五种插值法的对比研究开题报告

合集下载

关于多元插值和插值空间维数问题的研究的开题报告

关于多元插值和插值空间维数问题的研究的开题报告

关于多元插值和插值空间维数问题的研究的开题报告1. 研究背景和意义插值是一种数据处理的方法,它可以通过已知数据点,推算出未知数据点的取值。

插值在工程、科学、计算机视觉和地理信息系统等领域广泛应用。

随着数据的增多和数据点的分布变得愈加复杂,多元插值的需求也越来越大。

因此,对多元插值理论和算法的研究具有重要的理论和应用意义。

多元插值中一个关键的问题是插值空间维数的问题,即数据点数与变量数之间的关系。

当变量数较小而数据点数较多时,插值空间维数较高,将导致计算复杂度的增加,同时也可能造成过拟合或欠拟合现象。

因此,如何对不同的数据分布合理选择插值空间维数是多元插值的一个热门研究课题。

2. 研究主要内容和方法本文将研究多元插值和插值空间维数问题。

主要包括以下几个方面:(1)多元插值的基本理论:该部分主要介绍多元插值的基本原理、类别和常用算法。

其中,将重点介绍基于径向基函数的多元插值算法,并对其进行改进和优化。

(2)插值空间维数的选择方法:该部分将介绍不同数据分布下的插值空间维数的选择方法,并对比不同方法的性能和适用范围。

(3)多元插值在实际应用中的应用:该部分将结合实际应用案例,证明多元插值在实际应用中的可行性和有效性。

具体来说,将以地理信息系统为例,比较不同插值算法和空间维数选择方法在地形高程插值和排放污染物扩散模拟中的应用效果。

本论文在研究方法上将采用数学建模和计算机模拟相结合的方式,充分利用MATLAB等数学软件和地理信息系统软件进行实验验证。

3. 预期研究成果本研究的预期成果包括:(1)对多元插值和插值空间维数问题的深入理解和系统总结。

(2)在径向基函数插值算法的基础上,提出适用于不同数据分布的插值空间维数选择方法。

(3)通过实际应用的案例,证明多元插值在地理信息系统中的应用效果,并与其他插值方法和空间维数选择方法进行比较。

(4)具体实现和应用程序的开发,提供实用和可行的解决方案。

4. 研究意义和应用价值本研究对多元插值和插值空间维数问题的探究,为提高多元插值的准确性和效率提供了理论和实用基础。

不同数据集气温空间插值比较研究的开题报告

不同数据集气温空间插值比较研究的开题报告

不同数据集气温空间插值比较研究的开题报告
一、研究背景
随着气候变化和全球变暖,气温是人们关注的热点问题之一。

为了更好地了解和研究气温分布规律,数据插值技术十分重要。

然而,不同数据集的气温插值方法可能
导致不同的结果。

因此,对于不同数据集中气温插值方法的比较研究有着重要的意义。

二、研究内容
本研究将选择不同数据集,分别采用不同的气温插值方法进行比较研究,重点分析其精度和适用性。

具体内容包括:
1. 气温插值方法的分类和介绍;
2. 不同数据集的选择和介绍;
3. 对比分析不同数据集之间的温度变化;
4. 结果比较和分析。

三、研究意义
本研究将探究不同数据集中气温插值方法的差异和各自优缺点,为气温空间插值方法的选择提供科学依据。

在气候变化和全球变暖背景下,该研究对于探究气温分布
规律以及提高气温预测精度具有重要意义。

四、研究方法
本研究将采用文献综述法和数学统计方法进行研究。

通过查阅相关文献,归纳总结气温插值方法的分类、优缺点和适用范围。

同时,通过对不同数据集之间的气温变
化进行统计分析,量化和比较不同插值方法的效果并进行比较分析。

五、研究预期结果
本研究预期可以比较分析不同数据集中气温插值方法的异同,并找出最优插值方法。

同时,还可以为温度变化的研究和气温预测提供科学依据,推动气候变化和全球
变暖的研究进程。

各种插值法的对比研究

各种插值法的对比研究

各种插值法的对比研究插值法是指通过已知数据点来估计两个数据点之间的未知数值。

在实际生活和科学研究中,经常会遇到需要插值的情况,例如气象预测、金融分析、图像处理等。

本文将对比介绍几种常见的插值方法,包括线性插值、多项式插值、样条插值和逆距离加权插值。

1.线性插值:线性插值是最简单的插值方法,假设两个数据点之间的值变化是线性的。

根据已知数据点的坐标和对应的值,通过线性方程推断两个数据点之间的值。

优点是计算简单快速,但缺点是对数据变化较快的情况下估计效果较差。

2.多项式插值:多项式插值假设两个数据点之间的值变化是一个多项式函数。

通过已知数据点的坐标和对应的值,使用多项式拟合方法求解多项式函数的系数,再根据该多项式求解两个数据点之间的值。

多项式插值可以准确拟合已知数据点,但在插值点较多时容易出现振荡现象,且对数据点分布敏感。

3.样条插值:样条插值是一种平滑的插值方法,通过构建分段连续的多项式函数来逼近整个数据集。

根据已知数据点的坐标和对应的值,通过求解一组多项式函数的系数,使得在相邻区间之间函数值连续,导数连续。

样条插值可以减少振荡现象,对于插值点密集的情况能更好地逼近原始数据。

4.逆距离加权插值:逆距离加权插值是一种基于距离的加权插值方法,根据已知数据点与插值点之间的距离,对每个已知数据点进行加权平均得到插值点的值。

该方法认为距离较近的数据点对插值结果的影响更大。

逆距离加权插值简单易用,对数据点的分布不敏感,但对于距离较远的数据点容易受到较大的干扰。

在实际应用中,选择合适的插值方法需要根据数据的特点和要求来决定。

若数据变化较简单、平滑,可以选择线性插值或多项式插值;若数据变化复杂,存在振荡现象,可以选择样条插值;若数据点分布较稀疏,可以选择逆距离加权插值。

此外,还有一些其他的插值方法,如Kriging插值、径向基函数插值等,它们根据不同的假设和模型进行插值,具有一定的特点和适用范围。

综上所述,对于选择合适的插值方法,需要根据具体问题和数据特点来综合考虑,结合不同方法的优缺点进行比较研究,以得到更准确和可靠的插值结果。

各种插值法的对比研究

各种插值法的对比研究

各种插值法的对比研究插值法是一种利用已知数据点推算缺失数据点的方法,常用于信号处理、图像处理和数据分析等领域。

在实际应用中,选择合适的插值方法非常重要,因为它直接影响到结果的准确性和可靠性。

本文将对常见的插值方法进行对比研究。

线性插值是最简单和最常用的插值方法之一、它假设数据点之间的变化是线性的,根据已知数据点之间的斜率和距离,可以推算出缺失数据点的值。

线性插值的优点是计算简单,适用于等间距的数据点。

然而,线性插值可能会导致插值曲线不光滑,并且在非等间距数据点或缺失数据点较多的情况下效果不佳。

拉格朗日插值是一种基于多项式插值的方法。

它通过构造一个满足已知数据点的多项式函数,然后根据该函数求解出缺失数据点的值。

拉格朗日插值的优点是可以精确地通过所有已知数据点,适用于非等间距和较稀疏的数据。

然而,拉格朗日插值存在“龙格现象”,即在数据点较多或高次插值时,插值函数会出现大幅度振荡。

牛顿插值与拉格朗日插值相似,也是基于多项式插值的方法。

不同之处在于,牛顿插值使用被称为“差商”的系数来构建插值多项式。

牛顿插值的优点是计算简单,可以实时更新插值多项式以适应新的数据点。

然而,牛顿插值也存在“龙格现象”。

样条插值是通过连接已知数据点来构建平滑的插值曲线的方法。

它通过选择适当的插值函数和控制点,保持插值曲线在已知数据点间的连续、光滑性。

样条插值的优点是可以抑制龙格现象,产生更平滑的插值曲线,并且适用于非线性变化的数据。

然而,样条插值的缺点是计算复杂度较高,可能导致过度拟合和过度平滑的问题。

Kriging 插值是一种基于地理空间的插值方法,它利用已知数据点的空间关联性来推算未知数据点的值。

Kriging 插值的优点是可以利用数据点之间的空间自相关性,适用于地理信息系统和地质学等领域的数据插值。

然而,Kriging 插值的缺点是计算复杂度高,并且对数据点的空间分布和空间自相关性的假设要求较高。

总的来说,选择合适的插值方法需要综合考虑数据的特点、插值精度和计算复杂度等因素。

五种插值法比较毕业论文

五种插值法比较毕业论文

五种插值法比较毕业论文装订线本科生毕业论文(设计)题目:五种插值法的比较系部数学系学科门类理学专业数学与应用数学学号姓名指导教师2012 年 X 月 X 日五种插值法的比较摘要插值法是数值计算中一种重要的方法,在实际生活中有很多函数我们是求不出来的,但我们可以通过该函数在有限点处的取值,用某一函数来逼近它,然后估计出该函数在其他点的函数值.从古代就已经使用二次等距插值用于天文计算了,到现代用于工程计算、算法理论等方面.插值方法有很多种,这篇文章主要介绍了一般常用的五种插值法,并讨论了五种插值法在理论中的区别与在实际中应用.本文先从五种插值法的定义,通过它们的定义在形式上的差异来做简单比较;再结合相应的例题归纳总结五种插值法的特点,使我们清楚的知道哪种类型的插值法更适合解决哪一种类型的问题;最后通过实际应用来分析比较Lagrange 插值、Newton 插值、三次样条插值和分段插值各自在解决相应问题之间的差异. 关键词:多项式;插值函数;插值法ABSTRACT 装订线 Interpolation method is an important method of numerical calculation. In real life,there are many functions that we cannot work out, but we can pass through the function in the finite point value, with a function to approach it, and then estimate the function in other points on the function value. In ancient times have used two equidistant interpolation in astronomical calculations, and applied it in engineering computation, algorithm theory etc in morden time. Interpolation method has many kinds, this article mainly introduces the commonly used five kinds of interpolation, and discuss the difference of five kinds of interpolation method in the theory and application in practice.This paper starts from the definition of five kinds of interpolation, by their definitions in the form of difference to do simple comparison,combined with the corresponding examples summarizes five kinds of interpolation features, so that we know which type of interpolation method is more suitable to solve certian kind of problem,and finally by practical application, we can analysis and comparison the differences between Newton Lagrange interpolation, interpolation, three times spline interpolation and piecewise interpolationrespectively in the solution of the correspondingproblem . Key words: polynomial;interpolationfunction;interpolation 目录摘要 I ABSTRACT II 1 引言 1 2 五种插值法 2 2.1Lagrange插值 2 2.2 Newton插值 3 2.3 Hermite插值 3 2.4分段插值 4 2.5三次样条插值 5 3 五种插值法的解题分析比较 7 4 五种差值的实际应用 14 5小结 17 参考文献 18 1 引言插值方法是数值计算中的最基本方法,是一种古老的数学方法.在中国古代就开始用二次插值法来推算天文历法,其中在《周髀》和《九章》中就已经使用到一次插值法.现代插值法的应用也十分广泛.主要解决如信息技术中的图象重建、图像放大过程中为避免图象失真、建筑工程的外观设计、天文观测数据、物理学中的应用等方面的问题 . 函数插值法,简称插值法.在许多实际问题中,有的函数虽然有解析式,但计算起来很复杂而且使用起来也不方便.所以我们通过函数给出某些点上的函数值,构造一个既能反映函数特征又便于计算的简单函数来逼近原函数.这就是我们所说的函数逼近 .逼近函数的类型有多种选择方法,但其基本上是代数多项式应用最为广泛. 建立代数多项式也有多种方法,像本文介绍的Lagrange 插值多项式就便于理论推导和形式地描述算法,它在理论上十分重要.Newton插值的方法具有递推性,其组成很有规律,方便于实际计算.Hermite插值多项式是在插值节点有导函数限制的情况下使用.分段插值与三次样条插的逼近效果是其他插值法难以达到的.本文则主要介绍这五种插值法之间的区别,通过理论与实际的比较使读者更清楚的认识和了解这五种插值法.2 五种插值法对于一个插值问题来说,如果已知条件就是个互异的插值节点点处的函数值,构造插值函数是一般不超过次的多项式,则称为是一般的个基点的多项式插值问题.Lagrange插值、Newton插值、Hermite插值、三次样条插值、分段插值五种插值法在定际运用中的都有各自不同的特点,下面就首先从定义上做简单的比较. 2.1 Lagrange插值此时我们习惯将插值节点和相应的函数值采用下表1的形式列出,并简称由表1给出的插值问题. 表1 …… Lagrange 插值是次多项式插值,其成功地用构造插值基函数的方法解决了求n 次多项式插值函数问题.表(1)的n次Lagrange 插值多项式的数学式:其中(i=0,1,2,…,n)是插值基函数,且 . Lagrange 插值多项式的余项其中,;不难发现Lagrange 插值多项式便于理论推导和形式地描述算法,它在理论上十分重要,但是不便于计算函数值,因为用Lagrange插值多项式计算函数近似值,如果精度不满足,要增加节点,原来计算的数据均不能用.为了克服这个缺点下面介绍另外一种插值法Newton 插值法. 2.2 Newton插值 Newton 插值也是次多项式插值,其基本思路是将待求的次差值多项式改写成能逐次生成的形式,然后用插值条件求待定系数.由表(1)构造的Newton 插值多项式为 . 用它插值时,首先要计算各阶差商,而各阶差商的计算可归结为一阶差商的逐次计算.一般地 , ;上面给出的插值多项式是节点任意分布的情况,但实际应用时经常遇到等距节点,即的情况,这里称为步长.设点的函数值为,称为处以为步长的一阶差分.一般的称为处的阶差分.所以Newton前插公式为 . 与Lagrange 插值相比,Newton 插值具有承袭性和易于变动节点的特点.Newton 插值在计算插值多项式及求解函数近似值都比较方便且计算量相对较小.从公式看每增加一个节点,插值多项式只增加一项,因此便于计算,所以具有灵活增加节点的特点.Newton插值仅对节点处的函数做了约束,但是如果插值条件增加的是节点处导数的条件话,我们就需要下面的插值法—Hermite插值. 2.3 Hermite插值插值多项式要求在插值节点上函数值相等,有的实际问题还要求在节点上导数值相等,甚至高阶导数值也要相等,满足这种要求的插值多项式称为Hermite插值多项式. 表 2 ………如上表,设则满足条件,的次Hermite插值多项式为其中称为Hermite插值基函数,是Lagrange 插值基函数.适当的提高插值多项式的次数,有可能会提高计算结果的准确度.但绝不能认为插值多项式次数越高越好,利用被插值函数节点信息越多,误差越小. 由插值多项式的截断误差公式可见:若,插值误差为 . 截断误差与与有关,但其绝对值不一定随增加而减小.所以由于高次插值的不稳定性,一般实际计算时很少使用高次插值. 2.4分段插值 Lagrange插值方法根据区间上给出节点构造插值多项式的,而一般以为次数逼近原函数,但其实并非如此,分段插值就是通过在每个小区间逼近原函数.构造分段插值多项式的方法仍然是基函数法.常见的主要有分段线性插值和分段三次埃米特插值. 1.分段线性插值就是通过在每一个区间用折线段连接每个插值点来逼近.设已知插值节点和相应的函数值,记求一折线函数满足:(1); (2);(3)在每个小区间上是线性函数. 则称称为分段线性插值函数. ,,. 其误差估计可利用插值余项得到,其中. 可见,分段线性插值的余项只依赖于二次导数的界.这说明只要小区间长度足够小,便可保证充分靠近,即分段线性插值函数收敛于. 2.三次Hermite插值是在节点上除已知函数值外还给出导数值,这样就有,它满足条件:(1);(2)(3)在每个小区间上是三次多项式.则 . 上式对于成立. 误差估计为:,其中分段三次Hermite值比分段线性插值效果明显改善,但是这种插值要求给出节点上的导数值,所要提供的信息太多,其光滑度也不高(只有一阶导数连续),所以要改进这种插值和克服其缺点下面提出三次样条插值. 2.5三次样条插值三次样条插值法是一种分段插值法,其基本思想是将插值区间等分,再在每个区间上求插值函数.设在区间上取个节点,给定这些点的函数值.如果存在分段函数:且函数满足条件:(1)在每个区间上是不高于3次多项式;(2)在区间上连续;(3)称为三次样条插值函数.由于插值节点处具有二阶导数连续,所以三次样条插值法具有更好的光滑性. 从上面的一一介绍中我们可以看出:Lagrange 插值有着形式上对称,在理论上十分重要的有点,但是计算复杂.因为每增加一个节点,对前面的插值基函数值就作废了.而Newton插值每增加一个节点,插值多项式只增加一项,因此便于递推运算,所以具有灵活增加节点的优点.但是Newton插值仅对节点处的函数作了约束,如果插值条件再增加节点处对导函数的限制的话,就要用到Hermite插值多项式.但一般很少用这种高次插值法,因为其不稳定性的缘故,更多使用分段插值来实现.虽然插值曲线的各个分段是衔接的,但在节点处不能保证整个曲线的光滑性.而三次样条不但与被插值函数很接近,而且导数值也很接近,这样逼近效果是其他插值法所难以达到的.从Lagrange 插值到三次样条插值法,层层递进来解决问题,使的插值函数与被插值函数越来越逼近. 下面就上面的五种插值法来给出他们各自适合解决哪些类型的题目的例子,通过例子更能清楚的理解和认识五种插值法的各自特征.3 五种插值法的解题分析比较下面主要从例子来比较这五种插值法之间在运算上的不同;例1 已知插值条件如下表所示:求的二次插值多项式. 解若用单项式基底来解,则可设,由插值条件,解得,,,故 . 若用Lagrange 插值基函数,则故 . 若用Newton 插值法,则故 . 整理可知三种方法得到的是同一个多项式. 通过上面的例子的解题我们不难看出,在求解二次插值多项式来说Newton插值法最为简单,而Lagrange插值法计算最为复杂,对于用单项式基底了来说,如果次数高的话未知数的个数也越多,求解也越复杂.所以在解这类题的话,用Newton插值法更为方便简洁.而如果插值节点不仅对应的有函数值还有导函数值,那么就要用到Hermite插值,例如下面的题目. 例2 求次数小于等于3的多项式,使其满足:. 解本题标准的是应用Hermite插值问题,所以可以用公式直接来计算. 记由题意可知利用两点的Hermite值公式,有其中是Hermite插值基函数,即,所以 . Newton插值仅对节点处的函数作了约束,如果插值条件再增加节点处对导函数的限制的话,就要用到Hermite插值多项式.上面的例子就是很好的应用.我们在看一个关于三次样条插值的例子,看看它在解决问题时有哪些特点. 例3 给定数据表如下: 0.25 0.30 0.39 0.45 0.53 0.5000 0.5477 0.6245 0.6708 0.7280 试求三次样条插值,并满足条件:(1)(2)解由给定数据知由有均差(1)若边界条件,则由此得矩阵形式的三弯矩方程为解得利用三次样条表达式将代入整得(2)若边界条件为,则三弯矩方程为解得. 代入三次样条表达式并整理,得由于其解得存在唯一性,求解插值函数的线性方程组的系数矩阵为三对角方程组,所以算法具有较好的计算复杂性和稳定性以及插值函数具有一定的光滑性等优点.所以三次样条插值应用也比较广泛. 例 4 已知函数,在区间上的等距节点时的函数值,求分段线性插值函数.再计算的近似值,节点处的函数值如下:0 解由上面节中的分段插值公式知:,,所以分段插值函数为 . 与原函数值比较,我们可以发现分段插值函数来逼近原函数时,还是比较准确的,就是用分段线性插值法逼近原函数他们的误差很小. 例 5 给出在处的函数值. (1)用次Lagrange插值多项式求在的近似值,并与准确值进行比较. (2) 用次Newton插值多项式求在的近似值,并与准确值作比较. (3)用次线性插值多项式求在的近似值.解(1)由上面节Lagrange插值公式可知:所以四次Lagrange插值多项式为 . 则实际值为. . (2)用Newton前插公式,先构造如下表的查分表并用Newton前插公式(前面 2.2介绍的)取,, . 与实际值误差较小. (3) 由上面节中的分段插值公式知:,,,所以这与实际值误差就很小了. 从上面的例子看出对于Lagrange插值法求解的公式很有对称性,很容易观察出来.但有个缺点就是计算太复杂,麻烦,误差值大.对于Newton插值法而言他的形式简单,计算方便,而且误差比Lagrange小.线性插值多项式求解的误差值最小,最精确.所以我们一般如果想求解简单计算方便最好用Newton插值法来求解,而如果要求计算精确最好用线性插值,对于Lagrange插值我们一般只在于研究其性质,对于应用部是很好. 下面来看插值法在实际生活中的应用.不同的插值对于同一个问题的解决他们的方法和误差都不同,我们来比较他们的区别.4 五种插值的实际应用例1 闸阀的局部阻力系数和闸阀的关闭度有关( 为管内径, 为开度) , 其的函数表如下0 1/8 2/8 3/8 4/8 5/8 6/8 7/8 0. 00 0. 07 0. 20 0. 812. 06 5. 52 17. 60 97. 80 如果将闸阀控制在时, 求其局部阻力系数的值解该函数表是等距节点排序,故应用牛顿插值公式, 挑选出= 0. 15 附近的三个节点进行二次插值, 列于下表, 并将其一阶和二阶差分经算出列于该表的右侧各列 0 0. 00 1/8 0. 07 0. 07 2/80. 20 0.13 0.06 3/8 0. 81 0.61 0.48 0.42 若按三次插值, 则应挑选4个节点, 即再添一个的节点, 此时可在表上添一行一列(用虚线框在最后的行与列) , 其这样, 由三次插值所得的值为:由此可以看出, 如需要再取较高次的插值时,只需再添一项对应的节点及其计算, 而前面的计算仍保持有效.这是Newton插值法的优点. 例2某地区冬天的一天从上午九点到下午三点的气温变化如下数据:求这段时间温度与时间的关系. 解方法一用拉格朗日插值法解, x=[9:1:15]; y=1./(1+x. ); x0=[9:0.1:15]; y0=lagrange(x,y,x0);y1=1./(1+x0. );plot(x0,y0,'--r') hold on plot(x0,y1,'-b') legend('拉格朗日插值曲线','原曲线') Runge现象的产生原曲线 lagrange插值曲线方法二用分段插值曲线解x=[9:1:15]; y=1./(1+x. ); x0=[9:0.1:15]; y0=lagrange(x,y,x0);y1=1./(1+x0. );y2=interpl(x,y,x0,'spline'); plot(x0,y1,'-b',x0,y0,'--r',x0,y2,'xk') ; legend(‘原曲线’,’拉格朗日插值曲线’,’分段插值曲线’) 原曲线 lagrange插值曲线分段插值曲线方法三是用三次样条插值法解x=[9:1:15]; y=1./(1+x. ); x0=[9:0.1:15];y0=lagrange(x,y,x0);y1=1./(1+x0. );y2=interpl(x,y,x0,'spline'); y3=interpl(x,y,x0);plot(x0,y1,'-b',x0.y0,'--r',x0,y2,'xk'x0,y3,'-y') ; legend(’原曲线’,’拉格朗日插值曲线’,’三次样条插值曲线’,’分段线性插值曲线’) 原曲线 lagrange插值曲线三次样条插值曲线分段线性插值曲线从上面三种方法可以看出拉格朗日插值法来做,图像明显与原函数偏差较大,而分段插值克服了高次拉格朗日插值的缺点,故可通过增加插值基点提高其插值精度,但在插值节点处不光滑,不精确.而三次插值则是光滑而且插值点连续,故其精确度高,与原函数逼近最好. 5小结本文在分析讨论五种插值的基础上,给出了相应的例题作为比较,在解题中通过应用不同的插值方法而得出相应比较.他们之间的区别在上面介绍的很清楚了,而且在给出的例题中又很好的得到体现.最后给出了插值法在生活实践中的应用,在实际应用中又一次的进行了比较,得出他们在解决实际问题中五种插值法之间的区别.由上可知,插值方法是近似计算和逼近函数的有效方法,不同的插值法有着不同的应用,在其他领域还有着广泛的应用,像在计算机程序、渔业、冶金工程技术等.无论是应用在哪个领域其解决的方法都一样,都是应用到上面介绍的五种插值法中的某个来解决问题,用一个函数多项式来逼近原函数,来计算我们需要得出的信息和数据.以上就是我的论文为大家五种插值法的比较研究. 参考文献 [1] 赵景军,吴勃英.关于《数值分析》教学的几点探讨[J].大学数学,2005,21(3):28-30 . [2] 宋瑞霞.样条函数的多节点技术[J].北方工业大学学报,2003,1:56-58. [3] 吴才斌.插值方法[J].湖北大学成人教育学院学报,1999(5). [4] 赵前进,关于数值分析中插值法的研究[J].安徽科技学院学报,2007,21(3):34-36.[5] 李庆扬,王能超,易大义.数值分析[M].武汉:华中科技大学出版社,1982. [6] 钟尔杰,黄延祝.数值分析[M].北京高等教育出版社,2004,103-133. [7] 王仁宏.数值逼近[M].北京:高等出版社,1999. [8] 齐东旭,李华山.数据逼近的多结点样条技术[J].中国科学(E辑),1999,4:46-48. [9] 徐翠微,孙绳武.计算方法引论[M].高等教育出版社,2002. [10] 刘长河,汪元伦.用插值法求拟三对角方程组的数值解[J].北京建筑工程学院学报, 2004,2:57-59. [11] Moore R E.Intervalanalysis[M]. New Jersey: Prentice-Hall,1966.。

插值方法比较

插值方法比较

1. 克里金法(Kriging)克里金法是通过一组具有z 值的分散点生成估计表面的高级地统计过程。

与其他插值方法不同,选择用于生成输出表面的最佳估算方法之前应对由z 值表示的现象的空间行为进行全面研究。

克里金插值与IDW插值的区别在于权重的选择,IDW仅仅将距离的倒数作为权重,而克里金考虑到了空间相关性的问题。

它首先将每两个点进行配对,这样就能产生一个自变量为两点之间距离的函数。

对于这种方法,原始的输入点可能会发生变化.在数据点多时,结果更加可靠。

该方法通常用在土壤科学和地质中。

2. 反距离权重法(Inverse Distance Weighted,IDW)反距离权重法(反距离权重法)工具所使用的插值方法可通过对各个待处理像元邻域中的样本数据点取平均值来估计像元值。

点到要估计的像元的中心越近,则其在平均过程中的影响或权重越大.此方法假定所映射的变量因受到与其采样位置间的距离的影响而减小。

例如,为分析零售网点而对购电消费者的表面进行插值处理时,在较远位置购电影响较小,这是因为人们更倾向于在家附近购物.反距离权重法主要依赖于反距离的幂值。

幂参数可基于距输出点的距离来控制已知点对内插值的影响。

幂参数是一个正实数,默认值为2。

通过定义更高的幂值,可进一步强调最近点.因此,邻近数据将受到最大影响,表面会变得更加详细(更不平滑)。

随着幂数的增大,内插值将逐渐接近最近采样点的值。

指定较小的幂值将对距离较远的周围点产生更大影响,从而导致更加平滑的表面。

由于反距离权重公式与任何实际物理过程都不关联,因此无法确定特定幂值是否过大。

作为常规准则,认为值为30 的幂是超大幂,因此不建议使用.此外还需牢记一点,如果距离或幂值较大,则可能生成错误结果。

3。

含障碍的样条函数(Spline with Barriers)含障碍的样条函数工具使用的方法类似于样条函数法工具中使用的技术,其主要差异是此工具兼顾在输入障碍和输入点数据中编码的不连续性.含障碍的样条函数工具应用了最小曲率方法,其实现方式为通过单向多格网技术,以初始的粗糙格网(在本例中是已按输入数据的平均间距进行初始化的格网)为起点在一系列精细格网间移动,直至目标行和目标列的间距足以使表面曲率接近最小值为止。

各种插值法的对比研究

各种插值法的对比研究

各种插值法的对比研究目录1.引言 (1)2.插值法的历史背景 (1)3.五种插值法的基本思想 (2)3.1拉格朗日插值 (2)3.2牛顿插值 (3)3.3埃尔米特插值 (3)3.4分段线性插值 (4)3.5三次样条插值 (5)4.五种插值法的对比研究 (5)4.1拉格朗日插值与牛顿插值的比较 (5)4.2多项式插值法与埃尔米特插值的比较 (6)4.3多项式插值法与分段线性插值的比较 (6)4.4 分段线性插值与样条插值的比较 (6)5.插值法在实际生活中的应用 (6)6.结束语 (6)致谢 (7)参考文献 (7)各种插值法的对比研究摘要:插值法是一种古老的数学方法,也是数值计算中的一个算法.插值法不仅是微分方程、数值积分、数值微分等计算方法的基础,而且在医学、通讯、精密机械加工等领域都涉及到了它.本文首先介绍了插值的背景以及常用的五种插值法的基本思想,然后通过拉格朗日插值与牛顿插值、多项式插值与埃尔米特插值、多项式插值与分段线性插值、分段线性插值和样条函数插值给出相应的算法与MATLAB 程序,根据已学的知识对五种插值方法与被插函数的逼近程度进行对比研究,找出不同方法间的联系与区别,分析出它们的优缺点,最后在此基础上进一步研究插值法的实际应用,以提高插值法的实用性,从而能让我们在以后的应用中看到一个问题,就知道哪种方法更适合于它,然后大大地快速的提高效率.关键词:多项式插值;样条函数插值;MATLAB 程序;应用1.引言在很多解题以及应用生活中,常常需要用数量关系来反映问题,但是有时没有办法通过数学语言准确地表达出来.已知有些变量之间存在一种函数关系,但没法用函数的表达式表示出来.比如,)(x f 在某个区间上[]b a ,是存在某种数量关系的,但是根据观察和测量或者实验只能得到有限个函数值,我们可以利用这几点来确定函数表达式.或者有一些函数表达式是已经知道的,但是它们的计算是十分繁琐复杂的,不容易发现它的本质,而且它的使用方法也比较局限.函数是表达数与数之间的联系,为了能很好地用数学语言表达出函数的关系,一般通过给定的数据构造一个函数)(x P ,这样既能反映函数)(x f 的特点,又方便计算,用)(x P 近似)(x f .通常选一个简单的函数)(x P ,而且=)(i x P )(i x f ()n i ,...,2,1,0=成立,这个时候的)(x P ,从要表达的函数规律来看,就是我们需要的插值函数[1].所用方法就是插值法,由于所选用的)(x P 的多样化,得到不同的插值法.2.插值法的历史背景插值法的历史源远流长,在很早的时候就涉及到了它.它是数值计算中一个古老的分支,它来源于生产实践.因为牛顿力学的物理理论知识在一千年前没有出现,所以我们的祖先没有办法用很准确的数学解析式来表达日月五星的运行规律.后来,古代的人们有着聪慧的头脑,想出了插值方法,然后发现了日月五星的运行规律.例如唐朝数学家张遂提出了插值法的概念以及不等距节点的插值,并将其应用在天文历法观测中.现代工业革命以后欧洲著名的数学家拉格朗日给出了拉格朗日插值法的概念以及应用.微积分产生后,插值法的基本理论和结果进一步得到改善.3.五种插值法的基本思想如果一个函数)(x f y =在区间[]b a ,上有定义,且已知在点b x x x a n ≤<<<≤...10上的值0y ,1y ,2y , ,n y ,若存在一简单函数)(x P ,使得成立,)(x P 为插值函数,点0x ,1x ,2x , ,n x 称为插值节点,插值节点的区间[]b a ,称为插值区间,求插值函数)(x P 的方法称为插值法.若)(x P 的多项式次数不超过n ,即有)(x P n n x a x a x a a ++++= (2210)3.1拉格朗日插值拉格朗日插值是n 次多项式插值,它是用构造插值基函数的办法来解决n 次多项式插值的问题.拉格朗日插值多项式可以表示为=)(x L n ∑=n k k k x ly 0)(,)(x l k 为插值基函数,表达式为=)(x l k ))...()()...(())...()()...((110110n k k k k k k n k k x x x x x x x x x x x x x x x x --------+-+-,n k ,,1,0 = 截断误差为)()()(x L x f x R n n -=,也是插值余项.关于插值余项,估计有以下定理[2]:设)(x f n 在[]b a ,上连续,)(1x f n +在()b a ,内存在,节点b x x x x a n≤<<<<≤ 210,)(x L n 是满足条件(1.4)的插值多项式,则对任何[]b a x ,∈,插值余项)()!1()()()()(1)1(x n f x L x f x R n n n n +++=-=ωξ 余项表达式的应用有它的局限性,一般只适合于)(x f 高阶导数存在的情况下.若设1)1()(max ++≤≤=n n b x a M x f ,则误差为)()!1()(11x w n M x R n n n +++≤.3.2牛顿插值牛顿插值的基本思想是对n 次插值多项式)(x P n 进行逐次生成,然后用插值条件求出)(x P n 系数[3].因此,提出了均差(即差商)的概念.设 称有函数)(x f ,1x ,2x ,3x , ,n x 是一系列不相等的点,则[]=k x x f ,000)()(x x x f x f k k --为函数)(x f 关于点0x ,2x 的一阶均差; []=k x x x f ,,10[]1100],[,x x x x f x x f k k -- 称为)(x f 的二阶均差; []=k x x x f ,...,,10[][]1110210,...,,,,...,,-----k k k k k x x x x x f x x x x f 为)(x f )的k 阶均差. 我们先求出1次多项式,2次多项式,然后类推出n 次多项式,构造出n 次代数插值多项式的另外一种表达形式—牛顿插值多项式=)(x P n +)(0x f []10,x x f +-)(0x x []210,,x x x f )(0x x -+-)(1x x … []n x x x x f ,...,,,210+)(0x x -))...((11---n x x x x ,=)(x R n []n x x x x x f ,...,,,,210)(0x x -))...((1n x x x x --, =)(x f +)(x P n )(x R n . )(x P n 为牛顿插值多项式,)(x R n 为余项.3.3埃尔米特插值有的时候解决函数)(x f 的问题,不仅要在某些点上知道函数值,而且已知在一些点上的导数值.那么这时插值函数)(x P ,它在某些点处的导数值和函数值与原表达式的值相等的.那么我们从几何这个方面来思考这个问题,求出插值多项式的曲线,不但通过已知点组,而且在这些点处与原曲线"相切"[4].(一)、泰勒插值定义 [][])(,lim ,0'0000x f x x f x x f x x ==→为一阶重节点均差;[][])(21,,lim ,,0''2100000201x f x x x f x x x f x x x x ==→→为二阶重节点均差; 则n 阶重节点均差为[][])(!1,,,lim ,,,0100000x f n x x x f x x x f n n x x i ==→ . 当0x x i →时,牛顿插值公式的极限为=)(x P n +)(0x f )(0'x f +-)(0x x ...!n x f n )(0)(nx x )(0-. 称为泰勒插值多项式.它满足条件=)(0)(x P k n )(0)(x f k ,),...,2,1,0(n k =(二)、两点三次埃尔米特插值若)(x f 在k x ,1+k x 的函数值为k y ,1+k y ,k k m x f =)(',11')(++=k k m x f ,我们可以构造出一个次数不超过3的多项式,)(3x H 为插值函数.设=)(3x H +k k y x a )(+++11)(k k y x a +k k m x )(β11)(++k k m x β,k a ,1+k a ,k β,1+k β为插值基函数.可得结果 =)(3x H 2111))(21(+++----+k k k k k k x x x x x x x x k y 2111))(21(kk k k k k x x x x x x x x ----+++++++1k y )(k x x -+--++k k k k m x x x x 211)(121)(++--k k k k m x x x x , =)(3x R 2124)())((41+--k k x x x x f ξ!,),(1+∈k k x x ξ. 3.4分段线性插值分段线性插值:一般描述,如给定[]上b a ,1+n 个节点b x x x x a n =<<<<= 210和相应的函数值)(i f f i =),...,2,1,0(n i =,记k k k x x h -=+1,k kh h max =. 构造)(x I h 满足:(1)[]b a C x I h ,)(∈;(2)k k h f x I =)(),,2,1,0(n k =;(3))(x I h 在每个小区间[]1,+k k x x 上是线性函数.由以上条件直接可得)(x I h 在小区间[]1,+k k x x 上的表达式为=)(x I h +--++k k k k f x x x x 1111++--k kk k f x x x x , )1,,2,1,0(-=n k 误差估计 -)(x f =)(x I h ))((!2)(1)(''+--k k k x x x x x f ξ))((max 2121+≤≤--≤+k k x x x x x x x M k k . 当∞→h 时,0)()()(→-=x I x f x R h ,)(x I h 在[]b a ,上一致收敛到)(x f .3.5三次样条插值三次样条插值(Spline 插值)的具体要求是:函数[]b a C x S ,)(2∈,并在每个小区间[]1,+j j x x 上是一个三次多项式,其中b x x x x a n =<<<<=...210是给定节点,如果对给定的节点函数值有j y )(j x f =),...,2,1,0(n j =,并且=)(j x S j y ,),...,2,1,0(n j =成立,这时我们就把)(x S 称为三次样条插值函数.4.五种插值法的对比研究通过讨论插值法的相关内容,可以让我们更好的了解插值法.现在我们先从插值多项式的形式上、用途上、计算方法上、精确度上等进行对比研究,比较各自优缺点,然后再通过实例验证之.4.1拉格朗日插值与牛顿插值的比较(一)拉格朗日插值多项式步骤衔接紧密,条理清晰,在理论中十分重要.但是计算比较复杂,因为每添加一个点,所以的公式都要重新计算,这样计算步骤较多会导致计算量变大,反而会导致出现误差与原来的目的背道而驰.(二)牛顿插值多项式的计算量小,步骤简洁.当添加一个节点时,它仍然可以使用,即具有“承袭性”也叫“继承”,所以此类方法应用灵活.但是我们根据正常的想象和观察插值余项,我们一般局部地总是认为当原函数给出的点是越来越多时,我们借助的辅助函数的次数越高,它就和原函数越来越近,误差越来越小.然而事实并非如此,当遇到插值节点等距分布的情况时,只要求函数点值相等不能够充分反映插值函数的性质[5].4.2多项式插值法与埃尔米特插值的比较多项式插值要求在插值节点上函数值相等,计算简单,条件不怎么苛刻.但是如果有的时候一方面要在节点处函数值相等,另一方面要导数值相等,这时多项式插值否则不满足此类情况.埃尔米特插值不仅算法简单而且它具有强烈收敛性.但是它的光滑度不高,而且它的使用条件,也有局限性.在一些特定的限制条件下,有时函数的导数值在这点是完全没有必要知道的.因此,知道节点处的导数的插值函数成为能否运用Hermite插值的一个重要因素[6].4.3多项式插值法与分段线性插值的比较多项式插计算简单,比较方便,但是节点增加的同时就会出现龙格现象,图形波动较大[7].分段线性插值能够克服龙格现象,有收敛性,但是在区间内有转折点,光滑性不好.4.4 分段线性插值与样条插值的比较样条插值的插值函数算法稳定,而且插值函数光滑,收敛性强,误差小.但是它不能局部确定,常常需要解线性方程组.5.插值法在实际生活中的应用插值法是数值逼近中一个非常重要的部分,其次它在实际生活中起着不容小觑的作用,比如天文学以及数学.6.结束语插值法在解决实际问题中有很大的应用.插值方法是各种各样的,它包含拉格朗日插值法、牛顿插值法、Hermite插值法、分段线性插值法以及三次样条插值法等.我们不论使用哪个插值法,它的原理都是一样的.本课题首先介绍了插值的背景以及各类方法的基本思想;然后通过解题、画图、一道题用几种不同方法来解答,让我们哪种方法适合解答哪种类型的题,再然后进行对比,探讨出它们的优缺点,最后文章举个例子来说明插值法有很大的作用,它和我们是相连的,同时利用MATLAB给出了模拟图,通过这种数与形的结合,更好地了解各类插值法的应用于特征.致谢本论文在苏晓琴老师的悉心指导下完成的,同样也是我第一次写这样的文章。

插值数值实验报告(3篇)

插值数值实验报告(3篇)

第1篇一、实验目的1. 理解并掌握插值法的基本原理和常用方法。

2. 学习使用拉格朗日插值法、牛顿插值法等数值插值方法进行函数逼近。

3. 分析不同插值方法的优缺点,并比较其精度和效率。

4. 通过实验加深对数值分析理论的理解和应用。

二、实验原理插值法是一种通过已知数据点来构造近似函数的方法。

它广泛应用于科学计算、工程设计和数据分析等领域。

常用的插值方法包括拉格朗日插值法、牛顿插值法、样条插值法等。

1. 拉格朗日插值法拉格朗日插值法是一种基于多项式的插值方法。

其基本思想是:给定一组数据点,构造一个次数不超过n的多项式,使得该多项式在这些数据点上的函数值与已知数据点的函数值相等。

2. 牛顿插值法牛顿插值法是一种基于插值多项式的差商的插值方法。

其基本思想是:给定一组数据点,构造一个次数不超过n的多项式,使得该多项式在这些数据点上的函数值与已知数据点的函数值相等,并且满足一定的差商条件。

三、实验内容1. 拉格朗日插值法(1)给定一组数据点,如:$$\begin{align}x_0 &= 0, & y_0 &= 1, \\x_1 &= 1, & y_1 &= 4, \\x_2 &= 2, & y_2 &= 9, \\x_3 &= 3, & y_3 &= 16.\end{align}$$(2)根据拉格朗日插值公式,构造插值多项式:$$P(x) = \frac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)}y_0 + \frac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)}y_1 + \frac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)}y_2 + \frac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)}y_3.$$(3)计算插值多项式在不同点的函数值,并与实际值进行比较。

数值分析实验报告(插值法)

数值分析实验报告(插值法)

武汉理工大学学生实验报告书实验课程名称数值分析开课学院计算机科学与技术学院指导老师姓名学生姓名学生专业班级2010—2010学年第一学期实验课程名称:数值分析第二部分:实验调试与结果分析(可加页)一、调试过程(包括调试方法描述、实验数据记录,实验现象记录,实验过程发现的问题等)(1)用拉格朗日插值法计算时,输入及运行结果如下:拉格朗日插值法牛顿插值法(2)利用二次插值计算时,输入及运行结果如下:拉格朗日插值法牛顿插值法(3)用艾尔米特插值法计算时,f(x)的插值多项式H5(x)=(1+4*x)*(x-0.5)*(x-0.5)*(x-2)*(x-2)+(3.90807-6.03838*x)*(x-2)*(x-2)*x*x+(2.34573-4.16674*x)*x*x*(x-0.5)*(x-0.5)(4)各插值算法的精度差异比较经过比较,拉格朗日插值法要比牛顿插值法算法的计算量多一些,拉格朗日插值法后一次计算时用到了前一次计算的结果,提高了运算的效率,但拉格朗日插值法在构造艾尔米特插值法时很方便,将坐标点和对应的导数结合起来的精度比线性插值的精度又要高一些。

但从实验数据来看,在坐标不是很多的情况下,已知的点越多精度也就相对较高。

对于实验要求的第二组数据用拉格朗日插值法(或者牛顿插值法)实验结果如下:一下分别是二阶、三阶、四阶、五阶插值得到的结果以上只是实验结果的一部分,改变插值的位置时,得到的实验结果精度也是有所不同的。

由以上结果分析可知,插值次数并不是越多越好,多了反而会让结果更加偏离真实结果,这充分说明了高次插值存在“病态性质”,在已知点很多的情况下应该采用分段低次插值,将拉格朗日插值法和牛顿插值法运用到分段低次插值法当中,这样得到的结果可能胡更加精确。

各种插值法的对比研究报告

各种插值法的对比研究报告

各种插值法的对比研究报告各种插值法的对比研究目录_Toc4852335651.引言 (2)2.插值法的历史背景 (2)3.五种插值法的基本思想 (2)3.1拉格朗日插值 (2)3.2牛顿插值 (2)3.3埃尔米特插值 (2)3.4分段线性插值 (2)3.5三次样条插值 (2)4.五种插值法的对比研究 (2)4.1拉格朗日插值与牛顿插值的比较 (2)4.2多项式插值法与埃尔米特插值的比较 (2)4.3多项式插值法与分段线性插值的比较 (2)4.4 分段线性插值与样条插值的比较 (2)5.插值法在实际生活中的应用 (2)6.结束语 (2)致谢 (2)参考文献 (2)各种插值法的对比研究摘要:插值法是一种古老的数学方法,也是数值计算中的一个算法.插值法不仅是微分方程、数值积分、数值微分等计算方法的基础,而且在医学、通讯、精密机械加工等领域都涉及到了它.本文首先介绍了插值的背景以及常用的五种插值法的基本思想,然后通过拉格朗日插值与牛顿插值、多项式插值与埃尔米特插值、多项式插值与分段线性插值、分段线性插值和样条函数插值给出相应的算法与MATLAB 程序,根据已学的知识对五种插值方法与被插函数的逼近程度进行对比研究,找出不同方法间的联系与区别,分析出它们的优缺点,最后在此基础上进一步研究插值法的实际应用,以提高插值法的实用性,从而能让我们在以后的应用中看到一个问题,就知道哪种方法更适合于它,然后大大地快速的提高效率. 关键词:多项式插值;样条函数插值;MATLAB 程序;应用1.引言在很多解题以及应用生活中,常常需要用数量关系来反映问题,但是有时没有办法通过数学语言准确地表达出来.已知有些变量之间存在一种函数关系,但没法用函数的表达式表示出来.比如,)(x f 在某个区间上[]b a ,是存在某种数量关系的,但是根据观察和测量或者实验只能得到有限个函数值,我们可以利用这几点来确定函数表达式.或者有一些函数表达式是已经知道的,但是它们的计算是十分繁琐复杂的,不容易发现它的本质,而且它的使用方法也比较局限.函数是表达数与数之间的联系,为了能很好地用数学语言表达出函数的关系,一般通过给定的数据构造一个函数)(x P ,这样既能反映函数)(x f 的特点,又方便计算,用)(x P 近似)(x f .通常选一个简单的函数)(x P ,而且=)(i x P )(i x f ()n i ,...,2,1,0=成立,这个时候的)(x P ,从要表达的函数规律来看,就是我们需要的插值函数[1].所用方法就是插值法,由于所选用的)(x P 的多样化,得到不同的插值法.2.插值法的历史背景插值法的历史源远流长,在很早的时候就涉及到了它.它是数值计算中一个古老的分支,它来源于生产实践.因为牛顿力学的物理理论知识在一千年前没有出现,所以我们的祖先没有办法用很准确的数学解析式来表达日月五星的运行规律.后来,古代的人们有着聪慧的头脑,想出了插值方法,然后发现了日月五星的运行规律.例如唐朝数学家张遂提出了插值法的概念以及不等距节点的插值,并将其应用在天文历法观测中.现代工业革命以后欧洲著名的数学家拉格朗日给出了拉格朗日插值法的概念以及应用.微积分产生后,插值法的基本理论和结果进一步得到改善.3.五种插值法的基本思想如果一个函数)(x f y =在区间[]b a ,上有定义,且已知在点b x x x an ≤<<<≤...10上的值0y ,1y ,2y , ,n y ,若存在一简单函数)(x P ,使得成立,)(x P 为插值函数,点0x ,1x ,2x , ,n x 称为插值节点,插值节点的区间[]b a ,称为插值区间,求插值函数)(x P 的方法称为插值法.若)(x P 的多项式次数不超过n ,即有 )(x P n n x a x a x a a ++++= (2210)3.1拉格朗日插值拉格朗日插值是n 次多项式插值,它是用构造插值基函数的办法来解决n 次多项式插值的问题.拉格朗日插值多项式可以表示为=)(x L n ∑=nk kk x ly 0)(,)(x l k 为插值基函数,表达式为=)(x l k ))...()()...(())...()()...((110110n k k k k k k n k k x x x x x x x x x x x x x x x x --------+-+-,n k ,,1,0 =截断误差为)()()(x L x f x R n n -=,也是插值余项.关于插值余项,估计有以下定理[2]: 设)(x f n 在[]b a ,上连续,)(1x f n +在()b a ,内存在,节点b x x x x a n ≤<<<<≤ 210,)(x L n 是满足条件(1.4)的插值多项式,则对任何[]b a x ,∈,插值余项)()!1()()()()(1)1(x n f x L x f x R n n n n +++=-=ωξ 余项表达式的应用有它的局限性,一般只适合于)(x f 高阶导数存在的情况下.若设1)1()(max ++≤≤=n n bx a M x f ,则误差为)()!1()(11x w n M x R n n n +++≤.3.2牛顿插值牛顿插值的基本思想是对n 次插值多项式)(x P n 进行逐次生成,然后用插值条件求出)(x P n 系数[3].因此,提出了均差(即差商)的概念.设称有函数)(x f ,1x ,2x ,3x , ,n x 是一系列不相等的点,则 []=k x x f ,000)()(x x x f x f k k --为函数)(x f 关于点0x ,2x 的一阶均差;[]=k x x x f ,,10[]1100],[,x x x x f x x f k k -- 称为)(x f 的二阶均差;[]=k x x x f ,...,,10[][]1110210,...,,,,...,,-----k k k k k x x x x x f x x x x f 为)(x f )的k 阶均差.我们先求出1次多项式,2次多项式,然后类推出n 次多项式,构造出n 次代数插值多项式的另外一种表达形式—牛顿插值多项式=)(x P n +)(0x f []10,x x f +-)(0x x []210,,x x x f )(0x x -+-)(1x x …[]n x x x x f ,...,,,210+)(0x x -))...((11---n x x x x ,=)(x R n[]n x x x x x f ,...,,,,210)(0x x -))...((1n x x x x --,=)(x f +)(x P n )(x R n .)(x P n 为牛顿插值多项式,)(x R n 为余项.3.3埃尔米特插值有的时候解决函数)(x f 的问题,不仅要在某些点上知道函数值,而且已知在一些点上的导数值.那么这时插值函数)(x P ,它在某些点处的导数值和函数值与原表达式的值相等的.那么我们从几何这个方面来思考这个问题,求出插值多项式的曲线,不但通过已知点组,而且在这些点处与原曲线"相切"[4]. (一)、泰勒插值定义 [][])(,lim ,0'0000x f x x f x x f x x ==→为一阶重节点均差;[][])(21,,lim ,,0''2100000201x f x x x f x x x f x x x x ==→→为二阶重节点均差; 则n 阶重节点均差为[][])(!1,,,lim ,,,0100000x f n x x x f x x x f nn x x i ==→ . 当0x x i →时,牛顿插值公式的极限为=)(x P n +)(0x f )(0'x f +-)(0x x ...!n x f n )(0)(nx x )(0-.称为泰勒插值多项式. 它满足条件=)(0)(x P k n )(0)(x f k ,),...,2,1,0(n k =(二)、两点三次埃尔米特插值若)(x f 在k x ,1+k x 的函数值为k y ,1+k y ,k k m x f =)(',11')(++=k k m x f ,我们可以构造出一个次数不超过3的多项式,)(3x H 为插值函数.设=)(3x H +k k y x a )(+++11)(k k y x a +k k m x )(β11)(++k k m x β,k a ,1+k a ,k β,1+k β为插值基函数.可得结果=)(3x H 2111))(21(+++----+k k k k k k x x x x x x x x k y 2111))(21(kk k k k k x x x x x x x x ----+++++++1k y )(k x x -+--++k k k k m x x x x 211)(121)(++--k kk k m x x x x,=)(3x R 2124)())((41+--k k x x x x f ξ!,),(1+∈k k x x ξ.3.4分段线性插值分段线性插值:一般描述,如给定[]上b a ,1+n 个节点b x x x x a n =<<<<= 210和相应的函数值)(i f f i =),...,2,1,0(n i =,记k k k x x h -=+1,k kh h max =.构造)(x I h 满足: (1)[]b a C x I h ,)(∈;(2)k k h f x I =)(),,2,1,0(n k =;(3))(x I h 在每个小区间[]1,+k k x x 上是线性函数.由以上条件直接可得)(x I h 在小区间[]1,+k k x x 上的表达式为=)(x I h +--++k k k k f x x x x 1111++--k kk kf x x x x , )1,,2,1,0(-=n k误差估计-)(x f =)(x I h ))((!2)(1)(''+--k k k x x x x x f ξ))((max 2121+≤≤--≤+k k x x x x x x x M k k . 当∞→h 时,0)()()(→-=x I x f x R h ,)(x Ih 在[]b a ,上一致收敛到)(x f .3.5三次样条插值三次样条插值(Spline 插值)的具体要求是:函数[]b a C x S ,)(2∈,并在每个小区间[]1,+j j x x 上是一个三次多项式,其中b x x x x a n =<<<<=...210是给定节点,如果对给定的节点函数值有j y )(j x f =),...,2,1,0(n j =,并且=)(j x S j y ,),...,2,1,0(n j =成立,这时我们就把)(x S 称为三次样条插值函数.4.五种插值法的对比研究通过讨论插值法的相关内容,可以让我们更好的了解插值法.现在我们先从插值多项式的形式上、用途上、计算方法上、精确度上等进行对比研究,比较各自优缺点,然后再通过实例验证之.4.1拉格朗日插值与牛顿插值的比较(一)拉格朗日插值多项式步骤衔接紧密,条理清晰,在理论中十分重要.但是计算比较复杂,。

五次PH曲线插值及其外形优化方法的研究的开题报告

五次PH曲线插值及其外形优化方法的研究的开题报告

五次PH曲线插值及其外形优化方法的研究的开题报告一、研究背景及意义随着科技的进步和工业的发展,PH值作为一种重要的物理量,已经成为了许多行业和领域中必不可少的参数。

在水处理、环境保护、化工生产等领域中,PH值的测量和控制对于保障产品质量和生态环境的安全至关重要。

因此,如何高效准确地获取PH值信息,成为了目前研究的重点之一。

而在实际测量中,许多PH值传感器只能测量离散数据点,因此需要通过插值技术来推断出PH值的完整曲线。

目前已有许多插值方法,如拉格朗日插值、牛顿插值、三次样条插值等,但这些方法都存在一定的局限性,如曲线过度拟合、过度平滑等问题。

因此,本文将从五次PH曲线插值及其外形优化入手,研究如何提高插值效果,以期为实际应用提供一定的参考和帮助。

二、研究内容与方法(一)研究内容:1. 建立五次PH曲线插值模型;2. 分析五次PH曲线插值中的误差来源,制定相应的优化措施;3. 设计五次PH曲线的外形优化方法,提高曲线光滑度和拟合精度;4. 验证所提出的新方法的实际效果,并与其他常用插值方法进行比较。

(二)研究方法:1. 理论分析法:对五次PH曲线插值理论进行深入研究,并分析其误差来源;2. 算法设计法:根据误差分析结果,设计五次PH曲线插值和外形优化的算法;3. 数值仿真法:利用MATLAB等数学仿真工具,对设计的算法进行仿真测试和效果验证。

三、预期研究结果通过本研究,预期能够:1. 建立五次PH曲线插值模型,提高插值精度和稳定性;2. 分析五次PH曲线插值中的误差来源,提出相应的优化措施;3. 设计五次PH曲线的外形优化方法,提高曲线光滑度和拟合精度;4. 验证所提出的新方法的实际效果,并与其他常用插值方法进行比较,为实际应用提供参考和帮助。

四、研究难点与挑战1. 插值算法的高精度和稳定性设计;2. 五次PH曲线外形优化的精细控制;3. 仿真测试和实际应用效果验证的可靠性和准确性。

五、研究计划与进度(一)研究计划:1. 文献综述:对PH值测量和插值方法进行系统综述和分析;2. 理论分析:建立五次PH曲线插值模型,并分析其误差来源;3. 算法设计:制定五次PH曲线插值和外形优化的算法,提高插值效果;4. 仿真测试:利用MATLAB等仿真工具,对算法进行仿真测试和效果验证;5. 实际应用:将所提出的算法应用到实际PH值测量中,进行效果验证和比较。

各种插值方法比较

各种插值方法比较

各种插值方法比较插值是一种常见的数据处理技术,用于估计缺失数据或填充数据空缺。

在数据分析、统计学和机器学习等领域中,插值可以帮助我们处理缺失数据或者对连续数据进行平滑处理。

常见的插值方法包括线性插值、多项式插值、样条插值、Kriging插值等。

1.线性插值:线性插值是一种简单但广泛使用的插值方法,基于原始数据中的两个点之间的直线来估计缺失点的值。

这种方法适用于数据分布较为均匀的情况,但对于非线性的数据,可能会导致估计值与实际值之间的较大误差。

2.多项式插值:多项式插值是通过使用多项式函数来拟合原始数据,从而估计缺失点的值。

多项式插值方法具有较高的灵活性,可以在不同的数据点之间产生平滑曲线,但在数据点较多时,可能会导致过拟合问题。

3.样条插值:样条插值是一种常见的插值方法,它通过使用分段多项式函数来拟合数据,从而在数据点之间产生平滑曲线。

样条插值方法克服了多项式插值的一些问题,同时在数据点较少的情况下也能有效地估计缺失点的值。

4. Kriging插值:Kriging插值是一种基于统计学和地理学原理的插值方法,它考虑了数据点之间的空间关系,并使用半变异函数来估计缺失点的值。

Kriging插值方法适用于具有空间相关性的数据,例如地理信息系统中的地形数据或环境监测数据。

除了上述常见的插值方法之外,还有一些其他的插值方法,如逆距离加权插值、最近邻插值、高阶插值等。

5.逆距离加权插值:逆距离加权插值方法假设距离越近的数据点对估计值的贡献越大,它根据数据点之间的距离来计算权重,并将其与对应数据点的值进行加权平均来估计缺失点的值。

逆距离加权插值方法适用于数据点密集、分布不均匀的情况,但对于噪声较大或异常值较多的数据,可能会导致估计值的不准确。

6.最近邻插值:最近邻插值方法简单和直观,它假设与缺失点距离最近的已知点的值与缺失点的值相同。

这种方法适用于数据点之间的空间相关性较强,但在数据点分布不均匀或者缺失点周围的数据点值变化较大的情况下,可能会导致估计值的不准确。

高等数值分析-插值法报告

高等数值分析-插值法报告

南京理工大学课程考核论文课程名称:高等数值分析论文题目:基于matlab的函数插值方法性能比较姓名:xxx学号:xxxxxxxxxx成绩:摘要函数插值是指已知某函数的在若干离散点上的函数值或者导数信息,通过求解该函数中待定形式的插值函数以及待定系数,使得该函数在给定离散点上满足约束。

本文首先介绍了五种插值方法:线性插值、lagrange插值、newdun插值、三次样条插值和三次B样条插值,并从五种插值法的基本思想和具体实例仿真入手,探讨了五种插值法的优缺点。

通过对五种插值法的对比研究及实际应用的总结,从而使我们在以后的应用中能够更好、更快的解决问题。

关键字插值法对比matlab目录摘要 (2)0 引言 (4)1插值问题的提出、发展史及简单应用 (4)1.1插值问题的提出 (4)1.2插值法的发展史 (4)1.3插值法的简单应用 (4)2 五种插值法的定义 (5)2.1线性插值法 (5)2.2Lagrange插值法 (5)2.3Newton插值法 (6)2.4 三次样条插值法 (6)2.5B样条插值 (6)3五种插值法的matlab仿真实现 (8)4五种插值方法性能对比 (11)5结束语 (12)参考文献 (12)0 引言近半世纪由于计算机的广泛使用和造船、航空、精密机械加工等世纪问题的需要,使插值法在理论上和实践上得到进一步发展,尤其是20世纪40年代后期发展起来的样条插值等,更获得广泛应用,称为计算机图形学的基础。

插值是指已知某函数的在若干离散点上的函数值或者导数信息,通过求解该函数中待定形式的插值函数以及待定系数,使得该函数在给定离散点上满足约束。

插值函数又叫作基函数,如果该基函数定义在整个定义域上,叫作全域基,否则叫作分域基。

1插值问题的提出、发展史及简单应用1.1插值问题的提出许多实际问题都用函数来表示某种内在规律的数量关系,其中相当一部分函数是通过实验或观测得到的。

虽然()x f 在某个区间[]b a ,上是存在的,有的还是连续的,但却只能给出[]b a ,上一系列点i x 的函数值()() 2,1,0==i x f y i i ,这只是一张函数表.有的函数虽有解析表达式,但由于计算复杂,使用不方便,通常也造一个函数表,如大家熟悉的三角函数表、对数表、平方根和立方根表.为了研究函数的变化规律,往往需要求出不在表中的函数值.因此,我们希望根据给定的函数表做一个既能反映函数()x f 的特性,又便于计算简单函数()x p ,用()x p 近似()x f 。

关于PH曲线插值若干问题的研究的开题报告

关于PH曲线插值若干问题的研究的开题报告

关于PH曲线插值若干问题的研究的开题报告一、选题背景及研究意义PH曲线(pH value curve)是描述水溶液中氢离子浓度变化与反应条件之间关系的一种曲线,对分析水体中的酸碱程度非常重要。

在实际工作中,我们经常需要插值来确定一些数据点的值,使其能够匹配到PH曲线上。

然而,由于PH曲线的特殊性质,传统的插值方法,在PH曲线上会出现错误的预测结果。

因此,提出一种有效的PH曲线插值方法,对于准确描述酸碱度变化趋势有着十分重要的意义。

二、研究现状及存在问题目前,常用的数据插值方法包括线性插值、二次插值、三次样条插值、拉格朗日插值等。

然而,在处理PH曲线上,这些传统的方法会出现一些问题。

首先,PH曲线在不同区间上形态不同,因此在不同的插值区间内采用相同的插值方法容易产生误差;其次,PH曲线存在更改斜率的点(如酸碱中和点),这些点的存在会导致插入数据点的值出现较大误差。

三、研究内容及方法本研究将深入探讨PH曲线的特殊性质及插值问题,提出一种基于差分的PH曲线插值方法,通过在插值区间内建立一个“斜率变化点表”,来解决插值区间内的插值误差问题。

具体步骤如下:1. 对于PH曲线的每个插值区间,建立一个“斜率变化点表”,记录该区间上出现更改斜率的点的横坐标。

2. 对于待插值的数据点,确定其所在的插值区间。

3. 在该区间中,利用差分法计算待插值数据点的函数值,并通过“斜率变化点表”对结果进行修正。

4. 将修正后的结果与原曲线进行比较,得出误差值。

5. 通过多次实验,验证该方法在不同曲线上的适用性及优越性。

四、预期成果本研究预期得出一种基于差分的PH曲线插值方法,并证明其在不同曲线上有更好的应用效果、更低的误差率。

该方法的研究成果将对水质分析、环境监测、化学工程等领域的酸碱度计算提供重要的理论参考,并可作为实际工作中的参考手册。

五、研究实施方案本研究将采用实验与理论相结合的研究方式,主要分为以下几个阶段:1. 收集大量PH曲线数据,并进行分析、整理和统计。

关于有理插值的进一步研究的开题报告

关于有理插值的进一步研究的开题报告

关于有理插值的进一步研究的开题报告
一、背景和意义
有理插值是一种重要的数值分析方法,可用于估计未知函数在有限多个给定点处的值,其插值结果具有高精度和高效率的特点。

在计算机科学、工程学、物理学等众多领域中都有广泛应用。

当前,有理插值方法已经得到广泛的研究和应用,并且在某些实际问题中取得了良好的效果。

然而,目前研究的方向主要集中在插值多项式的构造和性质分析方面,还有一些值得探讨的问题需要深入研究。

二、研究目的和内容
有理插值方法的错误估计和精度分析一直是研究关注的焦点,研究的目的是在此基础上进一步提高有理插值方法的精度和准确性,并给出针对不同问题的有效适用方案,以解决实际应用中出现的困难和问题。

本研究拟对以下问题进行深入研究:
1、有理插值方法的可行性分析;
2、有理插值方法的截断误差分析;
3、有理插值方法的收敛性分析。

三、研究方法和思路
本研究将分别从理论和实践两方面,采用数值分析、统计学等方法,对有理插值方法的精度、准确性和可行性进行探究。

在理论分析方面,将主要采用算法设计、复杂度分析等方法,对有理插值方法的截断误差和收敛性进行分析,并在这些基础上提出相应的优化方案。

在实践方面,将采用Matlab等计算机工具仿真实验,对不同方案进行比较评价,为实际应用提供有效参考。

四、预期研究结果和意义
本研究预期将对有理插值方法的精度、准确性和可行性进行深入探究,并提出相应的优化方案。

研究结果不仅可以推动有理插值方法在实际问题中的应用,而且也可以为数值分析方法的改进提供思路和方法。

一定程度上提高了数学与计算机科学领域中数值分析的发展水平。

五种插值法的对比研究

五种插值法的对比研究
二、综述与本课题相关领域研究现实状况、发展趋势、研究方法及应用领域等
1.研究现实状况:
多项式插值Lagrange公式, Newton(包含等距基点情况)和Hermite公式,形式不一样,可用于不一样场所,通常来说,前两种形式适适用于理论应用,后两种形式适于计算,带导数插值使插值函数与被插值函数更为密贴,优点是显著。
毕业论文开题汇报
题目五种插值法对比研究
学生姓名陈飞学号
所在院(系)数学与计算机科学学院
专业班级信计081班
指导老师权双燕
3月7日
题目
五种插值法对比研究
一、选题目及研究意义全文用五号宋体
在数值计算方法中,插值法是计算方法基础,数值微分、数值积分和微分方程数值解都建立在此基础上。插值法有大量实际应用。我们学习过五种基础插值方法,即插值、值、分段线性插值、分段三次插值、样条插值函数。不过这五种插值方法与被插函数迫近程度在现有文件中没有给出清楚描述,为此,可依据已学知识对这五种插值方法与被插函数迫近程度进行对比研究。
黄友谦,李岳生.(第二版).北京:高等教育出版社, 1987
蒋尔雄,赵凤光.数值迫近.上海:复旦大学出版社, 1996
五、毕业论文进程安排
3月4日-----3月8日查阅资料,列出提要,完成开题汇报;
3月8日-----4月10日查阅材料;
4月10日----5月5日阅读资料,撰写论文,完成论文初稿;
5月5日-----5月27日指导老师审阅,定稿后打印。
[2]韩中庚.数学建模方法及其应用[M].北京:高等教育出版社, .
[3]胡运权.运筹学教程第三版[M].清华大学出版社, .
[4]齐欢.数学模型方法[M].武汉:华中理工大学出版社, 1996.

五种插值法的对比研究

五种插值法的对比研究

• 它的优点就是公式紧凑,在理论分析中十分方便,但是 它不能随意的增加插值点。又如牛顿插值多项式的构造:
当前工作的进度
• 通过上网、图书馆及自己做的习题等方式 已经查找了一些关于数学期望在经济决策 中应用的一些文献,并初步阅读这些文献。 • 通过自己查阅的资料,对几种插值的有了 更充分的认识。 • 根据几种插值的解题思路,解决一些实际 问题。
目前已查阅文献出处
• 石东洋 数值计算方法 郑州大学出版社 • 陈传璋 数学分析(第二版上册)高等教育 出版社 • 数值计算方法 冯康等编 数值计算方法 国 防工业出版社
下一步进展计划
• 细致的研读已有的资料和文献,学习基本 的科研的思想和方法。 • 通过上网、在图书馆中查询、向老师请教 等方式,进一步丰富资料。 • 对已有的资料进行提炼、融合,并结合自 己的思考,在老师的指导下写出自己的论 文。
有关题目的一些想法
• 插值是数值计算中的重要一部分,而五种插值又是我们常常见到 的,本课题就是对他们之间的差异和关系通过举例或证明得到自 己对他们的认识。
• 通过自己的举例和证明从中找到它们的优点、不足. 例如朗格朗日它的构造公式: n
( x x )( x x ) ( x x )( x x ) 1 2 k 1 n g ( x ) ( x x )( x x ) ( x x )( x x ) k 1 k 2 k k 1 k n k 1
f ( x ) f [ x ] f [ x , x ]( x x ) f [ x , x x ]( x x )( x x ) ( x x ) R ( X ) 0 0 1 0 0 1 n 0 1 n 1 n
而它的优点就是可以随意的增加一个或多个插值你只需 在它后面增加相应的想就行了他克服了上式的缺点,也 加快了了你的计算速度。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五种插值法的对比研究1.选题依据1.1 选题背景插值法是一种古老的数学方法,插值法历史悠久。

据考证,在公元六世纪时,我国刘焯(zhuo) 已经把等距二次插值法应用于天文计算。

十七世纪时,Newton和Gregory(格雷格里) 建立了等距节点上的一般插值公式,十八世纪时,Lagrange(拉格朗日) 给出了更一般的非等距节点插值公式。

而它的基本理论是在微积分产生以后逐渐完善的,它的实际应用也日益增多,特别是在计算机工程中。

许多库函数的计算实际上归结于对逼近函数的计算。

1.2 研究的目的和意义插值法是数值分析中最基本的方法之一。

在实际问题中碰到的函数是各种各样的,有的甚至给不出表达式,只提供了一些离散数据,例如,在查对数表时,要查的数据在表中找不到,就先找出它相邻的数,再从旁边找出它的修正值,按一定关系把相邻的数加以修正,从而找出要找的数,这种修正关系实际上就是一种插值。

在实际应用中选用不同类型的插值函数,逼近的效果也不同。

在数值计算方法中,我们学习过五种基本的插值方法,即Lagrange插值、Newton插值、分段线性插值、分段三次Hermite插值、样条插值函数。

所以通过从这五种插值法的基本思想、特征、性质和具体实例入手,探讨五种插值法的优缺点和适用范围,让学习者能够迅速而准确的解决实际问题,掌握插值法的应用。

2. 研究的方法从具体实例入手并结合Matlab 在科学计算中的优势,通过实验对它们的精度和效率进行比较分析。

3. 论文结构3.1 论文的总体结构第一部分 导言主要介绍选题的背景、目的及意义、研究现状、文献综述等。

第二部分 五种插值法的基本思想、性质及特点在数值计算方法中,插值法是计算方法的基础,数值微分、数值积分和微分方程数值解都建立在此基础上。

插值问题的提法是:已知f(x)(可能未知或非常复杂函数)在彼此不同的n+1 个实点0x ,1x ,…n x 处的函数值是f(0x ),f(1x ),…,f(n x ),这时我们简单的说f(x)有n+1 个离散数据对0n i i )}y ,{(x i .要估算f(x)在其它点x 处的函数值,最常见的一种办法就是插值,即寻找一个相对简单的函数y(x),使其满足下列插值条件:y(i x )=f(i x ),i=0,1,…,n.,并以y(x)作为f(x)的近似值.其中y(x)称为插值函数,f(x)称为被插函数。

多项式插值是最常见的一种函数插值.在一般插值问题中,由插值条件可以唯一确定一个次数不超过n 的插值多项式满足上述条件.从几何上看可以理解为:已知平面上n+1 个不同点,要寻找一条次数不超过n 的多项式曲线通过这些点.插值多项式一般有两种常见的表达形式,一个是拉格朗日(Lagrange )插值多项式,另一个是牛顿(Newton )插值多项式. 且Lagrange 插值公式恒等于Newton 插值公式.分段线性插值与样条插值可以避免高次插值可能出现的大幅度波动现象,在实际应用中通常采用分段低次插值来提高近似程度,比如可用分段线性插值或分段三次埃尔米特插值来逼近已知函数,但它们的总体光滑性较差.为了克服这一缺点,一种全局化的分段插值方法———三次样条插值成为比较理想的工具.(1)拉格朗日插值Lagrange 插值是n 次多项式插值,其成功地利用构造插值基函数的方法解决了求n 次多项式插值函数问题。

对Lagrange n 次插值多项式,首先构造n+1个插值点0x 1x ,....,n x 上的n 次插值基函数)(x l i ))...()()...(())...()()...(110110n i i i i i i n i i x x x x x x x x x x x x x x x x --------=+-+-(,)...,2,1,0(n i =有了这n+1个n 次插值基函数,n 次Lagrange 插值多项式就容易写出来了,具体表达式为)()()(0x l x f x Ln i n i i ∑==。

表1 插值数值表Lagrange 插值的方法是:对给定的n 个插值节点,0x 1x ,....,n x 及对应的函数值n y y y y ,......,,,210,利用n 次Lagrange 插值多项式,则对插值区间任意的x 的函数值y 可以通过下式Ln (x )来求解。

表(1)中的n 次Lagrange 插值多项式Ln (x )的数学公式为:)()()(0x l x f x Ln i ni i ∑==。

其中,)(x l i (i=0,1,2,3...,n )是插值基函数,且∏=--=n j j i j i x x x x x l 0)(。

Lagrange 插值多项式的余项为R(x)=)()()!1(1)()()1(x f n x L x f n n ωξ++=-,其中))()(()(10n x x x x x x x ---=ω。

(2)牛顿插值Newton 插值也是n 次多项式插值,它提出另一种构造插值多项式的方法,与Lagrange 插值相比,具有承袭性和易于变动节点的特点。

Newton 插值的方法:由表(1)构造的牛顿插值多项式为],...,,[))...((...],,[))((],[)()()(1010210101000n n x x x f x x x x x x x f x x x x x x f x x x f x N ---++--+-+=用它插值时,首先要计算各阶差商,而各阶差商的计算可归结为一阶差商的逐次计算,一般的111022010),...,,(),,...,,(),...,,(-----=k k k k k n x x x x x f x x x x f x x x f其余项为:),...,,()()()(10n x x x f x N x f x Rn =-=。

(3)分段线性插值分段线性插值函数,记为y(x),y(x)具有下列性质:①y(x) 可以分段表示,在每个小区间],[1i i x x -上,它是线性函数`)(x y i ; ②)(x y i i i f x f ==)(,(i=0,1,2,3...,n ).③ 在整个区间[a,b]上,y(x) 连续.作分段线性插值的目的在于克服Lagrange 插值方法可能发生的不收敛性缺点.所谓分段线性插值就是利用每两个相邻插值基点作线性插值,即可得如下分段线性插值函数:11)()()(+++=i i i i f x l f x l x y ,],[1+∈i i x x x ,i=0,1,...n.其中11)(++--=i i i i x x x x x l ,i i ii x x x x x l --=++11)(. 特点:插值函数序列具有一致收敛性,克服了高次Lagrange 插值方法的缺点,故可通过增加插值基点的方法提高其插值精度. 但存在基点处不光滑、插值精度低的缺点.从几何上看所谓分段线性插值就是通过插值基点用折线段连接起来逼近原曲线,这也是计算机绘制图形的基本原理.(4)分段三次Hermite 插值对于函数f(x),常常不仅知道它在一些点的函数值,而且还知道它在这些点的导数值。

这时的插值函数P (x ),自然不仅要求在这些点等于f(x)的函数值,而且要求P (x )的导数在这些点也等于f (x )的导数值。

这就是埃尔米特插值问题,也称带导数的插值问题。

从几何上看,这种插值要寻找的多项式曲线不仅要通过平面上的一直点组,而且在这些点(或者其中一部分)与原曲线“密切”,即它们有相同的斜率。

设已知函数f(x)在插值区间[a,b]上n+1个互异的节点i x ),...,1,0(n i =处的函数值i i f x f =)(及一阶导数值),...,2,1,0()(n i f x f i i ='=',若存在函数H(x)满足条件:①H(x)是一个次数不超过2n+1次的多项式;②)()(i i x f x H =,)()(i i x f x H '='),...,1,0(n i =.则称H(x)为f (x )在n+1个节点i x 上的埃尔米特插值多项式。

(5)样条插值函数分段低次插值函数都有一致收敛性, 但光滑性较差; 对于像高速飞机的机翼形线, 船体放样等等型值线往往要求有二阶光滑度, 即有二阶连续导数, 早期工程师制图时, 把富有弹性的细长木条用压铁固定在样点上, 在其他地方让它自由弯曲, 然后画下长条的曲线, 称为样条曲线。

它实际上是由分段三次曲线并接而成, 在连接点即样点上要求二阶连续可导, 从数学上加以概括得到数学样条这一概念。

给定区间[a,b]上n+1个节点b x x x n =<<<=...a 10和这些点上的函数值n i y x f i i ,...,1,0,)(==,若函数s(x)满足:①s(x)在每个子区间],[1i i x x -),...,2,1(i n =上是不高于三次的多项式; ②s(x),)(),(x s x s '''在[a,b]上连续;满足插值条件),...,1,0()(n i y x s i i ==,则称s(x)为函数f(x)关于节点10,x x ,...,n x 的三次样条插值函数。

第三部分 五种插值法的对比研究从具体例题出发,讨论五种插值法的优缺点及适用范围。

拉格朗日插值法的公式结构整齐紧凑, 在理论分析中十分方便, 然而在计算中, 当插值点增加或减少一个时, 所对应的基本多项式就需要全部重新计算, 于是整个公式都会变化, 非常繁琐, 而且当插值点比较多的时候, 拉格朗日插值多项式的次数可能会很高, 因此具有数值不稳定的特点, 也就是说尽管在已知的几个点取到给定的数值, 但在附近却会和“实际上” 的值之间有很大的偏差.牛顿插值公式是n 次插值多项式的又一种构造形式,但它克服了拉格朗日插值多项式的缺点,它的一个明显优点是,每增加一个插值节点,只要在原牛顿12插值公式中增添一项便可形成高一次的插值公式。

而且在实际应用中,经常会遇到插值节点是等距分布的情况,这时,牛顿插值公式可以进一步简化,得到等距节点的插值公式,从而能够大大的缩短实际运算的时间。

但是这种代数插值,只要求插值多项式在插值节点处与被插值函数有相同的函数值,但是这种插值多项式往往还不能全面反映被插值函数的性态,许多实际问题不但要求插值函数与被插值函数在各节点的函数值相同,而且还要求插值多项式在某节点或全部节点上与被插值函数的导数值也相等,甚至要求高阶导数值也相等。

而这时拉格朗日插值与牛顿插值就不满足这种要求了。

埃尔米特插值是我们知道了函数在某些点出的函数值,而且插值函数在这些点处的导数也和被插函数一致,所以在几何上,这种插值函数不仅和被插函数在插值节点处有相同的函数值“过点”,而且和被插函数在节点处有相同的切线“相切”。

相关文档
最新文档