一、构造次数不超过三次的多项式P3(X),使满足:

合集下载

数值分析-第4章 数值积分和数值微分

数值分析-第4章  数值积分和数值微分

A0+A1=2 A0x0+A1x1=0 A0x02+A1x12=2/3 A0x03+A1x13=0
A0 A1 1 解得: 1 x 0 x1 3
求积公式为
1 1 1 f ( x)dx f ( ) f ( ) 3 3
x f(x)
数值分析
1 4
2 4.5
3 6
4 8
5 8.5
1
一、数值积分的基本概念 求积节点 数值积分定义如下:是离散点上的函数值的线性组合
I [ f ] f ( x)dx I n [ f ] Ai f ( xi )
b a i 0 n
称为数值积分公式
称为求积系数,与f (x)无关,与积分区间和求积节点有关
b a
Rn ( x) dx
定理:形如 Ak f ( xk ) 的求积公式至少有 n 次代数精度
A 该公式为插值型(即: k a l k ( x)dx )
数值分析
b
5
例1 试确定参数A0,A1,A2,使求积公式
1 f ( x)dx A0 f (1) A1 f (0) A2 f (1)
证明 因为Simpson公式对不高于三次的多项式精确成立。即

b
a
p 2 ( x)dx
ba ab [ p 2 (a) 4 p 2 ( ) p 2 (b)] 6 2
构造三次多项式H3(x),使满足 H3(a)=(a) ,H3(b)=(b),
H 3 (( a b) / 2) f (( a b) / 2), H 3 (( a b) / 2) f (( a b) / 2), 这时插值误差为
1

第二章 插值法--课堂

第二章 插值法--课堂

考察函数
右图给出了 和 的图像,当n 增大时, 在两端 会发出激烈的振荡 ,这就是所谓龙格现 象。该现象表明,在 大范围内使用高次 插值,逼近的效果往 往是不理想的
另外,从舍入误差来看,高次插值误差的传播 也较为严重,在一个节点上产生的舍入误差会在计 算中不断扩大,并传播到其它节点上。因此,次数 太高的高次插值多项式并不实用,因为节点数增加 时,计算量增大了,但插值函数的精度并未提高。 为克服在区间上进行高次插值所造成的龙格现象, 采用分段插值的方法,将插值区间分成若干个小的 区间,在每个小区间进行线性插值,然后相互连接 ,用连接相邻节点的折线逼近被插函数,这种把插 值区间分段的方法就是分段线性插值法。
有2n+2个根,但 是不高于2n+1次的多项式
,所以
,即
惟一性得证。
定理5.4 若f(x)在a,b上存在2n+2阶导数,则 2n+1次Hermite插值多项式的余项为
其中 定理的证明可仿照Lagrange插值余项的证 明方法请同学们自行证明
实际中使用最广泛的是三次Hermite插值多项式, 即 n=1的情况
表示互为逆运算。
至于如何实现这些基本运算之
间的联系和转化,途径是多种 多样的,结果是丰富多彩的,魅力是无群无尽的
§4 埃尔米特插值
注: N 个条件可以确定 N 1 阶多项式。 要求在1个节点 x0 处直到m0 阶导数都相等的插值
多项式即为Taylor多项式 其余项为
一般只考虑 f 与f ’的值。
二、分段三次埃尔米特插值
分段线性插值函数导数间断,若已知节点上函数值和
导数,可构造一个导数连续的插值函数Ih(x),满足
§6 三次样条插值
一、样条插值的概念

科学和工程计算复习题与答案

科学和工程计算复习题与答案

科学和工程计算基础复习题一、 填空题:1. :2. 计算机计费的主要依据有两项:一是使用要由算数运算的次数决定;二是占据存储器的空间,3. 用计算机进行数值计算时,4. ,则称该算法是5. 函数求值问题()x f y =的条件数定义为:)()())(()(x f x f x x f cond x C '==6. 单调减且有 下界 的数列一定存在极限; 单调增且有 上界 的数列一定存在极限. 7. 方程实根的存在唯一性定理:设],[)(b a C x f ∈且0)()(<b f a f ,则至少存在一点()b a ,∈ξ使()0=ξf .当()x f '在()b a ,,方程在[]b a ,内有唯一的实根.8. 函数()y x f ,在有界闭区域D 上对y 满足Lipschitz 条件,是指对于D 上的任意一对点()1,y x 和()2,y x 成立不等式:2121),(),(y y L y x f y x f -≤-.其中常数L 只依赖于区域D .9. 设n i R A i n n ,,2,1,, =∈⨯λ为其特征值,则称i ni A λρ≤≤=1max )(为矩阵A 的谱半径.10. 设1-A 存在,则称数A AA cond 1)(-=为矩阵A 的条件数,其中⋅是矩阵的算子范数. 11. 方程组f xB x +=,对于任意的初始向量()0x 和右端项f ,迭代法()()f x B x k k+=+1收敛的充分必要条件是选代矩阵B 的 谱半径1)(<B ρ. 12. 设被插函数()x f 在闭区间[]b a ,上n 阶导数连续,()()x fn 1+在开区间()b a ,上存在.若{}ni i x 0=为[]b a ,上的1+n 个互异插值节点,并记()()∏=+-=ni in x x x 01ω,则插值多项式()()()()()∑=++'-=nk k n k n k n x x x x x f x L 011ωω的余项为)()!1()()()()(1)1(x n f x L x f x R n x n n n +++=-=ωξ,其中),()(b a x x ∈=ξξ.13. 若函数组(){}[]b a C x n k k ,0⊂=ϕ满足⎩⎨⎧=≠≠=l k lk l k ,0,0),(ϕϕ k,l =0,1,2,…,n ,则称(){}nk k x 0=ϕ为正交函数序列. 14. 复化梯形求积公式⎰∑⎥⎦⎤⎢⎣⎡+++=≈-=ban k n b f kh a f a f h f T dx x f 11)()(2)(2)()(,其余项为),(),(12)(2b a f h a b R nT∈''--=ηη15. 复化Simpson 求积公式⎰∑∑⎥⎦⎤⎢⎣⎡++++++=≈-=-=ban k n k n b f kh a f h k a f a f h f S dx x f 1011)()2(2))12((4)(3)()(,其余项为),(),(180)()4(4b a f h a b R nS∈--=ηη16. 选互异节点n x x x ,,,10 为Gauss 点,则Gauss 型求积公式的代数精度为2n+1 .17. 如果给定方法的局部截断误差是()11++=p n h O T ,其中1≥p 为整数,则称该方法是 P 阶的或具有P 阶精度 .18. 微分方程的刚性现象是指快瞬态解严重影响 数值解的稳定性和精度 ,给数值计算造成很大的实质性困难的现象. 19. 迭代序列{}[]b a x k k ,0⊂∞=终止准则通常采用11k k kx x x ε--<+,其中的0>ε为 相对误差20.二、 选择题1. 下述哪个条件不是能使高斯消去法顺利实现求解线性代数方程组(),ijn nAx b A a ⨯==的充分条件? ( D )A. 矩阵A 的各阶顺序主子式均不为零;B. A 对称正定;C. A 严格对角占优;D. A 的行列式不为零.2. 高斯消去法的计算量是以下述哪个数量级的渐近速度增长的? ( B ) A.313n ; B. 323n ; C. 314n ; D. 334n .3. 对于任意的初始向是()0x和右端项f ,求解线性代数方程组的迭代法()()1k kx Bx f +=+收敛的充分必要条件是( A ). A.()1B ρ<; B. 1B <; C. ()det 0B ≠; D. B 严格对角占优.4. 下述哪个条件不是能使求解线性代数方程组(),ijn nAx b A a ⨯==的Gauss-Seidel 迭代法收敛的充分条件? ( C )A. A 为严格对角占优阵;B. A 为不可约弱对角占优阵;C. A 的行列式不为零;D. A 为对称正定阵.5. 设()[]2,f x C a b =,并记()2m a x a xbM f x ≤≤''=,则函数()f x 的过点()()()(),,,a f a b f b 的线性插值余项()1R x ,[],x a b ∀∈满足( A ). A. ()()2218M R x b a ≤-; B. ()()2218M R x b a <-; C. ()()2216M R x b a ≤-; D. ()()2216M R x b a <-.6. 设()n x ϕ是在区间[],a b 上带权()x ρ的首项系数非零的n 次正交多项式()1n ≥,则()n x ϕ的n 个根( A ).A. 都是单实根;B. 都是正根;C. 有非负的根;D. 存在重根7. Legendre 多项式是( )的正交多项式.( B )A. 区间[]1,1-上带权()x ρ=B. 区间[]1,1-上带权()1x ρ=;C. 区间[],-∞∞上带权()2x x e ρ-=; D. 区间[]0,1上带权()1x ρ=8. 离散数据的曲线拟合的线性最小二乘法的Gram 矩阵与( D )无关?A. 基函数(){}n k k x ϕ=; B. 自变量序列{}0mi i x =;C. 权数{}0mi i w =; D. 离散点的函数值{}0mi i y =. 9. Simpson 求积公式的余项是( B ).A. ()()()3,,12h R f f a b ηη''=-∈;B. ()()()()54,,90h R f f a b ηη=-∈; C. ()()()()2,,12h b a R f f a b ηη-''=-∈; D. ()()()()()44,,90h b a R f f a b ηη-=-∈ 10. n 个互异节点的Gauss 型求积公式具有( D )次代数精确度.A. n ;B. 1n +;C. 21n +;D. 21n -.11. 一阶导数的数值计算公式中,中心差商公式的精度为( B ).A. ()O h ;B. ()2O h ;C. ()2o h ; D. ()32O h .12. 对于用插值法建立的数值求导公式,通常导数值的精确度比用插值公式求得的函数值的精度( B ).A. 高; B, 低; C. 相同; D. 不可比.13. 在常微分方程初值问题的数值解法中, 梯形公式是显式Euler 公式和隐式Euler 公式的( A ).A. 算术平均;B. 几何平均;C. 非等权平均;D. 和. 14. 当( B )时,求解(),0y y λλ'=<的显式Euler 方法是绝对稳定的. A. 11h λ-≤≤; B. 20h λ-≤≤; C. 01h λ≤≤; D. 22h λ-≤≤ 15. 求解(),0y y λλ'=<的经典R-K 公式的绝对稳定条件是( C ): A .20h λ-≤≤; B.()2112h h λλ++≤;C.()()()2341123!4!h h h h λλλλ++++≤; D.()()22121211212h h h h λλλλ++≤-+.16. 在非线性方程的数值解法中,只要()()***1,()x x x ϕϕ'≠=,那么不管原迭代法()()1,0,1,2,k k x x k ϕ+==是否收敛,由它构成的Steffensen 迭代法的局部收敛的阶是( D )阶的.A. 1;B. 0;C. 2<;D. 2≥.17. 在非线性方程的数值解法中,Newton 迭代法的局部收敛的阶是( D )阶的. A. 1; B. 0; C. 2<; D. 2≥.18. 在非线性方程的数值解法中,离散Newton 迭代法的局部收敛的阶是( C )阶的.A. 1;B.C.; D. 2. 19. 在求解非线性方程时,迭代终止准则通常采用( A ),其中的0ε>为给定的相对误差容限. A.11k k kx x x ε--<+; B.1k k kx x x ε--<; C. 1k k x x ε--<; D.111k k k x x x ε---<+.20. 在求解非线性方程组时,加进阻尼项的目的,是使线性方程组的( C ).A. 系数矩阵非奇异;B. 系数矩阵的行列式不等于零;C. 系数矩阵非奇异并良态;D. 系数矩阵可逆.三、 判断题1. 在用计算机求数学问题的数值解就是构造算法的构造问题.( × )2. 用计算机进行数值计算时,所有的函数都必须转化成算术运算;在作加减法时,应避免接近的两个数相减;在所乘除法时,计算结果的精度不会比原始数据的高.( √ ) 3. 用计算机作加减法时,交换律和结合律成立.( × ) 4. 单调减且有下界的数列一定存在极限。

昆明理工大学—数值分析各年考试题及答案

昆明理工大学—数值分析各年考试题及答案

昆明理工大学数值分析考试题(07)一.填空(每空3分,共30分)1. 设A 0.231x =是真值0.229T x =的近似值,则Ax 有 位有效数字。

2. 若74()631f x x x x =+++,则017[2,2,...2]f = ,018[2,2,...2]f = 。

3. A=1031⎡⎤⎢⎥-⎣⎦,则1A = ;A ∞= ;2A =2()cond A = 。

4. 求方程()x f x =根的牛顿迭代格式是 。

5.设105%x =±,则求函数()f x =的相对误差限为 。

6.A=2101202a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭,为使其可分解为TL L (L 为下三角阵,主对角线元素>0),a 的取值范围应为 。

7.用最小二乘法拟合三点A(0,1),B(1,3),C(2,2)的直线是 。

(注意:以上填空题答案标明题号答在答题纸上,答在试卷上的不给予评分。

)二.推导与计算(一)对下表构造f(x)的不超过3次的插值多项式,并建立插值误差公式。

(12分)(二)已知()x x =Φ和()x 'Φ满足∣()x 'Φ-3∣<1。

请利用()x Φ构造一个收敛的简单迭代函数()x ψ,使1(),0,1,......k k x x k +=ψ=收敛。

(8分)(三)利用复化梯形公式计算21x I e dx -=⎰,使其误差限为60.510-⨯,应将区间[0,1]等份。

(8分)(四)设A= 1001005a b b a ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,detA ≠0,推导用a ,b 表示解方程组AX=f 的Seidel(G-S) 迭代法收敛的充分必要条件。

(10分)(五)确定节点及系数,建立如下 GAUSS 型求积公式111220()()dx A f x A f x ≈+⎰。

(10分)(六)对微分方程初值问题'00(,)()y f x y y x y ⎧=⎨=⎩(1) 用数值积分法推导如下数值算法:1111(4)3n n n n n hy y f f f +-+-=+++,其中(,)i i i f f x y =,(1,,1)i n n n =-+。

计算方法大作业作业((北京科技大学研究生结课考试)

计算方法大作业作业((北京科技大学研究生结课考试)

《计算方法》平时作业(2010-2011学年第一学期)学 院:_________________________ 专 业:_________________________ 姓 名:_________________________ 学 号:_________________________ 联 系 方 式:_________________________机研111班机械工程学院作业(考试前交, 给出证明或计算过程、计算程序及计算结果) 1. 对向量()12Tn x x x x = 定义1211,max ,nk k k nk x x xx x ∞≤≤====∑设A 是n n ⨯矩阵,规定1111max x A Ax ==,1max x A Ax ∞∞∞==,2221max x A Ax ==证明111112max (),max (),.n nkj jk j nj nk k T A a A a A A A λ∞≤≤≤≤=====∑∑列范数行范数是最大特征值证明:1) 证明111||||max||nijj n i A a≤≤==∑1111111111||||max ||max ||||max ||||||max ||nnn nij iiji ij ij j nj nj nj ni i i i AX a x ax a x a ≤≤≤≤≤≤≤≤=====≤≤=∑∑∑∑所以 111||||111||||max ||||max||nijx j ni A Ax a=≤≤==≤∑设 1111max||||,1,0,1,0,||||1,nnijip i ip i ip j ni i aa x a x a x ≤≤====≥=-<=∑∑取若取若则11||n nip i ip i i a x a ===∑∑且。

因此,1111111||||max ||||||max ||n nn nij i ip iip ij j nj ni i i i Ax a x ax a a ≤≤≤≤=====≥==∑∑∑∑即 111||||111||||max ||||max||nijx j ni A Ax a=≤≤==≥∑ 则 111||||m a x ||nij j ni A a ≤≤==∑2)证明11||||max||niji n j A a∞≤≤==∑11111111||||m a x ||m a x ||||m a x ||||||m a x||nnnni j j i j j i j i j i ni ni ni nj j j j A X a x a x a x a ∞∞≤≤≤≤≤≤≤≤=====≤≤=∑∑∑∑ 所以 ||||111||||m a x ||||m a x ||nij x i n j A Ax a ∞∞∞=≤≤==≤∑设 111max||||,1,0,1,0,||||1,nnijpj j pj j pj i nj j aa x a x a x ∞≤≤====≥=-<=∑∑取若取若则11||nn pj j pj j j a a ===∑∑且。

数值分析第四版习题及答案

数值分析第四版习题及答案

第四版数值分析习题第一章绪论设x>O,x 的相对误差为S ,求In x 的误差. 设x 的相对误差为2%,求x n 的相对误差. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位 ,试指出它们是几位有效数字: x = 1.1021, x^ = 0.031, x^ = 385.6, x^ = 56.430, x^ = 7 1.0.利用公式(3.3)求下列各近似值的误差限:(i)x *+x ;+x 4,(ii)x *x ;x ;,(iii )x ;/x ;,其中 x ;,x ;,x 3,x ;均为第 3题所给的数.计算球体积要使相对误差限为 1%,问度量半径R 时允许的相对误差限是多少 ?设\)=28,按递推公式AY n =Y n d- _ .783100( n=1,2,…)计算到Y 00.若取7783衣27.982(五位有效数字),试问计算^00将有多大误差? 求方程X 2 -56X • 1 =0的两个根,使它至少具有四位有效数字 (■ 783沁27.982).\ ------ d x 当N 充分大时,怎样求N 1 x? 正方形的边长大约为 100 cm ,应怎样测量才能使其面积误差不超过 s *2设 2 假定g 是准确的,而对t 的测量有土 0.1秒的误差,证明当t 增加时s 的绝对 误差增加,而相对误差却减小. 序列{yn}满足递推关系y n _ 10y n _ 1(n=1,2,…),若y0 _ X 2 1.41 (三位有效数字),计算到y 10时误差有多大?这个计算过程稳定吗?计算f = c- 2 一1)6,取' 2 : 1.4,利用下列等式计算,哪一个得到的结果最好?f (x) =1 n (x X -1),求 f(30)的值.若开平方用六位函数表,问求对数时误差有多大改用另一等价公式ln(x_ Jx 2 T) = -ln(x +Jx 2 +1)计算,求对数时误差有多大?1. 2. 3. 4.5. 6.7.8.9.10.11.12.13.21 cm1 (、2 1)61 (32 . 2)3,99 -70、2.?若根据(2.2)定义的范德蒙行列式,令证明V n (x)是n 次多项式,它的根是X 0^L ,X nJ ,且当x= 1 , -1 , 2时,f(x)= 0 , -3,4 ,求f(x)的二次插值多项式.给出cos x,0 ° < x 90。

数值计算方法课后习题答案(李庆扬等)

数值计算方法课后习题答案(李庆扬等)

数值计算方法课后习题答案(李庆扬等)绪论(12)1、设x 0,x的相对误差为,求lnx的误差。

[解]设x* 0为x的近似值,则有相对误差为r*(x) ,绝对误差为*(x) x*,从而lnx的误差为*(lnx) (lnx*) (x*) 相对误差为(lnx)*r1*x ,x**(lnx)lnx*lnx*。

2、设x的相对误差为2%,求xn的相对误差。

[解]设x*为x的近似值,则有相对误差为r*(x) 2%,绝对误差为*(x) 2%x*,从而x的误差为(lnx) (x) 相对误差为(lnx)*rn*nx x*(x) n(x)**n 12%x 2n% x**n,*(lnx)(x)*n2n%。

3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:*****x1 1.1021,x2 0.031,x3 56.430,x5 385.6,x4 7 1.0。

***[解]x1 1.1021有5位有效数字;x2 0.0031有2位有效数字;x3 385.6有4**位有效数字;x4 56.430有5位有效数字;x5 7 1.0有2位有效数字。

****4、利用公式(3.3)求下列各近似值的误差限,其中x1均为第3题所给,x2,x3,x4的数。

***(1)x1;x2 x4f *******e*(x1 x2 x4) (x) (x) (x) (xk124) xk 1 k [解];11110 4 10 3 10 3 1.05 10 3222n****(2)x1x2x3;f***e*(x1x2x3)k 1 xkn ********** (x) (xx) (x) (xx) (x) (xx) (x)k***-*****3*1[解] (0.031 385.6)1 10 4 (1.1021 385.6)1 10 3 (1.1021 0.031) 10 3;2220.***** 10 3 212.***** 10 3 0.***-***** 10 3213.***-***** 10 3 0.***-*****255**(3)x2。

牛顿柯特斯公式

牛顿柯特斯公式

I

ab
f
( x)dx

n1 xi1
i0 xi
f
( x)dx

n1h [
i02
f
(xi )
f
( xi 1 )]

h[ 2
f
(a)
n1
2 f
i1
(xi )
f
(b)].
记为
Tn

n1h [
i02
f
(xi )

复化梯形公式Tn的余项R
若f ( x)在[a, b]上连续,则
ba h
在每个小区间:[xk , xk1 ]上,共三个点: xk , xk1/ 2 , xk1 n
所以这里在[0, 1]上实际上共有5个分点。
精品课件!
精品课件!
例2的计算结果表明,为达到相同的精度,用复化
Simpson公式所需的计算量比复化梯形公式少,这也说明 了复化Simpson公式的精度较高,实际计算时多采用复化 Simpson公式。
6
2
I
b
f (x)dx
b x3dx b4 a4
a
a
4
而 S b a ( f (a) 4 f ( a b ) f (b)) b a (a3 4( a b )3 b3 )
6
2
6
2

1
(b 4

a4

a(a2
b2)

4
a

b
3
(b
(1)

0.9460832
C2

1 2 90
7
f
(0) 32[

数值分析习题(含答案)

数值分析习题(含答案)

第一章 绪论姓名 学号 班级习题主要考察点:有效数字的计算、计算方法的比较选择、误差和误差限的计算。

1 若误差限为5105.0-⨯,那么近似数0.003400有几位有效数字?(有效数字的计算) 解:2*103400.0-⨯=x ,325*10211021---⨯=⨯≤-x x 故具有3位有效数字。

2 14159.3=π具有4位有效数字的近似值是多少?(有效数字的计算) 解:10314159.0⨯= π,欲使其近似值*π具有4位有效数字,必需41*1021-⨯≤-ππ,3*310211021--⨯+≤≤⨯-πππ,即14209.314109.3*≤≤π即取(3.14109 , 3.14209)之间的任意数,都具有4位有效数字。

3 已知2031.1=a ,978.0=b 是经过四舍五入后得到的近似值,问b a +,b a ⨯有几位有效数字?(有效数字的计算)解:3*1021-⨯≤-aa ,2*1021-⨯≤-b b ,而1811.2=+b a ,1766.1=⨯b a 2123****102110211021)()(---⨯≤⨯+⨯≤-+-≤+-+b b a a b a b a故b a +至少具有2位有效数字。

2123*****10210065.01022031.1102978.0)()(---⨯≤=⨯+⨯≤-+-≤-b b a a a b b a ab 故b a ⨯至少具有2位有效数字。

4 设0>x ,x 的相对误差为δ,求x ln 的误差和相对误差?(误差的计算) 解:已知δ=-**xx x ,则误差为 δ=-=-***ln ln xx x x x则相对误差为******ln ln 1ln ln ln xxx x xxx x δ=-=-5测得某圆柱体高度h 的值为cm h 20*=,底面半径r 的值为cm r 5*=,已知cm h h 2.0||*≤-,cm r r 1.0||*≤-,求圆柱体体积h r v2π=的绝对误差限与相对误差限。

数值计算方法试题及答案

数值计算方法试题及答案

数值计算方法试题一一、 填空题(每空1分,共17分)1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。

2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件是α取值在( )。

3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则a =( ),b =( ),c =( )。

4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则∑==nk kx l0)(( ),∑==nk k jk x lx 0)(( ),当2≥n 时=++∑=)()3(204x l x xk k n k k( )。

5、设1326)(247+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=∆07f 。

6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。

7、{}∞=0)(k k x ϕ是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=14)(dx x x ϕ 。

8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。

9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是阶方法。

10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。

插值和拟合

插值和拟合

插值和拟合都是函数逼近或者数值逼近的重要组成部分他们的共同点都是通过已知一些离散点集M上的约束,求取一个定义在连续集合S(M包含于S)的未知连续函数,从而达到获取整体规律的目的,即通过"窥几斑"来达到"知全豹"。

简单的讲,所谓拟合是指已知某函数的若干离散函数值{f1,f2,…,fn},通过调整该函数中若干待定系数f(λ1, λ2,…,λ3), 使得该函数与已知点集的差别(最小二乘意义)最小。

如果待定函数是线性,就叫线性拟合或者线性回归(主要在统计中),否则叫作非线性拟合或者非线性回归。

表达式也可以是分段函数,这种情况下叫作样条拟合。

而插值是指已知某函数的在若干离散点上的函数值或者导数信息,通过求解该函数中待定形式的插值函数以及待定系数,使得该函数在给定离散点上满足约束。

插值函数又叫作基函数,如果该基函数定义在整个定义域上,叫作全域基,否则叫作分域基。

如果约束条件中只有函数值的约束,叫作Lagrange插值,否则叫作Hermite插值。

从几何意义上将,拟合是给定了空间中的一些点,找到一个已知形式未知参数的连续曲面来最大限度地逼近这些点;而插值是找到一个(或几个分片光滑的)连续曲面来穿过这些点。

一、概念的引入1. 插值与拟合在现实生活中的应用l 机械制造:汽车外观设计l 采样数据的重新建构:电脑游戏中场景的显示,地质勘探,医学领域(CT)2.概念的定义l 插值:基于[a,b]区间上的n个互异点,给定函数f(x),寻找某个函数去逼近f(x)。

若要求φ(x)在xi处与f(xi)相等,这类的函数逼近问题称为插值问题,xi即是插值点l 逼近:当取值点过多时,构造通过所有点的难度非常大。

此时选择一个次数较低的函数最佳逼近这些点,一般采用最小二乘法l 光顾:曲线的拐点不能太多,条件:①二阶几何连续②不存在多余拐点③曲率变化较小l 拟合:曲线设计过程中用插值或通过逼近方法是生成的曲线光滑(切变量连续)光顾二、插值理论设函数y=f(x)在区间[a,b]上连续,在[a,b]上有互异点x0,x1,…,xn处取值y 0,y1,…,yn。

第三章 插值法 Hermite插值

第三章 插值法 Hermite插值

(((xxxxxjjj11))222((xx xxjj11))22 ((xx ((xxjj xxjj11))22((xxjj xxjj11))22 ((
xx jj
xxnn
))22 xxnn
))22
(1 c( x x j )) l(2j x)
f ( x)
f1
求次数不超过3的多项式 P3 ( x) 使满足插值条件:
分析

P3 ( p'3
xi ) ( x1
yi ,(i ) f '1

0,1,2)
已知 ( x0 , y0 ), ( x1, y1 ), ( x2 , y2 ) 三点,由牛顿插值多项式,
可确定2次多项式,在此基础上,增加了节点,则增加三次项即
其中C为待定常数, l j ( x) (5.3)式求导,得
n
i0 i j
x xi x j xi
(5.3)

j
(
x)

cl
2 j
(
x)

2[c(
x

x
j
)

1]l
j
(
x)l j
(
x)
由 j ( x j ) 0,得
0


j
(
x
j
)

cl
2 j
(
x
j
)

2l j ( x j
)lj ( x j
(5.8)
mk 1
H3 ( x) ykk ( x) yk1 k1( x) mk k ( x) mk1k1( x) (5.9)
其中
k ( x)

数值分析试卷习题5

数值分析试卷习题5

32 第五章 习题解答与问题一、习题解答1.求经过A (0,1),B (1,2),C (2,3)三个样点的插值多项式解:令x 0 = 0,x 1 = 1,x 2 = 2,则有f (x 0)=1,f (x 1)=2,f (x 2)=3,由Lagrange 二次插值公式)())(())(()())(())(()())(())(()(2120210121012002010212x f x x x x x x x x x f x x x x x x x x x f x x x x x x x x x L ----+----+----=3)12)(02()1)(0(2)21)(01()2)(0(1)20)(10()2)(1(⨯----+⨯----+⨯----=x x x x x x = x+12.已知函数)(x f y =的数据如下表试作一个三次插值多项式P 3(x ),利用P 3(x )计算3解:令x k = kk根据Newton )]}()[({))(()()(2342121213412213-+-++=--+-++=x x xx x x x x x x P由于被插值函数xx f 3=)(,故取 x = 1/2,便得222134212122112133=-+-++=≈)]}()[({)/(P3.已知函数y = f (x )解:由于x=0是二重零点,令3。

又由3,H 3(1)=1得方程组33⎩⎨⎧=+-=-11b a a b 解之:a =1,b = 0 所以,H 3(x ) = x 3。

4.设被插值函数f (x )在区间[x 0,x 1]上具有2阶连续导数,求证:两点线性插值函数L (x )的误差界满足不等式8)(|)(|max |)(|20110x x x f x R x x x -''≤≤≤证:由拉格朗日插值误差定理,得))((!2)()()()(10x x x x f x L x f x R --''=-=ξ 令h (x ) = (x – x 0)(x – x 1),求导数并令其为零,可得极值点x *=0.5×(x 0 + x 1)。

科学和工程计算复习题及答案

科学和工程计算复习题及答案

科学和工程计算基础复习题一、 填空题:1. 评价一个数值计算方法的好坏主要有两条标准:2. 计算机计费的主要依据有两项:一是使用中央处理器(CPU)的时间,主要由算数运算的次数决定;二是占据存储器的空间,3. 用计算机进行数值计算时,4. 对于某个算法,若输入数据的误差在计算过程中迅速增长而得不到控制,则称该算法是5. 6. 7. 8. 9. 10.11.敛的充分必要条件是选代矩阵B 的 谱半径1)(<B ρ. 12. 设被插函数()x f 在闭区间[]b a ,上n 阶导数连续,()()x fn 1+在开区间()b a ,上存在.若{}ni i x 0=为[]b a ,上的1+n 个互异插值节点,并记()()∏=+-=ni in x x x 01ω,则插值多项式()()()()()∑=++'-=nk k nk n k n x x x x x f x L 011ωω的余项为)()!1()()()()(1)1(x n f x L x f x R n x n n n +++=-=ωξ,其中),()(b a x x ∈=ξξ.13. 若函数组(){}[]b a C x n k k ,0⊂=ϕ满足⎩⎨⎧=≠≠=lk lk l k ,0,0),(ϕϕ k,l =0,1,2,…,n ,则称(){}nk k x 0=ϕ为正交函数序列. 14. 复化梯形求积公式⎰∑⎥⎦⎤⎢⎣⎡+++=≈-=ban k n b f kh a f a f h f T dx x f 11)()(2)(2)()(,其余项为),(),(12)(2b a f h a b R nT∈''--=ηη二、 选择题1. 下述哪个条件不是能使高斯消去法顺利实现求解线性代数方程组(),ijn nAx b A a ⨯==的充分条件? ( D )A. 矩阵A 的各阶顺序主子式均不为零;B. A 对称正定;C. A 严格对角占优;D. A 的行列式不为零.2. 高斯消去法的计算量是以下述哪个数量级的渐近速度增长的? ( B ) A.313n ; B. 323n ; C. 314n ; D. 334n .3. 对于任意的初始向是()0x和右端项f ,求解线性代数方程组的迭代法()()1k k xBx f +=+收敛的充分必要条件是( A ). A.()1B ρ<; B. 1B <; C. ()det 0B ≠; D. B 严格对角占优.4. 下述哪个条件不是能使求解线性代数方程组(),ijn nAx b A a ⨯==的Gauss-Seidel 迭代法收敛的充分条件? ( C )A. A 为严格对角占优阵;B. A 为不可约弱对角占优阵;C. A 的行列式不为零;D. A 为对称正定阵.5. 设过点(,a 6. 设ϕ)1,则n ϕ A. 7. A. C. 8. A. C. 权数{}0mi i w =; D. 离散点的函数值{}0mi i y =. 9. Simpson 求积公式的余项是( B ).A. ()()()3,,12h R f f a b ηη''=-∈;B. ()()()()54,,90h R f f a b ηη=-∈; C. ()()()()2,,12h b a R f f a b ηη-''=-∈; D. ()()()()()44,,90h b a R f f a b ηη-=-∈ 10. n 个互异节点的Gauss 型求积公式具有( D )次代数精确度.A. n ;B. 1n +;C. 21n +;D. 21n -.11. 一阶导数的数值计算公式中,中心差商公式的精度为( B ). A. ()O h ; B. ()2O h ; C. ()2o h ; D. ()32O h .12. 对于用插值法建立的数值求导公式,通常导数值的精确度比用插值公式求得的函数值的精度( B ).A. 高; B, 低; C. 相同; D. 不可比.13. 在常微分方程初值问题的数值解法中, 梯形公式是显式Euler 公式和隐式Euler 公式的( A ).A. 算术平均;B. 几何平均;C. 非等权平均;D. 和. 14. 当( B )时,求解(),0y y λλ'=<的显式Euler 方法是绝对稳定的. A. 15. A C.16. 在代法),2,k x +是否收敛( C. 2<; 17. 在非线性方程的数值解法中,Newton C. 2<; 18. 在非线性方程的数值解法中,离散Newton 119. A.11k k kx x x ε--<+; B.1k k kx x x ε--<; C. 1k k x x ε--<; D.111k k k x x x ε---<+.20. 在求解非线性方程组时,加进阻尼项的目的,是使线性方程组的( C ).A. 系数矩阵非奇异;B. 系数矩阵的行列式不等于零;C. 系数矩阵非奇异并良态;D. 系数矩阵可逆.三、 判断题1. 在用计算机求数学问题的数值解就是构造算法的构造问题.( × )2. 用计算机进行数值计算时,所有的函数都必须转化成算术运算;在作加减法时,应避免接近的两个数相减;在所乘除法时,计算结果的精度不会比原始数据的高.( √ ) 3. 用计算机作加减法时,交换律和结合律成立.( × ) 4. 单调减且有下界的数列一定存在极限。

昆明理工大学数值分析各年考试题及答案

昆明理工大学数值分析各年考试题及答案

昆明理工大学数值分析考试题(07)一.填空(每空3分,共30分)1. 设A 0.231x =是真值0.229T x =的近似值,则A x有 位有效数字。

2. 若74()631f x x x x =+++,则017[2,2,...2]f =,018[2,2,...2]f = 。

3. A=1031⎡⎤⎢⎥-⎣⎦,则1A = ;A ∞= ;2A = 2()cond A = 。

4. 求方程()x f x =根的牛顿迭代格式是 。

5.设105%x =±,则求函数()f x =的相对误差限为 。

6.A=2101202a a ⎛⎫⎪ ⎪ ⎪⎝⎭,为使其可分解为TL L (L 为下三角阵,主对角线元素>0),a 的取值范围应为 。

7.用最小二乘法拟合三点A(0,1),B(1,3),C(2,2)的直线是 。

(注意:以上填空题答案标明题号答在答题纸上,答在试卷上的不给予评分。

) 二.推导与计算(一)对下表构造f(x)的不超过3次的插值多项式,并建立插值误差公式。

(12分)(二)已知()x x =Φ与()x 'Φ满足∣()x 'Φ-3∣<1。

请利用()x Φ构造一个收敛的简单迭代函数()x ψ,使1(),0,1,......k k x x k +=ψ=收敛。

(8分) (三)利用复化梯形公式计算21x I e dx -=⎰,使其误差限为60.510-⨯,应将区间[0,1] 等份。

(8分)(四)设A= 1001005a b b a ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,detA ≠0,推导用a ,b 表示解方程组AX=f 的Seidel(G-S) 迭代法收敛的充分必要条件。

(10分) (五)确定节点与系数,建立如下 GAUSS 型求积公式111220()()A f x A f x ≈+⎰。

(10分) (六)对微分方程初值问题'00(,)()y f x y y x y ⎧=⎨=⎩(1) 用数值积分法推导如下数值算法:1111(4)3n n n n n hy y f f f +-+-=+++,其中(,)i i i f f x y =,(1,,1)i n n n =-+。

数值分析最佳习题(含答案)

数值分析最佳习题(含答案)

第一章 绪论姓名 学号 班级习题主要考察点:有效数字的计算、计算方法的比较选择、误差和误差限的计算。

1 若误差限为5105.0-⨯,那么近似数0.003400有几位有效数字?(有效数字的计算) 解:2*103400.0-⨯=x ,325*10211021---⨯=⨯≤-x x 故具有3位有效数字。

2 14159.3=π具有4位有效数字的近似值是多少?(有效数字的计算) 解:10314159.0⨯= π,欲使其近似值*π具有4位有效数字,必需41*1021-⨯≤-ππ,3*310211021--⨯+≤≤⨯-πππ,即14209.314109.3*≤≤π3 已知2031.1=a ,978.0=b 是经过四舍五入后得到的近似值,问b a +,b a ⨯有几位有效数字?(有效数字的计算)解:3*1021-⨯≤-aa ,2*1021-⨯≤-b b ,而1811.2=+b a ,1766.1=⨯b a 2123****102110211021)()(---⨯≤⨯+⨯≤-+-≤+-+b b a a b a b a故b a +至少具有2位有效数字。

2123*****10210065.01022031.1102978.0)()(---⨯≤=⨯+⨯≤-+-≤-b b a a a b b a ab 故b a ⨯至少具有2位有效数字。

4 设0>x ,x 的相对误差为δ,求x ln 的误差和相对误差?(误差的计算) 解:已知δ=-**xx x ,则误差为 δ=-=-***ln ln xx x x x则相对误差为******ln ln 1ln ln ln xxx x xxx x δ=-=-5测得某圆柱体高度h 的值为cm h 20*=,底面半径r 的值为cm r 5*=,已知cm h h 2.0||*≤-,cm r r 1.0||*≤-,求圆柱体体积h r v2π=的绝对误差限与相对误差限。

(误差限的计算) 解:*2******2),(),(h h r r r h r r h v r h v -+-≤-ππ绝对误差限为πππ252.051.02052)5,20(),(2=⨯⋅+⨯⋅⋅⋅≤-v r h v相对误差限为%420120525)5,20()5,20(),(2==⋅⋅≤-ππv v r h v 6 设x 的相对误差为%a ,求nx y =的相对误差。

2018-2019学年第二学期期末考试《计算方法》大作业参考答案

2018-2019学年第二学期期末考试《计算方法》大作业参考答案

吉林大学网络教育学院2018-2019学年第二学期期末考试《计算方法》大作业学生姓名专业层次年级学号学习中心成绩年月日一、构造次数不超过三次的多项式P3(X),使满足:(10分)P3(0)= 1;P3(1)=0;P3′(0)=P3′(1)=0。

二、设f(x i)=i(i=0,1,2),构造二次式p2(x),使满足:(10分) p2(x i)=f(x i)(i=0,1,2)三、设节点x i=i(i=0,1,2,3),f(0)=1,f(1)=0,f(2)=-7,f(3)=26,构造次数不超过3次的多项式p3(x),满足p3(x i)=f(x i),i=0,1,2,3 (10分)四、对于上题的问题,构造Newton插值多项式。

(10分)五、构造三次多项式P 3(X )满足:P 3(0)= P 3(1)=0,P 3′(0)=P 3′(1)=1。

(10分)六、利用Doolittle 分解法解方程组Ax=b 即解方程组 (15分) 12341231521917334319174262113x x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦解:用公式七、基于迭代原理证明(10分)+++=22 (22)八、构造二次多项式2()x p 满足: (10分)'010222()1;()0;()1p p p x x x ===九、构造一个收敛的迭代法求解方程3210x x --=在[1.3,1.6]内的实根。

合理选择一个初值,迭代一步,求出1x 。

(15分)作业完成要求:大作业要求学生手写,提供手写文档的清晰扫描图片,并将图片添加到word 文档内,最终word文档上传平台,不允许学生提交其他格式文件(如JPG,RAR等非word 文档格式),如有雷同、抄袭成绩按不及格处理。

数值分析复习

数值分析复习

埃尔米特插值
带导数的两点插值(重要特例:当 n 1 时) 问题:已知 f ( x ) C 1[a, b] 函数表及导数表 x f ( x) 求3次多项式 H 3 ( x ) 使满足插值条件: f '( x)
H 3 ( x k ) y k , H 3 ( x k 1 ) y k 1 H '3 ( x k ) m k , H '3 ( x k 1 ) ) f [ x 0 , x1 , , x n ] n!
其中 a, b 且 依赖于 x a , b 为包含 xi (i 0,1,, n) 区间.
例 设当xi 1, 2, 3, 4, 5时,f ( xi ) 1, 4, 7, 8, 6. 求四次牛顿 插值多项式 .
L2(x) = yk -1 lk –1(x) + yk lk (x) + yk +1 lk +1(x)
l k ( x) ( x x0 )( x xk 1 ) ( x xk 1 )( x xn ) , ( x k x0 )( xk xk 1 ) ( xk xk 1 )( xk xn )
1 k 2
k
1 2
f k f k 1 ,
2 f k f
f
1 k 2
f k 1 2 f k f k 1
m f k (m1 f k ) m1f k m1 f k 1 m1 f k
m f k ( m1 f k ) m1f k m1 f k m1 f k 1
其中

x xk x x k 1 2 k ( x ) (1 2 )( ) x k 1 x k x k x k 1 x x k 1 x xk 2 k 1 ( x ) (1 2 )( ) x k x k 1 x k 1 x k
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档