2020高考数学热点集锦 二项式定理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二项式定理
【两年真题重温】
【2020⋅新课标全国理,8】51()(2)a x x x x +-的展开式中各项系数的和为2,则该展开式中常数项为( ).
A .-40
B .-20
C .20
D .40
【答案】D
【最新考纲解读】
二项式定理
(1)能用计数原理证明二项式定理.
(2)会用二项式定理解决与二项展开式有关的简单问题.
【回归课本整合】
1.二项式定理的展开式
011()n n n r n r r n n n n n n a b C a C a b C a b C b --+=+++++L L ,其中组合数r n C 叫做第r +1项的二
项式系数;展开式共有n +1项.
注意:(1)项的系数与二项式系数是不同的两个概念,但当二项式的两个项的系数都为1
时,系数就是二项式系数。如在()n ax b +的展开式中,第r+1项的二项式系数为r
n C ,第
3.项的系数和二项式系数的性质
(1)对称性:与首末两端“等距离”的两个二项式系数相等(
m n m
n n
C C-
=
).
【方法技巧提炼】
(2)()()n m
a b c d ++结构:①若n 、m 中一个比较小,可考虑把它展开得到多个;②观察()()a b c d ++是否可以合并;③分别得到()()n m a b c d ++、
的通项公式,综合考虑. 例2 61034(1)(1)x x ++
展开式中的常数项为( )
A .1
B .46
C .4245
D .4246
答案: D
例3 5
)212(++x x 的展开式中整理后的常数项为 .
答案:
632
2
例
5 若对于任意实数x,有
323
0123
(2)(2)(2)
x a a x a x a x
=+-+-+-
,则2
a的值为()
A.3 B.6 C.9 D.12答案:B
解析:因
3
3)]
2
(
2[-
+
=x
x,则3
13
2(2)
r r r
r
T C x
-
+
=-
,
6
22
3
2
=
=C
a
.选B
解析:对于第二问求系数最大的项,因其展开式系数正负相间,可考虑转化为其系数全部为正时系数最大.然后根据其展开式的奇数项系数为正,偶数项系数为负,确定系数最大项.
(Ⅰ)由题设,得
021
11
C C2C
42
n n n
+⨯=⨯⨯
,即2980
n n
-+=,解得n=8,n=1(舍去).
答案:2187
【考场经验分享】
【新题预测演练】 级第一次模拟考试】 在9
1()x x -的展开式中,常数项为
(A) 36 (B) -36 (C) 84 (D) -84
[答案]D
[解析]9392199193()()(1),0,3,2r r
r r r r r r T C x C x r x --+-=-=-=∴=Q 则常数项为
339(1)84.C -=-
【答案】D
【解析】5(1)ax -的展开式中含3x 的项为
232335()(1)10C ax a x -=,由题意得31080a =, 所以2a =.选D.
5.【2020杭西高8月高三数学试题】
已知
72701271234567(12),x a a x a x a x a a a a a a a -=++++++++++L 那么等于( )
A .2
B .—2
C .1
D .—1
【答案】B
【解析81()x x -的展开式的通项公式为8821881()(1)r r r r r r
r T C x C x x --+=-=-,令822r -=,
得3r =,所以2x 的系数为
338(1)56C -=-.
13.【福州市2020届第一学期期末高三质检】
在243(1)(1)x x +-+的展开式中,x 的系数等于 .(用数字作答)
【答案】-3
【解析】2(1)x +展开式中x 的系数为1,43(1)x +展开式中x 的系数为
344C =,故在243(1)(1)x x +-+的展开式中,x 的系数等于-3.
14.【2020届衡阳市八中高三第一次月考】
4
2()x x -的展开式中的常数项为_ . (用数字作答)
【答案】24
【解析】