混凝土热工计算资料
(新)混凝土热工计算

混凝土热工计算:依据《建筑施工手册》(第四版)、《大体积混凝土施工规范》(GB_50496-2009)进行取值计算。
砼强度为:C40 砼抗渗等级为:P6砼供应商提供砼配合比为:水:水泥:粉煤灰:外加剂:矿粉:卵石:中砂155: 205 : 110 : 10.63 : 110 : 1141 : 727一、温度控制计算1、最大绝热温升计算T MAX= W·Q/c·ρ=(m c+K1FA+K2SL+UEA)Q/Cρ式中:T MAX——混凝土的最大绝热温升;W——每m3混凝土的凝胶材料用量;m c——每m3混凝土的水泥用量,取205Kg/m3;FA——每m3混凝土的粉煤灰用量,取110Kg/m3;SL——每m3混凝土的矿粉用量,取110Kg/m3;UEA——每m3混凝土的膨胀剂用量,取10.63Kg/m3;K1——粉煤灰折减系数,取0.3;K2——矿粉折减系数,取0.5;Q——每千克水泥28d 水化热,取375KJ/Kg;C——混凝土比热,取0.97[KJ/(Kg·K)];ρ——混凝土密度,取2400(Kg/m3);T MAX=(205+0.3×110+0.5×110+10.63)×375/0.97×2400T MAX=303.63×375/0.97×2400=48.91(℃)2、各期龄时绝热温升计算Th(t)=W·Q/c·ρ(1-e-mt)= T MAX(1-e-mt);Th——混凝土的t期龄时绝热温升(℃);е——为常数,取2.718;t——混凝土的龄期(d);m——系数、随浇筑温度改变。
根据商砼厂家提供浇注温度为20℃,m值取0.362Th(t)=48.91(1-e-mt)计算结果如下表:3、砼内部中心温度计算T1(t)=T j+Thξ(t)式中:T1(t)——t 龄期混凝土中心计算温度,是该计算期龄混凝土温度最高值;T j——混凝土浇筑温度,根据商砼厂家提供浇注温度为20℃;ξ(t)——t 龄期降温系数,取值如下表T1(t)=T j+Thξ(t)=20+ Thξ(t)计算结果如下表:由上表显示,砼中心温度最高值出现在第三天。
混凝土热工计算步骤及公式

冬季混凝土施工热工计算步骤仁出机温度T,应由预拌混凝土公司计算并保证,现场技术组提出混凝土 到现场得出罐温度要求。
计算入模温度T 2:(1) 现场拌制混凝土采用装卸式运输工具时T 2=T-AT y(2) 现场拌制混凝土采用泵送施工时:T 2=T-AT b(3) 采用商品混凝土泵送施工时:T 2=T-AT-AT b其中,AT y . 分别为采用装卸式运输工具运输混凝土时得温度降低与采用泵管输送混凝土时得温度降低,可按下列公式计算:ATy= ( a ti+O> 032n) X (L- Ta) 3.6I)w 叫= =4u)x x AT. x xd hC r x p r x D70.04 + — LL L 式中:T 2——混凝土拌合物运输与输送到浇筑地点时温度(°C)△ Ty——采用装卸式运输工具运输混凝土时得温度降低CC)△Tb——采用泵管输送混凝土时得温度降低(°C)AT.——泵管内混凝土得温度与环境气温差(°C),当现场拌制混凝土 采用泵送工艺输送时:AL= T-「;当商品混凝土采用泵送工艺输送时:△ T F T- T- TaT a ——室外环境气温(°C)t.——混凝土拌合物运输得时间(h)t2——混凝土在泵管內输送时间(h)n ——混凝土拌合物运转次数Q ——混凝土得比热容[kj/(kg ・K)]p c ——混凝土得质量密度(kg/m 3) 一般取值2400X b ——泵管外保温材料导热系数[W/ (ni ・k)]d b ---泵管外保温层厚度(m)D L ——混凝土泵管内径(m)D w ——混凝土泵管外围直径(包括外围保温材料)(m)CD ——透风系数,可按规程表A. 2. 2-2取值a ——温度损失系数(h"1);采用混凝土搅拌车时:a 二0、25;采用开敞式大型自卸汽车时:a 二0、20;采用开敞式小型自卸汽车时:a 二0、30;采用封 闭式自卸汽车时:a=:o 、1;采用手推车或吊斗时:a 二0、50 步骤2:考虑模板与钢筋得吸热影响,计算成型温度T3CdiuT 2 + Cfin(Tf + Csin^Ts C(nk + Cjnif + C.v/n.vCc --- 混凝土比热容(kj/kg ・K)普通混凝土取值0、96C f --- 模板比热容(kj/kg ・K)木模2、51,钢模0、48C s ——钢筋比热容(kj/kg ・K)o 、48me --- 每混凝土重量(kg) 2500m f --- 每m 3混凝土相接触得模板重量(kg)T3=m s --- 每m 3混凝土相接触得钢筋重量(kg)Tf ——模板得温度,未预热时可采用当时得环境温度(°C)T s ——钢筋得温度,未预热时可采用当时得环境温度(°C) 步骤3:计算T=O C 时得匕I 4 = ne -<pe + 1 ,n .aT 4——混凝土蓄热养护开始到任一时刻得温度(°C)T m .a ——混凝土蓄热养护开始到任一时刻t 得平均气温(°C)t 3——混凝土蓄热养护开始到任一时刻得时间(h)V ce ——水泥水化速度系数(h~1)ri e cp ——综合系数J l = T y -T m ^(pPc ——混凝土得质量密度(kg/m 3) 一般取值2400Qce -- 水泥水化累积最终放热量(k j/kg)CD --- 透风系数M ——结构表面系数(m _1) M 二A/V 二表面积/体积 k ——结构围护层得总传热系数(kj/m2 • h • K)3.6X,——第i 层围护层得导热系数[W/(m ・k)] 此时得已知条件:T m .a > Vce 、P c > Qce 、3、M 、£设T 二0°C,计算出t 3步骤4:计算出T=0°C 时得平均养护温度步骤5:计算T=0°C 时成熟度D D=(T m +15)・ t t ——温度为h 得持续时间(h)步骤6:推算混凝土强度推算混凝土强度前,项目部要要求混凝土公司提供至少两个标准 养护出——第i 层围护层厚度(m)e • K • M 0.04 4- 由步骤3中计算出得匕,带入求出T mo龄期得混凝土强度。
大体积混凝土热工计算书

大体积混凝土热工计算书一、工程概况本工程基础底板为大体积混凝土结构,混凝土强度等级为 C40,抗渗等级为 P8。
基础底板长_____m,宽_____m,厚_____m。
混凝土浇筑时间为_____年_____月_____日,当时的环境温度为_____℃。
二、热工计算依据1、《大体积混凝土施工规范》(GB 50496-2018)2、《混凝土结构工程施工规范》(GB 50666-2011)3、混凝土配合比设计报告4、当地气象资料三、混凝土配合比水泥:_____kg/m³粉煤灰:_____kg/m³矿粉:_____kg/m³砂:_____kg/m³石子:_____kg/m³水:_____kg/m³外加剂:_____kg/m³四、混凝土的绝热温升计算1、水泥水化热根据水泥品种及强度等级,查得 3d 龄期的水化热 Q3 =_____kJ/kg,7d 龄期的水化热 Q7 =_____kJ/kg。
2、混凝土的绝热温升Th =(mcQ)/(cρ)×(1 emt)其中:mc ——每立方米混凝土中水泥用量(kg/m³)Q ——每千克水泥水化热(kJ/kg)c ——混凝土的比热容,取 097kJ/(kg·℃)ρ ——混凝土的质量密度,取 2400kg/m³m ——与水泥品种、浇筑温度等有关的系数,取 03t ——混凝土的龄期(d)3d 龄期的绝热温升:Th3 =(mcQ3)/(cρ)×(1 em×3)=(_____×_____)/(097×2400)×(1 e-03×3)=_____℃7d 龄期的绝热温升:Th7 =(mcQ7)/(cρ)×(1 em×7)=(_____×_____)/(097×2400)×(1 e-03×7)=_____℃五、混凝土中心温度计算T1(t)= Tj +Thξ(t)其中:T1(t)——t 龄期混凝土中心温度(℃)Tj ——混凝土浇筑温度(℃)Th ——混凝土的绝热温升(℃)ξ(t)——t 龄期降温系数,可根据龄期和厚度查表得到假设混凝土浇筑温度 Tj =_____℃,3d 龄期的降温系数ξ(3)=_____,7d 龄期的降温系数ξ(7)=_____。
混凝土热工计算

一. 混凝土拌和温度的计算强度等级水泥用量258水泥温度60出机温度环境温度装料、转运、卸料21.62240.032时间:min 15θ:0.48总θ0.96二,混凝土浇筑温度计算:23.90T max =m c ×Q/(C×ρ)参数1C35参数2混凝土拌合物计算温度ρ――砼的质量密度,取2400Kg/m 3四,计算混凝土内部实际最高温度及实际最高温升值浇筑温度三。
计算混凝土最大水化热绝热温升值m c ――每立方米砼水泥用量(Kg)Q――每千克水泥水化热量(KJ/Kg),取330C――砼的比热,取0.96kJ/kg.KT(t)――砼浇筑完成t段时间,砼的绝热温升值(℃)。
t――砼浇筑后至计算时的天数(d)ξ——不同浇筑块厚度的温降系数1.4 MT(t)时间ξ16.8230.4614.6360.411.1290.3047.97120.2185.63150.1543.88180.1063.07210.0842.93240.081.83270.051.46300.04内部实际最高温度时间40.73338.53635.02931.881229.541527.781826.982126.832425.732725.3730混凝土内部实际最高温升值2.19T3-T63.51T6-T93.15T9-T122.34T12-T151.76T15-T180.80T18-T210.15T21-T241.10T24-T270.37T27-T30五、各龄期混凝土收缩值及收缩当量温差:ξy(t)=ξy0((1-e-0.01t)×M1×M2×…M10M1=1.00, M2=1.05 M3=1.00, M4=1.00, M5=1.20,M6=1.11 M7 =1.00, M8=1.40(水利半径倒数), M9=1.00, M10=0.80 (配筋率)M11M2 1.05M31M41M5 1.2M6 1.11M71M8 1.4M91M100.8M*M 1.566ξy 03.24E-04e-0.01tξy (t )5.08E-04*(1-e-0.01t)收缩值t(浇筑后计时天数)ξy (30) 1.32E-0430ξy (27) 1.20E-0427ξy (24) 1.08E-0424ξy(21)9.61E-0521ξy (18)8.36E-0518ξy (15)7.07E-0515ξy (12) 5.74E-0512ξy (9) 4.37E-059ξy (6) 2.96E-056ξy (3)1.50E-053Ty(t)收缩当量温差ξy(t)不同龄期收缩值α当量温度30d收缩值 1.32E-0413.1527d收缩值1.20E-0412.01T y (t)=ξy (t)/α =ξy(t)/1.0×10-5混凝土线性膨胀系数 取1.0*10-524d收缩值 1.08E-0410.8321d收缩值9.61E-059.6118d收缩值8.36E-058.3615d收缩值7.07E-057.0712d收缩值 5.74E-05 5.749d收缩值 4.37E-05 4.376d收缩值 2.96E-05 2.963d收缩值 1.50E-05 1.50当量温差t30-t27 1.15t27-t24 1.18t24-t21 1.22t21-t18 1.25t18-t15 1.29t15-t12 1.33t12-t9 1.37t9-t6 1.41t6-t31.46七、总综合温差11.7ΔTL α=1.0×10-518.5740000.00001计算书11.2εpaftρ1.080E-041.650.774f t ——混凝土抗拉设计强度,C35为1.65 N/mm 2εpa ——钢筋混凝土的极限拉伸;ρ——截面配筋率,计算取0.774%d——钢筋直径,取3.2cm九、钢筋混凝土极限拉伸计算:εpa=0.5ft(1+ρ/d)×10-4t 2-t 1——温度差,取25℃; 内外温差要计算八、混凝土温度变形值计算ΔT=L(t2-t1)αΔT——随温度变化而伸长或缩短的变形值(mm);L——结构长度(mm),为mm;六.各龄期混凝土收缩当量温差T=Ty(3-6)+Ty(6-9)+Ty(9-12)+Ty(12-15)+Ty(15式中: ——混凝土的弹性模量,一般近似取标准条件下养护28d 的弹性模量,可按表B.3.1-1取用;此处β=β1·β2 =0.99*1.02= 1.0098E(t)βE07.527E+03 1.0098 3.15E+041.327E+04 1.0098 3.15E+041.766E+04 1.0098 3.15E+042.101E+04 1.0098 3.15E+042.356E+04 1.0098 3.15E+042.551E+04 1.0098 3.15E+042.700E+04 1.0098 3.15E+042.814E+04 1.0098 3.15E+042.901E+04 1.0098 3.15E+042.967E+041.00983.15E+04十、各龄期混凝土弹性模量E(t)=βE0(1-e-0.09t)——混凝土龄期为t 时,混凝土的弹性模量(N/mm 2);β=β1·β2 (B.3.1-2)β——掺合料修正系数,该系数取值应以现场试验数据为准,在施工准备阶段和现场无试验数据时,可参 β1——粉煤灰掺量对应系数,取值参见表B.3.1-2; β2——矿粉掺量对应系数,取值参见表B.3.1-2;φ——系数,应根据所用混凝土试验确定,当无试验数据时,可近似地取φ=0.09)(t E 0E11、结构计算温差=混凝土内部实际最高温升值2.193.513.152.341.760.800.151.100.37相关参数:A 1A 2R 10.0237d -1 3.45167d -1(-0.067419d -1)e 为常数=2.718(混凝土内部实际最高温升值+各龄期混各龄期混凝土收缩当量温差1.51.31.21.21.11.41.41.31.3S(18)=0.252;S(15)=0.233;S(12)=0.215;S(9) =0.214;S(6) =0.208;S(3)=0.186此应力松弛系数可直接引用13、混凝土的内部温度应力计算12、各龄期混凝土应力松弛系数:S h(t )=1-A 1/R 1(1-e-R1t)-A 2/R 2(1-e-R2t)A 1,R 1,A 2,R 2 分别为经验系数S(30)=1.00;S(27)=0.57;S(24)=0.436;S(21)=0.301;L——基础长度 L=74000mmζ(t)=E (i)×α×T (i)×〔1-1/ch βL/2〕S i(t)ζ(t)——各龄期混凝土基础所承受的温度应力;E (i)——各龄期混凝土的弹性模量;(如3天和6天的平均值)T (i)——各龄期综合温度;(即结构计算温差)α混凝土线性膨胀系数1.0*10-5S i(t)——各龄期混凝土松弛系数;(如3天和6天的平均值)ch βL/2——双曲余弦函数,可由表查得;β——系数 β=(C X /HE (t))0.5ζ(t) (N/mm)E(i)α0.0499 1.040E+04 1.00E-050.0891 1.547E+04 1.00E-050.0918 1.933E+04 1.00E-050.0826 2.228E+04 1.00E-050.0769 2.454E+04 1.00E-050.0606 2.626E+04 1.00E-050.0544 2.757E+04 1.00E-050.1256 2.857E+04 1.00E-050.13122.934E+041.00E-05混凝土内部最大温度应力为0.7621N/mm2混凝土抗拉强度设计值为 1.65N/mm2抗裂安全度为0.462是否安全安全Tmax=T0+Q/10+F/5055.7840.73hλi λ1.40.14 2.3Tb Ta KT 0——混凝土浇筑温度,前面计算为X℃。
大体积混凝土热工计算表格

Th= W c Q/C ρ(1-е-mt)式中:Th—混凝土的绝热温升(℃);m c ——每m 3 混凝土的水泥用量,取3;Q——每千克水泥28d 水化热,取C——混凝土比热,取0.97[KJ/(Kg·K)];ρ——混凝土密度,取2400(Kg/m3);е——为常数,取2.718;t——混凝土的龄期(d);m——系数、随浇筑温度改变,取2、混凝土内部中心温度计算T 1(t)=T j +Thξ(t)式中:T 1(t)——t 龄期混凝土中心计算温度,是混凝土温度最高值T j ——混凝土浇筑温度,取由上表可知,砼第9d左右内部温度最高,则验算第9d砼温差3、混凝土养护计算1、绝热温升计算计算结果如下表ξ(t)——t 龄期降温系数,取值如下表大体积混凝土热工计算计算结果如下表:混凝土表层(表面下50-100mm 处)温度,混凝土表面采用保温材料(稻草)蓄热保温养护,并在稻草上下各铺一层不透风的塑料薄膜。
①保温材料厚度δ= 0.5h·λi (T 2-T q )K b /λ·(T max -T 2)式中:δ——保温材料厚度(m);λi ——各保温材料导热系数[W/(m·K)] ,取λ——混凝土的导热系数,取2.33[W/(m·K)]T 2——混凝土表面温度:29.9(℃)(Tmax-25)T q ——施工期大气平均温度:12(℃)T 2-T q —-17.9(℃)T max -T 2—21.0(℃)K b ——传热系数修正值,取δ= 0.5h·λi (T 2-T q )K b /λ·(T max -T2)*100=4.75cm故可采用两层土工布并在其上下各铺一层塑料薄膜进行养护。
②混凝土保温层的传热系数计算β=1/[Σδi /λi +1/βq ]δi ——各保温材料厚度λi ——各保温材料导热系数[W/(m·K)]βq ——空气层的传热系数,取23[W/(m 2·K)]代入数值得:β=1/[Σδi /λi +1/βq ]= 1.01③混凝土虚厚度计算:hˊ=k·λ/βk——折减系数,取2/3;λ——混凝土的传热系数,取2.33[W/(m·K)]hˊ=k·λ/β=1.542④混凝土计算厚度:H=h+2hˊ=7.08m ⑤混凝土表面温度T 2(t)= T q +4·hˊ(H- h)[T 1(t)- T q ]/H 2式中:T 2(t)——混凝土表面温度(℃)T q —施工期大气平均温度(℃)hˊ——混凝土虚厚度(m)H——混凝土计算厚度(m)式中: hˊ——混凝土虚厚度(m)式中:β——混凝土保温层的传热系数[W/(m 2·K)]T 1(t)——t 龄期混凝土中心计算温度(℃)不同龄期混凝土的中心计算温度(T 1(t))和表面温度(T 2(t))如下表。
混凝土结构热工计算技术规程

混凝土结构热工计算技术规程一、前言混凝土结构在建筑中应用广泛,其热工计算是保证建筑物节能性能的关键。
本文旨在提供混凝土结构热工计算的详细技术规程,包括热阻计算、温度场分析、水热耦合分析等方面的内容。
二、热阻计算热阻计算是混凝土结构热工计算的基础,其计算公式为:R = d/λ其中,R为热阻,单位为K·m²/W;d为材料厚度,单位为m;λ为材料的导热系数,单位为W/(m·K)。
在热阻计算中,需要准确获取混凝土结构不同部位的厚度和导热系数。
在实际计算中,常使用标准值作为导热系数,需要注意的是,不同标准值适用于不同的混凝土品种和密度等级。
三、温度场分析温度场分析是混凝土结构热工计算中的重要内容,其目的是预测混凝土结构在不同温度下的变形和应力状态,为结构设计和施工提供依据。
温度场分析可以分为静态分析和动态分析两种。
静态分析适用于稳态温度场下的分析,可以通过解析方法或有限元方法来实现。
动态分析适用于非稳态温度场下的分析,通过数值模拟方法来实现。
在温度场分析中,需要准确获取混凝土结构的材料参数、边界条件和温度载荷等信息。
同时,需要选择合适的分析方法和计算软件,进行模型建立、计算参数设置和结果分析等工作。
四、水热耦合分析水热耦合分析是混凝土结构热工计算中的高级内容,其目的是预测混凝土结构在水热耦合作用下的变形和应力状态,为结构设计和施工提供更为精确的依据。
水热耦合分析需要考虑混凝土结构内部的水分传输、热传输和化学反应等过程,同时还需要考虑外部环境的影响。
在水热耦合分析中,需要使用相应的数值模拟方法和计算软件,进行模型建立、计算参数设置和结果分析等工作。
在水热耦合分析中,需要准确获取混凝土结构的材料参数、边界条件和水热载荷等信息。
同时,需要进行模型验证和参数敏感性分析等工作,以提高模型的准确性和可靠性。
五、结论混凝土结构热工计算是保证建筑物节能性能的关键,其热阻计算、温度场分析和水热耦合分析等方面的技术规程对于混凝土结构的设计和施工具有重要的意义。
冬季施工砼热工计算

冬季施工砼热工计算外墙厚度:300mm地下室层高:4.8m顶板厚度:200mm底板厚度:400mm水泥品种:普通硅酸盐水泥混凝土配合比:C30P6水泥:280砂:747石:1070掺合料:133外加剂:43.9水:180混凝土养护初温的计算书一、混凝土入模温度1、计算公式式中:T1 -- 混凝土拌合物出机温度(℃);T2 -- 混凝土伴合物运输到浇筑时温度(℃);-- 采用装卸式运输工具运输混凝土时的温度降低(℃); T a -- 混凝土伴合物运输时环境温度(℃);t1 -- 混凝土伴合物自运输到浇筑时的时间(h);n -- 混凝土伴合物运转次数。
α -- 温度损失系数(h-1):当用混凝土搅拌车输送时,α = 0.25;当用开敞式大型自卸车时,α = 0.20;当用开敞式小型自卸车时,α = 0.30;当用封闭式自卸车时,α = 0.10;当用手推车时,α= 0.50。
-- 采用泵管输送混凝土时的温度降低(℃);-- 泵管内混凝土的温度与环境气温差(℃);t2 -- 混凝土伴在泵管内输送时间(h);c c -- 混凝土的比热容[kJ/(kg.K)];p c -- 混凝土的质量密度(kg/m3);λb -- 泵管外保温材料导热系数(W/(m.K));d b -- 泵管外保温层厚度(m);D l -- 混凝土泵管内径(m);D w -- 混凝土泵管外围直径(包括外围保温材料)(m);w -- 透风系数。
2、计算参数1、混凝土现场出机温度T0 = 12℃;(对商品砼提出技术要求)2、温度损失系数α= 03、混凝土拌合物运输时的环境温度T a = -4℃;4、选择运输工具为:封闭式自卸车;5、混凝土拌合物运转次数n = 0;6、混凝土拌合物自运输到浇筑的时间t1 = 0(h)7、混凝土伴在泵管内输送时间t2 = 0.05(h)8、混凝土的比热容c c = 0.96[kJ/(kg.K)]9、混凝土的质量密度p c = 2400(kg/m3)10、泵管外保温材料导热系数λb = 58(W/(m.K)泵管外不保温11、泵管外保温层厚度d b = 0.01(m)12、混凝土泵管内径D l = 0.105(m)13、混凝土泵管外围直径(包括外围保温材料)D w = 0.125(m)14、透风系数w = 1.315、混凝土拌合物运输到浇筑时温度T2 = 10.17℃。
C40混凝土热工计算

C40混凝土热工计算以C40混凝土为例,每立方米混凝土中的材料用量为:水168kg,温度80℃;水泥410kg,温度5C;砂520kg,温度-3c;石1338kg,温度-3c;砂含水率3%,石含水率1%,搅拌棚内温度10∙c,混凝土拌和物采用封闭式泵车运输,运输和成型共历时1小时,当时气温-5D CD8.1普通混凝土8.1.1混凝土拌和物的理论温度TO=[0.9(GcTc+GsTs÷GgTg)+4.2Tw(Gw-PsGs-PgGg)+b(PsGsTs+PgGgTg)-B(PsGs+PgGg)]/[4.2Gw+0.9(Gc+Gs+Gg)]式中:TO一—混凝土拌和物的理论温度(C);Gw、Gc、Gs、Gg——每立方米水、水泥、砂、石的用量(kg);Tw、Tc、Ts、Tg——水、水泥、砂、石的温度(℃);Ps、Pg--砂石的含水率:b ----- 水的比热(kj/kg.k);B——水的溶解热(kj/kg.k)o当骨料温度XTC时,b=4.2B=O当骨料温度W(TC时,b=2.10B=335TO=[0.9×(410×5-3×520-3×1338)+4.2×80X(168-0.03X520-0.01X1338)+2.1×(0.03×520×-3+0.01×1338X-3)-335X(0.03X520+0.01X1338)]/[4.2X168+0.9X(410+520+1338)]=12.3r8.1.2混凝土从搅拌机中倾出时的温度:TI=TO-O•16(TOTd)式中:TI—混凝土从搅拌机中倾出时的温度(C);Td——搅拌棚内温度(C)。
Tl=12.3-0.16×(12.3-10)=11.9℃8.1.3混凝土经运输成型后的温度:T2=Tl-(at+0.032n)(Tl-Tp)式中:T2一—混凝土经过运输成型后的温度(C);t-混凝土自运输至成型的时间(h);n—混凝土倒运次数;Tp—室外气温(C);a—温度损失系数(封闭式自卸汽车a=0.1)T2=ll.9-(0.l×l+0.032×l)X(11+9.5)=9.7c8.1.4混凝土因钢筋及模板吸热后的温度T3=(CnT2+GmCmTm)/(GnCn+GmCm)式中:T3一—混凝土因钢筋及模板吸热后的温度(℃):Gm ...... 1立方米混凝土的重量(kg):Gn—与1立方米混凝土相接触的模板和钢筋的总重量(kg);Cn........ 混凝土比热,取lkj/kg.k;Cm——钢材比热,取0.48kj/kg.k;Tm—模板钢筋的温度,即当时的大气温度(C)。
混凝土热工计算公式

冬季施工混凝土热工计算步骤冬季施工混凝土热工计算步骤如下:1、混凝土拌合物的理论温度:T0=【0.9(mceTce+msaTsa+mgTg)+4.2T(mw+wsamsa-wgmg)+c1(wsamsaTsa+wgmgTg)-c2(wsamsa+wgmg)】÷【4.2mw+0.9(mce+msa+mg)】式中T0——混凝土拌合物温度(℃)mw、mce、msa、mg——水、水泥、砂、石的用量(kg)T0、Tce、Tsa、Tg——水、水泥、砂、石的温度(℃)wsa、wg——砂、石的含水率(%)c1、c2——水的比热容【KJ/(KG*K)】及熔解热(kJ/kg)当骨料温度>0℃时,c1=4.2,c2=0;≤0℃时,c1=2.1,c2=335。
2、混凝土拌合物的出机温度:T1=T0-0.16(T0-T1)式中T1——混凝土拌合物的出机温度(℃)T0——搅拌机棚内温度(℃)3、混凝土拌合物经运输到浇筑时的温度:T2=T1-(at+0.032n)(T1-Ta)式中T2——混凝土拌合物经运输到浇筑时的温度(℃);tt——混凝土拌合物自运输到浇筑时的时间;a——温度损失系数当搅拌车运输时,a=0.254、考虑模板及钢筋的吸收影响,混凝土浇筑成型时的温度:T3=(CcT2+CfTs)/( Ccmc+Cfmf+Csms)式中T3——考虑模板及钢筋的影响,混凝土成型完成时的温度(℃);Cc、Cf、Cs——混凝土、模板、钢筋的比热容【kJ/(kg*k)】;混凝土取1 KJ/(kg*k);钢材取0.48 KJ/(kg*k);mc——每立方米混凝土的重量(kg);mf、mc——与每立方米混凝土相接触的模板、钢筋重量(kg);Tf、Ts——模板、钢筋的温度未预热时可采用当时的环境温度(℃)。
根据现场实际情况,C30混凝土的配比如下:水泥:340 kg,水:180 kg,砂:719 kg,石子:1105 kg。
砂含水率:3%;石子含水率:1%。
大体积混凝土热工计算

大体积混凝土热工计算
大体积混凝土热工计算文档模板范本
1. 引言
在大体积混凝土工程中,热工计算是一个重要的环节,它能够帮助我们评估结构的热传导性能,并提供合适的保温措施。
本文档旨在提供一个详细的热工计算流程,以帮助工程师进行准确的评估和设计。
2. 材料参数
2.1 混凝土配合比
2.2 混凝土的热导率
2.3 混凝土的比热容
2.4 混凝土的导热系数
2.5 其他材料参数(如保温材料)
3. 计算方法
3.1 热传导计算方法
3.1.1 热传导基本原理
3.1.2 热传导计算公式推导
3.2 温度场分析方法
3.2.1 一维温度场分析
3.2.2 二维温度场分析
3.2.3 三维温度场分析
4. 热工计算示例
4.1 地下混凝土储罐的热工计算 4.2 建筑墙体的热工计算
4.3 混凝土道路的热工计算
5. 结果分析与总结
5.1 温度分布图与曲线分析
5.2 热工计算结果的评估与对比
5.3 热工计算的应用前景与展望
6. 附件
6.1 相关图纸和计算表格
6.2 实测数据和模拟结果
7. 法律名词及注释
7.1 建筑法律名词及注释
7.2 热工计算相关法律名词及注释。
混凝土热工计算书

混凝土热工计算书一、冬期施工的已知条件工程使用的全部是顺城搅拌站商品砼,所以要求混凝土经过运输成型后的温度为10℃—20℃。
二、热工计算:1、当施工现场温度为-5℃时混凝土因钢模板和钢筋吸热后的温度:T3=(G n C n T2+G m C m T m)/(G n C n+G m C m)=(2400×1×10+279×0.48×5)/(2400×1+279×0.48)=9.2℃T3:混凝土在钢模板和钢筋吸收热量后的温度(℃)G n:1m³混凝土为2400KgG m:1m³混凝土相接触的钢模板和钢筋的总重量为279KgC n:混凝土比热,取1KJ/KgKC m:钢材比热,取0.48 KJ/KgKT2:混凝土经过搅拌、运输、成型后的温度(℃)T m:钢模板、钢筋的温度,即当时大气温度(℃)混凝土浇筑完毕后的温度为9.2℃经计算得:(1)当混凝土经过运输成型后的温度为10℃当施工现场温度为0℃时,混凝土浇筑完毕后的温度为9.47℃当施工现场温度为-5℃时,混凝土浇筑完毕后的温度为9.2℃当施工现场温度为-10℃时,混凝土浇筑完毕后的温度为8.94℃当施工现场温度为-15℃时,混凝土浇筑完毕后的温度为8.67℃(2)当混凝土经过运输成型后的温度为15℃当施工现场温度为0℃时,混凝土浇筑完毕后的温度为14.79℃当施工现场温度为-5℃时,混凝土浇筑完毕后的温度为14.53℃当施工现场温度为-10℃时,混凝土浇筑完毕后的温度为14.27℃当施工现场温度为-15℃时,混凝土浇筑完毕后的温度为14.01℃(3)当混凝土经过运输成型后的温度为20℃当施工现场温度为0℃时,混凝土浇筑完毕后的温度为18.94℃当施工现场温度为-5℃时,混凝土浇筑完毕后的温度为18.68℃当施工现场温度为-10℃时,混凝土浇筑完毕后的温度为18.41℃当施工现场温度为-15℃时,混凝土浇筑完毕后的温度为18.15℃2、设:室外平均气温t p=-5℃,室外最低温度-15℃,砼浇灌后的初始温度t0=10℃。
大体积混凝土的热工计算

大体积混凝土的热工计算关键信息项:1、混凝土配合比水泥品种及用量:____________________________骨料种类及用量:____________________________外加剂种类及用量:____________________________掺和料种类及用量:____________________________水灰比:____________________________2、混凝土浇筑温度初始温度:____________________________3、环境温度浇筑期间平均气温:____________________________昼夜温差:____________________________4、混凝土绝热温升计算参数水泥水化热:____________________________混凝土比热容:____________________________混凝土质量密度:____________________________5、散热系数表面散热系数:____________________________内部散热系数:____________________________11 引言本协议旨在规范大体积混凝土热工计算的方法和流程,确保计算结果的准确性和可靠性,为大体积混凝土施工过程中的温度控制提供科学依据。
111 适用范围本协议适用于各类大体积混凝土结构的热工计算,包括但不限于基础底板、桥墩、大坝等。
112 计算目的通过热工计算,预测混凝土在浇筑和养护过程中的温度变化,评估混凝土内部可能出现的最高温度和温度梯度,以便采取有效的温控措施,防止混凝土因温度应力而产生裂缝。
12 混凝土配合比相关参数121 水泥品种及用量明确所使用的水泥品种,并准确记录其用量。
水泥的水化热特性对混凝土的温度升高有重要影响。
122 骨料种类及用量详细说明粗骨料和细骨料的种类、粒径和用量。
混凝土热工计算书

混凝土热工计算书首先,热传导是指热量在材料内部的传递过程。
混凝土是一种多孔材料,其热导率与材料中的孔隙率、颗粒状填料等相关。
常用的热传导计算方法有斯迈诺夫公式和法拉第定律。
斯迈诺夫公式适用于计算混凝土体内部的热传导,其计算公式为:q=λ(ΔT/Δx)其中,q为单位时间、单位面积内通过混凝土的热流量,λ为混凝土的热导率,ΔT为温度差,Δx为传热长度。
法拉第定律适用于计算混凝土与周围环境之间的热传导,其计算公式为:q=hA(ΔT)其中,q为单位时间、单位面积通过混凝土与周围环境之间的热流量,h为对流换热系数,A为热流的横截面积,ΔT为温度差。
其次,热辐射是指材料之间通过辐射热量进行传递的过程。
混凝土材料的热辐射计算主要涉及到黑体辐射和灰体辐射计算。
黑体辐射计算可以使用斯蒂芬—波尔兹曼定律进行,其计算公式为:q=εσA(T1^4-T2^4)其中,q为单位时间、单位面积通过混凝土之间的热流量,ε为混凝土的发射率(取值范围为0到1),σ为斯蒂芬—波尔兹曼常数,A为辐射的横截面积,T1和T2分别为两者的温度。
最后,对流传热是指通过流体介质(如水、空气等)进行热量传递的过程。
对流传热计算需要考虑流体介质的流速、流动形式(对流、强制对流等)等因素。
常用的对流传热计算方法有牛顿冷却定律和恒温端传热公式。
牛顿冷却定律适用于计算混凝土材料表面与周围流体介质之间的对流传热,其计算公式为:q=hA(ΔT)其中,q为单位时间、单位面积通过表面的热流量,h为对流换热系数,A为表面的横截面积,ΔT为表面和周围流体介质的温度差。
恒温端传热公式适用于计算混凝土内部流动体内的对流传热,其计算公式为:q=mCp(ΔT)其中,q为单位时间、单位质量的热流量,m为流体的质量,Cp为流体的比热容,ΔT为流体的温度差。
综上所述,混凝土热工计算是一个涉及多个方面的复杂工作,需要综合考虑热传导、热辐射和对流传热等因素。
通过合理的热工计算,可以对混凝土材料的设计和施工进行指导,以保证其在不同温度条件下的稳定性和安全性。
混凝土热工计算书

灌注桩C35混凝土每方用水泥为285kg,砂为818kg,石子1041kg,水156kg,外加剂3.6kg,粉煤灰70kg,矿渣粉45kg。
机棚和水泥温度都按10℃,混凝土自运输至浇筑成型完成的时间按2小时计算,不同温度的拌和水所拌制的混凝土的理论、出机及入模温度见下表:
混凝土施工温度计算表
外界气温T(℃)
水温T(℃)
理论温度T(℃)
出机温度T1(℃)
入模温度T2(℃)
5
5
13
12
8
0
15
17
16
7
-5
20
21
19
6
-10
30
33
30
9
-15
35
38
33
8
-20
40
42
37Байду номын сангаас
7
注:表中温度为拌合用水的最低温度要求,实际拌合时,为确保混凝土温度满足要求,需升高10℃左右。
综上所述,为保证冬季混凝土施工质量,室外温度小于5℃时拌和用水需加热至15~40℃。
某建筑承台大体积混凝土热工计算

某建筑承台大体积混凝土热工计算一、引言混凝土结构在建筑工程中扮演着重要的角色,承台作为混凝土结构中的重要构件,承担着承载上部结构荷载的重要作用。
在承台的设计中,除了考虑其承载能力外,热工计算也是一个重要的方面。
混凝土的热工性能直接影响着结构的使用寿命和安全性,因此对承台大体积混凝土的热工计算非常重要。
本文将以某建筑工程中的承台大体积混凝土为例,对其热工计算进行详细的介绍和分析,以期为类似工程的设计和施工提供参考。
二、承台大体积混凝土热工性能分析1.混凝土的热传导性能混凝土是一种多孔材料,其热传导性能受到多种因素的影响,包括密实度、孔隙率、水泥浆的类型和配比等。
在承台大体积混凝土中,需要特别关注混凝土的热传导性能。
通常情况下,混凝土的热传导系数在1.4~2.5W/(m·K)之间。
在温度变化作用下,混凝土会产生热膨胀,这也是需要注意的热工性能之一。
混凝土的热膨胀系数一般在8~12×10^-6/ºC之间,不同类型和配比的混凝土热膨胀系数会有所不同。
混凝土的热容性能也是其重要的热工性能之一。
热容性能是指单位体积混凝土在温度变化时吸收或释放的热量。
混凝土的热容量一般在0.8~1.0kJ/(kg·K)之间,较高的热容性能可以对结构承受的温度变化起到一定的缓冲作用。
1.温度场计算在承台大体积混凝土的热工计算中,首先需要进行温度场计算。
温度场是指混凝土在温度变化作用下的温度分布情况。
一般可以采用数值模拟方法进行温度场计算,通过有限元分析软件对承台混凝土的温度变化进行模拟,得出混凝土在不同时间、不同位置处的温度分布情况。
在得到温度场后,需要进行温度应力的计算。
由于混凝土在温度升高或降低时会产生热膨胀或收缩,从而引起温度应力。
温度应力计算可以采用经典弹性力学理论进行计算,也可以通过有限元分析软件进行数值模拟计算。
3.评估热应力对结构的影响需要对热应力对结构的影响进行评估。
热应力会引起混凝土的裂缝和变形,可能对结构的安全性和使用寿命产生影响。
混凝土热工计算

附件1:冬期施工混凝土热工计算根据施工进度安排,本工程进入冬施垫层混凝土强度等级C20,基础底板C35(P8),地下室梁、顶板混凝土等级C35(P8),地下二层外墙及与其相连的混凝土柱混凝土等级C35(P8),地下一层外墙及与其相连的混凝土柱混凝土等级C40(P8),内墙、柱混凝土强度等级C45。
混凝土热工计算分两部分,一为入模温度计算,二为混凝土养护期间的温度计算。
预计最不利施工时间为2016年1月前后,混凝土施工平均气温约为-5℃。
本工程墙体、框架柱混凝土拆模后拟采用粘贴一层塑料布,再用木条挂阻燃岩棉被保温。
楼板混凝土浇筑完毕,采用铺一层塑料布,再铺一层阻燃岩棉被保温。
以下分别验算各部位混凝土采用以上保温措施能否满足抗冻要求。
一、混凝土入模温度计算:本工程混凝土为商品混凝土,要求混凝土拌合物到现场后出罐车温度不得小于15℃。
1.混凝土入模温度T2=T1-(αt1+0.032n)(T1-Ta)式中:T1——混凝土拌合物出罐车温度(℃)取15℃T2——混凝土拌合物入模温度(℃)ti——混凝土拌合物自运输到浇筑时的时间(h)取10min 30min n——混凝土拌合物运转次数取1次Ta——混凝土拌合物运输时的环境温度(℃)取-10℃α——温度损失系数(h=1)取0.25T2=15-(0.25×30÷60+0.032×1)×(15+10)=13.16℃11.08 2.考虑模板和钢筋吸热影响,混凝土成型完成的温度T3=(CcmcT2+CfmfTf+CsmsTs)/(Ccmc+Cfmf+Csms)式中:T3——考虑模板和钢筋吸热影响,混凝土成型完成时的温度(℃)CC——混凝土的比热容(kJ/kg·k)取1.0kJ/kg·kCf——模板的比热容(kJ/kg·k)墙、楼板15mm厚木胶合板取2.1kJ/kg·kCs——钢筋的比热容(kJ/kg·k)取0.48kJ/kg·kmC——每m3混凝土重量(kg)取2500kgmf——每m3混凝土相接触的模板重量(kg)墙、楼板15mm厚木胶合板取99.96kgms——每m3混凝土相接触的钢筋重量(kg)取100kgTf——模板温度,采用当时的环境温度(℃)取-10℃T3——钢筋温度,采用当时的环境温度(℃)取-10℃计算:C35墙体混凝土(取木胶合板计算)T3=(1×2500×13.16 11.08-2.1×99.96×10-0.48×100×10)/(1×2500+2.1×99.96+0.48×100)=10.99℃9.11℃C35梁、板混凝土(取木胶合板计算)T3=(1×2500×13.16 11.08-2.1×99.96×10-0.48×100×10)/(1×2500+2.1×99.96+0.48×100)=10.99℃9.11℃二、用综合蓄热法混凝土养护期间温度计算混凝土蓄热养护开始到任一时刻t的平均温度Tm =1/(Vcet)[ψe-Vce·t-(η/θ)×e-Vce·t+η/θ-ψ]+Tm·a其中ψ、η、θ为综合参数,按下式计算:θ=(ω·K·M)/(Vce ·Cc·ρc)ψ=(Vce ·Qce·mce)/(Vce·Cc·ρc-ω·K·M)η=T3-Tm·a+ψ式中:Tm——混凝土蓄热养护开始到任一时刻t的平均温度(℃)t——混凝土蓄热养护开始到任一时刻的时间(h)Tm·a——混凝土蓄热养护开始任一时刻t的平均气温(℃)取-10℃ρc——混凝土的质量密度(kg/m3)取2500kg/m3mCe——每m3混凝土水泥用量(kg/m3) C35混凝土取288kg/m3CC——混凝土的比热容(kJ/kg·k)取1.0kJ/kg·kQCe——水泥水化积累最终放热量(kJ/kg)取350kJ/kgVCe——水泥水化速度系数(h-1)取0.013h-1ω——透风系数取1.3M——结构表面系数(m-1)墙取5.0m-1,楼板取7.5m-1 K——结构围护层的总传热系数(kJ/㎡·h·k)按下式计算:K=3.6/(0.04+∑di/Ki)式中:di——第i层围护层厚度(m)保温棉毡被取0.008mKi——第i层围护层的导热系数(W/m· K)保温棉毡取0.03W/m·K 墙、楼板围护层传热系数K=3.6/(0.04+0.008÷0.030)=11.74kJ/㎡·h·ke——自然对数底取2.721.ψ、η、θ综合参数计算:θ墙=(1.3×15.0×5.0)/(0.013×1×2500)=2.35θ楼板=(1.3×15.0×7.5)/(0.013×1×2500)=3.52ψC30墙=(0.013×350×288)/(0.013×1×2500-1.3×11.74×5.0)=-29.91ψC30楼板=(0.013×350×288)/(0.013×1×2500-1.3×11.74×7.5)=-15.99ηC30墙=10.99 9.11+10-29.91=-8.92 -10.8ηC30楼板=10.99 9.11+10-15.99=5.00 3.122.t(混凝土蓄热养护开始到任一时刻的时间)的计算当采用综合蓄热法条件养护,C35混凝土墙ψC45墙/Tm·a=29.91/10=2.991≥1.5, C35混凝土楼板ψC40楼板/Tm·a=15.99/10=1.599≥1.5,且墙体K·M=11.74×5=58.70>50,楼板K·M=11.74×7.5=88.04>50,所以直接按下列公式计算蓄热冷却至0℃的时间to C35混凝土墙To=1/Vce ×ln(ψC35墙/Tm·a)=(1/0.013)×ln(29.91/10)=84.29hC35混凝土楼板To=1/Vce ×ln(ψC35楼板/Tm·a)=(1/0.013)×ln(15.99/10)=36.10h3.混凝土蓄热养护开始到任一时刻t(取混凝土冷却至0℃的时间即t=to)的平均温度C35混凝土墙体TC30墙=1/(0.013×84.29)×[-29.91×2.72-0.013×84.29-(-8.92 10.8/2.35)×2.72-2.35×0.013×84.29+(-8.92 10.8/2.35)-(-29.91)]-10=5.66℃ 4.29℃C35楼板TC30楼板=1/(0.013×36.10)×[-15.99×2.72-0.013×36.10-(5.00 3.12/3.52)×2.72-3.52×0.013×55.7+(5.00 3.12/3.52)-(-15.99)]-10=9.79℃ 4.53℃4.计算混凝土等效龄期t=αr·tT式中:t——等效龄期(h)αr——温度为T℃时(冬施计算手册996页查表17-11并根据内插法计算得出:C35墙体5.66℃ 4.29℃取0.44 0.35, C35楼板9.79℃ 4.53℃取0.57 0.36)时的等效系数——温度为T℃时所需的持续时间(h) C35墙体取98.1h,C35楼板取55.7h tT根据标准养护试块统计,C35混凝土20℃时19h强度等级达到4N/mm2以上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
混凝土热工计算:
依据《建筑施工手册》(第四版)、《大体积混凝土施工规范》(GB_50496-2009)进行取值计算。
砼强度为:C40 砼抗渗等级为:P6
砼供应商提供砼配合比为:
水:水泥:粉煤灰:外加剂:矿粉:卵石:中砂
155: 205 : 110 : 10.63 : 110 : 1141 : 727
一、温度控制计算
1、最大绝热温升计算
T MAX= W·Q/c·ρ=(m c+K1FA+K2SL+UEA)Q/Cρ
式中:
T MAX——混凝土的最大绝热温升;
W——每m3混凝土的凝胶材料用量;
m c——每m3混凝土的水泥用量,取205Kg/m3;
FA——每m3混凝土的粉煤灰用量,取110Kg/m3;
SL——每m3混凝土的矿粉用量,取110Kg/m3;
UEA——每m3混凝土的膨胀剂用量,取10.63Kg/m3;
K1——粉煤灰折减系数,取0.3;
K2——矿粉折减系数,取0.5;
Q——每千克水泥28d 水化热,取375KJ/Kg;
C——混凝土比热,取0.97[KJ/(Kg·K)];
ρ——混凝土密度,取2400(Kg/m3);
T MAX=(205+0.3×110+0.5×110+10.63)×375/0.97×2400
T MAX=303.63×375/0.97×2400=48.91(℃)
2、各期龄时绝热温升计算
Th(t)=W·Q/c·ρ(1-e-mt)= T MAX(1-e-mt);
Th——混凝土的t期龄时绝热温升(℃);
е——为常数,取2.718;
t——混凝土的龄期(d);
m——系数、随浇筑温度改变。
根据商砼厂家提供浇注温度
为20℃,m值取0.362
Th(t)=48.91(1-e-mt)
计算结果如下表:
3、砼内部中心温度计算
T1(t)=T j+Thξ(t)
式中:
T1(t)——t 龄期混凝土中心计算温度,是该计算期龄混凝土
温度最高值;
T j——混凝土浇筑温度,根据商砼厂家提供浇注温度为20℃;
ξ(t)——t 龄期降温系数,取值如下表
T1(t)=T j+Thξ(t)=20+ Thξ(t)
计算结果如下表:
由上表显示,砼中心温度最高值出现在第三天。
4、砼养护计算
筏板混凝土表面采用草袋进行蓄热保温养护,并在保温层下
铺一层不透风的塑料薄膜,草袋上铺一层彩条布。
在砼基础
侧模板外侧采用砖模与沙石回填处理。
①保温材料厚度:
δ= 0.5h·λi(T2-T q)K b/λ·(T max-T2)
式中:
δ——保温材料厚度(m);
h——砼浇注厚度;
λi——各保温材料导热系数[W/(m·K)] ,取0.14(草袋);
λ——混凝土的导热系数,取2.33[W/(m·K)];
T2——混凝土表面温度;
T q——施工期大气平均温度:根据商砼厂家提供浇注期大气
平均温度为20℃;
T2-T q—-20.0(℃);
T max-T2—25.0(℃);
K b——传热系数修正值,取1.3;
δ= 0.5h·λi(T2-T q)K b/λ·(T max-T2)
δ= 0.5×2×0.14×20×1.3/2.33×25=0.06249m=6.25cm
本工程采用7.8cm厚草袋作为保温材料,计算时,取1.2倍的安全系数,δ=6.5cm计算;施工时,如保温效果过于明显,中心温度与表面温度差值太小,则定时错开将草袋掀开散热。
②混凝土保温层的传热系数计算:
β=1/[Σδi/λi+1/βq]
式中:
β——混凝土保温层的传热系数[W/(m2·K)];
δi——各保温材料厚度,6.5cm;
λi——各保温材料导热系数[W/(m·K)] ,取0.14(草袋);βq——空气层的传热系数,取23[W/(m2·K)];
β=1/(0.065/0.14+1/23)=1.96 W/(m2·K)
③混凝土虚厚度计算:
hˊ=k·λ/β
式中: hˊ——混凝土虚厚度(m);
k——折减系数,取2/3;
λ——混凝土的传热系数,取2.33[W/(m·K)];
hˊ=2/3×2.33/1.96=0.79m
④混凝土计算厚度:
H=h+2hˊ=2+2×0.79=3.58
⑤混凝土表面温度:
T2(t)= T q+[4·hˊ(H- h)(T1(t)- T q)]/H2
式中:
T2(t)——混凝土表面温度(℃);
T q——施工期大气平均温度(℃),根据商砼厂家提供浇注期大气平均温度为20℃;
hˊ——混凝土虚厚度(m);
H——混凝土计算厚度(m);
T1(t)——t 龄期混凝土中心计算温度(℃);
不同龄期混凝土的中心计算温度(T1(t))和表面温度(T2(t))如下表。
混凝土温度计算结果表
根据上表得:混凝土中心温度与表面温度最大差值出现在第三天T1(3)- T2(3)=8.89<25℃,混凝土表面温度与大气温度最大差值出现在第三天T2(t)- T q<20℃,符合要求。
二、混凝土抗裂计算
大体积混凝土基础或结构(厚度大于1m)贯穿性或深进的裂缝,主要是由于平均降温差和收缩差引起过大的温度收缩应力而造成的.混凝土因外约束引起的温度(包括收缩)应力(二维时),一般用约束系数法来计算约束应力按以下简化公式计算:
式中:
σ ──混凝土的温度(包括收缩)应力 (N/mm2);
E(t)──混凝土从浇筑后至计算时的弹性模量(N/mm2),一般取平均值;
α ──混凝土的线膨胀系数,取1 × 10-5;
T0──混凝土的浇筑入模温度(℃);
T(t)──浇筑完一段时间t,混凝土的绝热温升值(℃);混凝土的最大综合温差(℃)绝对值,如为降温取负值;当大
体积混凝土基础长期裸露在室外,
且未回填土时,△T值按混凝土水化热最高温升值(包括浇筑入模温度)与当月平均最低温度之差进行计算;计算结
果为负值,则表示降温;
T y(t)──混凝土收缩当量温差(℃);
T h──混凝土浇筑完后达到的稳定时的温度,一般根
据历年气象资料取当年平均气温(℃);
S(t)──考虑徐变影响的松弛系数, 一般取0.3-0.5;
R ──混凝土的外约束系数,当为岩石地基时,R=1;当为可滑动垫层时,R=0,一般土地基取0.25-0.50;
νc──混凝土的泊松比.
取S(t) = 0.30,R = 1.00,α = 1 × 10-5,νc = 0.17.
1、混凝土3d的弹性模量公式:
计算得:E(3) = 0.77× 104
2、最大综合温差
△T = 6.98(℃)
最大综合温差△T均以负值代入下式计算.
3、基础混凝土最大降温收缩应力计算公式:
计算得: σ =0.19(N/mm2)
4、不同龄期的抗拉强度公式:
计算得:f t(3) = 0.84(N/mm2)
5、抗裂缝安全度:
k=0.84/0.19 = 4.29 > 1.15 满足抗裂条件。