(推荐下载)江南大学信号与系统知识点总结318

合集下载

(完整版)信号与系统知识要点

(完整版)信号与系统知识要点

信号与系统知识要点第一章 信号与系统单位阶跃信号 1,0()()0,0t t u t t ε≥⎧==⎨<⎩ 单位冲激信号 ,0()0,0()1t t t t δδ∞-∞⎧∞=⎧=⎨⎪⎪≠⎩⎨⎪=⎪⎩⎰ ()()d t t dtεδ=()()t d t δττε-∞=⎰()t δ的性质:()()(0)()f t t f t δδ=000()()()()f t t t f t t t δδ-=-()()(0)f t t dt f δ∞-∞=⎰00()()()f t t t dt f t δ∞-∞-=⎰()()t t δδ=-00()[()]t t t t δδ-=-- 1()()at t aδδ=001()()t at t t a aδδ-=- 单位冲激偶信号 ()t δ'()()d t t dtδδ'=()()t t δδ''=--00()[()]t t t t δδ''-=---()0t dt δ∞-∞'=⎰ ()()td t δττδ-∞'=⎰()()(0)()(0)()f t t f t f t δδδ'''=-00000()()()()()()f t t t f t t t f t t t δδδ'''-=---()()(0)f t t dt f δ∞-∞''=-⎰00()()()f t t t dt f t δ∞-∞''-=-⎰符号函数 sgn()t1,0sgn()0,01,0t t t t >⎧⎪==⎨⎪-<⎩或 sgn()()()2()1t u t u t u t =--=-单位斜坡信号 ()r t0,0()(),0t r t tu t t t <⎧==⎨≥⎩ ()()t r t u d ττ-∞=⎰ ()()dr t u t dt =门函数 ()g t τ1,()20,t g t ττ⎧<⎪=⎨⎪⎩其他取样函数sin ()tSa t t=0sin lim ()(0)lim1t t tSa t Sa t→→=== 当 (1,2,)()0t k k Sa t π==±±=时,sin ()t Sa t dt dt tπ∞∞-∞-∞==⎰⎰sin lim 0t tt →±∞=第二章 连续时间信号与系统的时域分析1、基本信号的时域描述(1)普通信号普通信号可以用一个复指数信号统一概括,即st Ke t f =)(,+∞<<∞-t 式中ωσj s +=,K 一般为实数,也可以为复数。

信号与系统知识点归纳

信号与系统知识点归纳
频谱特性
周期信号的频谱是离散的,由一系列频率分量组成,每个 分量对应一个傅里叶系数。
幅度谱和相位谱
幅度谱表示各频率分量的幅度大小,相位谱表示各频率分 量的相位信息。
非周期信号频谱分析
傅里叶变换
将非周期信号表示为一系列复指数函数的积分,即 $F(omega) = int_{-infty}^{infty} f(t) e^{jomega t} dt$,其中 $F(omega)$ 是信号的频谱。
单位样值信号
在某一时刻取值为1,其余时 刻为0的信号。
正弦型信号
形如sin(ωn)或cos(ωn)的周期 性信号,其中ω为角频率。
复杂指数型信号
形如ean的形式,其中a和ω为 常数,n为离散时刻。
离散时间信号频谱分析
离散时间信号的频谱
通过傅里叶变换将离散时间信号从时域转换 到频域,得到信号的频谱。
信号分类
根据信号的性质和特征,信号可以分 为多种类型,如连续时间信号和离散 时间信号、周期信号和非周期信号、 能量信号和功率信号等。
系统定义及性质
系统定义
系统是一个由输入信号激励、内部含有某种变换关系、并能产生输出信号的物理装置或算法。在信号处理中,系 统通常表示为对输入信号进行某种变换或处理的过程。
周期信号的频谱
周期信号可以表示为无穷级数,其频谱由傅 里叶系数确定。
非周期信号的频谱
非周期信号的频谱是连续的,可以通过傅里 叶变换求得。
信号的能量和功率谱
能量信号和功率信号的频谱特性不同,分别 对应能量谱和功率谱。
离散时间系统响应
线性时不变系统的响应
线性时不变系统对输入信号的响应具有叠加性和时不变性。
卷积和运算
线性时不变系统的响应可以通过输入信号与系统单位样值响应的卷积 和求得。

信号与系统知识点整理

信号与系统知识点整理

信号与系统知识点整理信号与系统是电子、通信、自动化等领域中的基础课程之一,主要研究信号的产生、传输、处理和分析等内容。

下面是信号与系统的知识点整理。

1.信号的分类:-连续信号:在时间和幅度上都是连续的信号,如声音、电压波形等。

-离散信号:在时间上是离散的信号,如数字音频、数字图像等。

-周期信号:在一定时间周期内重复出现的信号,如正弦信号、方波等。

-非周期信号:在一定时间段内不重复出现的信号,如脉冲信号、矩形波等。

2.基本信号:-阶跃信号:在其中一时刻突然跃变的信号。

-冲击信号:在其中一时刻瞬间出现并消失的信号。

-正弦信号:以正弦函数表示的周期信号。

-方波信号:由高电平和低电平构成的周期信号。

3.系统的分类:-时不变系统:输出不随时间变化而变化的系统。

-线性系统:满足叠加性质的系统。

-因果系统:输出仅依赖于当前和过去的输入的系统。

-稳定系统:有界的输入产生有界的输出的系统。

4.线性时不变系统的特性:-线性性质:满足叠加性质。

-时不变性:系统的输出只取决于输入信号的当前和过去的值。

-冲激响应:线性时不变系统对单位冲激信号的响应。

5.离散时间系统的表示:-差分方程:用差分方程表示离散时间系统。

-传输函数:用传输函数表示系统的输入和输出之间的关系。

6.离散时间信号的分析:-Z变换:将离散时间信号从时域变换到Z域的方法。

-序列的频率表示:幅度谱、相位谱和角频率。

7.连续时间系统的表示:-微分方程:用微分方程表示连续时间系统。

-传递函数:用传递函数表示系统的输入和输出之间的关系。

8.连续时间信号的分析:-傅里叶级数:将连续时间周期信号分解成一系列正弦和余弦函数的和。

-傅里叶变换:将连续时间非周期信号从时域变换到频域。

9.信号处理的应用:-通信系统:对信号进行调制、解调、编码、解码等处理。

-图像处理:对图像进行滤波、增强、压缩等处理。

-音频处理:对音频信号进行降噪、消除回声、变声等处理。

-生物医学信号处理:对生理信号如心电图、脑电图等进行分析和识别。

信号与系统_复习总结(完整资料).doc

信号与系统_复习总结(完整资料).doc

【最新整理,下载后即可编辑】第一章知识要点重难点一第A章A1.1本章重难点总结知识点一1)知识点定义2)背景或地位3)性质、作用4)相关知识点链接5)常见错误分析操作说明:当专业课学习到冲刺阶段后,考生学习会及时转移到直接考查概率高、考查难度大的重难点,即需要考生掌握和应用的重点、难点。

按照学科的内在逻辑、顺序呈现,并表现在ppt中。

1.2冲刺练习题及解析第二章重难点1.信号的概念与分类按所具有的时间特性划分:确定信号和随机信号;连续信号和离散信号;周期信号和非周期信号;能量信号与功率信号;因果信号与反因果信号;正弦信号是最常用的周期信号,正弦信号组合后在任一对频率(或周期)的比值是有理分数时才是周期的。

其周期为各个周期的最小公倍数。

①连续正弦信号一定是周期信号。

②两连续周期信号之和不一定是周期信号。

周期信号是功率信号。

除了具有无限能量及无限功率的信号外,时限的或,∞→t 0)(=t f 的非周期信号就是能量信号,当∞→t ,0)(≠t f 的非周期信号是功率信号。

1. 典型信号① 指数信号: ()at f t Ke =,a ∈R ② 正弦信号: ()sin()f t K t ωθ=+③ 复指数信号: ()st f t Ke =,s j σω=+ ④ 抽样信号:sin ()t Sa t t=奇异信号(1) 单位阶跃信号1()u t ={ 0t =是()u t 的跳变点。

(2) 单位冲激信号单位冲激信号的性质: (1)取样性 11()()(0)()()()f t t dt f t t f t dt f t δδ∞∞-∞-∞=-=⎰⎰相乘性质:()()(0)()f t t f t δδ=000()()()()f t t t f t t t δδ-=- (2)是偶函数 ()()t t δδ=- (3)比例性 ()1()at t aδδ=(4)微积分性质 d ()()d u t t tδ= ; ()d ()tu t δττ-∞=⎰(5)冲激偶()()(0)()(0)()f t t f t f t δδδ'''=-;()()d (0)f t t t f δ∞-∞''=-⎰ ()d ()tt t t δδ-∞'=⎰ ;()()t t δδ''-=- ()d 0t t δ∞-∞'=⎰带跳变点的分段信号的导数,必含有冲激函数,其跳变幅度就是冲激(0)t <(0)t >()1t dt δ∞-∞=⎰ ()0t δ=(当0t ≠时)函数的强度。

(完整版)信号与系统知识要点.doc

(完整版)信号与系统知识要点.doc

信号与系统知识要点第一章信号与系统, t 01,t 0(t )0, t 0单位阶跃信号(t) u(t )0 单位冲激信号0,t(t ) 1d (t ) (t )dtt( )d (t )(t ) 的性质:f (t ) (t ) f (0) (t )f (t ) (t t 0 )f (t 0 ) (t t 0 )f (t ) (t)dtf (0)f (t ) (t t 0 )dt f (t 0 )(t ) ( t )(tt 0 ) [ (t t 0 )]1 (t)(at )a(at t 0 )1 (t t)aa 单位冲激偶信号(t)(t )d (t )dt(t ) ( t)(t t 0 )[ (t t 0 )](t )dt 0t( )d (t )f (t ) (t)f (0) (t) f (0) (t)f (t ) (t t 0 )f (t 0 ) (t t 0 ) f (t 0 ) (t t 0 )f (t ) (t) dt f (0)f (t ) (t t 0 ) dtf (t 0 )符号函数 sgn(t )1,tsgn(t )0, t 0 或 sgn(t ) u(t ) u( t ) 2u(t ) 11,t单位斜坡信号r (t)0, t 0 tdr (t) r (t ) tu(t)r (t )u( )du(t)t,tdt门函数 g (t )g (t)1, t2 0, 其他取样函数 Sa(t ) sin ttsin t lim Sa(t)Sa(0) lim 1tt 0t 0当 t k(k1, 2,ggg)时, Sa(t ) 0Sa(t)dtsin t dt lim sin t 0ttt第二章连续时间信号与系统的时域分析1 、基本信号的时域描述( 1 )普通信号普通信号可以用一个复指数信号统一概括,即f (t ) Ke st ,t 式中 sj , K 一般为实数,也可以为复数。

根据与 的不同情况, f (t ) 可表示下列几种常见的普通信号。

信号与系统知识点总结

信号与系统知识点总结

信号与系统知识点总结一、信号与系统概念1. 信号的基本概念信号是指传输信息的载体,可以是任意形式的能量,例如声音、图像、视频等。

信号分为连续信号和离散信号两种类型。

连续信号是指在任意时间范围内都有定义的信号,离散信号是指只在某些离散点上有定义的信号。

2. 系统的概念系统是指对输入信号进行处理并产生输出信号的过程。

系统分为线性系统和非线性系统两种类型。

线性系统满足叠加原理和齐次性质,而非线性系统不满足这两个性质。

3. 信号与系统的分类信号与系统可以按照不同的分类方式进行划分。

例如,按时间域和频率域可以将信号和系统分为时域信号和系统以及频域信号和系统。

二、时域分析1. 时域中的基本概念在时域中,信号经常被表示为在时间轴上的波形。

对信号进行时域分析,可以揭示信号的变化规律和特征。

例如,信号的幅度、频率、相位等特征。

2. 时域信号的表示时域信号可以分为连续信号和离散信号两种类型。

连续信号通常可以由函数来表示,而离散信号则可以用序列或数组来表示。

3. 线性时不变系统线性时不变系统是指系统具有线性和时不变两个性质。

线性性质意味着系统满足叠加原理和齐次性质,时不变性质意味着系统的响应与输入信号的时移无关。

三、频域分析1. 傅里叶变换傅里叶变换是将信号在时域中的表示转换为频域中的表示的数学工具。

它可以将信号转换为频谱,揭示信号的频率成分和能量分布。

傅里叶变换分为连续傅里叶变换和离散傅里叶变换两种。

2. 滤波器的频域特性滤波器可以用来对信号进行频域处理。

常见的滤波器包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。

滤波器对不同频率成分的信号有不同的响应,能够用来滤除不需要的频率分量,或者突出需要的频率分量。

3. 抽样定理抽样定理是指在进行模拟信号的离散化表示时,需要保证抽样率足够高,以避免混叠失真。

根据抽样定理,模拟信号进行离散化表示的采样频率需要大于信号最高频率的两倍。

四、系统响应分析1. 系统的时域响应系统的时域响应是指系统对输入信号的时域响应。

信号与系统知识点概括总结

信号与系统知识点概括总结

理想低通滤波器:
c Sa[ c (t t0 )] 冲激响应: h(t )
H ( j) e jt0 [u( c ) u( c )]
取样信号的傅里叶变换
f s( t )
f s (t ) f (t )T (t )
T (t )
n
(t nT )
1 F f1 (t ) f 2 (t ) F1 (j ) F2 (j ) 2
周期信号的傅里叶变换:
2 Fn ( n 1 ) F ( j ) F f ( t ) n
1 其中 Fn T1


T1 / 2 T1 / 2
f (t )e
F ( j) E Sa( ) 2
E
Fn
1 21
2 4

4
F ( j )
2
2
4

对偶性: 若 F [ f (t )] F ( j), 则 F [ F ( jt )] 2
f ()
F ( j )
E
f (t )
E
/ 2
F sin 0t j ( 0 ) ( 0 )
卷积定理:
若F
f1 (t ) F1 (j ),F f2 (t ) F2 (j ) ,则
F
f1 (t ) f2 (t ) F1 (j )F2 (j )
零状态响应
(Azik Azsk )e k t y p (t )
k 1 强迫响应 自由响应
h(t ), g (t ) :
卷积:
dg (t ) h(t ) dt

g (t ) h( )d

信号与系统面试知识点总结

信号与系统面试知识点总结

信号与系统面试知识点总结一、基本概念1. 信号与系统的定义:信号是某种随时间或空间变化的物理量的数学表达,系统是将输入信号映射为输出信号的装置或规律。

2. 基本信号类型:包括连续时间信号和离散时间信号;周期信号和非周期信号;能量信号和功率信号等。

3. 信号的基本运算:信号的加法、乘法、平移、积分、微分等运算。

4. 系统的基本分类:线性系统和非线性系统;时不变系统和时变系统。

5. 傅里叶分析:傅里叶级数和傅里叶变换,以及它们在信号与系统中的应用。

二、连续时间信号与系统1. 连续时间信号的表示和性质:冲激函数、单位阶跃函数、正弦函数、矩形波等基本信号的性质及表示方法。

2. 连续时间系统的性质:因果系统、稳定系统、线性时不变系统等基本性质的定义和判断方法。

3. 连续时间系统的时域分析:冲激响应、单位阶跃响应、系统的零点和极点等。

4. 连续时间信号的频域分析:傅里叶级数分析、傅里叶变换和拉普拉斯变换的定义、性质和应用。

5. 连续时间系统的频域分析:系统的频率响应、幅频特性、相频特性等。

三、离散时间信号与系统1. 离散时间信号的表示和性质:单位脉冲、单位阶跃序列、正弦序列、方波序列等基本离散时间信号的性质及表示方法。

2. 离散时间系统的性质:因果系统、稳定系统、线性时不变系统等基本性质的定义和判断方法。

3. 离散时间系统的时域分析:脉冲响应、阶跃响应、差分方程描述等。

4. 离散时间信号的频域分析:傅里叶级数分析、傅里叶变换和z变换的定义、性质和应用。

5. 离散时间系统的频域分析:系统的频率响应、幅频特性、相频特性等。

四、采样和重建1. 采样定理的理论基础:奈奎斯特定理和香农采样定理的定义、理论推导和应用。

2. 信号的重构方法:理想插值方法、牛顿插值方法、插值滤波器设计等。

3. 采样系统的频谱分析:采样系统的频带限制、混叠现象的分析和抑制方法。

五、系统的时域与频域分析方法1. 系统的单位脉冲响应和阶跃响应:定义、性质、求解方法及应用。

信号与系统重要知识点

信号与系统重要知识点

信号与系统重要知识点一、信号与系统的基本概念1.信号的定义:信号是随时间或空间变化的物理量,可以简单分为连续信号和离散信号两种。

2.连续信号与离散信号的区别:连续信号的取值是连续的,可以在任意时间点取值;离散信号的取值是离散的,只能在一些离散时间点取值。

3.系统的定义:系统是指将输入信号转换为输出信号的过程,可以根据输入输出信号的时间特性分为时不变系统和时变系统。

4.线性系统和非线性系统的区别:线性系统的输入输出之间满足叠加原理,即输入的线性组合对应于输出的线性组合;非线性系统则不满足叠加原理。

二、信号与系统的分类与特性1.基本信号:包括单位冲激函数、单位阶跃函数等,这些信号可以通过线性组合构成任意复杂的信号。

2.周期信号和非周期信号:周期信号在一定时间范围内具有重复的模式;非周期信号在时间上没有明显的重复性。

3.傅里叶级数:任意周期信号都可以表示为一系列正弦和余弦函数的叠加,这种表示方式称为傅里叶级数展开。

4.傅里叶变换:傅里叶变换将信号从时间域转换到频率域,可以获得信号在不同频率上的频谱特性。

5.拉普拉斯变换:拉普拉斯变换是一种复变函数变换,它将信号从时间域转换到复平面上的变换域,可以对线性时不变系统进行分析和设计。

三、系统的时域分析方法1.冲激响应:系统对单位冲激函数的响应称为冲激响应,可以通过冲激响应求解系统对任意输入信号的响应。

2.系统的重要特性:包括冲激响应、单位阶跃响应、单位脉冲响应等,这些特性可以通过求系统的单位冲激响应来得到。

3.系统的线性时不变特性:系统具有叠加原理,即输入的线性组合对应于输出的线性组合;同时,系统的时移和加权求和特性在时间上不变。

四、系统的频域分析方法1.系统的频率响应:系统对不同频率的输入信号的响应称为频率响应,可以通过傅里叶变换和拉普拉斯变换进行分析。

2.系统的传递函数:系统的传递函数是输入信号和输出信号的拉普拉斯变换之间的关系,是对系统频率响应的数学描述。

信号与系统复习知识点

信号与系统复习知识点

《信号与系统》复习要点第一章 1.信号的运算:时移、反褶、尺度变换、微分、积分等;2.LTI 系统的基本性质:叠加性、时不变特性、微分特性、因果性、可分解线性;3.阶跃型号与冲激信号及其特性。

单位冲激信号的性质:例、求下列积分 dt tt t t f ⎰∞∞-=)2sin()(2)(δ 例、已知信号)(t f 的波形如下图1所示,试画出下列各信号的波形(1))2(t f ,(2))()2(t u t f ---,(3))2()2(t u t f -- 例 已知)3(2)(-=t t f δ求系列积分?)25(0=-⎰∞dt t f 第二章 1.响应的分解,各种响应分量的含义、可分解线性;2.卷积及其特性(微积分特性);3.零状态响应及卷积积分求解。

第三章1.典型信号的傅里叶变换;2.傅里叶变换的基本性质:对称性、尺度变换特性、平移特性、微积分特性;3.傅里叶变换卷积定理。

*)(ωj F o 为周期信号取一个单周期信号的傅立叶变换● 理想抽样序列:∑∞-∞=-=n s T nT t t )()(δδ ● 非理想抽样序列:∑∞-∞=-=n snT t G t P )()(τ 被抽样信号的表达式:∑∞-∞=-=n s s nT t t f t f )()()(δ1. 抽样信号的傅立叶变换:● 被理想抽样信号的傅立叶变换:● 被非理想抽样信号傅立叶变换:第四章1.典型信号的拉氏变换及拉氏变换的基本性质;2.S 域元件模型、系统函数、系统函数与激励信号极点分布与电响应的关系、系统函数与输入输出方程的关系(利用拉氏变换求解电系统响应);3.线性系统的稳定性分析。

周期信号的拉氏变换)(1s F 为信号第一个周期)(1t f 的拉氏变换;整个周期信号)(t f 的拉氏变换为:抽样信号的拉氏变换求半波整流和全波整流周期信号的拉氏变换(1(24-(1 t e - ()()11111+-+-+-⋅s s e e s (21.2.3第七章1. 离散系统和信号的描述方法、基本性质2. 差分方程的经典解法3. 卷积和定义及其求解方法第八章1. z 变换的定义、收敛域和基本性质,常用序列的z 变换2. 逆z 变换的求解方法3. ()H z 的定义、零极点分布与信号/系统性质的关系4、利用z 变换求解差分方程、稳定性分析。

信号与系统知识整理

信号与系统知识整理

《信号与系统》知识整理16040003 李田焰第一章绪论1.1信号与系统人类信号媒介的发展过程,信号的处理过程系统:由若干相互作用和相互依赖的食物组合而成的具有特定功能的整体。

1.2信号的描述,分类和典型示例信号的分类:确定信号与随机信号,周期信号与非周期信号,连续时间信号与离散时间信号,一维信号与多维信号常遇见的信号:(1)指数信号:(2)正弦信号:(3)复指数信号:(4)Sa(t)信号(抽样信号):(5)高斯信号:1.3信号的运算1.移位,反褶与尺度(1)移位:f(t)变成f(t+t0);(2)反褶:f(t)——f(-t)(3)尺度:f(t)——f(at)(a为一个常数)2.微分与积分(1)微分运算:(2)积分运算:3.两信号相加或相乘1.4阶跃信号与冲激信号1. 单位斜变信号:2. 单位跃阶信号:3. 单位冲激信号:4. 冲激信号的性质;性质一:性质二:t1.5 信号的分解1. 直流分量与交流分量:2. 偶分量与奇分量:偶分量:奇分量:3. 实部分量与虚部分量:1.6 系统模型及其分类系统模型:系统物理特性的数学抽象,以数学表达式或具有理想特性的符号组合图形来表征系统特性。

对于复杂的系统,其数学模型可能是一个高阶数学微分方程。

如:R,L,C串联回路元件的理想特性与KVL可以建立如下的微分方程:当知道系统的数学模型,起始状态以及输入激励信号,就可以运用数学方法求解其响应。

还可以借用如下的方框图来组成一个完整的系统:三种基本单元方框图也可以采用这种表示方法:d系统的分类:连续时间系统与离散时间系统;即时系统与动态系统;集总参数系统与分布参数系统;线性系统与非线性系统;时变系统与时不变系统;可逆系统与非可逆系统1.7 线性时不变系统讨论的系统:集总参数线性时不变系统(LTI )包括时间系统与离散系统。

其基本特性如下:1. 叠加性与均匀性2. 时不变特性:对于响应和激励:e(t)——r(t); 则当激励变为e(t-t0)时,响应变为:r(t-t0),波形延迟t0,波形不变 3. 微分特性:在系统中有:相应的:4. 因果性:因果系统:(r 非因果系统:(1.8 系统分析方法数学描述方法:1. 输入-输出描述法:着眼于系统激励与响应之间的关系,不关心系统内部的情况。

信号与系统知识点总结

信号与系统知识点总结

ejnt
n
系数 Fn 称为复傅里叶系数
Fn
1 T
T
2T f ( t ) e j n t d t
2
欧拉公式
cosx=(ejx + e–jx)/2 sinx=(ejx - e–jx)/2j
傅里叶系数之间关系
F n F n e jn
1A 2
n
e jn
1( 2
a
n
j
bn
)
Fn
1 2
a
2 n
b
2 n
而任意信号作用下的零状态响应yzs(t)
yzs(t) = h(t)*f(t) 用于系统分析的独立变量是频率,故称为频域分析。 学习 3 种变换域:频域、复频域、z 变换
⑴ 频域:傅里叶表变换,t→ω;对象连续信号
⑵ 复频域:拉普拉斯变换,t→s;对象连续信号
⑶ z 域:z 变换,k→z;对象离散序列
(t) ←→
def
F(s)
0
f (t )e std t
1
s s0 > -Re[s0] 2、指数函数e-s0t ε(t)←→
es0t(t) e e s0t st dt e(ss0)t dt 1
0
0
s s0
1
s s0 > Re[s0] 3、指数函数es0t ←→
4、(t)或 1 ←→1/s ,> 0
j2 j 2 2
sgn(t)
lim0 F
(j)lim02j22
2
j
7. 阶跃函数
e (t)
1
(t) 1 1 sgn(t) () 1
22
j
0t
1,
sgn(t)

信号与系统复习必备知识点

信号与系统复习必备知识点

《信号与系统》知识点⎧⎨⎩⎧⎪⎨⎪⎩⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪⎨⎪⎪⎪⎪⎪⎩⎧⎪⎪⎪⎨⎪⎪⎪⎩函数描述波形确定信号、随机信号分类周期信号、非周期信号(周期计算连续信号、离散信号平移自变量变换尺度变换(含反褶一般情况(尺度变换+平移信号运算微分、积分相加、相乘直流分量、交流分量偶分量、奇分量分解脉冲分量(卷积实部分量、虚部分量正交函数分量(变换域正弦信号常规信号复指数信号(自变量分别取实数、纯虚数、复常见典型信号⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪⎧⎪⎪⎪⎪⎪⎪⎧⎧⎪⎪⎪⎨⎪⎪⎩⎪⎪⎪⎪⎪⎧⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎨⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎧⎪⎪⎨⎪⎪⎩⎩⎩数抽样信号斜变信号阶跃信号(因果信号、门信号、符号函数矩形脉冲演变定义 Dirac函数抽样性奇偶性(偶函数冲激信号性质奇异信号尺度变换微积分应用(间断点处求导抽样性冲激偶信号奇偶性(奇函数⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩LTI LTI⎧⎪⎧⎧⎪⎪⎪⎪⎨⎨⎪⎨⎪⎪⎩⎪⎪⎪⎪⎩⎩⎧⎪⎪⎪⎧⎪⎨⎨⎩⎪⎪⎪⎪⎩⎧⎪⎨⎪⎩微分方程加法器基本运算单元数乘器描述(建模方框图积分器系统模拟连续系统、离散系统即时系统(无记忆、动态系统(有记忆均匀性(判定方法系统分类线性系统、非线性系统叠加性(判定方法时变系统、时不变系统(判定方法因果系统、非因果系统(判定方法响应可分解性线性零输入线性零状态线性系统时不变性系统分析方法⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩⎪⎪⎪⎧⎪⎧⎪⎨⎪⎪⎪⎪⎩⎪⎪⎨⎪⎧⎪⎪⎪⎨⎪⎪⎪⎩⎩⎩⎩微分特性经典法时域分析卷积法分析方法频域(傅氏变换变换域分析 s域(拉氏变换KCL KVL 0000000t −++−−++⎧⎪⎨⎪⎩⎧⎪⎪⎪⎨⎪⎧⎪⎪⎨⎪⎪⎩⎩⎧⎨≤<+∞元件特性约束(伏安关系建模(微分方程列写系统结构约束(、自由响应:齐次解(含待定系数方法一强迫响应:特解由状态和激励求状态(冲激函数匹配法完全响应=自由响应+强迫响应(含待定系数由状态定待定系数求齐次解(含待定系数零输入响应由状态定待定系数(此时状态与状态相同时域分析求解(响应区间: 方法二((0000000t m n tδδ−−++−++⎪⎪⎩⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪⎧⎧⎪⎪⎨⎪⎪⎪⎪⎨⎪⎪⎨⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎩⎩求完全解(齐次解+特解(含待定系数经典法由状态(此时状态为0和激励求状态(冲激函数匹配法由状态定待定系数求齐次解(含待定系数零状态响应由状态和激励(此时为求状态(冲激函数匹配法冲激响应卷积法由状态定待定系数根据和的关系加上及其各阶导数零状态响应=激励*冲激响应完全响应⎧⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩⎩=零输入响应+零状态响应((((((00, ' t u t t t t u t tδδδ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎧⎧⎪⎪⎪⎪⎨⎪⎨⎪⎪⎩⎨⎨⎪⎪⎩⎪⎩⎧⎪⎪⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪⎨⎪⎧⎪⎪⎪−⎪⎪⎨⎪⎪⎪⎪⎪⎩⎩定义两个因果信号的卷积仍为因果信号,卷积积分限为利用利用定义卷积结果时宽等于两个函数各自时宽之和卷积计算图解法利用性质交换律代数性质分配律(系统并联结合律(系统级联性质微积分性质(微分冲激法 :不变 :平移与特殊信号卷积 :积分 :微分⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎧⎧⎧⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎨⎪⎧⎪⎪⎨⎪⎪⎩⎩⎪⎪⎧⎪⎪⎨⎪⎪⎪⎩⎩一般形式三角函数形式余弦形式正弦形式定义指数函数形式(傅氏系数为复数两种形式系数之间的关系傅氏级数幅度谱频谱(离散性、谐波性、收敛性相位谱偶函数:只含余弦项性质(奇偶对称性奇函数:只含正弦项奇谐函数:只含奇次谐波⎧⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎨⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩⎪⎪⎩定义(频谱密度函数利用定义傅氏变换计算利用性质矩形脉冲单边指数信号虚指数信号余弦信号直流信号典型信号的傅氏变换冲激信号冲激串冲激偶阶跃信号符号函数性质《信号与系统》知识点⎧对偶性⎪⎪线性⎪⎧⎧幅度为偶函数⎪⎪⎪⎪⎪实函数:频谱共轭对称⎪相位为奇函数⎪⎨⎪⎪⎪实部为偶函数⎪⎪⎪虚部为奇函数⎪⎩⎪⎪⎪奇偶对称性⎨实偶函数:频谱为实偶函数⎪⎪实奇函数:频谱为虚奇函数⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎧⎧时域压缩,频域扩展⎪⎪⎪⎪尺度变换⎨时域扩展,频域压缩⎪⎪⎪时域反褶,频域反褶⎪⎪⎩⎪⎪⎪⎪⎧时移特性:时域平移,频域乘虚指数函数(相移)性质⎨⎪⎪自变量变换⎨平移⎨频移特性:频域平移,时域乘虚指数函数(调制)⎩⎪⎪⎪一般情况(尺度变换+时移)⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎧⎧时域微分⎪⎪微分特性⎨⎪⎩频域微分⎪⎪⎪微积分⎨积分特性(时域)⎪⎪⎪微分冲激法⎪⎪⎪⎪⎩⎪⎪⎧时域卷积定理:时域卷积,频域相乘⎪卷积特性⎨⎪⎩频域卷积定理:频域卷积,时域相乘(调制)⎪⎧⎪时域抽样:时域离散化(与时域冲激串相乘),频域周期化(与频域冲激串卷积)⎪⎪抽样特性⎨频域抽样:频域离散化(与频域冲激串相乘),时域周期化(与时域冲激串卷积)⎪⎩⎪⎪能量守恒(Parseval定理)⎩⎧⎧物理意义:时域周期化,频域离散化(频域抽样)⎪⎪⎪⎪两个关系⎧关系1:周期信号的傅氏级数与傅氏变换的关系⎨⎪⎪⎩关系2:单个脉冲信号的傅氏变换与周期脉冲信号的傅氏级数的关系⎪⎪⎪⎪⎧求单个脉冲信号的傅氏变换⎪⎪⎪⎪⎪三个步骤⎨求周期脉冲信号的傅氏级数系数(利用关系2)周期信号的傅氏变换⎨⎪⎪求周期脉冲信号的傅氏变换(利用关系1)⎩⎪⎪⎪⎪⎧虚指数信号:单个冲激(位于指数信号频率处)⎨⎪⎪⎪⎪⎪正弦:两个冲激(奇对称)⎪⎪典型周期信号的傅氏变换⎨⎪⎪⎪余弦:两个冲激(偶对称)⎪⎪⎪周期冲激序列(冲激串):时域与频域均为冲激串⎪⎩⎩⎪⎧物理意义:时域离散化(时域抽样),频域周期化⎪⎪抽样信号(时域)的傅氏变换⎪⎧信号重建条件:抽样频率不小于两倍带宽(奈奎斯特频率)⎨⎪⎪抽样定理⎨信号重建方法:低通滤波器⎪⎩⎩⎩宜宾学院物理与电子工程学院邓凯《信号与系统》知识点⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧单边(0- 系统)⎪⎪⎪定义⎨ (σ ⎪收敛域:0 , ∞ ⎩⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧冲激信号⎪⎪⎪典型信号的拉氏变换⎪阶跃信号⎨⎪⎪⎪指数信号⎪⎪⎩⎪⎪⎪⎧利用定义⎪⎪拉氏变换⎨计算⎨正变换⎨⎩利用性质⎪⎪⎪⎪⎧⎧分母因式分解(求极点)⎪⎪⎪⎪⎪⎪⎪步骤⎨部分分式展开⎪⎪⎪查表求原函数⎪⎪⎪⎩⎪逆变换(部分分式分解法)⎪⎪⎨⎧非真分式:化为真分式+多项式(长除法)⎪⎪⎪⎪⎪⎪特殊情况⎪有理分式与e- st0 相乘:⎨⎪⎪⎪⎪ - st0 ⎪⎪⎪⎩e 项不参与部分分式分解,求解时利用时移性质⎩⎩⎪⎪⎧线性⎪⎪⎧⎧时域压缩,s域扩展⎪⎪⎪尺度变换(不能反褶)⎨⎪⎪⎩时域扩展,s域压缩⎪⎪⎪⎪⎪⎪⎧时移(只能右移):时域平移,s域乘复指数函数⎪⎪⎪自变量变换⎨平移⎨⎪⎪⎩s域平移:s域平移,时域乘复指数函数⎪⎪⎪⎪一般情况(尺度变换+时移):u ( t 与f ( t 的自变量作相同变换⎪⎪⎪⎪⎪⎪⎩⎪性质⎪⎨⎪⎧⎧时域微分(应用:s域元件模型)⎪⎪⎪微积分⎪微分⎨s域微分⎪⎨⎩⎪⎪⎪⎪⎪⎩时域积分⎪⎪⎪初值(若F ( s 不是真分式,应化为真分式)⎪⎪⎪⎪终值(应用条件:sF ( s 在右半平面和虚轴(原点除外)上无极点)⎪⎪⎪时域卷积(因果信号卷积):时域卷积,s域相乘⎪卷积⎧⎪⎨⎪⎩s域卷积:s域卷积,时域相乘⎪⎩⎩宜宾学院物理与电子工程学院邓凯《信号与系统》知识点⎧⎪⎧⎧方法一:列时域微分方程,两边取拉氏变换⎪⎪列s域方程(代入初始状态)⎨⎪⎩方法二:直接由电路的s域模型建立代数方程⎪⎪⎪⎪拉氏变换法分析电路⎨求解s域方程得到s域响应⎪由拉氏逆变换得到时域响应(全响应)⎪⎪⎪⎪⎪⎩⎪⎧定义(零状态)⎪⎪⎪⎧方法一:H ( s = L ⎡ h ( t ⎤⎪⎪⎣⎦⎪⎪⎪⎪计算⎨方法二:微分方程两端取拉氏变换(零状态下),解出H ( s ⎪⎪⎪⎪⎪⎪方法三:利用s域模型直接列s域方程(零状态下),解出H ( s ⎩⎪⎪⎪⎪⎧⎪⎪⎪R ( s = E ( s H ( s s域分析⎨系统函数⎨应用:求系统零状态响应⎨ −1 ⎪r ( t = L ⎡ R ( s ⎤⎪⎪⎣⎦⎩⎪⎪⎧并联⎪⎪⎪⎪复合系统的H ( s ⎪级联⎨⎪⎪⎪反馈⎪⎪⎩⎪⎪ H ( s 的零极点(图)⎪⎪⎩⎪⎪⎧定义(BIBO)⎪⎪⎧时域:h ( t 绝对可积⎪⎪⎪⎪⎪⎪⎧稳定系统(H ( jω = H ( s )⎪⎪系统稳定性⎨s = jω ⎪⎪⎪⎪判断⎨s域(因果系统):H s 的极点位置⎪不稳定系统 ( ⎪⎨⎪⎪⎪⎪临界稳定系统⎪⎪⎪⎪⎪⎩⎪⎩⎩⎩宜宾学院物理与电子工程学院邓凯。

信号与系统期末考试知识点梳理

信号与系统期末考试知识点梳理

信号与系统知识点综合CT:连续信号DT:离散信号第一章信号与系统1、功率信号与能量信号性质:(1)能量有限信号的平均功率必为0;(2)非0功率信号的能量无限;(3)存在信号既不是能量信号也不是功率信号。

2、自变量变换(1)时移变换x(t)→x(t-t0),x[n]→x[n-n0](2)时间反转变换x(t)→x(-t),x[n]→x[-n](3)尺度变换x(t)→x(kt)3、CT、DT复指数信号为有理数4、单位脉冲、单位冲激、单位阶跃(1)DT信号关系(2)CT信号t=0时无定义关系(3)筛选性质(a)CT信号(b)DT信号5、系统性质(1)记忆系统y[n]=y[n-1]+x[n]无记忆系统y(t)=2x(t)(2)可逆系统y(t)=2x(t)不可逆系统y(t)=x2(t)(3)因果系统y(t)=2x(t)非因果系统y(t)=x(-t)(4)稳定系统y[n]=x[n]+x[n-1]不稳定系统(5)线性系统(零输入必定零输出)齐次性ax(t)→ay(t)可加性x1(t)+x2(t)→y1(t)+y2(t)(6)时不变系统x(t-t o)→y(t-t0)第二章1、DT卷积和,CT卷积积分2、图解法(1)换元;(2)反转平移;(3)相乘;(4)求和第三章CFS DFSCFS收敛条件:x(t)平方可积;Dirichlet条件。

存在“吉伯斯现象”。

DFS无收敛条件无吉伯斯现象1、三角函数表示第四、五章CTFT DTFT1、(1)CTFT(a)非周期收敛条件(充分非必要条件):x(t)平方可积;Dirichlet条件。

存在“吉伯斯现象”。

(b)周期(2)DTFT(a)非周期存在收敛条件不存在吉伯斯现象(b)周期2、对偶(1)CTFT、DFS 自身对偶CTFT的对偶性DFS的对偶性(2)DTFT与CFS 对偶3、时域、频域特性4、性质(1)时移与频移(a)CT信号(b)DT信号(2)时域微分(差分)和频域微分(求和)(a)CT信号(b)DT信号(3)时域扩展(内插)(a)CT信号(b)DT信号(4)共轭性质(a)CT信号(b)DT信号5、系统稳定系统才存在H(jw)y(t)=x(t)*h(t)Y(jw)=X(jw)H(jw)第六章时频特性1、模、相位2、无失真条件3、理想滤波器非因果,是物理不可能实现的。

信号与系统知识点整理

信号与系统知识点整理

信号与系统知识点整理第⼀章1.什么是信号?是信息的载体,即信息的表现形式。

通过信号传递和处理信息,传达某种物理现象(事件)特性的⼀个函数。

2.什么是系统?系统是由若⼲相互作⽤和相互依赖的事物组合⽽成的具有特定功能的整体。

3.信号作⽤于系统产⽣什么反应?系统依赖于信号来表现,⽽系统对信号有选择做出的反应。

4.通常把信号分为五种:连续信号与离散信号偶信号和奇信号周期信号与⾮周期信号确定信号与随机信号能量信号与功率信号5.连续信号:在所有的时刻或位置都有定义的信号。

6.离散信号:只在某些离散的时刻或位置才有定义的信号。

通常考虑⾃变量取等间隔的离散值的情况。

7.确定信号:任何时候都有确定值的信号。

8.随机信号:出现之前具有不确定性的信号。

可以看作若⼲信号的集合,信号集中每⼀个信号出现的可能性(概率)是相对确定的,但何时出现及出现的状态是不确定的。

9.能量信号的平均功率为零,功率信号的能量为⽆穷⼤。

因此信号只能在能量信号与功率信号间取其⼀。

10.⾃变量线性变换的顺序:先时间平移,后时间变换做缩放.注意:对离散信号做⾃变量线性变换会产⽣信息的丢失!11.系统对阶跃输⼊信号的响应反映了系统对突然变化的输⼊信号的快速响应能⼒。

(开关效应)12.单位冲激信号的物理图景:持续时间极短、幅度极⼤的实际信号的数学近似。

对于储能状态为零的系统,系统在单位冲激信号作⽤下产⽣的零状态响应,可揭⽰系统的有关特性。

例:测试电路的瞬态响应。

13.冲激偶:即单位冲激信号的⼀阶导数,包含⼀对冲激信号,⼀个位于t=0-处,强度正⽆穷⼤;另⼀个位于t=0+处,强度负⽆穷⼤。

要求:冲激偶作为对时间积分的被积函数中⼀个因⼦,其他因⼦在冲激偶出现处存在时间的连续导数.14.斜升信号:单位阶跃信号对时间的积分即为单位斜率的斜升信号。

15.系统具有六个⽅⾯的特性:1、稳定性2、记忆性3、因果性4、可逆性5、时变性与⾮时变性6、线性性16.对于任意有界的输⼊都只产⽣有界的输出的系统,称为有界输⼊有界输出(BIBO )意义下的稳定系统。

(完整版)信号与系统知识点整理

(完整版)信号与系统知识点整理

(完整版)信号与系统知识点整理第一章1.什么是信号?是信息的载体,即信息的表现形式。

通过信号传递和处理信息,传达某种物理现象(事件)特性的一个函数。

2.什么是系统?系统是由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。

3.信号作用于系统产生什么反应?系统依赖于信号来表现,而系统对信号有选择做出的反应。

4.通常把信号分为五种:连续信号与离散信号偶信号和奇信号周期信号与非周期信号确定信号与随机信号能量信号与功率信号5.连续信号:在所有的时刻或位置都有定义的信号。

6.离散信号:只在某些离散的时刻或位置才有定义的信号。

通常考虑自变量取等间隔的离散值的情况。

7.确定信号:任何时候都有确定值的信号。

8.随机信号:出现之前具有不确定性的信号。

可以看作若干信号的集合,信号集中每一个信号出现的可能性(概率)是相对确定的,但何时出现及出现的状态是不确定的。

9.能量信号的平均功率为零,功率信号的能量为无穷大。

因此信号只能在能量信号与功率信号间取其一。

10.自变量线性变换的顺序:先时间平移,后时间变换做缩放.注意:对离散信号做自变量线性变换会产生信息的丢失!11.系统对阶跃输入信号的响应反映了系统对突然变化的输入信号的快速响应能力。

(开关效应)12.单位冲激信号的物理图景:持续时间极短、幅度极大的实际信号的数学近似。

对于储能状态为零的系统,系统在单位冲激信号作用下产生的零状态响应,可揭示系统的有关特性。

例:测试电路的瞬态响应。

13.冲激偶:即单位冲激信号的一阶导数,包含一对冲激信号,一个位于t=0-处,强度正无穷大;另一个位于t=0+处,强度负无穷大。

要求:冲激偶作为对时间积分的被积函数中一个因子,其他因子在冲激偶出现处存在时间的连续导数.14.斜升信号:单位阶跃信号对时间的积分即为单位斜率的斜升信号。

15.系统具有六个方面的特性:1、稳定性2、记忆性3、因果性4、可逆性5、时变性与非时变性6、线性性16.对于任意有界的输入都只产生有界的输出的系统,称为有界输入有界输出(BIBO )意义下的稳定系统。

江南大学信号与系统知识点总结

江南大学信号与系统知识点总结

信号与系统重点题汇总一. 单项选择题1. 信号)26(t f -是( ) A .)2(t f 右移6 B .)2(t f 左移3 C .)-2(t f 右移3D .)-2(t f 左移62.积分)(t f =⎰∞++03)1()4(dt t t δ的结果为( )A. 3B. 0C. 4D. 5)(t u3.若)1()()(--=t u t u t X ,则)22(tX -的波形为( )4.用线性常系数微分方程∑∑===M K kk k NK k k k dt t x d b dt t y d a 00)()(表征的LTI 系统,其单位冲激响应h(t)中不包括)(t δ及其导数项的条件为( )A. N=0B. M>NC. M<ND. M=N5.已知)(t f = )()(nT t u t u --,n 为任意整数,则)(t f 的拉氏变换为( ) A.)1(1sT e s-- B.)1(1nsT e s--C.)1(1ns e s-- D.)1(1nT e s- 6.已知)(t f 的象函数为1s s+,则)(t f 为( ) A. t e --1 B. t e -+1 C. )()(t u e t t -+δD. )()(t u e t t --δ7.以线性常系数微分方程表示的连续时间系统的自由响应取决于( ) A.系统函数极点 B.系统函数零点 C.激励极点D.激励零点8.两个有限长序列的非零序列值的宽度分别为N 和M ,则两个序列卷积和所得的序列为( )A.宽度为N+M+1的有限宽度序列B.宽度为N+M-1的有限宽度序列C.宽度为N+M 的有限宽度序列D.不一定是有限宽度序列9.某一LTI 离散系统,其输入)(n x 和输出)(n y 满足如下线性常系数差分方程,)1(31)()1(21)(-+=--n x n x n y n y ,则系统函数)(z H 是( )A.11211311)(--+-=z z Z H B.z z Z H 211311)(-+=C.112131)(---+=z zZ HD.11211311)(---+=z z Z H 10.某一LTI 离散系统,它的系统函数111)(--=az z H ,如果该系统是稳定的,则( ) A. |a |≥1 B. |a |>1 C. |a |≤1D. |a |<111.计算)()3(t u t u ⋅-=( )A .)3()(--t u t uB .)(t uC .)3()(t u t u --D .)3(t u -12.已知f (t ),为求f (t 0-at )则下列运算正确的是(其中t 0,a 为正数)( ) A .f (-at )左移t 0 B .f (-at )右移at 0C .f (at )左移t 0D .f (at )右移at 013.已知f (t )=)(t ‘δ,则其频谱)(w F =( )A .ωj 1 B .)(1ωπδω+j C .ωjD .)(21ωπδω+j 14.信号f (t )的带宽为Δω,则信号f (2t -1)的带宽为( ) A .2Δω B .Δω-1 C .Δω/2D .(Δω-1)/215.如下图所示的信号,其单边拉普拉斯变换分别为F 1(s ), F 2(s ), F 3(s ),则( ) A .F 1(s )= F 2(s )≠F 3(s ) B .F 1(s )≠F 2(s )≠F 3(s ) C .F 1(s )≠F 2(s )= F 3(s )D .F 1(s ) = F 2(s )= F 3(s )16.某系统的系统函数为)(s H ,若同时存在频响函数)(jw H ,则该系统必须满足条件( ) A .时不变系统 B .因果系统 C .稳定系统D .线性系统17.已知f (t )的拉普拉斯变换为)(s F ,则dtt df )(的拉普拉斯变换为( ) A .sF (s ) B .sF (s )-f (0-)C .sF (s )+f (0-)D .⎰-∞-+0)(1)(ττd f s s sF18.已知某离散序列⎩⎨⎧=≤=其它 n N n n f ,0||,1)(,该序列还可以表述为( )A .)()()(N n u N n u n f --+=B .)()()(N n u N n u n f ---+-=C .)1()()(---+=N n u N n u n fD .)1()()(----+-=N n u N n u n f19.已知某离散系统的系统模拟框图如右下图示,则该系统的差分方程为( ) A .)()1(31)(n f n y n y =-+B .)()1(31)(n f n y n y =--C .)()(31)1(n f n y n y =-+D .)()(31)1(n f n y n y =++ 20.若f (n )的Z 变换为F (z ),则)(n f a n 的Z 变换为( ) A .)(az F B .)(z aFC .)(1z F a D .⎪⎭⎫ ⎝⎛a z F 21.积分式dt t )3(5)t (2t 552--+⎰-δ等于( )A .3B .0C .16D .822.已知信号)(t f 的波形如右下图所示,则)(t f )的表达式为( ) A .)()1(t u t + B .)()1()1(t u t t -+-δC .)()1(t u t -D .)()1()1(t u t t +++δ23.某系统的输入为)(t f ,输出为)(t y ,且)(t y =)3(t f ,则该系统是( ) A .线性非时变系统 B .线性时变系统 C .非线性非时变系统D .非线性时变系统24.)(t f =)()1(t u t -的拉氏变换)(s F 为( )A .2s e s-B .21ss+ C .2-s1)e (s s +D .21s s- 25.信号)(t f 的波形如右下图所示,则)12(+-t f 的波形是( ) 26.已知)(t f 的频谱为F(j ω),则)42(-t f 的频谱为( ) A .-21F (2jw)e -j2ω B .21F (2jw)e -j2ω C .21F (2jw )e ω-21jD .2F (jw 2)e j2ω27.已知)(z F =2-z z,则其原函数)(n f 为( ) A .)(2n u n B .)(2n u n -- C .)1(2---n u nD .无法确定28.周期信号)(t f 如右下图所示,其傅里叶级数系数的特点是( )A .只有正弦项B .只有余弦项C .既有正弦项,又有直流项D .既有余弦项,又有直流项29.周期信号)(t f 如右下图所示,其直流分量等于( ) A .0B .4C .2D .630.若矩形脉冲信号的宽度变窄,则它的有效频带宽度( ) A .变宽 B .变窄 C .不变 D .无法确定二. 填空题1.一线性时不变系统,初始状态为零,当激励为)(t u 时,响应为e -2t )(t u ,试求当激励为)(t δ时,响应为___________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

信号与系统重点题汇总一. 单项选择题1. 信号是( ))26(t f -A .右移6B .左移3)2(t f )2(t f C .右移3D .左移6)-2(t f )-2(t f 2.积分=的结果为( ))(t f ⎰∞++03)1()4(dt t t δA. 3 B. 0C. 4D. 5)(t u 3.若,则的波形为( ))1()()(--=t u t u t X )22(tX -4.用线性常系数微分方程表征的LTI 系统,其单位冲∑∑===M K kk k NK k k k dt t x d b dt t y d a 00)()(激响应h(t)中不包括及其导数项的条件为( ))(t δA. N=0 B. M>N C. M<ND. M=N5.已知= ,n 为任意整数,则的拉氏变换为( ))(t f )()(nT t u t u --)(t f A. B. )1(1sT e s--)1(1nsT e s--C. D. )1(1ns e s --)1(1nT e s-6.已知的象函数为,则为( ))(t f 1s s+)(t f A. B. te --1te -+1C. D. )()(t u e t t -+δ)()(t u e t t --δ7.以线性常系数微分方程表示的连续时间系统的自由响应取决于( )A.系统函数极点 B.系统函数零点C.激励极点D.激励零点8.两个有限长序列的非零序列值的宽度分别为N 和M ,则两个序列卷积和所得的序列为( )A.宽度为N+M+1的有限宽度序列B.宽度为N+M-1的有限宽度序列C.宽度为N+M 的有限宽度序列D.不一定是有限宽度序列9.某一LTI 离散系统,其输入和输出满足如下线性常系数差分方程,)(n x )(n y ,则系统函数是( ))1(31)()1(21)(-+=--n x n x n y n y )(z H A. B.1121311)(--+-=z z Z H z z Z H 21311)(-+=C. D.112131)(---+=z z Z H 1121311)(---+=z z Z H 10.某一LTI 离散系统,它的系统函数,如果该系统是稳定的,111)(--=azz H 则( )A. ||≥1 B. ||>1a a C. ||≤1D. ||<1a a 11.计算=( ))()3(t u t u ⋅-A . B .)3()(--t u t u )(t u C .D .)3()(t u t u --)3(t u -12.已知f(t ),为求f (t 0-at )则下列运算正确的是(其中t 0,a 为正数)( )A .f (-at )左移t 0B .f (-at )右移at 0C .f (at )左移t 0D .f (at )右移at 013.已知f (t )=,则其频谱 =( ))(t ‘δ)(w F A .B .ωj 1)(1ωπδω+j C .D .ωj )(21ωπδω+j 14.信号f (t )的带宽为Δω,则信号f (2t -1)的带宽为( )A .2ΔωB .Δω-1C .Δω/2D .(Δω-1)/215.如下图所示的信号,其单边拉普拉斯变换分别为F 1(s ), F 2(s ), F 3(s ),则( )A .F 1(s )= F 2(s )≠F 3(s )B .F 1(s )≠F 2(s )≠F 3(s )C .F 1(s )≠F 2(s )= F 3(s )D .F 1(s ) = F 2(s )= F 3(s )16.某系统的系统函数为,若同时存在频响函数,则该系统必须满)(s H )(jw H 足条件( )A .时不变系统B .因果系统C .稳定系统D .线性系统17.已知f (t )的拉普拉斯变换为,则的拉普拉斯变换为( ))(s F dtt df )(A .sF (s )B .sF (s )-f (0-)C .sF (s )+f (0-)D .⎰-∞-+0)(1)(ττd f ss sF 18.已知某离散序列,该序列还可以表述为( )⎩⎨⎧=≤=其它 n N n n f ,0||,1)(A .B .)()()(N n u N n u n f --+=)()()(N n u N n u n f ---+-=C .D .)1()()(---+=N n u N n u n f )1()()(----+-=N n u N n u n f 19.已知某离散系统的系统模拟框图如右下图示,则该系统的差分方程为( )A .)()1(31)(n f n y n y =-+B .)()1(31)(n f n y n y =--C .)()(31)1(n f n y n y =-+D .)()(31)1(n f n y n y =++20.若f (n )的Z 变换为F (z ),则的Z 变换为( ))(n f a n A .B .)(az F )(z aF C .D .)(1z F a ⎪⎭⎫ ⎝⎛a z F 21.积分式等于( )dt t )3(5)t (2t 552--+⎰-δA .3B .0C .16D .822.已知信号的波形如右下图所示,则)的表达式为( ))(t f )(t f A . )()1(t u t +B .)()1()1(t u t t -+-δC .)()1(t u t -D .)()1()1(t u t t +++δ23.某系统的输入为,输出为,且=,则该系统是( )(t f )(t y )(t y )3(t f )A .线性非时变系统B .线性时变系统C .非线性非时变系统D .非线性时变系统24.=的拉氏变换为( ))(t f )()1(t u t -)(s F A .B .2s e s-21s s +C .D .2-s1)e (s s +21s s -25.信号的波形如右下图所示,则的波形是( ))(t f )12(+-t f26.已知的频谱为F(j ),则的频谱为( ))(t f ω)42(-t f A .-F ()e -j2ωB .F ()e -j2ω212jw212jwC .F ()eD .2F ()e j2ω212jw ω-21j jw 227.已知=,则其原函数为( ))(z F 2-z z)(n f A .B .)(2n u n )(2n u n --C .D .无法确定)1(2---n u n 28.周期信号如右下图所示,其傅里叶级数系数的特点是( ))(t fA .只有正弦项B .只有余弦项C .既有正弦项,又有直流项D .既有余弦项,又有直流项29.周期信号如右下图所示,其直流分量等于( ))(t fA .0B .4C .2D .630.若矩形脉冲信号的宽度变窄,则它的有效频带宽度( )A .变宽B .变窄C .不变D .无法确定二. 填空题1.一线性时不变系统,初始状态为零,当激励为时,响应为e -2t ,试求)(t u )(t u 当激励为时,响应为___________。

)(t δ2.傅立叶反变换为___________。

)(w δ3. 的傅立叶变换为___________。

)(cos 02t w 4.一线性时不变系统,输入信号为e -t ,系统的零状态响应为[e -t -e -2t ] ,)(t u )(t u 则系统的系统函数=___________。

)(w H 5.已知系统1和系统2的系统函数分别为H 1(s)和H 2(s),则系统1和系统2在串联后,再与系统1并联,组成的复合系统的系统函数为___________。

6.要使系统H(s)=稳定,则应满足___________(为实数)。

as -1a a 7.已知某线性时不变离散系统的单位样值响应为,则该系统的单位阶跃响)(n h 应g(n)=___________。

8.序列的Z 变换为___________。

)()3(n u n -9.的原函数 =___________。

2||237)(2>+-=z z z zz X )(n x 10.离散系统函数H(Z)的极点均在单位圆内,则该系统必是___________的因果系统。

11.线性时不变连续时间系统的数学模型是线性常系数_____________方程。

12._____________。

=-+--)1()22(23t t t t δ13.某连续系统的输入信号为,冲激响应为h (t ),则其零状态响应为)(t f _____________。

14.某连续时间信号f (t ),其频谱密度函数的定义为=_____________。

)(w F 15.已知,其中a 为常数,则=_____________。

)()()(2t u e t a t f t -++=δ)(w F 16.连续时间系统的基本分析方法有:时域分析法,_____________分析法和_____________分析法。

17.已知某系统的冲激响应为,(其中a 为正数),则该系统的)()(t u e t h at -= =_____________,=_____________。

)(w H )(s H 18.若描述某线性时不变连续时间系统的微分方程为,则该系统的系统函数)(3)()(2)(3)(t f t f t y t y t y +'=+'+''=_____________。

)(s H 19.离散系统稳定的Z 域充要条件是系统函数H (z )的所有极点位于Z 平面的__________。

20.信号的Z 变换为_____________。

)(n u a n 21.周期矩形脉冲信号的周期越大,则其频谱的谱线间隔越__________________。

22.已知系统的激励=,单位序列响应=-2,)(n f )(n u )(n h )1(-n δ)4(-n δ则系统的零状态响应=_______________________。

)(n y f 23.若某连续时间系统稳定,则其系统函数的极点一定在S 平面的)(s H __________________。

24.已知=2n ,令=*,则当n =3时,= )(n f )(n u )(n y )(n f )(n δ)(n y ____________________。

25.已知某离散信号的单边Z 变换为=,,则其逆变)(z F 3)2)(z (z z 2z 2+-+()3|z |>换= _______________________。

)(n f 26.连续信号=的频谱=_______________________。

)(t f tt4sin )(jw F 27.已知=[-],则= _______________________。

相关文档
最新文档