概率论3讲第三章 随机事件的概率教学内容

合集下载

高中数学 第3章 概率 3.1 随机事件及其概率教案 苏教版必修3-苏教版高一必修3数学教案

高中数学 第3章 概率 3.1 随机事件及其概率教案 苏教版必修3-苏教版高一必修3数学教案

第3章概率本章概述一、课标要求本章通过对随机现象的研究,学习认识客观世界的方法.多年来,学生学习数学,主要研究确定的现象,对于不确定现象的规律知之甚少.通过本章的学习,使学生进一步了解不仅确定性现象有规律,可以预知结果,可以用数学方法去研究,而且不确定现象也有规律可循,同样也能用数学方法去研究.使学生初步形成用科学的态度、辩证的思想、用随机观念去观察、分析、研究客观世界的态度,寻求并获得认识世界的初步知识和科学态度.1.在具体情境中了解随机事件发生的不确定性及频率的稳定性,进一步了解概率的意义以及概率与频率的区别.2.通过实例,理解古典概型概率的计算公式,会用列举法计算随机事件所包含的基本事件数以及事件发生的概率.3.了解随机数的意义,能运用模拟方法〔包括计算机产生随机数来模拟〕根据概率,初步体会几何概型的意义.4.通过实例,了解两个互斥事件的概率加法公式.5.通过阅读相关材料,了解人类认识随机现象的过程.6.使学生能初步利用概率知识对实际问题进行分析,并进行理性思考,学会对纷繁复杂的事物进行探索,养成透过事物表面现象把握事物本质所在的思维方法,培养学生理性思维能力与辩证思维能力、创新意识与探究能力、数学建模能力和实践能力,以及表达、交流的能力,增强学生的辩证唯物主义世界观,进一步树立科学的人生观、价值观.7.注重表达数学的文化价值与美学价值,增强学生的审美观,丰富学生的文化底蕴,提高学生的人文素质.二、本章编写意图与教学建议人们在认识自然的过程中,对自然现象进行大量的观察,通过观察得到大量的数据,再对得到的数据进行分析,找出其内在的规律.人们发现,有些现象并不像万有引力定律那样可以得到完全确定的规律.现实世界中发生的事件大多是随机事件,人们通过对随机事件的大量重复试验的结果进行理性的探讨,发现了随机事件也不是毫无规律可循.研究这些规律,最终导致了概率的诞生.学生在初中已经接触了概率的初步知识,本章那么是在此基础上开始系统地学习概率知识.本章又是高中阶段第一次学习这一内容,在后续的学习中还将继续学习概率的其他内容,因此,在高中阶段概率的学习中,起到了承前启后的作用,由于与概率计算密切相关的内容还没有学习,因此,在涉及有关计算的问题时采用枚举法,而在用枚举法时一定要做到既不重复也不遗漏,应该按照一定的顺序来计算有关数据,也可以用表格或树形图来进行有关数据的计算.本章包括了随机事件的概率、古典概型、几何概型以及互斥事件有一个发生的概率等内容.概率的核心问题是要让学生了解随机现象及概率的意义,为了让学生能更深入地理解,可以列举日常生活中的实例,由此正确理解随机事件发生的不确定性及其频率的稳定性,从而加深对概率的理解;古典概型从随机事件发生频率的稳定性导入,通过对频率稳定性研究得出随机事件的发生与否有一定的规律可循,从而得出概率的统计定义.在教学中让学生通过实例理解古典概型的特征是试验结果的有限性和每一个试验结果出现的等可能性,使学生学会把一些实际问题转化为古典概型;从古典概型到几何概型,是从有限到无限的延伸,在几何概型的教学中抓住较强直观性的特点.在教学中有意识地适当地运用现代信息技术辅助教学.在教学中要能做到:(1)注意概念的区别与联系,类似的概念不能够混淆,例如概率与频率,互斥事件与对立事件;(2)在运用公式时注意是否符合公式运用的前提条件;(3)注意顺向思维与逆向思维的合理运用,遵循“正难那么反〞的原那么;(4)注意学习前辈的学习和研究的思维方法,能通过对大量事件的观察抽象出事件的本质.在本章的教学中应注重培养学生学习的信心,提高学生学习数学的兴趣,使学生形成锲而不舍的钻研精神和科学态度;培养学生的数学思维能力,逐步地发展独立获取数学知识的能力,形成批判性的思维习惯,发展数学应用意识和创新意识;通过本章的学习,让学生感受数学与现实世界的重要联系,逐步形成辩证的思维品质;养成准确,清晰,有条理地表述问题以及解决问题的过程的习惯,提高数学表达和交流的能力;进一步拓展学生的视野,逐步认识数学的科学价值、应用价值和文化价值.三、教学内容及课时安排建议3.1 随机事件及其概率整体设计教材分析本节课是概率这一章的第一节课,所以有必要在上新课之前向学生简要地介绍概率论的发展、概率趣话以及概率的应用,以此激发学生对科学的探究精神和严肃认真的科学态度.随机事件及其概率为一课时.本节课主要学习随机现象、必然事件、不可能事件、随机事件的概念.通过抛掷硬币试验,探究随机事件的概率,揭示概率的本质,引出随机事件概率的求法,同时让学生体验数学的奥秘与数学美,激发学生的学习兴趣.通过实例说明一个随机事件的发生是存在着统计规律性的,一个随机事件发生的频率总是在某个常数附近摆.我们给这个常数取一个名字,叫做这个随机事件的概率.它从数量上反映了这个事件发生的可能性的大小.它是0~1之间的一个数.将这个事件记为A,用P(A)表示事件A发生的概率.对于任意一个随机事件A,P(A)必须满足如下基本要求:0≤P(A)≤1.怎样确定一个事件发生的概率呢?可以从实际问题出发,创设问题情境.具体设计如下:首先利用多媒体展示奥地利遗传学家孟德尔〔G.Mendel,1822~1884〕用豌豆进行杂交试验的结果表格,通过商讨分析得到孟德尔是用某种性状发生的频率来估计生物遗传的基本规律的.然后依次展示抛掷硬币的模拟试验结果、π的前n位小数中数字6出现的频率、鞋厂某种成品鞋质量检验结果,通过商讨分析分别得出:掷硬币的模拟试验结果中,当模拟次数很大时,正面向上的频率值接近于常数0.5,并在其附近摆动;π的前n位小数中数字6出现的频率中数字6在π的各位小数数字中出现的频率值接近于常数0.1,并在其附近摆动;鞋厂某种成品鞋质量检验结果中,当抽取的样品数很多时,优等品的频率接近于常数0.95,并在其附近摆动.三维目标1.通过具体的例子了解随机现象,了解必然事件、不可能事件、随机事件的概念.采用实验探究法,按照思考、交流、实验、观察、分析、得出结论的方法进行启发式教学.使学生了解一个随机事件的发生既有随机性,又在大量重复试验中存在着一种客观规律性——频率的稳定性,以引出随机事件概率的意义和计算方法.2.理解随机事件在大量重复试验的情况下,它的发生呈现的规律性.3.掌握概率的统计定义及概率的性质.引导学生对身边的事件加以注意、分析,发挥学生的主体作用,设计好探究性试验.指导学生做简单易行的试验,让学生无意识地发现随机事件的某一结果发生的规律性,理论联系实际,激发学生的学习积极性.4.通过概率论的介绍,激发学生对科学的探究精神和严肃认真的科学态度.发动学生动手试验,体验数学的奥秘与数学美,激发学生的学习兴趣.培养学生的辩证唯物主义观点,增强学生的科学意识.重点难点教学重点:1.随机现象的定义,必然事件、不可能事件、随机事件的定义.2.概率的统计定义,概率的基本性质.教学难点:随机事件的定义,随机事件发生存在的统计规律性.课时安排1课时教学过程导入新课设计思路一:〔情境导入〕在第二次世界大战中,美国曾经宣布:一名优秀数学家的作用超过10个师的兵力.这句话有一个非同寻常的来历.1943年以前,在大西洋上英美运输船队常常受到德国潜艇的袭击,当时,英美两国限于实力,无力增派更多的护航舰,一时间,德军的“潜艇战〞搞得盟军焦头烂额.为此,有位美国海军将领专门去请教了几位数学家,数学家们运用概率论分析舰队与敌潜艇相遇是一个随机事件,从数学角度来看这一问题,它具有一定的规律性.一定数量的船〔为100艘〕编队规模越小,编次就越多〔为每次20艘,就要有5个编次〕,编次越多,与敌人相遇的概率就越大.美国海军接受了数学家的建议,命令舰队在指定海域集合,再集体通过危险海域,然后各自驶向预定港口.结果奇迹出现了:盟军舰队遭袭被击沉的概率由原来的25%降为1%,大大减少了损失,保证了物资的及时供应.设计思路二:〔问题导入〕观察以下现象,各有什么特点?(1)在标准大气压下,水加热到100 ℃沸腾;(2)抛一石块,下落;(3)同性电荷互相吸引;〔4〕实心铁块丢入水中,铁块上浮;〔5〕射击一次,中靶;〔6〕掷一枚硬币,反面向上.解答:〔1〕、〔2〕两种现象必然发生,〔3〕、〔4〕两种现象不可能发生,〔5〕、〔6〕两种现象可能发生,也可能不发生.推进新课新知探究由上述事例可知现实生活中有很多现象,这些现象在一定条件下,可能发生也可能不发生.在一定条件下事先就能断定发生或不发生某种结果,这种现象就是确定性现象.在一定条件下,某种现象可能发生,也可能不发生,事先不能断定出现哪种结果,这种现象就是随机现象.对于某个现象,如果能让其条件实现一次,就是进行了一次试验,试验的每一种可能的结果,都是一个事件.在上述现象中,我们如果把〔1〕、(2)的条件实现一次,那么〔1〕、(2)的现象一定会出现“沸腾〞与“下落〞,“沸腾〞与“下落〞都是一个事件.对于在一定条件下必然要发生的事件,叫做必然事件(certain event);我们如果把(3)、〔4〕的条件各实现一次,那么“吸引〞与“上浮〞也都是一个事件,但这两个事件都是不可能发生的.在一定条件下不可能发生的事件,叫做不可能事件(impossible event);当(5)、(6)的条件各实现一次,那么“中靶〞与“反面向上〞也都是一个事件,这两个事件,可能发生,也可能不发生.在一定条件下可能发生也可能不发生的事件,叫做随机事件(random event).必然事件与不可能事件反映的都是在一定条件下的确定性现象,而随机事件反映的是随机现象.我们一般用大写的英文字母表示随机事件,例如随机事件A、随机事件B等,另外我们常常将随机事件简称为事件.由于随机事件具有不确定性,因而从表面上看,似乎偶然性在起着支配作用,没有什么必然性.但是,人们经过长期的实践并深入研究后,发现随机事件虽然就每次试验结果来说具有不确定性,然而在大量重复试验中,它却呈现出一种完全确定的规律性.历史上曾有人做过抛掷硬币的大量重复试验,结果如下表:从表中我们可以看到,当抛掷硬币的次数很多时,出现正面的频率值是稳定的,接近于常数0.5,在它左右摆动.对于给定的随机事件A,在相同的条件下,随着试验次数的增加,事件A发生的频率mn 总在某个常数附近摆动并趋于稳定,因此,可以用这个常数来刻画随机事件A发生的可能性的大小,并把这个常数称为随机事件A的概率〔probability〕,记作P(A).必然事件的概率为1,不可能事件的概率为0.因此0≤P(A)≤1 .对于概率的统计定义,教师应说明以下几点:〔1〕求一个事件的概率的基本方法是通过大量的重复试验;〔2〕只有当频率在某个常数附近摆动时,这个常数才叫做事件A的概率;〔3〕概率是频率的稳定值,而频率是概率的近似值;〔4〕概率反映了随机事件发生的可能性的大小.应用示例思路1例1 给出以下事件:①某人练习打靶,一枪命中十环;②手机没电,接听;③抛一枚硬币,结果正面向上;④冰棒在烈日下融化;⑤一粒植物种子,播种后发芽;⑥向上抛一只不锈钢杯子,结果杯口向上.其中随机事件的个数是〔〕A.3B.4解析:判断事件是否是随机事件,可以依据随机事件的概念判断,也就是该事件在一定条件下,是否可能发生也可能不发生,如果可能发生也可能不发生,那么该事件为随机事件.由随机事件的概念可知:①③⑤⑥是随机事件.答案:B点评:判断某一事件是否是随机事件依据随机事件的概念,同样判断某一事件是否是必然事件或是不可能事件也是依据相应的概念,因此,此题中的②是不可能事件,④是必然事件.例2 指出以下事件中,哪些是不可能事件?哪些是必然事件?哪些是随机事件?〔1〕假设a、b、c 都是实数,那么a(bc)=(ab)c ;〔2〕没有空气,动物也能生存下去;〔3〕在标准大气压下,水在温度90°时沸腾;〔4〕直线y=k(x+1)过定点(-1,0);〔5〕某一天内某人接听20次;〔6〕一个袋内装有形状、大小相同的一个白球和一个黑球,从中任意摸出1个球为白球.分析:根据必然事件、随机事件和不可能事件的定义来判断.解:由必然事件的定义可知〔1〕、〔4〕是必然事件;由随机事件的定义知〔5〕、〔6〕是随机事件;由不可能事件的定义可知(2〕、〔3〕是不可能事件.点评:要判断一个事件是必然事件、随机事件还是不可能事件,应紧紧抓住这些事件的定义,从定义出发来作出判断.例3 任取一个由50名同学组成的班级〔称为一个标准班〕,至少有两位同学的生日在同一天〔记为事件T〕的概率是0.97,据此,我们知道( )A.取定一个标准班,事件T发生的可能性为97%B.取定一个标准班,事件T发生的概率大约是97%C.任意取定10 000个标准班,其中必有9 700个班有事件T发生D.随着抽取的班级数n的不断增大,事件T发生的频率逐渐接近0.97,并在它附近摆动解析:根据随机事件的概率的定义必须进行大量试验,才能得出某一随机事件的概率,因此,此题应从定义出发来研究.对于取定的一个标准班来说,T要么发生要么不发生,所以A,B都不对;对任意取定的10 000个标准班,也可能出现极端情况,如T都不发生,因此C也不对;据概率的统计定义知,选项D正确.答案:D点评:利用概率的统计定义计算随机事件的概率,需要大量重复的试验.对某一个随机事件来说,在一次试验中不一定发生,但在大量重复试验下它的发生又呈现一定的规律.通过对概率的定义的感悟,感受数学学科的实验性,体会偶然与必然的辩证统一.例4 对某电视机厂生产的电视机进行抽样检测的数据如下:〔1〕计算表中优等品的各个频率;〔2〕该厂生产的电视机优等品的概率是多少?分析:利用概率的定义来求解此题.解:〔1〕各次优等品的频率为 0.8, 0.92, 0.96, 0.95, 0.956, 0.954;〔2〕优等品的概率是0.95.点评:通过此题进一步理解概率的定义,领悟概率其实是某一随机事件发生的可能性的大小.例5 历史上曾有人做过抛掷硬币的大量随机试验,结果如下:〔1〕计算表中正面向上的频率;(2)试估计事件“正面向上〞的概率.分析:先运用频率计算的方法计算频率,再运用概率的定义确定事件“正面向上〞的概率.解:(1)表中频率自上而下依次为:0.518 1,0.506 9,0.501 6,0.500 5,0.499 6;〔2〕由(1)的结果发现:当抛掷的次数很多时,“正面向上〞的频率接近于常数0.5,在它附近摆动,所以抛掷一枚硬币,正面向上的概率约为0.5.点评:通过计算随机事件发生的频率来估计随机事件的概率是求随机事件概率常用的方法.思路2例1 指出以下事件中哪些是必然事件,哪些是不可能事件,哪些是随机事件.〔1〕我国东南沿海某地明年将受到3次热带风暴的侵袭;〔2〕假设a为实数,那么|a|≥0;〔3〕某人开车经过10个交叉路口都遇到绿灯;〔4〕一个正六面体的六个面分别标有数字1、2、3、4、5、6,将该正六面体连续抛掷两次,向上的一面数字之和大于12.分析:要判断某一事件是必然事件、随机事件还是不可能事件,可以依据必然事件、随机事件以及不可能事件的定义来判断.解:由必然事件、随机事件和不可能事件的定义可知:〔2〕是必然事件;〔1〕、〔3〕是随机事件;〔4〕是不可能事件.点评:对于某一事件是必然事件、随机事件还是不可能事件的判断依据是定义,其关键是看事件本身是如何发生的.例2 在一只口袋中装有形状与大小都相同的2只白球和3只黑球,从中任意取出3只球,试编拟一些事件,使它们分别为随机事件、必然事件和不可能事件.分析:要编拟一些事件,使其为随机事件、必然事件和不可能事件,就是在一定条件下,所编拟的事件必定发生那么为必然事件,必定不发生那么为不可能事件,可能发生也可能不发生那么为随机事件.解:事件A :任意取出3只球,恰有1只球是白球,那么事件A 是随机事件;事件B :任意取出3只球,至少有1只球是黑球,那么事件B 是必然事件;事件C :任意取出3只球,都是白球,那么事件C 是不可能事件.点评:此题在编拟随机事件、必然事件和不可能事件时,是开放性问题,因此根据相应的概念来编拟,答案不唯一.除了上述解答外,还可以是其他答案,例如:事件A :任意取出3只球,至少有1只球是白球,那么事件A 是随机事件;事件B :任意取出3只球,至多有2只球是白球,那么事件B 是必然事件;事件C :任意取出3只球,没有一只黑球,那么事件C 是不可能事件.例3 用一台自动机床加工一批零件,从中抽出100个逐个进行直径检验,结果如下:从这100个螺母中,任意抽取一个,求事件A 〔6.92<d≤6.94〕,事件B 〔6.90<d≤6.96〕,事件C 〔d>6.96〕,事件D 〔d≤6.89〕的频率并求这几个事件发生的概率约为多少?分析:分别求出事件A 〔6.92<d≤6.94〕,事件B 〔6.90<d≤6.96〕,事件C 〔d>6.96〕,事件D 〔d≤6.89〕的频率,再根据这几个事件的频率得出概率.解:事件A 的频率为17+10026=0.43,概率约为0.43; 事件B 的频率为10081526171710+++++=0.93,概率约为0.93; 事件C 的频率为10022+=0.04,概率约为0.04;事件D 的频率为1001=0.01,概率约为0.01. 点评:根据概率的统计定义求随机事件的概率的常用方法是先求随机事件发生的频率,再由频率得出随机事件发生的概率.例4 某射手在同一条件下进行射击,结果如下表所示:〔1〕填写表中击中靶心的频率;〔2〕这个射手射击一次,击中靶心的概率约是多少?分析:击中靶心的频率=击中靶心的次数÷射击的次数,再根据概率的统计定义可知:击中靶心的概率应为频率在某一常数P 的左右摆动,那么常数P 即为该事件的概率.解:〔1〕表中击中靶心的频率依次为0.8,0.95,0.88,0.92,0.89;〔2〕因频率在常数0.89的左右摆动,所以射手射击一次,击中靶心的概率约是0.89. 点评:在运用概率的统计定义求某一事件的概率时,应该先求频率,再根据频率来求该事件的概率.知能训练一、课本随机现象练习.解答:2.(1)随机事件;(2)不可能事件;(3)必然事件;(4)不可能事件;(5)随机事件;(6)随机事件.3.必然事件:③;不可能事件:⑤;随机事件:①②④.4.必然事件:太阳每天都从东方升起;不可能事件:电灯在断电时发亮;随机事件:同时抛两枚硬币,正面都向上.二、课本随机事件的概率练习.解答:1.不对.2.不同意,随机事件的发生概率与该事件以前是否发生无关,故下次发生的概率仍为21. 3.不一定,第10个人治愈的概率仍为10%.点评:通过练习,进一步加深必然事件、不可能事件、随机事件以及概率的概念的理解. 课堂小结本节课主要研究了以下内容:1.随机事件、必然事件、不可能事件的概念.2.随机事件A 的概率:一般地,如果随机事件A 在n 次试验中发生了m 次,当试验的次数n 很大时,我们可以将事件A 发生的频率n m 作为事件A 发生的概率的近似值,即P(A)≈nm .3.由于随机事件A 在各次试验中可能发生,也可能不发生,所以它在n 次试验中发生的次数〔称为频数〕m 可能等于0〔n 次试验中A 一次也不发生〕,可能等于1〔n 次试验中A 只发生一次〕,……也可能等于n 〔n 次试验中A 每次都发生〕.我们说,事件A 在n 次试验中发生的频数m 是一个随机变量,它可能取得0、1、2、…、n 这n+1个数中的任一个值.于是,随机事件A 的频率nm 也是一个随机变量,它可能取得的值介于0与1之间,即0≤P 〔A 〕≤1.特别,必然事件的概率为1,即P(Ω)=1,不可能事件的概率为0,即P()=0.这里说明随机事件的频率究竟取得什么值具有随机性.然而,经验说明,当试验重复多次时随机事件的频率又具有稳定性.4.说明:①求一个事件概率的基本方法是做大量的重复试验;②当频率在某个常数附近摆动时,这个常数叫做事件A 的概率;③概率是频率的稳定值,而频率是概率的近似值;④概率从数量上反映了随机事件发生的可能性的大小;⑤必然事件的概率是1,不可能事件的概率是0,因此0≤P〔A 〕≤1.作业课本习题3.1 1、2.设计感想本节课是概率这一章的第一节课,所以有必要在上新课之前向学生简要地介绍概率的发展、概率趣话以及概率的应用,以激发学生对科学的探究精神和严肃认真的科学态度.随机事件及其概率分为两部分,第一部分主要学习随机现象、必然事件、不可能事件、随机事件的概念.通过抛掷硬币试验,探究随机事件的概率,揭示概率的本质,引出随机事件概率的求法,同时让学生体验数学的奥秘与数学美,激发学生的学习兴趣.第二部分是随机事件的概率.怎样确定一个事件发生的概率呢?设计时,从实际问题出发,创设问题情境.除了已有设计之外还可以有如下设计:首先利用多媒体展示奥地利遗传学家孟德尔〔G.Mendel ,1822~1884〕用豌豆进行杂交试验的结果表格,通过商讨分析得到孟德尔是用某种性状发生的频率来估计生物遗传的基本规律的.然后依次展示抛掷硬币的模拟试验结果、π的前n 位小数中数字6出现的频率、鞋厂某种成品鞋质量检验结果,通过商讨分析分别得出:掷硬币的模拟试验结果中,当模拟次数很大时,正面向上的频率值接近于常数0.5,并在其附近摆动;π的前n 位小数中数字6出现的频率中数字6在π的各位小数数字中出现的频率值接近于常数0.1,并在其附近摆动;鞋厂某种成品鞋质量检验结果中,当抽取的样品数很多时,优等品的频率接近于常数0.95,并在其附近摆动.最终得出概率的统计定义.习题详解1.〔1〕随机事件 〔2〕不可能事件 〔3〕随机事件 〔4〕必然事件 〔5〕不可能事件〔6〕必然事件 〔7〕随机事件 〔8〕随机事件2.D.3.(1)〔2〕概率约为0.81.4.。

人教版高中数学必修3第三章概率《3.1.1 随机事件的概率》教学PPT

人教版高中数学必修3第三章概率《3.1.1 随机事件的概率》教学PPT

1061
0.5181
4040
2048
0.5069
12000
6019
0.5016
24000
12012
05005
30000
14984
0.4996
72088
36124
0.5011
我们看到,当试验次数很多时,出现正面的 频率值在0.5附近摆动.
上述试验表明,随机事件A在每次试验中是否 发生是不能预知的,但是在大量重复试验后,随 着试验次数的增加,事件A发生的频率呈现出一定 的规律性,这个规律性是如何体现出来的?
有些事情的发生是偶然的,有些事情的发生是必然的.
但是偶然与必然之间往往有某种内在联系.
例如,北京地区一年四季的变化有着确定的、必 然的规律,但北京地区一年里哪一天最热,哪一天最 冷,哪一天降雨量最大,那一天降雪量最大等,又是 不确定的、偶然的.
基本概念
1、随机事件: 在条件S下可能发生也可能 不发生的事件,叫做相对于 条件S的随机事件,简称随 机事件.
这些事件会发生吗?是什么事件?
不可能发生,不可能发生,不可能事件
确定事件
考察下列事件: (1)某人射击一次命中目标; (2)任意选择一个电视频道,它正在播放
新闻; (3)抛掷一个骰子出现的点数为奇数.
这些事件一定会发生吗?他们是什么事件?
可能发生也可能不发生,随机事件.
对于随机事件,知道它发生的可能性大小是 非常重要的.
2、必然事件: 在条件S下一定会发生的事 件,叫做相对于条件S的必 然事件,简称必然事件.
3、不可能事件: 在条件S下一定不会发生的事 件,叫做相对于条件S的不可 能事件,简称不可能事件.
4、确定事件: 必然事件与不可能事件统称为 相对于条件S的确定事件,简称 确定事件.

高中数学 第三章 概率 3-1-1随机事件的概率 新人教A版必修3

高中数学 第三章 概率 3-1-1随机事件的概率  新人教A版必修3

________,称事件A出现的比例fn(A)=
nA n
为事件A出现的
________.
(2)由于事件A发生的次数至少为0,至多为n,因此事件A
的频率范围为________.
ቤተ መጻሕፍቲ ባይዱ
(3)对于给定的随机事件A,如果随着试验次数的增加,事 件A发生的频率fn(A)稳定在某一常数上,把这个常数记作 P(A),称为事件A的________,即用________估计________.
(4)技术充分发达后,不需要任何能量的“永动机”将会 出现;
(5)标准大气压下,水加热到100 ℃沸腾; (6)平面三角形的内角和是180°; (7)骑车到十字路口遇到红灯; (8)某人购买福利彩票5注,均未中奖;
(9)没有水分种子发芽; (10)在标准大气压下,温度低于0 ℃时,冰融化. 【分析】 判定事件是一定发生,还是不一定发生,还是 一定不发生.
2.正确理解“频率”与“概率”之间的关系 随机事件的频率,指此事件在同一条件下发生的次数与试 验总次数的比值,它具有一定的稳定性,总在某个常数附近摆 动,且随着试验次数的不断增多,这种摆动幅度一般越来越 小.我们给这个常数取一个名字,叫做这个随机事件的概 率.概率可看作频率在理论上的期望值,它从数量上反映了随 机事件发生的可能性的大小.频率在大量重复试验的前提下可 近似地作为这个事件的概率.
二 对试验结果的判断
【例2】 某人做试验,从一个装有标号为1,2,3,4的小球的 盒子中,无放回地取两个小球,每次取一个,先取的小球的标 号为x,后取的小球的标号为y,这样构成有序实数对(x,y).
(1)写出这个试验的所有结果; (2)写出“第一次取出的小球上的标号为2”这一事件. 【分析】 无放回地取小球两次,所以抽取的两个小球的 号码不同,即x≠y.

随机事件的概率教案

随机事件的概率教案

随机事件的概率教案一、教学目标1. 知识目标(1)理解随机事件的概念。

(2)掌握随机事件的基本性质。

(3)了解事件的互斥和独立性质,并能根据情况进行应用。

2. 能力目标(1)能运用概率论的知识预测和决策。

(2)培养学生的逻辑思维能力和判断能力。

3. 情感目标(1)培养学生的数学兴趣。

(2)在教学过程中,强调合作精神和探究精神。

二、教学重点1. 随机事件的概念和性质的理解。

2. 随机事件的互斥和独立性质的应用。

五、教学过程1. 引入(5分钟)教师出示一组未排序的数字 1、2、3、4、5,让学生思考如何判断这些数字中有多少个是偶数。

引导学生思考用何种方法可以推断出这些数字中有哪些是偶数。

通过引导,让学生发现这些数字是否是随机出现的。

引导学生思考:如果拿出一组数字,它们是随机出现的或是有规律出现的,那么可以如何计算它们的概率呢?2. 基础知识讲解(25分钟)(1)随机事件的概念随机事件是一个有可能发生或不发生的自然现象或过程。

概率是表示随机事件的可能性大小的数字,通常用百分数或小数表示。

(2)随机事件的性质① 必然性:事件必定发生。

② 不可能性:事件不可能发生。

③ 互斥性:两个事件不能同时发生。

④ 完备性:属于一定事件之一的事件一定会发生。

⑤ 加法:多个互斥事件的概率之和等于它们的总体概率。

(3)随机事件的互斥和独立性质互斥:若两事件不能同时发生,则称它们为互斥事件。

互斥事件概率的加法公式: P (A ∪ B) = P (A) + P (B)。

独立:若两事件的发生不相互影响,则称它们为独立事件。

独立事件乘法公式:P(A∩B)=P(A)×P(B)。

3. 例题演示(25分钟)例一:从扑克牌中任取两张牌,求它们都是红色的概率。

解:将此事件分解成两个子事件,设 event A 为第一张牌为红色,event B 为第二张牌为红色,则如下图所示,其中 26 为红色牌数,52 为总扑克牌数。

由于第一张牌选了一张红色牌后,第二张牌中还有 25 张红色牌,则有 P(A)=26/52,P(B|A)=25/51,因此有:P(A∩B)=P(A)×P(B|A)=26/52×25/51=1/2×25/51=25/102≈0.245。

数学试卷讲评课教学教案精选

数学试卷讲评课教学教案精选

数学试卷讲评课教学教案精选一、教学内容本节课选自高中数学必修二,第三章《概率与统计》的第三节《随机事件的概率》。

具体内容包括:概率的定义、概率的求法、概率的性质以及应用。

二、教学目标1. 理解概率的定义,掌握概率的求法,了解概率的性质。

2. 能够运用概率知识解决实际问题,提高解决问题的能力。

3. 培养学生的逻辑思维能力和合作学习能力。

三、教学难点与重点教学难点:概率的求法,特别是利用排列组合求概率。

教学重点:概率的定义,概率的性质,以及概率在实际问题中的应用。

四、教具与学具准备教具:多媒体课件、黑板、粉笔。

学具:课本、练习本、计算器。

五、教学过程1. 实践情景引入利用多媒体展示彩票抽奖、抛硬币、掷骰子等实际生活中的随机现象,引导学生思考这些现象中的概率问题。

2. 例题讲解例题1:抛掷一个均匀的硬币,求正面朝上的概率。

例题2:一个袋子里有5个红球,3个蓝球,求从中随机抽取一个球,得到红球的概率。

3. 随堂练习练习1:掷一个骰子,求得到偶数的概率。

练习2:一个篮子里有10个苹果,其中3个是坏苹果,求从中随机抽取一个苹果,得到坏苹果的概率。

4. 知识点讲解(1)概率的定义:随机事件A在所有可能事件中出现的比例。

(2)概率的求法:利用排列组合、频率等方法。

(3)概率的性质:0≤P(A)≤1,P(Ω)=1,P(∅)=0。

5. 课堂小结通过本节课的学习,学生应掌握概率的定义、求法、性质,并能够运用这些知识解决实际问题。

六、板书设计1. 随机事件的概率2. 定义:概率=事件A出现次数/所有可能事件的总次数3. 求法:排列组合、频率4. 性质:0≤P(A)≤1,P(Ω)=1,P(∅)=0七、作业设计1. 作业题目(1)抛掷两个骰子,求两个骰子点数之和为7的概率。

(2)一个袋子里有4个红球,3个蓝球,2个绿球,求从中随机抽取两个球,得到两个相同颜色球的概率。

2. 答案(1)P(两骰子点数之和为7)=6/36=1/6(2)P(两个相同颜色球)=(C(4,2)+C(3,2)+C(2,2))/C(9,2)=12/36=1/3八、课后反思及拓展延伸1. 反思:本节课通过实际生活中的例子引入概率概念,有助于学生理解概率的意义。

高中数学 第3章 概率 311 随机事件的概率课件 a必修3a高一必修3数学课件

高中数学 第3章 概率 311 随机事件的概率课件 a必修3a高一必修3数学课件
(2)在样本车辆中,车主是新司机的占 10%,在赔付金额为 4000 元的样本车辆中,车主是新司机的占 20%,估计在已投保 车辆中,新司机获赔金额为 4000 元的概率.
12/12/2021
第二十一页,共三十一页。
[解] (1)设 A 表示事件“赔付金额为 3000 元”,B 表示事件 “赔付金额为 4000 元”,以频率估计概率得
12/12/2021
第二十四页,共三十一页。
[解] (1)当 x=1 时,y=2,3,4;当 x=2 时,y=1,3,4;当 x= 3 时,y=1,2,4;当 x=4 时,y=1,2,3.
因此,这个试验的所有结果是(1,2),(1,3),(1,4),(2,1),(2,3), (2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3).
__频__率__f_n_(A__) _随着试验次数的增加稳定于_概__率___P_(_A_)__,因此可以 用频率 fn(A)来估计__概__率__P_(_A_)_.
12/12/2021
第七页,共三十一页。
判断正误.(正确的打“√”,错误的打“×”) (1)随机事件 A 的概率是频率的稳定值,频率是概率的近似 值.( ) (2)任意事件 A 发生的概率 P(A)总满足 0<P(A)<1.( ) (3)若事件 A 的概率趋近于 0,即 P(A)→0,则事件 A 是不可 能事件.( ) [提示] (1)√ (2)× 必然事件的概率是 1,不可能事件的概率是 0. (3)× 当 P(A)→0,事件 A 发生的可能性很小.
12/12/2021
第二十七页,共三十一页。
课堂归纳小结 1.对随机事件的频率与概率的理解 对于一个随机事件而言,其频率是在[0,1]内变化的一个数, 并且随着试验次数的增加,随机事件发生的频率逐渐稳定在某个 常数附近,这个常数就是概率.因此可以说,频率是变化的,而 概率是不变的,是客观存在的.

人教A版高中数学必修3《第三章 概率 3.1 随机事件的概率 3.1.2 概率的意义》_1

人教A版高中数学必修3《第三章 概率 3.1 随机事件的概率 3.1.2 概率的意义》_1

概率的意义一、教材内容分析本节为人教版必修3第三章3.1随机事件的概率中的第二小节3.1.2概率的意义,通过本节的学习,学生能正确理解概率。

本节在内容和结构上起着承上启下的作用,乘上:通过了解概率的意义,明白概率与第二章统计的联系;启下:通过了解概率的重要性,引出后两节概率的计算。

二、教学目标1.知概念识与技能:正确理解概率的意义;了解概率在实际问题中的应用,增强学习兴趣;进一步理解概率统计中随机性与规律性的关系。

2.过程与方法:通过对生活中实际问题的提出,学生掌握用概率的知识解释分析问题,着重培养学生观察、比较、概括、归纳等思维能力,并进一步培养将实际问题转化为数学问题的数学建模思想。

3.情感态度与价值观:鼓励学生积极思考,激发学生对知识的探究精神和严肃认真的科学态度,激发学生的学习兴趣。

三、学情分析学生已经学习了3.1随机事件的概率再加上初中对概率的了解,所以学生的认知起点较高,理解本节内容不难。

作为新授课,学生对于概率在实际问题中的应用具有较高的学习兴趣,但是用概率的知识解释问题的能力仍需进一步提高。

教师在本节讲授需要注意理论联系实际,同时注意培养学生的科学素养。

四、教学重难点重点:概率的正确理解及在实际中的应用难点:实际问题中体现随机性与规律性之间的联系,如何用概率解释这些具体问题。

五、教学策略1.教学方法:讲授法,讨论法,引导探究法2.教学手段:多媒体教学工具六、教学过程学生——完成探究并且回答原因不公平,各班被选到概率不相等,其中7班被选中概率最大..2决策中的概率思想问题:如果连续10次掷一枚骰子,结果都是出现1点,你认为这枚骰子的质地均匀吗?为生产过程中发生小概率事件,我们有理由认为生产过程中出现了问题,应该立即停下生产进行检查。

3.天气预报的概率解释思考:某地气象局预报说,明天本地降水概率为70%。

你认为下面两个解释中哪一个能代表气象局的观点?教师、学生——归纳总结. 归纳提升:七、板书设计八、教学反思本节是培养学生对数学产生兴趣的关键一节,教师要紧抓理解概率的意义和培养学生的学习兴趣这两个任务进行教学,通过生日在同一天的探讨,“生日悖论”的提出和在实际问题中的应用,提高学生学习数学的兴趣,通过孟德尔的豌豆试验培养学生科学探究的意识,树立学生严谨的科学观. 该节课十分有创意,在教材内容的基础上作了适当的必要的扩展,激发学生兴趣,教学目的明确,方法得当,引导自主探究、合作交流完成任务,整个课堂效率非常高。

【课稿】随机事件的概率教学反思及说课稿

【课稿】随机事件的概率教学反思及说课稿

【关键字】课稿《梁潇一、教材的地位和作用“随机事件的概率”是人教A版《数学必修3》第三章第一节的内容,本节课是其中的第一课时.课程标准要求:“在具体情境中,了解随机事件发生的谬误定性和频率的稳定性,进一步了解概率的意义以及频率与概率的区别”.并指出:“概率教学的核心问题是让学生了解随机现象与概率的意义”.要求“教师应通过日常生活中的大量实例,鼓励学生动手试验,正确理解随机事件发生的谬误定性及其频率的稳定性,并尝试澄清日常生活遇到的一些错误认识.”本节课“随机事件的概率”主要研究事件的分类,概率的意义,概率的定义及统计算法。

现实生活中存在大量谬误定事件,而概率正是研究谬误定事件的一门学科。

作为“概率统计”这个学习领域中的第一节课它在人们的生活和生产建设中有着广泛的应用,它以初中概率学为基础,又为选修2-3重新进行了知识建构,所以它在教材中处于非常重要的位置。

二、教学目标1、教学目标:(1)知识目标:使学生了解必然事件,不可能事件,随机事件的概念;理解频率和概率的含义和两者的区别和联系.(2)能力目标:培养学生观察和思考问题的能力,提高综合运用知识的能力和分析解决问题的能力.(3)德育目标:结合随机事件的发生既有随机性,又存在着统计规律性,了解偶然性寓于必然性之中的辨证唯物主义思想.(4)情感目标:通过师生、生生的合作学习,培养学生团结协作的精神和主动与他人合作交流的意识.同时,概率的定义与性质是学生学习概率的基石,其中也蕴含了重要的数学思想,因此,我确定重点、难点和教学方法如下:2、教学重点:①事件的分类;②概率的统计定义;③概率的性质.3、教学难点:随机事件的发生所呈现的规律性.4、教学方法:以多媒体教学课件为教学辅助.三、学情分析学生在初中阶段学习了概率初步,对频率与概率的关联有一定的认识,有阅读、观察的基础,具备一定的合作交流,自主探究能力。

但学生的表达能力、归纳能力相对较弱,教学过程中要不断增强学生学习的兴趣,让学生主动发掘本节课的重点。

《随机事件的概率》教学设计

《随机事件的概率》教学设计

《随机事件的概率》教学设计【摘要】本篇文章旨在介绍随机事件的概率相关知识,帮助读者对概率的基本概念、计算方法和分类有更深入的理解。

在文章将介绍背景信息,探讨研究意义并明确目的和意义。

在将详细阐述随机事件的概念、概率的基本概念和计算方法,讨论随机事件的分类,并提出教学方法与实践。

结论部分将对教学效果进行评价,展望未来发展,最后进行总结。

通过本文的学习,读者将对随机事件的概率有更加系统和全面的认识,为相关领域的学习和研究提供帮助。

【关键词】随机事件、概率、教学设计、概念、计算方法、分类、教学方法、实践、教学效果评价、未来展望、总结。

1. 引言1.1 背景介绍随机事件的概率是数学中非常重要的概念,也是我们日常生活中经常遇到的现象。

随机事件发生的结果往往是不确定的,因此对其概率的研究成为了数学中的一个重要研究方向。

随机事件的概率不仅仅在数学中有着重要的地位,也在其他领域如统计学、经济学、物理学等中有着广泛的应用。

随机事件的概率涉及到概率论的基本概念和计算方法,通过对随机事件的分类和概率的计算,我们可以更好地理解事件发生的可能性和规律性。

随机事件的概率教学对学生的数学思维能力的培养和发展具有重要意义,有助于学生理解事件发生的概率规律,提高他们解决实际问题的能力。

希望本文能够为相关教学工作者和学生提供一定的参考和帮助,促进随机事件的概率教学水平的提升。

1.2 研究意义随机事件的概率是数学中的一个重要概念,它在现实生活中有着广泛的应用。

研究随机事件的概率可以帮助我们更好地理解和预测各种事件的发生概率,这对于决策、风险评估、市场分析等方面具有重要意义。

随机事件的概率研究不仅有助于我们在日常生活中做出合理的选择,还能在科学研究和工程技术等领域发挥重要作用。

通过对随机事件的概率进行深入研究,我们能够更好地理解自然现象和社会现象的规律性,为科学研究提供理论支持和实验设计。

随机事件的概率也是现代通信、金融、保险等行业的基础,对于提高生产效率、降低风险具有重要意义。

人教版数学第三章1《随机事件的概率》配套教学(共29张PPT)教育课件

人教版数学第三章1《随机事件的概率》配套教学(共29张PPT)教育课件























































































































































若条件改变,事件的预知性改变吗?
必然事件 不可能事件

《随机事件的概率》公开课教案

《随机事件的概率》公开课教案

《随机事件的概率》公开课教案一、教学内容本节课选自人教版《普通高中数学课程标准实验教科书·数学2》(A版)第四章“概率”的第三节“随机事件的概率”。

具体内容包括:随机事件的定义,频率与概率的关系,以及如何计算简单随机事件的概率。

二、教学目标1. 理解随机事件的定义,能区分不同类型的随机事件。

2. 掌握频率与概率的关系,了解如何通过频率估计概率。

3. 学会计算简单随机事件的概率,并能运用到实际问题中。

三、教学难点与重点重点:随机事件的定义,频率与概率的关系,简单随机事件的概率计算。

难点:如何将实际问题转化为随机事件,并正确计算其概率。

四、教具与学具准备教具:PPT,黑板,粉笔。

学具:练习本,铅笔。

五、教学过程1. 实践情景引入通过一个简单的实验(抛硬币、掷骰子等),让学生观察并记录实验结果,引导学生发现实验中的随机现象,并提出问题:如何描述这些随机现象?2. 知识讲解(1)随机事件的定义:介绍随机事件的定义,让学生理解什么是随机事件。

(2)频率与概率:讲解频率与概率的关系,引导学生通过实验数据来估计概率。

(3)简单随机事件的概率计算:通过例题,讲解如何计算简单随机事件的概率。

3. 例题讲解例题1:抛一枚硬币,求出现正面的概率。

例题2:掷一个骰子,求出现偶数的概率。

4. 随堂练习练习1:投掷两个骰子,求两个骰子的点数之和为7的概率。

练习2:一个袋子里有5个红球,3个蓝球,求从中随机取出一个球,得到红球的概率。

六、板书设计1. 随机事件的定义2. 频率与概率的关系3. 简单随机事件的概率计算4. 例题与练习七、作业设计1. 作业题目(1)抛一枚硬币,求出现反面的概率。

(2)掷一个骰子,求出现奇数的概率。

2. 答案(1)出现反面的概率为0.5。

(2)出现奇数的概率为0.5。

八、课后反思及拓展延伸本节课通过实践情景引入,让学生感受到随机事件在实际生活中的存在。

在讲解知识的过程中,注重理论与实践相结合,让学生在理解知识的同时,学会运用知识解决问题。

《随机事件的概率》教学设计说明

《随机事件的概率》教学设计说明

《随机事件的概率》教学设计说明一、本课数学内容的本质、地位、作用分析《随机事件的概率》是高中数学北师大版教材必修3、第三章、第1节内容,是学生学习《概率》的入门课,也是学习后续知识的基础。

让学生了解随机事件发生的不确定性和频率的稳定性;让学生澄清生活中的一些对概率的错误认识,进一步体会频率的稳定性和随机思想;让学生感受到概率就在身边,从而深化对概率定义的认识。

就知识的应用价值上来看:概率是反映自然规律的基本模型。

概率已经成为一个常用词汇,为人们做决策提供依据。

就内容的人文价值上来看:研究概率涉及了必然与偶然的辨证关系,是培养学生应用意识和思维能力的良好载体。

二、教学目标分析首先要通过丰富实例让学生了解日常生活中的事件,理解必然事件、随机事件、不可能事件等概念。

然后让学生经历抛掷硬币试验,由此激发学生的学习兴趣和求知欲。

通过抛硬币试验,学生获取数据,归纳总结试验结果,体会随机事件发生的随机性和规律性,在探索中不断提高。

同时让学生明确概率与频率的区别和联系,理解利用频率估计概率的思想方法。

让学生亲历试验过程,培养学生观察、动手和总结的能力,以及同学之间的交流合作能力;培养学生把实际问题与数学理论相结合的能力,提高学生的探究能力;强化辨证思维,通过数学史渗透,培育学生刻苦严谨的科学精神。

但随机现象大量存在于学生周围,让学生通过观察分析,去发现生活中随机现象的例子,从而更好的理解概率的概念,熟练的去应用概率解决问题。

通过师生互动、生生互动,让学生在民主、和谐的课堂氛围中,感受必然性与偶然性的辩证统一思想。

三、教学问题诊断本堂课的特点是概率统计定义的概念教学。

根据学生的心理特征和认知规律,学生在日常生活中,对于概率可能有一些模糊的认识,但学生思维比较灵活,有较强的动手操作能力和较好的实验基础。

因此我采取学生动手试验的教学法。

高中数学概率部分的定位就是使学生对随机现象的概率有个初步的认识,我力求引导学生从以下几个角度来认识随机现象。

随机事件的概率教学设计(全国一等奖)

随机事件的概率教学设计(全国一等奖)

江西省高安二中龙跃文2012年11月【随机事件的概率】教学设计江西省高安二中龙跃文【教学内容解析】《随机事件的概率》是北师大版数学必修3中第三章第一节的第一课时,是一节与生活实际联系紧密的概念课。

本节课在旨在通过理解概率的定义的基础上理解其核心思想——随机思想。

生活中存在着大量的随机现象,如天气、保险、彩票等。

随机思想在当今社会有着广泛的应用,在概率成为普通生活常识的今天,对随机现象有一个较清楚的认识,成为每一个公民文化素质的基本要求。

研究随机性有助于探究大自然和生活中事件发生的规律,从而方便人们的生活和生产。

在初中阶段,同学们已经初步学习了随机事件和概率,对随机现象有了一定的了解。

在高中阶段我们进一步学习概率的知识,从而为以后的概率论和数理统计知识打好基础。

本节是高中概率的起始内容,理解好本节知识是学习本章后续古典概型和几何概型的重要前提。

此外,随机思想是自然辩证法的重要思想,理解随机思想有助于培养学生用一分为二、对立统一的辩证唯物主义观点分析问题和认识世界。

教学重点:概率概念的提出以及频率与概率的区别和联系;教学难点:利用概率的统计意义解释生活中的一些随机现象。

【教学目标设置】知识与技能目标:(1)了解随机事件,必然事件,不可能事件的概念,能列举一些生活中的随机事件;(2)能通过正确理解随机事件发生的不确定性和稳定性,进一步认识随机现象;(3)能正确理解概率的概念和意义,明确事件发生的频率与事件发生的概率的区别与联系.过程与方法目标:(1)能够通过在抛硬币的试验获取数据,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高.(2)能利用概率知识正确理解一些现实生活中的随机现象和实际问题。

情感态度与价值观目标:(1) 能通过亲身试验和感受来理解知识,体会数学知识与现实世界的联系。

(2) 通过发现随机事件的发生既有随机性,又存在着统计规律性的过程,体会偶然性和必然性的对立统一的辩证唯物主义思想。

随机事件的概率教学设计

随机事件的概率教学设计

《随机事件的概率》教学设计一、教材分析(一)教材的地位和作用现实生活中存在大量不确定事件,概率正是研究不确定事件的一门学科,它在科学、工农业生产和生活中有着广泛的应用。

在初中学生已经学习了随机事件、不可能事件、必然事件的概念。

现阶段学习随机事件的概率是对初中概率内容的深入与拓展;同时,也为今后继续研究随机事件的概率问题奠定基础; 因此,它具有承前启后的作用。

(二)教学目标分析课程标准对本节内容的要求是:在具体情境中,了解随机事件发生的不确定性及其频率的稳定性,进一步了解概率的意义以及频率和概率的区别。

据此我制定如下教学目标:1.在具体情境中,了解随机事件、必然事件、不可能事件的概念,进一步了解概率的意义以及频率和概率的区别.2.经历试验、统计等数学活动,体会随机事件发生的不确定性及其频率的稳定性,培养学生合作意识和交流能力.3.在试验、统计等数学活动中,发展学生的合情推理能力,养成严谨的学习态度和科学的研究方法,体会数学知识与现实生活的联系.二、学情分析初中阶段,学生学习了用列表法或树状图计算简单随机事件的概率;高中现阶段又学习了统计的知识,有这些知识作铺垫,学生探究本节课的内容就会容易一些;同时,学生对随机事件的特性、概率的认识还比较肤浅;因此,本节课的教学重点为:了解随机事件发生的不确定性和频率的稳定性;正确理解概率的意义.高二的学生已经具备了一定的知识迁移能力、实践能力、归纳概括能力,分析问题和解决问题的能力,这些都是探究本节课的有利条件.再有,概率是研究不确定事件的一门学科,对学生来讲,研究内容、研究方法还比较陌生,学习起来有一定的困难,因此,我将本节课的教学难点确定为:理解频率与概率的关系;正确理解概率的意义.三、教法、学法分析(一)教法分析:根据本节课教学内容的特点,我主要采用试验法和探究法相结合的教学方法,并利用多媒体辅助教学。

通过问题层层递进,启发引导学生自主探索所学知识。

(二)学法分析:数学课程标准指出:数学课程要使学生积累基本的数学活动经验,丰富学生的学习方式。

高中数学第三章概率随机事件的概率教案北师大必修3

高中数学第三章概率随机事件的概率教案北师大必修3

随机事件的概率教学方针:通过试验,体会随机事件发生的不确定性和频率的稳定性,由此给出概率的统计定义。

教学重点:了解随机事件发生的不确定性和频率的稳定性。

教学难点:理解频率与概率的关系。

教学过程:[设置情景]1名数学家=10个师在第二次世界大战中,美国曾经颁布颁布:一名优秀数学家的感化超过10个师的军力。

这句话有一个非同寻常的来历。

1943年以前,在大西洋上英美运输船队常常受到德国潜艇的袭击,当时,英美两国限于实力,无力增派更多的护航舰,一时间,德军的“潜艇战”搞得盟军焦头烂额。

为此,有位美国海军将领专门去请教了几位数学家,数学家们运用概率论分析后得出,舰队与敌潜艇相遇是一个随机事件,从数学角度来看这一问题,它具有必然的规律性。

必然数量的船(为100艘)编队规模越小,编次就越多(为每次20艘,就要有5个编次),编次越多,与敌人相遇的概率就越大。

美国海军接受了数学家的建议,命令舰队在指定海域集合,再团队通过危险海域,然后各自驶向预定港口。

结果奇迹泛起了:盟军舰队遭袭被击沉的概率由本来的25%降为1%,大大减少了损失,包管了物资的及时供应。

在自然界和实际生活中,我们会遇到各种各样的现象。

如果从结果能否预知的角度来看,可以分为两大类:一类现象的结果总是确定的,即在必然的条件下,它所泛起的结果是可以预知的,这类现象称为确定性现象;另一类现象的结果是无法预知的,即在必然的条件下,泛起那种结果是无法预先确定的,这类现象称为随机现象。

确定性现象,一般有着较明显得内在规律,因此比力容易掌握它。

而随机现象,由于它具有不确定性,因此它成为人们研究的重点。

随机现象在必然条件下具有多种可能发生的结果,我们把随机现象的结果称为随机事件。

[探索研究] 1.随机事件下列哪些是随机事件? (1)导体通电时发热; (2)或人射击一次,中靶; (3)抛一石块,下落; (4)在常温下,铁熔化; (5)抛一枚硬币,正面朝上;(6)在标准大气压下且温度低于c 0时,冰融化。

人教版高中数学必修三随机事件的概率课件3

人教版高中数学必修三随机事件的概率课件3
3.1.1 随机事件的概率
课前导言:
• 概率是描述随机事件发生可能性大小的一个 度量,它已经渗透到人们日常生活中,随机 事件在现实世界中广泛存在,它在一次试验 中是否发生是不确定的,但在大量重复试验 中,随机事件的发生是有规律的,概率就是 要寻求这种规律性;
一.设置情境,引入课题:
• 我们来看下面的一些事件,判断下列事件发生与否, 各有什么特点?
人教版高中数学必修三第三章第1节 3.1.1 随机事件的概率 课件(共30张PPT)
人教版高中数学必修三第三章第1节 3.1.1 随机事件的概率 课件(共30张PPT)
三.求随机事件概率的必要性: 知道事件的概率可以为人们做决策提
供依据.
概率是用来度量事件发生可能性大小 的量.小概率事件很少发生,而大概率事件 经常发生.例如天气预报报道“今天降水的概
1.掷硬币试验: 第一步:各人取一枚硬币,做11次抛掷硬币试 验;
第二步:记录结果,统计填表; 计算机模拟 掷硬币试验
第三步:统计全班的结果填表;
第四步:将试验结果用条形图表示. 第五步:请同学们找出掷硬币时“正面朝上” 这个事件发生的规律性.
试验结果:随着试验次数的增加,正面朝上的 频率稳定于0.5附近.
因此,我们可以用这个常数来度量事 件A发生的可能性的大小.
人教版高中数学必修三第三章第1节 3.1.1 随机事件的概率 课件(共30张PPT)
人教版高中数学必修三第三章第1节 3.1.1 随机事件的概率 课件(共30张PPT)
结论: 对于给定的随机事件A,如果随着试验
次数的增加,事件A发生的频率fn(A)稳定 在某个常数上,把这个常数记作P(A), 称为事件A的概率。 因此,可以用频率fn(A)来估计概率P(A).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
从而
P (A B )r srs P (A ) P (B ) n nn
12 2020/6/15
例3 对于例2中的试验, 求"取得两件产品 为一件正品, 一件次品"的概率.
13 2020/6/15
解 设事件A为"取得两件产品为一件正品,
一件次品"; 事件A1为"第一次取得正品, 而且第二次取得次品, 事件A2为"第一次 取得次品且第二次取得正品". 则A1,A2互 斥, 且A=A1+A2. 因此
11 2020/6/15
证 设U={e1,e2,...,en},
A { e k 1 ,e k 2 , L ,e k r } ,B { e l 1 ,e l 2 , L ,e l s }
因此 P(A)r, P(B)s.
n
n
按互斥性, A与B没有共同元素, 所以
A B { e k 1 ,e k 2 , L ,e k r ,e l 1 ,e l 2 ,L ,e l s } ,
5 P (A )P (A 0A 2)P (A 0) P (A 2) 1 2
16 2020/6/15
第二节 几何概率
17 2020/6/15
对于试验的可能结果有无穷多个的情形, 概率的古典定义显然是不适用了. 为了 克服这个局限性, 我们仍以等可能性为 基础把这个定义作必要的推广, 使得推 广后的定义能适用于有无穷多个不同试 验结果且各个基本事件具有等可能性的 情形.
2 2020/6/15
第一节 古典概型 概率的古典定义
3 2020/6/15
讨论一类简单的随机试验, 其特征是: (1) 可能的试验结果的个数是有限的. 把 这些试验结果记作e1,e2,...,en, 其全体记 作U={e1,e2,...,en}; (2) 两两互斥的诸基本事件 {e1},{e2},...,{en}出现的可能性相等.
概率的这种定义, 称为概率的古典定义
6 2020/6/15
例1 从一批由90件正品, 3件次品组成的 产品中, 任取一件产品, 求取得正品的概 率.
7 2020/6/15
解 设想把这些产品进行编号. 比如, 把90 件正品编为1#,2#,...,90#, 把3件次品依次 编成91#,92#,93#. 则所有可能的试验结 果的全体为U={1,2,...,93}, 其中i表示"取 得编号为i的一件产品"(i=1,2,...,93), 是两 两互斥的, 出现的可能性相等. 取得正品 就是事件A={1,2,...,90}出现, 所以取得正 品的概率为
这时, 称所讨论的问题是古典概型的.
4 2020/6/15
对于古典概型的情形, 设所有可能的试 验结果的全体为U={e1,e2,...,en}, 事件
A{ek1,ek2,L,ekr}
其中k1,k2,...,kr为1,2,...,n中指定的r个不 同的数, 则定义事件A的概率为
P(A)
r n
A中包含的试验结果数 的个 总的试验结果的个数
18 2020/6/15
例如, 在一个均匀陀螺的圆周上均匀地 刻上区间[0,3)上的诸数字, 旋转这陀螺. 要合理地规定"陀螺停下时其圆周与桌 面接触点的刻度间位 12,于 2上 区 "的概
率, 由于陀螺及刻度的均匀性, 它停下时 其圆周上各点与桌面接触的可能性相等, 即接触点的刻度位于在[0,3)内的一个区 间上的可能性与这区间的长度成比例.
概率论第3讲
第三章 随机事件的概率
1 2020/6/15
随机事件虽然有偶然性的一面, 即它在 一次试验中, 可能发生, 也可能不发生; 但是在大量重复试验中, 人们还是可以 发现它是有内在规律性的, 即它出现的 可能性的大小是可以"度量"的. 随机事 件的概率就是用来计量随机事件出现的 可能性大小的一个数字, 它是概率论中 最基本的概念之一.
区 容域 器 D的 的容 容积 积 Vv
21 2020/6/15
以上两个例子中, 都以等可能性为基础, 借助于几何上的度量(长度,面积,体积或 容积等)来合理地规定概率, 用这种方法 规定的概率称为几何概率.
P (A )3 g 9 04 50 .0 3 1 6 9 3 g 9 21 4 2 6
10 2020/6/15
为了计算各种复杂事件的概率, 同时为 了揭露概率的本质, 在古典概型的情形 下, 证明如下定理.
定理 两个互斥事件A与B的和事件的概 率, 等于事件A与事件B的概率之和, 即
P(A+B)=P(A)+P(B)
15 2020/6/15
解 事件A表示"排成的数是三位数且是偶 数"; 事件A0表示"排成的数是末位为0的 三位数"; 事件A2表示"排成的数是末位 为2的三位数". 由于三位数的首位数不 能为零, 所以
P (A 0)4 3 3 2 1 2 P (A 2 )4 2 3 2 2 1 显然, A0, A2互斥. 由上述定理得
90g3 P(A1) 93g92
3g90 P(A2) 93•92
P(A) P(A1 A2) PA1P(A2)
90g3 3g90 45 93g92 93•92 713
14 2020/6/15
例4 从0,1,2,3这四个数字中任取三个进 行排列. 求"取得的三个数是三位数且是 偶数"的概率.
19 2020/6/15
于是, 所要的概率可规定为
区 区间 间 [120,,32Fra bibliotek的 的长 长度 度 23012
1 2
20 2020/6/15
又如, 设一个粒子位于容积为V的容器内 各点处的可能性相等, 即位于容器内的 任何部分的可能性与这部分的容积成比 例. 于是, 这粒子位于这容器内体积为v 的一个部分区域D内的概率可规定为
P(A)90300.968 93 31
8 2020/6/15
例2 从例1的这批产品中, 接连抽取两件 产品, 第一次抽出后的产品并不放回去, 求第一次取得次品且第二次取得正品的 概率.
9 2020/6/15
解 设想将这些产品按例1的办法编号, 抽 到的结果可用一对有序数组(i,j)表示, i,j 表示第一,第二次取得的产品的号数. 所 有试验结果可由所有这种数组的全体表 示, 共有9392种. 事件A表示"第一次取 得次品且第二次取得正品", 可由i取91到 93且j取1到90的数组表示, 共有390种. 因此
相关文档
最新文档