六年级下册数学竞赛试题-第十一节图形提高四A班-全国通用
数学竞赛试卷(试题)--2024年六年级下册数学含参考答案
数学竞赛试卷(人教版六年级下册)满分100分 时间90分钟题号 一 二 三 四 总分 等级 得分一、填空题(每题2分,共20分)1.47= ( )2222=44+221177+( )=00.88( )= 4%:2.5千米是8千米的_______%,8千米比5千米多_______%.3.1时15分= 时;2立方米40立方分米= 立方米。
4.如果一个圆的半径是r 厘米,且5:r=r:6,这个圆的面积是( )平方厘米。
5.设A 和B 都是自然数,并且满足A 5+B 9=2345,那么A+B= 。
6.下左图中阴影三角形与空白三角形关于虚线对称。
根据图中信息,请用数对表示出点A 、B 的位置。
A ( , ),B ( , )。
7.如右上图,一把纸扇完全打开后是一个扇形(不考虑扇钉处的影响),外侧两竹条夹角为120°,竹条的长为30cm,贴纸部分的宽为18cm 。
(1)记该扇形的面积为S,没贴纸部分的面积为M ,则M S=_______。
(2)扇形贴纸部分的面积约为_______cm ²。
(结果保留整数)8.已知两数的差与这两数的商都等于9,那么,这两个数的和是_______。
9.一只船在河里航行,顺流而行时航速为每小时20千米.已知此船顺水航行3小时和逆水航行5小时所行的路程相等,问船速和水速分别为 , 。
10.如图所示,给出了三幅所代表的数值,根据规律,第四幅图所代表的数值是( )。
二、选择题(每题2分,共12分)1.有一根木头要锯成8段,每锯一次要2分钟,全部锯完需要( )分钟。
A.10B.12C.14D.162.男生人数比女生人数少20%,那么女生人数与男生人数的比是 ( )A.1:5B.5:1C.5:4D.4:53.为了清楚地反映出某地一周来气温的变化情况,应选用( )统计图。
A.条形B.折线C.扇形4.桌面上有一串手链,手链上均匀分布着12个小珠子,其中三个小珠子是蓝色的,其他的小珠子是白色的(如图所示)。
小学数学六年级下册竞赛试题带答案ab卷
小学数学六年级下册竞赛试题一.(共8题,共16分)1.一袋上好佳薯片的外包装上写着50g±2g,这袋薯片最多或最少重()g。
A.50,48B.51,49C.52,48D.49,522.两个有理数的积是负数,和也是负数,那么这两个数()。
A.都是负数B.互为相反数C.其中绝对值大的数是正数,另一个是负数D.其中绝对值大的数是负数,另一个是正数3.下列说法正确的是()。
A.两个不同素数的和一定是合数。
B.9℃与-1℃相差8℃。
C.假分数的倒数一定小于1。
D.一个三角形的三条边的长度都是整厘米数,其中两条边长度是3厘米和5厘米,那么第三条边的长度有5种可能。
4.下列说法正确的是()。
A.0既不是奇数,也不是偶数B.相关联的两种量,不成正比例关系就成反比例关系C.半径为2cm的圆,面积和周长不相等D.海拔500m与海拔-155m相差345m5.0.25∶2与下面()不能组成比例。
A.2.5∶20B.2∶C.0.05∶0.4D.1∶86.下面说法中正确的有()。
①安阳某天的气温是-3℃到9℃,这天的温差是6℃。
②连续3个自然数的和一定是3的倍数。
③某学校学生栽了101棵树,全部成活,成活率是101%。
④如果甲数比乙数多20%,那么甲数与乙数的比是6:5。
A.①②B.①③C.②④D.①②④7.甲地的海拔高度为5m,乙地比甲地低9m,乙地的海拔高度()。
A.-9mB.-4mC.4mD.9m8.把长和宽分别为8厘米和6厘米的长方形的长和宽按1:2的比例缩小,所得到的长和宽分别为()。
A.16、12B.12、16C.4、3D.3、4二.(共8题,共16分)1.今年的产量比去年增加了15%,今年的产量就相当于去年的115%。
()2.一个因数不变,积与另一个因数成正比例。
()3.比例尺的前项一定是1。
()4.订阅《中国少年报》的份数和总钱数成正比例。
()5.生产的总时间一定,生产零件的个数和生产一个零件所用的时间成正比。
小学数学六年级下册竞赛试题附完整答案(有一套)
小学数学六年级下册竞赛试题一.(共8题,共16分)1.一种饼干包装袋上标着:净重(200±5克),表示这种饼干标准的质量是200克,实际每袋最少不少于()克。
A.205B.200C.195D.2102.如图所示,圆锥的高是圆柱高的,底面积相等,圆柱的体积是圆锥体积的()。
A.20倍B.C.8倍D.27倍3.下面的说法正确的是()。
A.一个数的倒数一定比这个数小B.大圆的圆周率比小圆的圆周率大C.用110粒种子做发芽实验,全部发芽,这些种子的发芽率是110%D.比的前项和后项同时乘或除以相同的数(0除外),比值不变4.下面说法中正确的有()。
①安阳某天的气温是-3℃到9℃,这天的温差是6℃。
②连续3个自然数的和一定是3的倍数。
③某学校学生栽了101棵树,全部成活,成活率是101%。
④如果甲数比乙数多20%,那么甲数与乙数的比是6:5。
A.①②B.①③C.②④D.①②④5.-7,+9, 0,-12,-100,+82这6个数中,有()个负数。
A.3B.4C.5D.66.下列形体不论从哪个方向切,切面形状不可能是长方形的是()。
A.长方体B.圆锥C.圆柱D.正方体7.M为数轴上表示-1的点,将M沿着数轴向右平移3个单位到N点,则N点所表示的数为( )。
A.3B.2C.-4D.2或-48.低于正常水位0.11米记为-0.11,高于正常水位0.04米记作()。
A.+0.04B.-0.04C.+0.15D.-0.14二.(共8题,共16分)1.因为比小,所以的分数单位比的分数单位小。
()2.大米的总量一定,吃掉的和剩下的成反比例。
()3.一个比例的两个内项分别是25和0.4,它的两个外项的积一定是10。
()4.一根电线,用去的米数与剩下的米数成反比例。
()5.铺地面积一定,方砖面积和所需块数成反比例。
()6.在比例里,两个内项的积等于两个外项的和。
()7.一个圆柱的侧面展开图是正方形,它的底面直径与高相等。
六年级下册奥数试题-几何专题 全国通用(含答案)
小学奥数几何专题1、(★★)如图,已知四边形ABCD 中,AB=13,BC=3,CD=4,DA=12,并且BD 与AD 垂直,则四边形的面积等于多少?[思 路]:显然四边形ABCD 的面积将由三角形ABD 与三角形BCD 的面积求和得到.三角形ABD 是直角三角形,底AD 已知,高BD 是未知的,但可以通过勾股定理求出,进而可以判定三角形BCD 的形状,然后求其面积.这样看来,BD 的长度是求解本题的关键.解:由于BD 垂直于AD ,所以三角形ABD 是直角三角形.而AB=13,DA=12,由勾股定理,BD 2=AB 2-AD 2=132—122=25=52,所以BD=5.三角形BCD 中BD=5,BC=3,CD=4,又32十42=52,故三角形BCD 是以BD 为斜边的直角三角形,BC 与CD 垂直.那么:ABCD S 四边形=ABD S ∆+BCD S∆=12×5÷2+4×3÷2=36.. 即四边形ABCD 的面积是36. 2、(★★)如图四边形土地的总面积是48平方米,三条线把它分成了4个小三角形,其中2个小三角形的面积分别是7平方米和9平方米.那么最大的一个三角形的面积是________平方米;[分析]:剩下两个三角形的面积和是 48-7-9=32 ,是右侧两个三角形面积和的2 倍,故左侧三角形面积是右侧对应三角形面积的2倍,最大三角形面积是 9×2=18。
3.(★★)将下图中的三角形纸片沿虚线折叠得到右图,其中的粗实线图形面积与原三角形面积之比为2:3。
已知右图中3个阴影的三角形面积之和为1,那么重叠部分的面积为多少?[思 路]:小升初中常把分数,百分数,比例问题处理成份数问题,这个思想一定要养成。
解:粗线面积:黄面积=2:3绿色面积是折叠后的重叠部分,减少的部分就是因为重叠才变少的,这样可以设总共3份,后来粗线变2份,减少的绿色部分为1份,所以阴影部分为2-1=1份,7 94、(★★)求下图中阴影部分的面积:【解】如左下图所示,将左下角的阴影部分分为两部分,然后按照右下图所示,将这两部分分别拼补在阴影位置。
六年级下册数学竞赛试题-第十二节 图形提高(五)(A班) 全国通用(无答案)
【知识要点】等底等高的两个平行四边形的面积相等;等底等高的两个三角形面积相等;两底之和相等,且高相等的两个梯形面积相等;等底等高的平行四边形面积是三角形面积的2倍。
在解题中,若能灵活运用这些知识,可使解题妙趣横生,简单易行。
【精典习题】1.如图,直角梯形ABCD 的上底和高相等,正方形DEFG 的边长 等于6厘米,阴影部分的面积是多少平方厘米?2.右图中,AFCD 是一个长方形,AB=10厘米,AD=4厘米,E 、F 分别是BC 、AD 的中点,G 是线段CD 上任意一点。
阴影部分的面积是 多少平方厘米?DGCE B面积是10平方厘米,求OD 长多少厘米?4.如图,长方形ABCD 中,E ,F ,G 分别是BC ,CD ,DA 边上的中 点,已知长方形ABCD 的面积是30平方厘米,求阴影部分面积。
5.如下图所示,有一个宽4cm ,长6cm 的长方形ABCD 。
在各个 边上取点E 、F 、G 、H ,在连结H 、F 的线上取点P ,与点E 与点G 相连。
当四边形AEPH 的面积是5cm 2时,求四边形PFCG 的面积。
ABG边的中点,求阴影部分的面积。
7.如图,△ABC 是一个等边三角形,D 是AB 的中点,三角形BDE 的面积是5平方厘米,求△ABC 的面积。
8.如图,已知△ABC 的面积是36平方厘米,是平行四边行CDEF 面积的2倍。
求阴影部分三角形的面积。
ABEABC平方厘米,△ABC 的面积是多少平方厘米?10.图中三角形ABC 的面积是180平方厘米,D 是BC 的中点, AD 的长是AE 长的3倍, EF 的长是BF 长的3倍.那么三角形AEF 的面积是多少平方厘米?11.如图,把四边形ABCD 的各边都延长2倍,得到一个新四边形 EFGH 如果ABCD 的面积是5平方厘米,则EFGH 的面积是多少平方厘米?A时高是14厘米;以CD 为底时高是16厘米.求平行四边形 ABCD 的面积.13.如图,在△ABC 中,AD 垂直于BC ,CE 垂直于AB , AD=8厘米,CE=7厘米,AB +BC=21厘米,求△ABC 的面积。
2024年新人教版六年级数学下册《教材练习11练习十一》教学课件
答:8小时能够返回原地。
11.小芳的姐姐在上大学,妈妈每个月(按30天算) 按每天40元的标准给她一笔生活费。 (1)如果姐姐每天花30元,一个月的生活费够花多 少天?
解:设一个月的生活费够花x天。 30x=30×40 x=40
答:一个月的生活费够花40天。
11.小芳的姐姐在上大学,妈妈每个月(按30天算) 按每天40元的标准给她一笔生活费。 (2)如果一个月的生活费姐姐花了32天,平均每天 花多少钱?
解:设平均每天花x元。
32x=30×40 x=37.5
答:平均每天花37.5元。
12.小东家的客厅是正方形的,用边长0.6m的方砖铺地, 正好需要100块。如果改用边长0.5m的方砖铺地,需要 多少块?
义务教育(2024年)新人教版 六年级数学下册 教材练习 【答案解析】 单元整体课件
义务教育人教版六年级下册
第4单元 比 例 练习十一
1. 下面哪个图形是图形A按2∶1放大后得到的图形?
A
B
C
D
2. 自己选定比画图形,把三角形A放大后得到三角形B, 再把三角形B缩小后得到三角形C。
A C
B
(答案不唯一)
9.用收割机收割小麦。如果每小时收割0.3公顷,40 小时能完成任务。
(3)你能提出其他数学问题并解答吗?
如果每小时收割0.6公顷,需要多少小时收割完?
解:设需要x小时收割完。 0.6x=0.3×40 x=20
答:需要20小时收割完。
(答案不唯一)
10.一辆运货汽车从甲地到乙地,平均每小时行驶 72km,10小时到达。回来时空车原路返回,每小 时可行驶90km,多长时间能够返回甲地?
小学六年级下学期数学竞赛试题(含答案)图文百度文库
小学六年级下学期数学竞赛试题(含答案)图文百度文库一、拓展提优试题1.A、B、C、D四个箱子中分别装有一些小球,现将A箱中的部分小球按如下要求转移到其他三个箱子中:该箱中原有几个小球,就再放入几个小球,此后,按照同样的方法依次把B、C、D箱中的小球转移到其他箱子中,此时,四个箱子都各有16个小球,那么开始时装有小球最多的是箱,其中装有小球个.2.宏富超市购进一批食盐,第一个月售出这批盐的40%,第二个月又售出这批盐的420袋,这时已售出的和剩下食盐的数量比是3:1,则宏富超市购进的这批食盐有袋.3.有两辆火车,车长分别是125米和115米,车速分别是22米/秒和18米/秒,两车相向行驶,从两车车头相遇到车尾分开需要秒.4.老师让小明在400米的环形跑道上按照如下规律插上一些旗子做标记:从起点开始,沿着跑道每前进90米就插上一面旗子,直到下一个90米的地方已经插有旗子为止,则小明要准备面旗子.5.一个两位数除以一位数,所得的商若是最小的两位数,那么被除数最大是.6.一列快车从甲地开往乙地需要5小时,一列慢车从乙地开往甲地所需时间比快车多,两车同时从甲乙两地相对开出2小时后,慢车停止前进,快车继续行驶40千米后恰与慢车相遇,则甲乙两地相距千米.7.图中的三角形的个数是.8.如图,已知AB=40cm,图中的曲线是由半径不同的三种半圆弧平滑连接而成,那么阴影部分的面积是cm2.(π取3.14)9.如图,设定E、F分别是△ABC的边AB、AC上的点,线段CE,BF交于点D,若△CDF,△BCD,△BDE的面积分别为3,7,7,则四边形AEDF的面积是.10.被11除余7,被7除余5,并且不大于200的所有自然数的和是.11.在救灾捐款中,某公司有的人各捐200元,有的人各捐100元,其余人各捐50元.该公司人均捐款元.12.如图,圆P的直径OA是圆O的半径,OA⊥BC,OA=10,则阴影部分的面积是.(π取3)13.用1024个棱长是1的小正方体组成体积是1024的一个长方体.将这个长方体的六个面都涂上颜色,则六个面都没有涂色的小正方体最多有个.14.小红买1支钢笔和3个笔记本共用了36.45元,其中每个笔记本售价的与每支钢笔的售价相等,则1支钢笔的售价是元.15.小丽做一份希望杯练习题,第一小时做完了全部的,第二小时做完了余下的,第三小时做完了余下的,这时,余下24道题没有做,则这份练习题共有道.【参考答案】一、拓展提优试题1.解:根据最后四个箱子都各有16个小球,所以小球总数为16×4=64个,最后一次分配达到的效果是,从D中拿出一些小球,使A、B、C中的小球数翻倍,则最后一次分配前,A、B、C中各有小球16÷2=8个,由于小球的转移不改变总数,所以最后一次分配前,D中有小球64﹣8﹣8﹣8=40个;于是得到D被分配前的情况:A8,B8,C8,D40;倒数第二次分配达到的效果是,从C中拿出一些小球,使A、B、D中的小球数翻倍,则倒数第二次分配前,A、B中各有小球8÷2=4个,D中有40÷2=20个,总数不变,所以最后一次分配前,C中有小球64﹣4﹣4﹣20=36个,于是得到C被分配前的情况:A4,B4,C36,D20,同样的道理,在B被分配前,A中有小球4÷2=2个,C中有小球36÷2=18个,D中有小球20÷2=10个,B中有小球64﹣2﹣18﹣10=34个,即B被分配前的情况:A2,B34,C18,D10;再推导一次,在A被分配前,B中有小球34÷2=17个,C中有小球18÷2=9个,D中有小球10÷2=5个,B中有小球64﹣17﹣9﹣5=33个,即A被分配前的情况:A33,B17,C9,D5;而A被分配前的情况,就是一开始的情况,所以一开始,A箱子装有最多的小球,数量为33个;答:开始时装有小球最多的是A箱,其中装有33小球个;故答案为:A,33.2.解:420÷(1﹣40%﹣)=420÷0.35=1200(袋)答:宏富超市购进的这批食盐有1200袋.故答案为:1200.3.解:(125+115)÷(22+18)=240÷40=6(秒);答:从两车头相遇到车尾分开需要6秒钟.故答案为:6.4.解:400和90的最小公倍数是3600,则3600÷90=40(面).答:小明要准备40面旗子.故答案为:40.5.解:商是10,除数最大是9,余数最大是8,9×10+8=98;被除数最大是98.故答案为:98.6.解:慢车行完全程需要:5×(1+),=5×,=6(小时);全程为:40÷[1﹣(+)×2],=40÷[1﹣],=40÷,=40×,=150(千米);答:甲乙两地相距150千米.故答案为:150.7.解:根据题干分析可得:10+10+10+5=35(个),答:一共有35个三角形.故答案为:35.8.解:40÷2=20(厘米)20÷2=10(厘米)3.14×202﹣3.14×102÷2×4=1256﹣628=628(平方厘米)答:阴影部分的面积是628平方厘米.故答案为:628.9.解:连接AD,因△CDF和△BCD的高相等,所以FD:DB=3:7,所△AFD和△ABD的面积比也是3:7,即可把△AFD的面积看作是3份,△ABD的面积看作是7份,S△BCD=7,S△BDE=7所以CD=DE,S△ACD=S△ADE,S△ACD+S△BDE=S△ABD,S△ACD+S△BDE=7份,S△AFD+S△CDF+S△BDE=7份,3份+3+7=7份,则1份=2.5,S四边形AEDF=10份﹣7=10×2.5﹣7=25﹣7=18答:四边形AEDF的面积是18.故答案为:18.10.解:不大于200的所有自然数被11除余7的数是:18,29,40,62,73,84,95,106,117,128,139,150,161,172,183,194;不大于200的所有自然数被7除余5的是:12,19,26,33,40,47,54,61,68,75…;同时被11除余7,被7除余5的最小数是40,[11,7]=77,依次是117、194;满足条件不大于200的所有自然数的和是:40+117+194=351.故答案为:351.11.解:捐50元人数的分率为:1﹣=,(200×+100×+50×)÷1=(20+75+7.5)÷1=102.5(元)答:该公司人均捐款102.5元.故答案为:102.5.12.解:3×102÷2﹣3×(10÷2)2=3×100÷2﹣3×25=150﹣75=75答:阴影部分的面积是75.故答案为:75.13.解:因为1024=210=8×8×16(8﹣2)×(8﹣2)×(16﹣2)=6×6×14=504答:六个面都没有涂色的小正方体最多有504个.故答案为:504.14.解:36.45÷(3+)=36.45=5.45.4×=20.25(元)答:1支钢笔的售价是 20.25元.故答案为:20.25.15.解:24÷(1﹣)÷(1﹣)÷(1﹣)=24÷=60(道)答:这份练习题共有 60道.故答案为:60.。
全国六年级小学数学竞赛测试带答案解析
全国六年级小学数学竞赛测试班级:___________ 姓名:___________ 分数:___________一、计算题1.用一条线段把一个长方形平均分割成两块,一共有多少种不同的分割法?2.用“四连块”拼成一个正方形,按编号画入右边图中.3.有6个完全相同的,你能将它们拼成下面的形状吗?二、解答题1.把任意一个三角形分成面积相等的4个小三角形,有许多种分法.请你画出4种不同的分法.2.把任意一个三角形分成面积相等的2个小三角形,有许多种分法.请你画出3种不同的分法.3.怎样把一个等边三角形分别分成8块和9块形状、大小都一样的三角形.4.下图是一个直角梯形,请你画一条线段,把它分成两个形状相同并且面积相等的四边形.5.在一块长方形的地里有一正方形的水池(如下图).试画一条直线把除开水池外的这块地平分成两块.6.把下图四等分,要求剪成的每个小图形形状、大小都一样.除了剪正方形外,你还有别的方法吗?7.下图是一个的方格纸,请用四种不同的方法将它分割成完全相同的两部分,但要保持每个小方格的完整.8.右图是一个的方格纸,请用六种不同的方法将它分割成完全相同的两部分,但要保持每个小方格的完整.9.下图是一个被挖去了为总面积四分之一小正方形的大正方形,请你将它分成大小形状完全一样的四部分.10.下图是一个被挖去了为总面积四分之一小正方形的大正方形,请你将它分成大小形状完全一样的两部分.如果分三部分呢?11.图中是由三个正三角形组成的梯形.你能把它分割成4个形状相同、面积相等的梯形吗?12.下图是由五个正方形组成的图形.把它分成形状、大小都相同的四个图形,应怎样分?13.已知左下图是由同样大小的5个正方形组成的.试将图形分割成4块形状、大小都一样的图形.14.把右图剪成形状、大小相等的8个小图形,怎么剪?作出分出的小图形.15.下图是由18个小正方形组成的图形,请你把它分成6个完全相同的图形.16.一个正三角形形状的土地上有四棵大树(如下图所示),现要把这块正三角形的土地分成和它形状相同的四小块,并且要求每块地中都要有一棵大树.应怎样分?17.将下图分割成大小、形状相同的三块,使每一小块中都含有一个○.18.请把下面这个长方形沿方格线剪成形状、大小都相同的4块,使每一块内都含有“奥数读本”这四个字中的一个,该怎么剪?19.请把下面的图形分成形状、大小都相同的块,使每一块里面都有“春蕾杯赛”个字.20.学习与思考对小学生的发展是很重要的,学习改变命运,思考成就未来,请你将下图分成形状和大小都相同的四个图形,并且使其中每个图形都含有“学习思考”这四个字.应怎样分?21.如下图所示,请将这个正方形分切成两块,使得两块的形状、大小都相同,并且每一块都含有学而思奥数五个字.22.如下图所示的正方形是由36个小正方格组成的.如图那样放着4颗黑子,4颗白子,现在要把它切割成形状、大小都相同的四块,并使每一块中都有一颗黑子和一颗白子.试问如何切割?23.如图,甲、乙是两个大小一样的正方形.要求把每一个正方形分成四块,两个正方形共分为八块,使每块的大小和形状都相同,而且都带一个○.甲乙24.正三角形的面积是1平方米,将三条边分别向两端各延长一倍,连结六个端点得到一个六边形(如图),求六边形的面积.25.正六边形的面积是1平方米,将六条边分别向两端各延长一倍,交于六个点,组成如下图的图形,求这个图形的面积.26.如图,它是由个边长为厘米的小正方形组成的.⑴请在原图中沿正方形的边线,把它划分为个大小形状完全相同的图形,分割线用笔描粗.⑵分割后每个小图形的周长是厘米.⑶分割后个小图形的周长总和与原来大图形的周长相差厘米.27.如何把下图中的三个图形分割成两个相同的部分(除了沿正方形的边进行分割外,还可沿正方形的对角线进行分割).28.如图,将一个等边三角形分割成互相不重叠的23个较小的等边三角形(这些较小的等边三角形的大小不一定都相同),请在图中画出分割的结果.29.如图,将一个正方形分割成互相不重叠的21个小正方形,这些小正方形的大小不一定相同,请画图表示.30.用两块大小一样的等腰直角三角形能拼成几种常见的图形?31.用3个等腰直角三角形拼图,要求边与边完全重合,能拼出几种图形?32.用同样大小的四块等腰直角三角板,能否拼出一个三角形、一个正方形、一个长方形、一个梯形、一个平行四边形五种图形?若能,画出示意图.33.下面哪些图形自身用4次就能拼成一个正方形?34.用下面的3个图形,拼成右边的大正方形.35.三种塑料板的型号如图:() () ()已有型板30块,要购买、两种型号板若干,拼成正方形10个,型板每块价格5元,型板每块价格为4元.请你考虑要各买多少块,使所花的总钱数尽可能少,那么购买、两种板要花多少元?36.试用图a中的8个相等的直角三角形,拼成图b中的空心正八边形和图c中的空心正八角星.37.试将一个正方形分成相同的四块,然后用这四块分别拼成三角形、平行四边形和梯形.38.把两个小正方形剪开以后拼成一个大正方形.39.将下图分成4个形状、大小都相同的图形,然后拼成一个正方形.40.试将一个的长方形分割成两个大小相等、形状相同的图形,然后拼成一个正方形.41.长方形的长和宽各是9厘米和4厘米,要把它剪成大小、形状都相同的两块,并使它们拼成一个正方形.42.将下图分成两块,然后拼成一个正方形.43.将图分成4个形状、大小都相同的图形,然后拼成一个正方形.44.小龙的妈妈在街上卖边角布料的地摊上,买回了一块形状是等腰直角三角形的绸布,想用它来做长方形的窗帘,为了不把布剪的太碎,裁剪的块数就要尽可能的少,请问小龙的妈妈应该怎样剪拼呢?45.试将任意一个三角形分成三块,然后拼成一个长方形.46.试将任意一个矩形分成两块,然后拼成一个三角形.47.试将任意一个矩形分成三块,然后拼成一个三角形.48.把一个正方形分成8块,再把它们拼成一个正方形和一个长方形,使这个正方形和长方形的面积相等.49.有一块长8米、宽3米的长方形地毯,现在要把它移到长6米、宽4米的新房间里.请找出一种剪裁方法,使剪后的各块拼合后正好能铺满房间的地面,为了使剪后的地毯尽量完整,就要使剪裁的块数尽可能地少,应怎样剪拼?50.如何把一个长20厘米、宽12厘米的长方形切成两块,拼成一个长16厘米、宽15厘米的新长方形.51.长方形长24厘米,宽15厘米.把它剪成两块,使它们拼成一个长20厘米,宽18厘米的长方形.52.如下图长方形的长、宽分别为120厘米、90厘米,正中央开有小长方形孔,长为80厘米,宽为10厘米,要拼成面积为100平方厘米的正方形.问如何切分,能使划分的块数最少.53.把下图中两个图形中的某一个分成三块,最后都拼在一起,使它们成为一个正方形.54.如下图两个正方形的边长分别是和(),将边长为的正方形切成四块大小、形状都相同的图形,与另一个正方形拼在一起组成一个正方形.55.如下图所示,这是一张十字形纸片,它是由五个全等正方形组成,试沿一直线将它剪成两片,然后再沿另一直线将其中一片剪成两片,使得最后得到的三片拼成两个并列的正方形.全国六年级小学数学竞赛测试答案及解析一、计算题1.用一条线段把一个长方形平均分割成两块,一共有多少种不同的分割法?【答案】无穷多【解析】怎样把一个图形按照规定的要求分割成若干部分呢?这就是图形的分割问题.按照规定的要求合理分割图形,是很讲究技巧的,多做这种有趣的训练,可以培养学生的创造性思维,发展空间观念,丰富想象,提高观察能力.这道题要求把长方形平均分割成两块,过长方形中心的任意一条直线都可以把长方形平均分割成两块,根据这点给出如下分法(如右图):⑴做长方形的两条对角线,设交点为⑵过点任作一条直线,直线将长方形平均分割成两块.可见用线段平分长方形的分法是无穷多的.2.用“四连块”拼成一个正方形,按编号画入右边图中.【答案】→→→【解析】首先数一数所有的空格数,一共只有16个,只能组成的正方形,目标倒推,在右边的大正方形中拼图,仍然使用染色法,相当于把已知图形往右边的大正方形中放,这样就很容易拼成了,注意标号的位置,具体如下图所示:3.有6个完全相同的,你能将它们拼成下面的形状吗?【答案】→→【解析】利用染色法以及图形的对称性,对称轴两侧都有三个小图形,按照上面的顺序标号即可完成.二、解答题1.把任意一个三角形分成面积相等的4个小三角形,有许多种分法.请你画出4种不同的分法.【答案】【解析】根据等底等高的三角形面积相等这一结论,只要把原三角形分成4个等底等高的小三角形,它们的面积必定相等.而要得到这4个等底等高的小三角形,只需把原三角形的某条边四等分,再将各分点与这边相对的顶点连接起来就行了.根据上面的分析,可得如左下图所示的三种分法.又因为,所以,如果我们把每一个小三角形的面积看做1,那么就可以视为把三角形的面积直接分成4等份,即分成4个面积为1的小三角形;而可以视为先把原三角形分成两等份,再把每一份分别分成两等份.根据前面的分析,在每次等分时,都要想办法找等底等高的三角形.根据上面的分析,又可以得到如右下图的另两种分法.2.把任意一个三角形分成面积相等的2个小三角形,有许多种分法.请你画出3种不同的分法.【答案】【解析】根据等底等高的三角形面积相等这一结论,只要把原三角形分成2个等底等高的小三角形,它们的面积必定相等.而要得到这2个等底等高的小三角形,只需找出原三角形的某条边的中点与这边相对的顶点连接起来就行了.3.怎样把一个等边三角形分别分成8块和9块形状、大小都一样的三角形.【答案】→【解析】⑴分成8块的方法是:先取各边的中点并把它们连接起来,得到4个大小、形状相同的三角形,然后再把每一个三角形分成两部分,得到如左上图所示的图形.⑵分成9块的方法是:先把每边三等分,然后再把分点彼此连接起来,得到加上右上图所示的符合条件的图形.4.下图是一个直角梯形,请你画一条线段,把它分成两个形状相同并且面积相等的四边形.【答案】【解析】直角梯形的上底为1,下底为2,要分成两个相同的四边形,需要一条边可以分成1和2,边长正好为3,所以边分成两段,找到的三等分点,现在,,,,所以还要找到的中点,连接,就把梯形分成完全相同的两部分.如右上图.5.在一块长方形的地里有一正方形的水池(如下图).试画一条直线把除开水池外的这块地平分成两块.【答案】【解析】用连对角线的办法找出这块长方形地的中心O和正方形水池的中心A.过O、A画一条直线,这条直线正好能把除开水池外的这块地平分为两块(如右上图).6.把下图四等分,要求剪成的每个小图形形状、大小都一样.除了剪正方形外,你还有别的方法吗?【答案】【解析】先把图形分成相等的两块,每一块中再分成相等的两份,这样就不难分成四块了,如右上图.7.下图是一个的方格纸,请用四种不同的方法将它分割成完全相同的两部分,但要保持每个小方格的完整.【答案】【解析】分成的两块每块有(个)小格,并且这两块要关于中心点对称,大小和形状完全一样,我们从对称线入手,介绍一种分割技巧——染色法,先选中一个小格,找它关于中心点或中心线的对称位置,标上相应的符号.当找它关于中心线的对称位置时是一种情况,关于中心点的对称位置是另一种情况。
2023-2024学年小学六年级数学竞赛试题(无答案)
2023-2024学年小学六年级数学竞赛试题【卷首语】亲爱的同学们,别紧张,认真思考,相信你能交上一份满意的试卷!一、填空:(每空2分,共40分)(1)2的倒数是(),1.3的倒数是()。
(2)0.3 :1的前项扩大10倍,要使比值不变,后项1也应该()。
(3)0.55时=()分680平方厘米=()平方分米(4)用一根铁丝围成一个长方形框架,长是1.2米,宽是0.4米,现把这长方形的边拉直再围成一个正方形,这个正方形的周长是(),面积是()。
(5)一个长方形的周长是20厘米,长与宽的比为3∶2,这个长方形的长是( ),宽是( ),面积是( )。
(6)一个三位小数,四舍五入到百分位约是3.76,这个三位小数最大可能是(),最小可能是()。
(7)、在下面的两个里填入相同的数,使等式成立。
(8)、一个数扩大到原来的10倍后,比原数大25.2,原数是()。
(9)、0.…的小数部分第100个数字是( ),前100位数字和是()。
(10)把11拆分成两个自然数的和,再求出这两个自然数的积。
要使积最大,这两个数应为()和()。
(11)蜗牛从一个枯井网上爬,白天向上爬110厘米,夜里向下滑40厘米,若要第五天的白天爬到井口,这口井至少深()厘米。
二、判断题。
在括号里正确的打√,错误的打×。
(8分)(1)10克糖溶于100克水中,糖比糖水是1:10 ( )(2)甲数比乙数多20%,乙数就比甲数少20%。
()(3)大圆的半径是小圆半径的2倍,那么大圆的面积是小圆面积的2倍。
()(4) 面积相等的两个圆,周长也相等。
()三、请你选一选。
(8分)1、把4∶7的前项加上12,要使比值不变,后项应加上( )。
A 、 12B 、 21C 、 282、周长都是20厘米的一个圆和一个正方形,圆的面积( )正方形的面积。
A 、小于B 、大于C 、等于3、从学校走到电影院,小明用8分钟,小红用10分钟,小明和小红速度之比是()。
全国六年级小学数学竞赛测试带答案解析
全国六年级小学数学竞赛测试班级:___________ 姓名:___________ 分数:___________一、解答题1.请在4×8方格表的每个方格内填入数1,2或3,使得任何排列成如图所示形状的4个方格中所填数的和都是7。
2.如图,有一个11位数,它的每3个相邻数字之和都是20。
问标有*的那个数位上的数字应是几?3.如图,横、竖各有12个方格,每个方格内都有一个数。
已知横行上任意3个相邻数之和为20,竖列上任意3个相邻数之和为21,并且其中4个方格内的数分别是3,5,8和x。
那么x所代表的数是多少?4.把l,2,3,…,13这13个数分别填在如图所示的3个圆圈内,使得同一个圆圈内任意两个数相减,所得的差不在这个圆圈内.现在已经把l,4,7填在第一个圆圈内,3填在第三个圆圈内,请将其余9个数填好。
5.请在图的每个圆圈内填入不同的自然数,使得图中每个圆圈中所填的数都是上一行与它相邻的两个圆圈中所填数的和。
6.在图的7个圆圈内各填一个数,要求对于每一条直线上的3个数,居中的数是旁边两个数的平均数。
现在已经填好了两个数,那么x等于多少?7.请在图所示的8个小圆圈内,分别填入1,2,3,4,5,6,7,8这8个数字,使得图中用线段连接的两个小圆圈内所填的数的差(大减小)恰好分别是l,2,3,4,5,6,7。
全国六年级小学数学竞赛测试答案及解析一、解答题1.请在4×8方格表的每个方格内填入数1,2或3,使得任何排列成如图所示形状的4个方格中所填数的和都是7。
【答案】【解析】我们先考虑3×3的表格情况,按要求填好后,有:a+b+e+f=b+e+f+i=7.所以a=i,同理,c=g。
又因为a+b+e+f=c+b+e+d=7,从而:a+f=c+d,同理,g+f=d+i,两式相加,得到a+g+2×f=c+i+2×d。
其中a=i,c=g,所以f=d,也就是说中间隔一个方格的两个方格所填入的数相同,我们可以借助上面方法来填写,只用先将一格2×2的小方格填号,使它们的和为7,再将其复制平移知其他的方格内即可。
通用版六年级数学竞赛试题(含答案)
六年级竞赛题1.四宫数独:把1 ~ 4 填入下面的宫格,使每一横行,每一竖列,每个粗线框中的四个格子所填数字不重复。
“?”表示的数字是.2.四宫数独:把1 ~ 4 填入下面的宫格,使每一横行,每一竖列,每个粗线框中的四个格子所填数字不重复。
“?”表示的数字是.3.4.5.6.(A) (B) (C) (D)7.(A) (B) (C) (D)8.(A) (B) (C) (D)9.10.11.阿凡提来到了魔法城堡,魔法城堡的大门是一个智能密码锁,大门上有提示语:下面这个计算的结果就是打开大门的密码了.•••1000 - 3.4 28571⨯ 2.3 =请你输入打开魔法城堡大门的密码:.12.蓝精灵热爱学习,可是她被下面这道计算题给难住了,你能帮她吗?计算:5.4321×0.5679-0.4321×5.5679+0.321=.13.已知大白拥有的魔力磁铁数量的2比小宏的少10%,则用百分数表示,大白3拥有的魔力磁铁数量比小宏的多%.14.哈利波特用魔法杖改变了一个分数,变化后发现分子增加20%,分母减少19%,则新分数比原来分数增加了%.(四舍五入精确到1%)15.霍格沃兹的魔法世界里定义了一种新运算△,规定a△b=(a+b)÷b,那么:3 4△19= .5 2016.迷糊老师在黑板上写了三个分数:2012,2013,2014,其中最大的分数是:2017 2018 2019.17.小猪佩奇的后花园是一个如图所示的梯形(单位:m ),梯形的面积是m2.18.猪八戒爱喝含糖的水,他有甲、乙两杯糖水,所含糖的重量之比为5:3,所含水的重量之比为3:5,糖水的总重量比为5:8,则甲杯的含糖量是.(结果用最简分数表示)19.皮卡丘爱做化学实验,她有一杯含盐7%的盐水重100 克,蒸发了一部分水后,盐水含盐10%,则蒸发的水是克.20.皮皮鲁在学习除法竖式,他发现一个三位数除以19,商是a,余数是b (a,b都是自然数),则a+b 的最大值是.21.鲁西西家里面有一个三层书架,其中第一,二层书的数量比为5:3,第二,三层书的数量比为7:13,若书架上的书总数不超过100 本,则第三层放有本书.22.数学王子高斯是一个数论高手,他的小学老师曾经考过他这么一个问题:从数字1,2,3,4,5,6,7,8,9 中任取3 个数组成三位数,所组成的数中,能被4 整除的三位数有个.23.欧几里得是一位伟大的古希腊时期的数学家,他写过一本书叫做《几何原本》.他曾经思考过这样一个问题:26. 小乔巴将 1 到 25 这 25 个数随意排成一行,然后将它们依次和 1,2,3,…,25 相减,并且都是大数减小数,把得到的 25 个差相加,结果最大是.27. 劳拉在最近的这次古墓任务中来到了古埃及,她在一个神秘金字塔里发现了1 , 3 , 5 , 7 , 9 , 11 , 13 ,1 123 5 8 13π取 3.14)24. 青青草原羊村里举行了一次智力大比拼.结果发现,前五名的平均成绩比前三名的平均成绩少 1 分,前七名的平均成绩比前五名的平均成绩少 3 分.若第四名到第七名的平均成绩为 84 分,则前三名的平均成绩是 分.25. 神探夏洛克·福尔摩斯发现了一个密码宝箱,已知密码是一个三位数 A .目前有一个线索,在 123,931,297,419 四个三位数中,每个数都恰好含有三位数 A 中的一个数字,且出现的位置和 A 中的位置不同,则三位数 A 是.一个有趣的数列,请你观察下面一列数的规律,这列数从左往右第 10 个数 是.如图,OAB 是一个圆心角为 45°,半径为 12 m 的扇形,以 OA 为直径画 一个半圆,交 OB 于点 C ,则图中阴影部分的面积是 m 2.(圆周率29. 阿里巴巴商城在举行促销活动,一套巴克球降价 5 元出售,和往日按原价销售相比,销量提高了 20%,获利提高了 10%,则降价后每套巴克球可获利元.30. 名侦探柯南在自己的笔记本上写了两个两位数,他发现其中一个数的 3等于其中的△ABF 和△AFD 的面积分别是 40 和 64. 则四边形 DFEC 的面积是.的 3 倍少 1 米,则短绳原来长米.1另一个数的 3,这两个数的差最大是.31. 龙猫家的大花园是一个平行四边形.如图,线段 AE 和 BD 将花园分成四块,32. 黄金梅丽号轮船从甲港经丙港到乙港,从甲港到丙港是逆水而行,从丙港到乙港是顺水而行,从甲港到丙港的路程是从丙港到乙港的 2.轮船逆水而行3的速度是顺水而行的速度的一半,轮船从甲港经丙港到乙港共行了 7 小时. 这艘轮船从乙港经丙港返回甲港需要小时.有两条绳子,长绳比短绳的 2 倍多 4 米,各截掉 6 米以后,长绳比短绳28. 所罗门是以色列最有智慧的君王,有一天,他给大臣们出了一道题:33.如图,正方形ABCD 与梯形CDEF 共边,AF 与BC 交于点G,若AD=DE=3,AG : GF=1 : 2,则梯形CDEF 的面积为.34.精灵宝可梦从1~20 这20 个自然数中任取若干个(至少两个),使这些数的乘积的末位数字是3,则它共有种不同的取法.35. 步行的菲菲和骑自行车的猪猪侠,分别从相距40 千米的A、B 两地同时出发,相向而行.已知菲菲每小时行4 千米,但每行30 分钟就休息 5 分钟;猪猪侠每小时行12 千米,分钟后,两人在途中相遇.36. 数学家高斯在研究整数问题时,发明了取整记号[x ],用[x ]表示不超过 x 的最大整数.问:自然数 n 的值依次取 1,2,3,…,2019 时,[ n ] + n + n的值共[ ] [ ]2 3 6有种可能.37. 甲、乙两个工程队合作一项大工程,计划按照甲、乙、甲、乙、……的顺序轮流施工,即每队施工一天后由另一队接替,这样甲和乙施工的天数刚好一样多;实际按照甲、乙、乙、甲、乙、乙、……的顺序施工,结果比原计划提前两天完工,且最后一天是甲施工.已知甲的工作效率是乙的 2,则完成3 这项工程实际用了天.38. 小聪明爱看故事书,他有一本故事书标记的页码是 1~m 页,所有页码的各位数字之和是 190,则 m =.39. 英国航海家库克船长在探险时发现了一个神秘的图形.如图,点 E ,F ,G ,H 分别是四边形 ABCD 各边上的点,若 2AF =FB ,2CH =HD ,BG =GC ,DE =EA ,四边形 ABCD 的面积是 12,则四边形 EFGH 的面积是.40. 史莱克和钢铁侠从同一地出发去环球影城,史莱克走得慢,比钢铁侠早出发5 分钟,钢铁侠出发后 15 分钟可追上史莱克.若史莱克每分钟多走 5 米,钢铁侠每分钟多走 10 米,其他条件不变,则钢铁侠出发后 13 分钟追上史莱克, 则史莱克初始的速度是每分钟走米答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一节图形提高(四)
1.图中外侧的四边形是一边长为10厘米的正方形,
求阴影部分的面积.
2.在一个9 6的长方形内,有一个四边形EFGH (如右图)。
DF比CH少1,AG比DE少1,求四边形 EFGH的面积?
3.长方形的广告牌长为10米,宽为8米,A,B,C,
D分别在四条边上,并且C比A低5米,D在B的左边
2米,求四边形ABCD的面积?
4.在一个正方形水池的四周,环绕着一条宽2米的路(如图),这条路的面积是120平方米,那么水池的面积是______ 平方米。
5.2002年将在北京召开国际数学家大会,大会会标如图所示,它是由四个相同的直角三角形撑拼成的(直角边长分别为2和3),
问:大正方形的面积是多少?
6.一个斜边是40厘米的直角三角形,两条直角边之差是6厘米,则这个直角三角形的面积是多少平方厘米?
7.如图,大正方形面积为27平方厘米,小正方形面积
为3平方厘米,求A、C两个梯形的面积之和是多少?
8.有4个相同的非等腰直角三角形,每个三角形的两条直
角边的长都是大于1的整厘米数,面积为9平方厘米,用这四个
直角三角形不重叠、不剪拼,围成含有两个正方形的图案的图形,
这种图形中最小的正方形面积是多少?最大的正方形面积是多少?
9.下图中5个阴影所示的图形都是正方形,所标的数字是
邻近线段的长度。
那么,阴影所示的5个正方形的面积之和是。
10.在直角边为3与4的直角三角形各边上向外
分别作正方形,三个正方形顶点顺次连接如图所示的六边形ABCDEF。
求这个六边形的面积是多少?
11.如图,CDEF是正方形,ABCD是等腰梯形,
它的上底AD=23cm,下底BC=35cm。
求三角形ADE的面积。
12.有一个长方形,它的长与宽的比是5:2,对角线长29cm,求这个长方形的面积。
13.从一个正方形的木板上锯下宽0.5m的一个长方形木条后,剩下的长方形面积为5m2,问锯下的长方形
木条面积是多少?
14.一张长14厘米,宽11厘米的长方形纸片最多能
栽出多少个长4厘米,宽1厘米的纸条?怎样栽?请画图说明。
15.P是正方形ABCD外面一点,PB=12厘米。
APB
∆的面积是90平方厘米,CPB
∆的面积是48平方厘米。
请你回答:正方形ABCD的面积是多少平方厘米?
16.如图所示,直角三角形PQR的直角边为5厘米,
9厘米。
问图中3个正方形面积之和比4个三角形面积之
和大多少?
17.在直角梯形ABCD中,AD=3厘米,AB=4厘米,BC=6厘米,BE将梯形分成面积相等的两部分,求DE的长。
18.如图,有两棵树,一棵高8米,另一棵高2米,两树相距8米。
一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了多少米?
19.图中是一个直圆柱形状的玻璃杯,一个长为12厘米的直棒状细吸管(不考虑吸管精细)放在玻璃杯内。
当吸管一端接触圆柱下底面时,另一端沿吸管最少可露出上底面
边缘2厘米,最多能露出4厘米。
则这个玻璃杯底面上的
AB= 厘米。
(取14
π)
=
.3
20.长方体的三条棱长分别为3、4、12,对角线AC的
长度为多少?
21.三角形ABC为直角三角形,分别以三边为直径画半圆,其中从AB为直径的半圆面积为36,求另外两个半圆的面积。