( )()()()()11111111A a bB a bC a a bD a a b <>>><+>>+>且且且且(2)已知函数()()21,1ln ,1x x f x x x -<⎧⎪=⎨≥⎪⎩,则()f x 的一个原函数是( )()()()()()()()()()()()()()()()()22221,11,1ln 1,1ln 11,11,11,1ln 11,1ln 11,1x x x x A F x B F x x x x x x x x x x x C F x D F x x x x x x x ⎧⎧-<-<⎪⎪==⎨⎨-≥+-≥⎪⎪⎩⎩⎧⎧-<-<⎪⎪==⎨⎨++≥-+≥⎪⎪⎩⎩(3)若()()222211y xy x=+=+是微分方程()()y p x y q x '+=的两个解,则()q x =( )()()()()()()2222313111xx A x x B x x C D x x +-+-++(4)已知函数(),0111,,1,2,1x x f x x n n n n ≤⎧⎪=⎨<≤=⎪+⎩,则( )(A )0x =是()f x 的第一类间断点 (B )0x =是()f x 的第二类间断点 (C )()f x 在0x =处连续但不可导 (D )()f x 在0x =处可导 (5)设A ,B 是可逆矩阵,且A 与B 相似,则下列结论错误的是( ) (A )TA 与TB 相似 (B )1A -与1B -相似 (C )TA A +与TB B +相似 (D )1A A -+与1B B -+相似(6)设二次型()222123123121323,,444f x x x x x x x x x x x x =+++++,则()123,,2f x x x =在空间直角坐标下表示的二次曲面为( )(A )单叶双曲面 (B )双叶双曲面 (C )椭球面 (C )柱面(7)设随机变量()()0,~2>σσμN X ,记{}2σμ+≤=X P p ,则( )(A )p 随着μ的增加而增加 (B )p 随着σ的增加而增加 (C )p 随着μ的增加而减少 (D )p 随着σ的增加而减少(8)随机试验E 有三种两两不相容的结果321,,A A A ,且三种结果发生的概率均为31,将试验E 独立重复做2次,X 表示2次试验中结果1A 发生的次数,Y 表示2次试验中结果2A 发生的次数,则X 与Y 的相关系数为( )二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9)()__________cos 1sin 1ln lim2=-+⎰→x dt t t t xx(10)向量场()()zk xyj i z y x z y x A ++++=,,的旋度_________=rotA(11)设函数()v u f ,可微,()y x z z ,=由方程()()y z x f x y z x ,122-=-+确定,则()_________1,0=dz(12)设函数()21arctan axxx x f +-=,且()10''=f ,则________=a (13)行列式1000100014321λλλλ--=-+____________.(14)设12,,...,n x x x 为来自总体()2,N μσ的简单随机样本,样本均值9.5x =,参数μ的置信度为0.95的双侧置信区间的置信上限为10.8,则μ的置信度为0.95的双侧置信区间为______.三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)已知平面区域()(),221cos ,22D r r ππθθθ⎧⎫=≤≤+-≤≤⎨⎬⎩⎭,计算二重积分Dxdxdy ⎰⎰.(16)(本题满分10分)设函数()y x 满足方程'''20,y y ky ++=其中01k <<.()I 证明:反常积分0()y x dx +∞⎰收敛;()II 若'(0)1,(0)1,y y ==求0()y x dx +∞⎰的值.(17)(本题满分10分)设函数(,)f x y 满足2(,)(21),x y f x y x e x-∂=+∂且(0,)1,tf y y L =+是从点(0,0)到点(1,)t 的光滑曲线,计算曲线积分(,)(,)()tL f x y f x y I t dx dy x y∂∂=+∂∂⎰,并求()I t 的最小值(18)设有界区域Ω由平面222=++z y x 与三个坐标平面围成,∑为Ω整个表面的外侧,计算曲面积分()zdxdyydzdx dydz xI 3212+-+=⎰⎰∑(19)(本题满分10分)已知函数()f x 可导,且(0)1f =,10'()2f x <<,设数列{}n x 满足1()(1,2...)n n x f x n +==,证明: (I )级数11()n n n xx ∞+=-∑绝对收敛;(II )lim n n x →∞存在,且0lim 2n n x →∞<<.(20)(本题满分11分)设矩阵1112221,11112A a B a a a --⎛⎫⎛⎫⎪⎪== ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭当a 为何值时,方程AXB =无解、有唯一解、有无穷多解?(21)(本题满分11分)已知矩阵011230000A -⎛⎫⎪=- ⎪ ⎪⎝⎭(I )求99A(II )设3阶矩阵23(,,)B ααα=满足2B BA =,记100123(,,)B βββ=将123,,βββ分别表示为123,,ααα的线性组合。
2016考研数学一真题及解析答案
2016考研数学(一)真题及答案解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)若反常积分()11badx x x +∞+⎰收敛,则( )(2)已知函数()()21,1ln ,1x x f x x x -<⎧⎪=⎨≥⎪⎩,则()f x 的一个原函数是( )(3)若()()222211y x y x =+=++是微分方程()()y p x y q x '+=的两个解,则()qx =( )(4)已知函数(),0111,,1,2,1x x f x x n n n n ≤⎧⎪=⎨<≤=⎪+⎩,则( )(A )0x =是()f x 的第一类间断点 (B )0x =是()f x 的第二类间断点(C )()f x 在0x =处连续但不可导 (D )()f x 在0x =处可导(5)设A ,B 是可逆矩阵,且A 与B 相似,则下列结论错误的是( ) (A )TA 与TB 相似 (B )1A -与1B -相似 (C )T A A +与T B B +相似 (D )1A A -+与1B B -+相似(6)设二次型()222123123121323,,444f x x x x x x x x x x x x =+++++,则()123,,2f x x x =在空间直角坐标下表示的二次曲面为( )(A )单叶双曲面 (B )双叶双曲面 (C )椭球面 (C )柱面 (7)设随机变量()()0,~2>σσμN X ,记{}2σμ+≤=X P p ,则( )(A )p 随着μ的增加而增加 (B )p 随着σ的增加而增加(C )p 随着μ的增加而减少 (D )p 随着σ的增加而减少(8)随机试验E 有三种两两不相容的结果321,,A A A ,且三种结果发生的概率均为31,将试验E 独立重复做2次,X 表示2次试验中结果1A 发生的次数,Y 表示2次试验中结果2A 发生的次数,则X 与Y 的相关系数为( )二、填空题:9?14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9)()__________cos 1sin 1ln lim200=-+⎰→x dt t t t xx(10)向量场()()zk xyj i z y x z y x A ++++=,,的旋度_________=rotA(11)设函数()v u f ,可微,()y x z z ,=由方程()()y z x f x y z x ,122-=-+确定,则()_________1,0=dz(12)设函数()21arctan axxx x f +-=,且()10''=f ,则________=a (13)行列式10010014321λλλλ--=-+____________.(14)设12,,...,n x x x 为来自总体()2,Nμσ的简单随机样本,样本均值9.5x =,参数μ的置信度为0.95的双侧置信区间的置信上限为10.8,则μ的置信度为0.95的双侧置信区间为______. 三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)已知平面区域()(),221cos ,22D r r ππθθθ⎧⎫=≤≤+-≤≤⎨⎬⎩⎭,计算二重积分Dxdxdy ⎰⎰.(16)(本题满分10分)设函数()y x 满足方程'''20,y y ky ++=其中01k <<.()I 证明:反常积分0()y x dx +∞⎰收敛;()II 若'(0)1,(0)1,y y ==求0()y x dx +∞⎰的值.(17)(本题满分10分)设函数(,)f x y 满足2(,)(21),x y f x y x e x-∂=+∂且(0,)1,t f y y L =+是从点(0,0)到点(1,)t 的光滑曲线,计算曲线积分(,)(,)()tL f x y f x y I t dx dy x y∂∂=+∂∂⎰,并求()I t 的最小值(18)设有界区域Ω由平面222=++z y x 与三个坐标平面围成,∑为Ω整个表面的外侧,计算曲面积分()zdxdyydzdx dydz x I3212+-+=⎰⎰∑(19)(本题满分10分)已知函数()f x 可导,且(0)1f =,10'()2f x <<,设数列{}n x 满足1()(1,2...)n n x f x n +==,证明:(I )级数11()n n n xx ∞+=-∑绝对收敛;(II )lim n n x →∞存在,且0lim 2nn x →∞<<.(20)(本题满分11分)设矩阵1112221,11112A a B a a a --⎛⎫⎛⎫ ⎪⎪== ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭当a 为何值时,方程AXB =无解、有唯一解、有无穷多解?(21)(本题满分11分)已知矩阵011230000A -⎛⎫ ⎪=- ⎪ ⎪⎝⎭(I )求99A(II )设3阶矩阵23(,,)B ααα=满足2B BA =,记100123(,,)B βββ=将123,,βββ分别表示为123,,ααα的线性组合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年考研数学一真题及详细解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)若反常积分()11badx x x +∞+⎰收敛,则( )()()()()11111111A a bB a bC a a bD a a b <>>><+>>+>且且且且【答案】(C ) 【解析】1(1)a bdx x x +∞+⎰1111(1)(1)a ba b dx dx x x x x +∞=+++⎰⎰ 11pdx x⎰在(1p <时收敛),可知1a <,而此时(1)bx +不影响 同理,1111(1)11ba ba b dx dx x x x x +∞+∞+=+⎛⎫+ ⎪⎝⎭⎰⎰11p dx x +∞⎰(1p >时收敛),而此时11bx ⎛⎫+ ⎪⎝⎭不影响 (2)已知函数()()21,1ln ,1x x f x x x -<⎧⎪=⎨≥⎪⎩,则()f x 的一个原函数是( )()()()()()()()()()()()()()()()()22221,11,1ln 1,1ln 11,11,11,1ln 11,1ln 11,1x x x x A F x B F x x x x x x x x x x x C F x D F x x x x x x x ⎧⎧-<-<⎪⎪==⎨⎨-≥+-≥⎪⎪⎩⎩⎧⎧-<-<⎪⎪==⎨⎨++≥-+≥⎪⎪⎩⎩【答案】(D )【解析】由已知可得,()()(ln )x C x F x x x C x ⎧-+<=⎨-++≥⎩21111111,取C =10,故选D(3)若()()222211y x y x =+-=++是微分方程()()y p x y q x '+=的两个解,则()q x =( )()()()()()()2222313111xx A x x B x x C D x x +-+-++【答案】(A )【解析】y y -=-12是一阶齐次微分方程()y p x y '+=0的解,代入得()(p x -+-=0,所以()xp x x =-+21,根据解的性质得,y y +122是()()y p x y f x '+=的解。
所以有()()q x x x =+231.(4)已知函数(),0111,,1,2,1x x f x x n n n n ≤⎧⎪=⎨<≤=⎪+⎩K ,则( ) (A )0x =是()f x 的第一类间断点 (B )0x =是()f x 的第二类间断点 (C )()f x 在0x =处连续但不可导 (D )()f x 在0x =处可导 【答案】(D )【解析】由于()lim x x f x-→-'==0001,()lim n n f n+→∞-'==1011,故选D 。
(5)设A ,B 是可逆矩阵,且A 与B 相似,则下列结论错误的是( ) (A )T A 与T B 相似 (B )1A -与1B -相似 (C )T A A +与T B B +相似 (D )1A A -+与1B B -+相似 【答案】(C )【解析】此题是找错误的选项。
由A 与B 相似可知,存在可逆矩阵,P 使得1P AP B -=,则111111111111111111(1)()()~,A (2)()~(3)()~, T T T T T T T T P AP B P A P B A B P AP B P A P B A B B P A A P P AP P A P B B A A B B D ------------------=⇒=⇒=⇒=⇒+=+=+⇒++故()不选;,故()不选;故()不选;此外,在(C )中,对于111()TTP A A P P AP P A P ---+=+,若1=P AP B -,则1()TTT T P A P B -=,而1T P A P -未必等于TB ,故(C )符合题意。
综上可知,(C )为正确选项。
(6)设二次型()222123123121323,,444f x x x x x x x x x x x x =+++++,则()123,,2f x x x =在空间直角坐标下表示的二次曲面为( )(A )单叶双曲面 (B )双叶双曲面 (C )椭球面 (D )柱面【答案】(B )【解析】对于二次型()222123123121323,,444f x x x x x x x x x x x x =+++++, 其矩阵为122212221A ⎛⎫⎪= ⎪ ⎪⎝⎭,接下来由0E A λ-=, 可得其特征值为1235,1λλλ===-(一正两负),因此其正惯性指数和负惯性指数分别为1,2.故二次型()123,,f x x x 的规范形为222123f z z z =--,即22222212321z z z --=⇒=,对应的曲面为双叶双曲面。
(7)设随机变量()()0,~2>σσμN X ,记{}2σμ+≤=X P p ,则( )(A )p 随着μ的增加而增加 (B )p 随着σ的增加而增加 (C )p 随着μ的增加而减少 (D )p 随着σ的增加而减少 【答案】(B )【解析】2{}{}X P X P μμσσσ-≤+=≤所以概率随着σ的增大而增大。
(8)随机试验E 有三种两两不相容的结果321,,A A A ,且三种结果发生的概率均为31,将试验E 独立重复做2次,X 表示2次试验中结果1A 发生的次数,Y 表示2次试验中结果2A 发生的次数,则X 与Y 的相关系数为( )【解析】11(2,),(2,)33X B Y B ::24,39EX EY DX DY ====,211(1,1)9EXY P X Y =⋅⋅===所以12XY ρ==-二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9)()__________cos 1sin 1ln lim200=-+⎰→x dt t t t xx【答案】21【解析】ln(sin )limx x x x x →+=31122(10)向量场()()zk xyj i z y x z y x A ++++=,,的旋度_________=rotA【答案】()1,1,0-y【解析】由旋度公式得,{}(A),,,,R Q P R Q P rot y y z z x x y ⎧⎫∂∂∂∂∂∂=---=-⎨⎬∂∂∂∂∂∂⎩⎭011 11、设函数(,)f u v 可微,(,)z z x y =有方程()(,)x z y x f x z y +-=-221确定,则(),____dz =01. 【答案】dy dx 2+-【解析】()(,)x x y x f x z y +-=-221两边分别关于,x y 求导得()(,)(,)()()((,)()(,))x x y y z x z xf x z y x f x z y z x z y x f x z y z f x z y '''++=-+--''''+-=--+-2121212112,将,,x y z ===011代入得,(),dzdx dy =-+012(12)设函数()21arctan axxx x f +-=,且()10''=f ,则________=a 【答案】21(13)行列式1000100014321λλλλ--=-+____________.【答案】432234++++λλλλ【解析】414321001010010=01+4110++2+3+4.00132+101432+1λλλλλλλλλλλλλλ+-----⨯-=--(-) (14)设12,,...,n x x x 为来自总体()2,N μσ的简单随机样本,样本均值9.5x =,参数μ的置信度为0.95的双侧置信区间的置信上限为10.8,则μ的置信度为0.95的双侧置信区间为______. 【答案】()8.10,2.8【解析】0.0250.0250.0250.025{}{}0.95x uP u u P x u u x σ--<<=-<<+=因为0.02510.8x +=0.025 1.3,=所以置信下限0.0258.2x u -=.三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)已知平面区域()(),221cos ,22D r r ππθθθ⎧⎫=≤≤+-≤≤⎨⎬⎩⎭,计算二重积分Dxdxdy ⎰⎰.【答案】3325+π【解析】()()⎰⎰⎰⎰⎰-+-+==223cos 1222222cos 123cos cos ππθππθθθθθd r dr r d dxdy x D()⎰⎰⎰⎰----++=++=22422322222432cos 38cos 8cos 8cos cos 3cos 338ππππππππθθθθθθθθθθd d d d()⎰⎰⎰⎰------+⎪⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+=+-++=22222232222322222cos sin 338|3sin sin 8|22sin 4sin cos 38sin sin 18212cos 8ππππππππππππθθθθθθθθθθθθθd d d d 33252sin 23324222+=-+=⎰-πθθπππd(16)(本题满分10分)设函数()y x 满足方程'''20,y y ky ++=其中01k <<.()I 证明:反常积分0()y x dx +∞⎰收敛; ()II 若'(0)1,(0)1,y y ==求0()y x dx +∞⎰的值.【答案】()II k 3【解析】(1)特征方程为220r r k ++=,由01k <<可知,特征方程有两个不相同的特征根,1,21r ==-±1,20r <,由二阶常系数齐次线性方程的求解可知,1212()r x r xy x C e C e =+12120()r x r xy x dx C e C e dx +∞+∞⎡⎤=+⎣⎦⎰⎰12120r x r x C e dx C e dx +∞+∞=+⎰⎰121212lim 1lim 1r x r x x x C Ce e r r →+∞→+∞⎡⎤⎡⎤=-+-⎣⎦⎣⎦由于1,20r <12012()C C y x dx r r +∞=--⎰极限存在,故收敛. (2) 由1212()r x r xy x C e C e =+,(0)1,'(0)1y y ==可知,1211221,2111C C C r C r r ⎧+=⎪⎪+=⎨⎪=-±⎪⎩解得1212C C == 代入1212()C C y x dx r r +∞=--⎰可知0()y x dx +∞=⎰(17)(本题满分10分)设函数(,)f x y 满足2(,)(21),x y f x y x e x -∂=+∂且(0,)1,t f y y L =+是从点(0,0)到点(1,)t 的光滑曲线,计算曲线积分(,)(,)()tL f x y f x y I t dx dy x y∂∂=+∂∂⎰,并求()I t 的最小值 【答案】3【解析】(1) 由2(,)(21)x yf x y x ex-∂=+∂可知:2(,)[(21)]x yf x y x e dx -=+⎰22[2]y x xe xe dx e dx -=+⎰⎰2()y x e xe y ϕ-=+g2()x y xe y ϕ-=+又 (0,)1f y y =+ 可知 ()1y y ϕ=+因此 2(,)1x yf x y xe y -=++2(,)1x y f x y xe y-∂=-+∂ 22()(21)(1)x y x y LtI t x e dx xe dy --=++-⎰2(21)x yP x e-=+ 21x yQ xe-=-2(21)x y P x e y -∂=-+∂ 222x y x y Q e xe x --∂=--∂ P Q y x∂∂=∂∂ 因此,积分与路径无关 22()(21)(1)x y x y Lt I t x e dx xe dy --=++-⎰1220(21)(1)tx y x e dx e dy -=++-⎰⎰222t e t e e -=++- 2t t e -=+(2) 2()tI t t e-=+ 2()1tI t e-'=-()0I t '= 可知 2t = 有唯一驻点 2()tI t e-''=(2)10I ''=>因此 2t =时 ()I t 有最小值22(2)2213I e -=+=+=(18)设有界区域Ω由平面222=++z y x 与三个坐标平面围成,∑为Ω整个表面的外侧,计算曲面积分()zdxdyydzdx dydz xI 3212+-+=⎰⎰∑【答案】21【解析】2(1)23I x dydz ydzdx zdxdy ∑=+-+⎰⎰21,2,3P x Q y R z =+=-=由高斯公式可知,()223I x dxdydz Ω=-+⎰⎰⎰()21x dxdydz Ω=+⎰⎰⎰12(21)xyy x D dxdy x dz --=+⎰⎰⎰222xy D y x x xy dxdy ⎛⎫=+-- ⎪⎝⎭⎰⎰11220022xy dx x x xy dy -⎛⎫=+-- ⎪⎝⎭⎰⎰12=(19)(本题满分10分)已知函数()f x 可导,且(0)1f =,10'()2f x <<,设数列{}n x 满足1()(1,2...)n n x f x n +==,证明:(I )级数11()n n n xx ∞+=-∑绝对收敛;(II )lim n n x →∞存在,且0lim 2n n x →∞<<.【证明】1()n n x f x +=11()()n n n n x x f x f x +--=- 1'()()n n f x x ξ-=- 112n n x x -<- 121()()2n n f x f x --=-122111212n n n x x x x ---<-<<-L显然,211112n n x x ∞-=-∑收敛因此,()11n n n xx ∞+=-∑绝对收敛;(2)()11n n n xx ∞+=-∑的前n 项和记为n S易知,11n n S x x +=-,由第一问可知n S 极限存在,因此lim n n x A →∞=存在1()()(0)1n n n x f x f x f +==-+ '()1n f x ξ=+(*)i)由已知10'()2f x <<,易知11'()112n n n x f x x ξ+=+<= 不等式两边取极限,可知112A A <+,即2A <;ii)若0A =,则(*)矛盾;iii)若0A <,则由(*)可知(1'())1f A ξ-=,而10'()2f x <<,显然矛盾 综上,02A <<(20)(本题满分11分)设矩阵1112221,11112A a B a a a --⎛⎫⎛⎫ ⎪⎪== ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭当a 为何值时,方程AX B =无解、有唯一解、有无穷多解?【答案】2-=a 时,无解;1=a 时,有无穷多解,⎪⎪⎪⎭⎫ ⎝⎛----=21211133k k k k X ;2-≠a 且1≠a 时,有唯一解,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+-+=01240231a a a a X【解析】(20)(本题满分11分)设矩阵1112221,11112A a B a a a --⎛⎫⎛⎫⎪⎪== ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭当a 为何值时,方程AX B =无解、有唯一解、有无穷多解?【答案】2-=a 时,无解;1=a 时,有无穷多解,⎪⎪⎪⎭⎫ ⎝⎛----=21211133k k k k X ;2-≠a 且1≠a 时,有唯一解,⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-+-+=01240231a a a a X【解析】对B AX =的增广阵做初等变换⎪⎪⎪⎭⎫ ⎝⎛-----+-→042132131021001),(a a a a B A,故无穷多解。