3英寸半绝缘正晶向6H碳化硅衬底主要参数(精)
碳化硅同质外延质量影响因素的分析与综述
第53卷第2期2024年2月人㊀工㊀晶㊀体㊀学㊀报JOURNAL OF SYNTHETIC CRYSTALSVol.53㊀No.2February,2024碳化硅同质外延质量影响因素的分析与综述郭㊀钰1,2,刘春俊1,张新河2,沈鹏远1,张㊀博1,娄艳芳1,彭同华1,杨㊀建1(1.北京天科合达半导体股份有限公司,北京㊀102600;2.深圳市重投天科半导体有限公司,深圳㊀518108)摘要:碳化硅(SiC)外延质量会直接影响器件的性能和使用寿命,在SiC器件应用中起到关键作用㊂SiC外延质量一方面受衬底质量的影响,例如衬底的堆垛层错(SF)会贯穿到外延层中形成条状层错(BSF),螺位错(TSD)会贯穿到外延层中形成坑点或Frank型层错(Frank SF)等㊂另一方面受到外延工艺的影响,如在外延过程中衬底的基平面位错(BPD)受应力等条件作用会滑移形成Σ形基平面位错(Σ-BPD),衬底的TSD或刃位错(TED)会衍生为腐蚀坑(Pits),以及新产生SF和硅滴等㊂因此,获得高质量的SiC外延晶片需要从优选SiC衬底和优化外延工艺两方面入手㊂本文对外延生长过程中晶体缺陷如何转化并影响器件性能进行了系统分析和综述,并基于北京天科合达半导体股份有限公司量产的高质量6英寸SiC衬底,探讨了常见缺陷,如BPD㊁层错㊁硅滴和Pits等的形成机理及其控制技术,并对Σ-BPD的产生机理和消除方法进行研究,最终获得了片内厚度和浓度均匀性良好㊁缺陷密度低的外延产品,完成了650和1200V外延片产品的开发和产业化工作㊂关键词:碳化硅;同质外延;外延生长;缺陷;位错;小坑中图分类号:O78;O484;O47㊀㊀文献标志码:A㊀㊀文章编号:1000-985X(2024)02-0210-08 Analysis and Review of Influencing Factors of SiCHomo-Epitaxial Wafers QualityGUO Yu1,2,LIU Chunjun1,ZHANG Xinhe2,SHEN Pengyuan1,ZHANG Bo1,LOU Yanfang1,PENG Tonghua1,YANG Jian1(1.Beijing TankeBlue Semiconductor Co.,Ltd.,Beijing102600,China;2.Shenzhen MITK Semiconductor Co.,Ltd.,Shenzhen518108,China)Abstract:The performance and lifetime of silicon carbide(SiC)devices are directly affected by the quality of SiC epitaxial films.On the one hand,the quality of SiC epitaxial films is affected by the quality of substrates.For examples,the stacking faults(SF)in substrates penetrate into the epitaxial layer,forming bar-shaped stacking faults(BSF),and the threading screw dislocation(TSD)penetrate into the epitaxial layer to form pits or Frank-type stacking faults(Frank SF).On the other hand, the quality of SiC epitaxial films is also influenced by the epitaxial growing process.For examples,basal plane dislocation (BPD)in the substrate formΣ-basal plane dislocation(Σ-BPD)in the epitaxial layer under thermal stress or other unstable conditions,the TSD and threading edge dislocation(TED)in the substrate may be etched and derived into pits,and SF and silicon droplets may also be produced.Therefore,high quality SiC substrates and optimized epitaxial growing process are both crucial for obtaining high-quality silicon carbide epitaxial wafers.In this article,based on the SiC epitaxial films grown on 6inch SiC substrates batch-produced by TankeBlue Company,the defects reproducing process in substrates during epitaxial growing were analyzed,and the formation mechanism and controlling technology of common defects such as BPD,SF,silicon droplets and pits were overviewed.The generation mechanism ofΣ-BPD and its eliminating methods were also explored. Finally,we obtained the mass-production technologies of SiC epitaxial films with good thickness and concentration uniformity, and low defect density,which are qualified for making650and1200V SiC-based MOSFETs.Key words:SiC;homo-epitaxial;epitaxial growth;defect;dislocation;pit㊀㊀收稿日期:2023-05-29㊀㊀基金项目:北京市科协卓越工程师培养计划㊀㊀作者简介:郭㊀钰(1983 ),女,辽宁省人,博士,教授级高工㊂E-mail:guoyu03201@㊀㊀通信作者:刘春俊,博士,研究员㊂E-mail:liuchunjun@㊀第2期郭㊀钰等:碳化硅同质外延质量影响因素的分析与综述211㊀0㊀引㊀㊀言SiC作为目前被广泛关注的第三代半导体材料,具有高击穿电压㊁高电子迁移率㊁高热导率等特性,由其制备的半导体器件相比传统的硅(Si)基半导体器件拥有体积小㊁开关损耗低㊁功率密度更高等优势㊂随着绿色能源革命对电力电子器件耐高压㊁低功耗需求的日益迫切,以及电动汽车㊁充电桩等新兴应用的蓬勃发展, SiC器件在智能电网㊁电动汽车㊁轨道交通㊁新能源并网㊁开关电源㊁工业电机和白色家电等领域展现出良好的发展前景和巨大的市场潜力㊂与传统硅功率器件制作工艺不同,SiC功率器件不能直接制作在SiC单晶材料上,必须在导通型SiC单晶衬底上使用外延技术生长出高质量的外延材料,然后在外延层上制作各类器件㊂之所以不直接在SiC衬底上制作SiC器件,一方面是由于衬底的杂质含量较高,且电学性能不够好㊂另一方面是掺杂难度大,即使采用离子注入的方式,也需要后续的高温退火,远不如在外延层上的掺杂效果好㊂因此,制造出外延层的掺杂浓度和厚度符合设计要求的SiC器件至关重要㊂常见的SiC外延技术有化学气相沉积(chemical vapor deposition,CVD)㊁液相外延生长(liquid phase epitaxy,LPE)㊁分子束外延生长(molecular beam epitaxy,MBE)等,目前CVD是主流技术,具备较高生长速率㊁能够实现可控掺杂调控等优点㊂CVD外延生长通常使用硅烷和碳氢化合物作为反应气体,氢气作为载气,氯化氢作为辅助气体,或使用三氯氢硅(TCS)作为硅源代替硅烷和氯化氢,在约1600ħ的温度条件下,反应气体分解并在SiC衬底表面外延生长SiC薄膜㊂目前国内外SiC外延技术已经取得较大进展,产业界也已成功实现6英寸(1英寸=2.54cm)SiC外延批量生产㊂国外产业化公司主要有美国Wolfspeed公司㊁II-VI公司,日本的Showa Ddenko公司等,国内有厦门瀚天天成电子科技有限公司㊁东莞天域半导体有限公司㊁河北普兴电子科技股份有限公司㊁三安集成等㊂2022年美国Wolfspeed公司已成功实现8英寸SiC外延产品的量产㊂市场上主流的量产产品主要是650㊁1200㊁1700V金氧半场效晶体管(metal-oxide-semiconductor field-effect transistor,MOSFET)器件用6英寸外延产品㊂本研究团队基于十多年在SiC衬底材料制备技术研究和产业推广经验的积累,2022年开始启动SiC外延技术研发,重点针对1200V车规级MOSFET器件用SiC外延材料进行研发和产业化工作㊂本文首先介绍了SiC外延的研究历史,然后结合本团队SiC外延产品相关研发工作综述了SiC外延掺杂浓度控制和缺陷控制方面的研究进展,最后对国产SiC外延的发展进行了总结和展望㊂1㊀研发历史SiC同质外延技术研究需要基于SiC衬底开展,因此研发时间晚于SiC衬底,最早开始于20世纪60年代㊂研究人员主要采用了液相外延法[1-3]和CVD法进行SiC同质外延[4-9]㊂但由于SiC存在200多种晶体结构,外延生长时存在严重的多型夹杂问题,因此早期获得的外延材料质量都很差,这也制约了SiC器件的发展㊂第一个突破性的里程碑是在1987年,Kuroda等[10]和美国Kong等[11]各自相继提出了台阶流外延生长模型,在6H-SiC衬底上进行完美多型体复制,并给出了最优偏离晶向和偏角㊂具体来说,代表SiC晶型的堆垛顺序信息主要在SiC衬底表面台阶的侧向,通过SiC衬底表面偏角度的控制,使得同质外延在衬底表面原子台阶处侧向生长,从而继承衬底的堆垛次序,通过台阶流生长实现晶型的完美复制㊂这项技术同样适用其他晶型,如4H-SiC㊁15R-SiC的同质外延生长㊂4H-SiC同质外延的成功促进了SiC基肖特基二极管的研发,带动了4H-SiC在功率器件应用领域独特的发展㊂第二个标志性里程碑是热壁(温壁)CVD反应室设计,传统冷壁CVD反应腔室[12-13]结构较为简单,但存在一些缺点,如晶片表面法线方向的温度梯度非常大,导致SiC晶片翘曲比较严重[14];另外冷壁CVD加热效率比较低,热辐射损耗严重㊂通过热壁CVD反应室设计,腔室内温度梯度得到显著降低,容易实现良好的温度均匀性,这对于产业化生产至关重要㊂第三个里程碑是氯基快速外延生长技术,传统SiC的CVD生长技术通常使用硅烷和碳氢化合物作为反应气体,氢气作为载气,气相中Si团簇容易形成Si滴,导致外延生长工艺窗口相对较窄,同时也限制了外延生长的速率㊂通过引入氯基化学成分(通常有TCS,或者HCl)可以极大地抑制Si团簇,目前已成功应用于212㊀综合评述人工晶体学报㊀㊀㊀㊀㊀㊀第53卷SiC 快速外延生长中[15]㊂近年来,SiC 外延技术逐渐成熟,产业研究重点关注外延材料掺杂浓度控制和缺陷控制两个方面㊂2㊀SiC 外延层的掺杂浓度控制SiC 是优秀的宽禁带半导体材料,其优点是可以相对容易地在一个宽的范围内控制n 型和p 型掺杂㊂氮(N)或磷(P)用于n 型掺杂,而铝(Al)常用于p 型掺杂㊂硼(B)也曾用作p 型掺杂,但其电离能较大(约350MeV)[16],现在已经不是p 型掺杂的首选㊂Larkin 等[17-19]发现的竞位效应是实现SiC 掺杂控制的关键㊂N 原子替位C 原子位置,而P㊁Al 和B 替位Si 原子位置㊂因此,低C /Si 比有利于提高N 掺杂效率,高C /Si 比不利于N 的掺入;对于Al 和B 则刚好相反㊂目前大部分SiC 器件是基于n 型外延材料制作,氮气也是普遍采用的掺杂气体,N 掺杂与氮气流量㊁生长温度和压力㊁C /Si 比㊁生长速率等参数的依赖关系已有详细的研究[20-22],可以实现N 掺杂浓度大范围的调控(1ˑ1014~2ˑ1019cm -3)㊂对于大尺寸SiC 外延材料,SiC 外延层掺杂浓度的均匀性(δ/mean)是研究及产业界目前关注的另一重点㊂2011年Burk 等采用热壁气相外延(vapour phase epitaxy,VPE)炉制作出了厚度均匀性和浓度均匀性分别低于1.6%和12%的6英寸SiC 外延片[23],2014年Thomas 等在2800W 设备上获得了厚度和浓度均匀性分别低于1.5%和8%㊁良品率97.5%的外延片[24-25]㊂8英寸外延片方面,Mattia 和Danilo 等各自在PE1O8设备上获得厚度和浓度均匀性均低于2%的外延片[26]㊂在水平式外延生长中,气体高速流入生长腔室,中心流速高,两侧接近生长腔室边界的地方流速降低;同时在气体流动的方向上,随着反应气体的消耗,反应气体的浓度降低,这些现象会引起SiC 外延层厚度和浓度的不均匀,进而影响器件的性能㊂解决上述问题的方法是设计适当的反应腔室结构,从进气端到尾气端的反应腔室逐步变窄,使得气体的速度沿着流动方向增加,同时反应气体向衬底的扩散距离减小,抵消气体消耗和边界流速降低带来的影响㊂另外,通过调整SiC 衬底的旋转速度,使用适当比例的氩气和氢气的混合气体作为旋转气体源,调整反应气体中的C /Si 比例,调整中路和旁路的反应气体和掺杂气体的流量,都可以获得更加均匀的载流子浓度和厚度分布[27]㊂图1㊀量产外延片的载流子浓度均匀性(a)和厚度均匀性(b)分布统计Fig.1㊀Uniformity of doping (a)and thickness (b)of epi-wafers 本团队采用水平式外延生长方法,三氯氢硅和乙烯作为反应气源,氮气作为掺杂气体,氢气作为载气,氢气和氩气作为驱动托盘旋转的气源,生长厚度适用于1200V 的SiC 基MOSFET 用SiC 外延层㊂通过调整掺杂氮气在中心和边缘分布比例㊁托盘旋转的速度以及旋转气体中氩气与氢气的比例,优化外延工艺的C /Si 比等生长参数,实现SiC 外延层掺杂浓度及均匀性的有效控制,图1是量产1000片的厚度和浓度均匀性统计数据,C /Si 比在1.0~1.2㊁温度在1600~1650ħ和压力在100mbar 的工艺条件下,统计的外延产品100%达到厚度均匀性小于3%㊁浓度均匀性小于6%㊂3㊀SiC 外延层的缺陷控制研究根据晶体缺陷理论,SiC 外延材料的主要缺陷可归纳为4大类:点缺陷㊁位错(属于线缺陷)㊁层错(属于面缺陷)和表面缺陷(属于体缺陷)㊂3.1㊀点缺陷SiC 外延材料的点缺陷主要有硅空位㊁碳空位㊁硅碳双空位等缺陷[28-30],它们在禁带中产生深能级中心,影响材料的载流子寿命㊂在轻掺杂的SiC 外延层中,点缺陷产生的深能级中心浓度通常在5ˑ1012~2ˑ1013cm -3,与外延生长条件特别是C /Si 比和生长温度相关㊂3.2㊀位㊀错SiC 材料的位错包括螺位错(threading screw dislocation,TSD)㊁刃位错(threading edge dislocation,TED)㊀第2期郭㊀钰等:碳化硅同质外延质量影响因素的分析与综述213㊀和基平面位错(basal plane dislocation,BPD)㊂微管是伯氏矢量较大的螺位错形成的中空管道,可认为是一种超螺位错㊂SiC外延层的位错缺陷基本都和衬底相关,图2是SiC外延层中观察到的典型位错演变图[31-32]㊂大部分微管和螺位错会复制到外延层中,在合适的工艺条件下,部分微管分解为单独的螺位错,形成微管闭合[33],只有一小部分TSD(<2%)转为Frank型层错[34-35]㊂衬底TED基本都会复制到外延层中㊂图2㊀4H-SiC外延层中位错演变图Fig.2㊀Schematic illustration of dislocation evolution process in4H-SiC epitaxial layerBPD位错主要源于衬底中BPD向外延层的贯穿,通常偏4ʎ4H-SiC衬底中大部分BPD位错(>99%)在外延过程中会转化为TED位错,只有少于1%左右的BPD会贯穿到外延层中并达到外延层表面㊂在后续器件制造中,BPD主要影响双极型器件的稳定性,如出现双极型退化现象[36-40]㊂在正向导通电流的作用下, BPD可能会延伸至外延层演变成堆垒层错(SF),造成器件正向导通电压漂移㊂由于刃位错对器件性能的影响要小得多,所以提高SiC外延生长过程中BPD转化为TED的比例,阻止衬底中的BPD向外延层中延伸对提高器件的性能十分重要㊂对于BPD向TED的转化技术已经有比较多的研究报道,例如,外延生长前的KOH刻蚀或氢气刻蚀优化表面[41]㊁外延生长间断[42],或者提高生长速率,结合这些技术,转化率已经提升到99.8%,甚至达到100%[43]㊂此外生长过程中,在应力等条件作用下,BPD很容易在衬底和外延层界面上沿着台阶流法线方向发生滑移,形成界面位错(interfacial dislocations)[44-45],滑移方向取决于BPD的伯氏矢量及应力方向㊂特定条件下,成对BPD同时发生滑移,会形成Σ-BPD㊂在本团队研发过程中也观察到过该缺陷,其典型形貌如图3所示,光致发光检测BPD形貌如图3(a)所示,对外延片进行KOH腐蚀后形貌如图3(b)所示,可以看到一个Σ-BPD包含两条界面位错,其长度可以达到毫米级,在其尾部存在两个BPD㊂Σ-BPD形成机理示意图如图3(c)所示[46-47],其起源于衬底的BPD对,其伯氏矢量方向刚好相反,滑移过程中形成两条界面位错和2个半环位错(half-loop arrays,HLAs)㊂半环位错的长度不一,决定于其驱动力大小,影响滑移的驱动力主要是温场的不均匀性㊂图3㊀Σ-BPD的形貌图(a)㊁氢氧化钾腐蚀坑图(b)和形成机理示意图(c)Fig.3㊀Morphology(a),etched image by KOH(b)and schematic illustration of formation mechanism(c)ofΣ-BPD针对外延BPD,本文在快速外延生长的基础上优化外延层缓冲层工艺窗口,目前可以实现BPD密度小于0.1cm-3的外延层批量制备,如图4所示㊂3.3㊀层错缺陷SiC外延层中的层错包括两大类:一类来源于衬底的层错和位错缺陷,衬底的层错会导致外延层形成214㊀综合评述人工晶体学报㊀㊀㊀㊀㊀㊀第53卷图4㊀外延片的BPD 分布(a)及其统计(b)Fig.4㊀Distribution of BPD (a)and its statistics (b)of epi-wafers Bar-shaped SFs [48-49],衬底的部分TSD 如3.2所述会形成Frank SFs;另一类层错为生长层错(in-grown SFs),是外延生长过程中产生的,与衬底质量没有关系㊂目前,大多数外延层错属于第二类,这些层错中绝大部分为Shockley SFs,是通过在基平面中的滑移产生的[50-51]㊂这些层错缺陷都会对器件性能产生不利影响,例如漏电流的增加㊂降低外延生长速率㊁原位氢气刻蚀优化㊁增加生长温度㊁改善衬底质量都可以有效降低层错数量,本研究团队已经可以提供Shockley SFs 密度小于0.15cm -2的6英寸SiC 衬底㊂3.4㊀表面缺陷SiC 外延层表面缺陷尺度比较大,一般通过光学显微镜可以直接观察到,包括掉落物[52]㊁三角形缺陷[53-54]㊁ 胡萝卜 缺陷[55-56]㊁彗星缺陷[57]㊁硅滴[58]和浅坑[59-60]㊂掉落物主要由反应室的部件上形成的SiC 颗粒脱落形成,通过定期清理或更换反应室部件能够有效控制㊂其他几种表面缺陷的形成机制目前已经有了较多研究,虽然不能形成统一的模型,但是大部分与衬底表面状态(包括划痕/损伤层㊁颗粒沾污㊁凹坑)㊁衬底位错(特别是TSD)等缺陷存在一定的关联性㊂由于台阶流生长模式的放大作用和位错转化的综合效应,导致缺陷形成各种宏观表面形貌特征㊂表面缺陷与器件性能的影响目前也已经有了较多的研究报道,除浅坑缺陷外,其他表面缺陷基本都会对器件的性能产生一定的不利影响,导致器件击穿电压降低或者反向漏流增加[61]㊂浅坑(Pits)是4H-SiC 外延层表面出现在TSD 位错顶端的小凹陷或小坑状的形貌缺陷,其宽度尺度小于10μm㊂TED 在外延层表面引起的小坑尺寸远小于TSD 诱发的小坑尺寸,很难被观察到㊂图5是本团队在外延生长中观察到的典型浅坑AFM 形貌,在台阶流动方向的上游端,小坑缺陷有陡峭的倾斜侧面,在下游端,侧面相对平缓,通过AFM 可以看到Pits 宽度为2μm,深度为4nm,深宽比约为0.002㊂Ohtani㊁Noboru 等则利用TUNA 技术研究了Pits 和Large Pits 的产生机理,认为宽度在几微米㊁深度在14nm 左右的Large pits 是由TSD 产生,而宽度在1μm㊁深度在3~4nm 的Pits 由TED 产生[62-63]㊂近年来,有研究表明:当存在浅坑时,由于几何效应会导致局部电场集中,对于二极管特性基本不存在负面影响㊂Kudou 等[64]研究了Pits 缺陷对SiC 器件的影响,认为Pits 密度不会影响SBD 的漏电流和MOSFET 的TDDB 栅氧可靠性㊂同时指出深宽比较小(小于0.02)的Pits对SBD 和MOSFET 的影响较小㊂图5㊀外延表面宽度和深度分别为2μm 和4nm 的浅坑的AFM 照片Fig.5㊀AFM image of a pit with 2μm width and 4nm depth降低Pits 的主要途径包括:优选TSD 数量较少的优质衬底㊁降低碳硅比和降低外延生长速率㊂目前市场上主要的商业化衬底中TSD 的密度小于1000cm -2㊂本研究团队已经可以提供TSD 密度小于300cm -2的6英寸SiC 衬底㊂通过采用优质衬底,调整外延工艺,可以将Pits 数量从103降低到50以内㊂综合来看,SiC 外延层缺陷一方面取决于衬底结晶质量以及表面加工质量,另一方面受制于外延生长工艺窗口的优化,需要综合考虑各种缺陷的调整方案,例如提高外延生长速率会导致BPD 向TED 转化率的提㊀第2期郭㊀钰等:碳化硅同质外延质量影响因素的分析与综述215㊀高,但会导致层错密度的增加㊂基于本研究团队量产的高质量6英寸SiC衬底,本团队通过大量的实验研究,可以有效控制住SiC外延的各种缺陷,完成650和1200V外延片产品开发和产业化工作㊂图6是典型的650和1200V外延片产品缺陷mapping图,3mmˑ3mm良品率分别为98.9%和97.3%㊂图6㊀650和1200V外延片产品缺陷mapping图Fig.6㊀Mapping diagram of defects in650and1200V epi-wafers4㊀结语与展望SiC外延在产业链中起着承上启下的重要作用,通过不断积累对SiC材料的性能认知和改良,以及器件的不断迭代验证,最终提升外延品质,推动SiC器件的应用㊂本文采用天科合达自有的商业化6英寸衬底,在4H-SiC同质外延过程中,研究了外延层中BPD㊁层错㊁硅滴和Pits缺陷的控制,并对Σ-BPD的产生机理和消除进行研究,最终获得厚度均匀性小于3%㊁浓度均匀性小于6%㊁表面粗糙度小于0.2nm㊁良品率大于96%㊁BPD密度小于0.1cm-2的外延产品㊂目前从本团队的研发进度来看,通过对工艺温度㊁C/Si比和生长速率等参数优化使得浓度和厚度均匀性分别控制在3%和2%以内,BPD的密度可以控制在0.075cm-2以内,但仍需要大量的外延数据进行工艺稳定性验证㊂参考文献[1]㊀BRANDER R W,SUTTON R P.Solution grown SiC p-n junctions[J].Journal of Physics D:Applied Physics,1969,2(3):309-318.[2]㊀IKEDA M,HAYAKAWA T,YAMAGIWA S,et al.Fabrication of6H-SiC light-emitting diodes by a rotation dipping technique:electroluminescence mechanisms[J].Journal of Applied Physics,1979,50(12):8215-8225.[3]㊀ZIEGLER G,LANIG P,THEIS D,et al.Single crystal growth of SiC substrate material for blue light emitting diodes[J].IEEE Transactions onElectron Devices,1983,30(4):277-281.[4]㊀MATSUNAMI H,NISHINO S,ONO H.IVA-8heteroepitaxial growth of cubic silicon carbide on foreign substrates[J].IEEE Transactions onElectron Devices,1981,28(10):1235-1236.[5]㊀JENNINGS V J,SOMMER A,CHANG H C.The epitaxial growth of silicon carbide[J].Journal of the Electrochemical Society,1966,113(7):728.[6]㊀CAMPBELL R B,CHU T L.Epitaxial growth of silicon carbide by the thermal reduction technique[J].Journal of the Electrochemical Society,1966,113(8):825.[7]㊀MUENCH W V,PFAFFENEDER I.Epitaxial deposition of silicon carbide from silicon tetrachloride and hexane[J].Thin Solid Films,1976,31(1/2):39-51.[8]㊀YOSHIDA S,SAKUMA E,OKUMURA H,et al.Heteroepitaxial growth of SiC polytypes[J].Journal of Applied Physics,1987,62(1):303-305.[9]㊀NISHINO S,POWELL J A,WILL H A.Production of large-area single-crystal wafers of cubic SiC for semiconductor devices[J].AppliedPhysics Letters,1983,42(5):460-462.[10]㊀KURODA N,SHIBAHARA K,YOO W,et al.Step-controlled VPE growth of SiC single crystals at low temperatures[C]//Extended Abstracts ofthe1987Conference on Solid State Devices and Materials.August25-27,1987.Nippon Toshi Center,Tokyo,Japan.The Japan Society of Applied Physics,1987:032156.[11]㊀KONG H,KIM H J,EDMOND J A,et al.Growth,doping,device development and characterization of CVD beta-SiC epilayers on Si(100)andalpha-SiC(0001)[J].MRS Proceedings,1987,97:233.216㊀综合评述人工晶体学报㊀㊀㊀㊀㊀㊀第53卷[12]㊀JR A B A,ROWLAND L B.Homoepitaxial vpe growth of SiC active layers[J].Physica Status Solidi(b),1997,202(1):263-279.[13]㊀RUPP R,MAKAROV N Y,BEHNER H,et al.Silicon carbide epitaxy in a vertical CVD reactor:experimental results and numerical processsimulation[J].Physica Status Solidi(b),1997,202(1):281-304.[14]㊀KIMOTO T,ITOH A,MATSUNAMI H.Step-controlled epitaxial growth of high-quality SiC layers[J].Physica Status Solidi(b),1997,202(2):247-262.[15]㊀THOMAS B,BARTSCH W,STEIN R A,et al.Properties and suitability of4H-SiC epitaxial layers grown at different CVD systems for highvoltage applications[J].Materials Science Forum,2004,493(457-460):181-184.[16]㊀LA VIA F,CAMARDA M,CANINO A,et al.Fast growth rate epitaxy by chloride precursors[J].Materials Science Forum,2013,740/741/742:167-172.[17]㊀LARKIN D J,SRIDHARA S G,DEVATY R P,et al.Hydrogen incorporation in boron-doped6H-SiC CVD epilayers produced using site-competition epitaxy[J].Journal of Electronic Materials,1995,24(4):289-294.[18]㊀LARKIN D J,NEUDECK P G,POWELL J A,et al.Site-competition epitaxy for superior silicon carbide electronics[J].Applied PhysicsLetters,1994,65(13):1659-1661.[19]㊀LARKIN D J.SiC dopant incorporation control using site-competition CVD[J].Physica Status Solidi(b),1997,202(1):305-320.[20]㊀WANG R J,BHAT I B,CHOW T P.Epitaxial growth of n-type SiC using phosphine and nitrogen as the precursors[J].Journal of AppliedPhysics,2002,92(12):7587-7592.[21]㊀KIMOTO T,NAKAZAWA S,HASHIMOTO K,et al.Reduction of doping and trap concentrations in4H-SiC epitaxial layers grown by chemicalvapor deposition[J].Applied Physics Letters,2001,79(17):2761-2763.[22]㊀TSUCHIDA H,KAMATA I,JIKIMOTO T,et al.Epitaxial growth of thick4H-SiC layers in a vertical radiant-heating reactor[J].Journal ofCrystal Growth,2002,237/238/239:1206-1212.[23]㊀BURK A A,TSVETKOV D,BARNHARDT D,et al.SiC epitaxial layer growth in a6ˑ150mm warm-wall planetary reactor[J].MaterialsScience Forum,2012,717/718/719/720:75-80.[24]㊀KOJIMA K,SUZUKI T,KURODA S,et al.Epitaxial growth of high-quality4H-SiC carbon-face by low-pressure hot-wall chemical vapordeposition[J].Japanese Journal of Applied Physics,2003,42(Part2,No.6B):L637-L639.[25]㊀THOMAS B,ZHANG J E,MOEGGENBORG K,et al.Progress of SiC epitaxy on150mm substrates[J].Materials Science Forum,2015,821/822/823:161-164.[26]㊀MATTIA M,EGIDIO C,DANILO C,et al.Development of n-type epitaxial growth on200mm4H-SiC wafers for the next generation of powerdevices[J].Microelectronic Engineering,2023,274(1):111976.[27]㊀THOMAS B,ZHANG J E,CHUNG G Y,et al.Homoepitaxial chemical vapor deposition of up to150μm thick4H-SiC epilayers in a10ˑ100mmbatch reactor[J].Materials Science Forum,2016,858:129-132.[28]㊀KENNETH G I.Growth of very uniform silicon carbide epitaxial layers,US6063186A[P].1999-06-24.[29]㊀AYEDH H M,HALLÉN A,SVENSSON B G.Elimination of carbon vacancies in4H-SiC epi-layers by near-surface ion implantation:influenceof the ion species[J].Journal of Applied Physics,2015,118(17):175701.[30]㊀AYEDH H M,KVAMSDAL K E,BOBAL V,et al.Carbon vacancy control in p+-n silicon carbide diodes for high voltage bipolar applications[J].Journal of Physics D:Applied Physics,2021,54(45):455106.[31]㊀MIYAZAWA T,TSUCHIDA H.Point defect reduction and carrier lifetime improvement of Si-and C-face4H-SiC epilayers[J].Journal ofApplied Physics,2013,113(8):083714.[32]㊀RANA T,CHUNG G,SOUKHOJAK A,et al.Interfacial dislocation reduction by optimizing process condition in SiC epitaxy[J].MaterialsScience Forum,2022,63(9):99-103.[33]㊀ZHANG X A,NAGANO M,TSUCHIDA H.Basal plane dislocations in4H-SiC epilayers with different dopings[J].Materials Science Forum,2012,725:27-30.[34]㊀KAMATA I,TSUCHIDA H,JIKIMOTO T,et al.Structural transformation of screw dislocations via thick4H-SiC epitaxial growth[J].JapaneseJournal of Applied Physics,2000,39(12R):6496.[35]㊀DANIELSSONÖ,FORSBERG U,JANZÉN E.Predicted nitrogen doping concentrations in silicon carbide epitaxial layers grown by hot-wallchemical vapor deposition[J].Journal of Crystal Growth,2003,250(3/4):471-478.[36]㊀TSVETKOV V F,ALLEN S T,KONG H S,et al.Recent progress in SiC crystal growth[C]//International Conference on Silicon Carbide andRelated Materials,1995,142:317.[37]㊀LENDENMANN H,DAHLQUIST F,JOHANSSON N,et al.Long term operation of4.5kV PiN and2.5kV JBS diodes[J].Materials ScienceForum,2001,353/354/355/356:727-730.[38]㊀BERGMAN P,LENDENMANN H,NILSSON PÅ,et al.Crystal defects as source of anomalous forward voltage increase of4H-SiC diodes[J].Materials Science Forum,2001,353/354/355/356:299-302.[39]㊀LENDENMANN H,BERGMAN P,DAHLQUIST F,et al.Degradation in SiC bipolar devices:sources and consequences of electrically active㊀第2期郭㊀钰等:碳化硅同质外延质量影响因素的分析与综述217㊀dislocations in SiC[J].Materials Science Forum,2003,433/434/435/436:901-906.[40]㊀MUZYKOV P G,KENNEDY R M,ZHANG Q,et al.Physical phenomena affecting performance and reliability of4H-SiC bipolar junctiontransistors[J].Microelectronics Reliability,2009,49(1):32-37.[41]㊀SKOWRONSKI M,HA S.Degradation of hexagonal silicon-carbide-based bipolar devices[J].Journal of Applied Physics,2006,99(1):011101.[42]㊀YANG L,ZHAO L X,WU H W,et al.Characterization and reduction of defects in4H-SiC substrate and homo-epitaxial wafer[J].MaterialsScience Forum,2020,1004:387-392.[43]㊀STAHLBUSH R E,VANMIL B L,MYERS-WARD R L,et al.Basal plane dislocation reduction in4H-SiC epitaxy by growth interruptions[J].Applied Physics Letters,2009,94(4):041916.[44]㊀CAPAN I,BORJANOVIC'V,PIVAC B.Dislocation-related deep levels in carbon rich p-type polycrystalline silicon[J].Solar Energy Materialsand Solar Cells,2007,91(10):931-937.[45]㊀NA M,BAHNG W,JANG H,et al.Effects of stress on the evolution ofΣ-shaped dislocation arrays in a4H-SiC epitaxial layer[J].Journal ofApplied Physics,2021,129(24):245101.[46]㊀LI Z,ZHANG X A,ZHANG Z H,et al.Microstructure of interfacial basal plane dislocations in4H-SiC epilayers[J].Materials Science Forum,2019,954:77-81.[47]㊀NISHIO J,KUDOU C,TAMURA K,et al.C-face epitaxial growth of4H-SiC on quasi-150-mm diameter wafers with high throughput[J].Materials Science Forum,2014,778/779/780:109-112.[48]㊀AOKI M,KAWANOWA H,FENG G,et al.Characterization of bar-shaped stacking faults in4H-SiC epitaxial layers by high-resolutiontransmission electron microscopy[J].Japanese Journal of Applied Physics,2013,52(6R):061301.[49]㊀CAMARDA M,CANINO A,LA MAGNA A,et al.Structural and electronic characterization of(2,33)bar-shaped stacking fault in4H-SiCepitaxial layers[J].Applied Physics Letters,2011,98(5):051915.[50]㊀SUO H,YAMASHITA T,ETO K,et al.Observation of multilayer Shockley-type stacking fault formation during process of epitaxial growth onhighly nitrogen-doped4H-SiC substrate[J].Japanese Journal of Applied Physics,2019,58(2):021001.[51]㊀ASAFUJI R,HIJIKATA Y.Generation of stacking faults in4H-SiC epilayer induced by oxidation[J].Materials Research Express,2018,5(1):015903.[52]㊀DONG L,SUN G S,YU J,et al.Mapping of micropipes and downfalls on4H-SiC epilayers by Candela optical surface analyzer[C]//2012IEEE11th International Conference on Solid-State and Integrated Circuit Technology.October29-November1,2012,Xi'a n,China.IEEE,2013:1-3.[53]㊀KONSTANTINOV A O,HALLIN C,PÉCZ B,et al.The mechanism for cubic SiC formation on off-oriented substrates[J].Journal of CrystalGrowth,1997,178(4):495-504.[54]㊀OKADA T,KIMOTO T,YAMAI K,et al.Crystallographic defects under device-killing surface faults in a homoepitaxially grown film of SiC[J].Materials Science and Engineering:A,2003,361(1/2):67-74.[55]㊀BENAMARA M,ZHANG X,SKOWRONSKI M,et al.Structure of the carrot defect in4H-SiC epitaxial layers[J].Applied Physics Letters,2005,86(2):021905.[56]㊀OKADA T,KIMOTO T,NODA H,et al.Correspondence between surface morphological faults and crystallographic defects in4H-SiChomoepitaxial film[J].Japanese Journal of Applied Physics,2002,41:6320-6326.[57]㊀TSUCHIDA H,KAMATA I,NAGANO M.Investigation of defect formation in4H-SiC epitaxial growth by X-ray topography and defect selectiveetching[J].Journal of Crystal Growth,2007,306(2):254-261.[58]㊀孙国胜,杨㊀霏,柏㊀松,等.4H-碳化硅衬底及外延层缺陷术语[S].T/CASA004.1-2018,北京,2018.SUN G S,YANF F,BO S,et al.4H-Silicon carbide substrate and epitaxial layer defect terms[S].T/CASA004.1-2018,Beijing,2018(in Chinese).[59]㊀POWELL J A,LARKIN D J.Process-induced morphological defects in epitaxial CVD silicon carbide[J].Physica Status Solidi(b),1997,202(1):529-548.[60]㊀KIMOTO T,CHEN Z Y,TAMURA S,et al.Surface morphological structures of4H-,6H-and15R-SiC(0001)epitaxial layers grown bychemical vapor deposition[J].Japanese Journal of Applied Physics,2001,40(5R):3315.[61]㊀KIMOTO T,MIYAMOTO N,MATSUNAMI H.Performance limiting surface defects in SiC epitaxial p-n junction diodes[J].IEEE Transactionson Electron Devices,1999,46(3):471-477.[62]㊀OHTANI N,USHIO S,KANEKO T,et al.Tunneling atomic force microscopy studies on surface growth pits due to dislocations in4H-SiCepitaxial layers[J].Journal of Electronic Materials,2012,41(8):2193-2196.[63]㊀孙国胜,杨㊀霏,柏㊀松,等.4H-SiC衬底及外延层缺陷图谱[S].T/CASA004.2-2018,北京,2018.SUN G S,YANF F,BO S,et al.Defect map of4H-SiC substrate and epitaxial layer[S].T/CASA004.2-2018,Beijing,2018(in Chinese).[64]㊀KUDOU C,ASAMIZU H,TAMURA K,et al.Influence of epi-layer growth pits on SiC device characteristics[J].Materials Science Forum,2015,821/822/823:177-180.。
科锐碳化硅衬底mat目录
半绝缘 掺杂
主平面长度
次平面长度 表面方向
在轴上 表面方向
离轴 表面抛光
正交位错
主平面方向
次平面方向
硅片平整度
弯曲度
直接频率合成(平均,1cm2 的点)
封装
科锐标准 100.0 mm +0.0/-0.5 mm
500.0 μm ± 50.0 μm 350.0 μm ± 25.0 μm 500.0 μm ± 25.0 μm
+ 对于研究级材料晶圆边缘必须大于 0.5mm 是一种拒绝理由。
科锐 ※ 技术和方法的定义
区域(污点) 在高强度光(漫射光)照射下,在表面的局部区域内任何杂质都会显现出来,
这些区域内的污点、染色或水渍出现褪色、杂色或者多云纹。 裂纹
从晶体前端面延伸到后背面晶体,即为破裂或解理的晶圆。在高强度光照射 下,裂纹长度必须超过 0.010 英寸,这是为了区别正常的晶体的光条纹。典型的 断裂线显示出锋利的、细线状延伸,这可以区别于材料的光条纹。 芯片边缘
有多晶的或是晶圆剩余的不同类型材料是晶体结晶区域,像 6H 混合着 4H 类型的衬底。异质的多型体区域频繁地呈现色彩变幻或明显边界线,在漫光照射 下被判定为区域百分比的依据。
科锐
划痕 划痕被定义为在晶圆前端表面拥有长宽比例为 5:1 的单一切口或槽,并且
在漫射光下明显的。 光条纹
碳化硅上的光条纹是线性晶体缺陷,这些缺限可能穿透也可能没有穿透整个 晶体厚度,它们一般沿着晶体位面并超过位面的长度。 可用区域
直径762mm衬底规范衬底特性科锐标准直径30000015762mm038mm厚度000253680半绝缘0013800013500主平面长度087501252222mm317mm次平面长度044000601118mm152mm表面方向025表面方向40toward11200580toward112005表面抛光双面抛光正交位错50主平面方向112050次平面方向与主平面50有900cw硅面超上硅片平整度15nm基质整体弯曲度35nm基质整体直接频率合成平均1cm4nm基质整体封装多晶片盒除非另有说明直径1000mm衬底规范衬底特性科锐标准直径1000mm0005mm厚度厚度半绝缘5000主平面长度325mm20mm次平面长度180mm20mm表面方向025表面方向05有40表面抛光双面抛光正交位错50主平面方向112050次平面方向与主平面50有900cw硅面超硅片平整度15nm基质整体弯曲度35nm基质整体直接频率合成平均14nm基质整体封装多晶片盒除非另有说明直表面抛光抛光后的碳化硅衬底说明特征产品等级研究级芯片边缘漫射光照缩进不允许深度和宽度210mm橘皮皱漫射光照凹点10区域30区域漫射点照多晶区域5区域20区域漫射光照光条纹允许每个3mm20allowedmmeach高强度光区域污点污点不允许不允许高强度光照射裂纹不允许不允许高强度光照射十六进制板累积区域10累积区域30高强度光照射划痕倍晶圆累积长度5道划痕15倍晶圆累积长度8道划痕掩饰瑕疵堆积200显微镜定量在十字区域检查3到少于9字段10个瑕疵在十字区域检查5到少于9字段10个瑕疵污点200显微镜定量检查区域无瑕疵检查区域无瑕疵累积区域瑕疵10区域30区域注释
碳化硅的性能
碳化硅的性能及定义天然的碳化硅很少,工业上使用的为人工合成原料,俗称金刚砂,是一种典型的共价键结合的化合物。
碳化硅是耐火材料领域中最常用的非氧化物耐火原料之一。
(1)碳化硅的性质碳化硅主要有两种结晶形态:b-SiC和a-SiC。
b-SiC为面心立方闪锌矿型结构,晶格常数a=0.4359nm。
a-SiC是SiC的高温型结构,属六方晶系,它存在着许多变体。
碳化硅的折射率非常高,在普通光线下为2.6767~2.6480.各种晶型的碳化硅的密度接近,a-SiC一般为3.217g/cm3,b-SiC为3.215g/cm3.纯碳化硅是无色透明的,工业SiC由于含有游离Fe、Si、C等杂质而成浅绿色或黑色。
绿碳化硅和黑碳化硅的硬度在常温和高温下基本相同。
SiC热膨胀系数不大,在25~1400℃平均热膨胀系数为4.5×10-6/℃。
碳化硅具有很高的热导率,500℃时为64.4W/ (m·K)。
常温下SiC是一种半导体。
碳化硅的基本性质列于下表。
碳化硅具有耐高温、耐磨、抗冲刷、耐腐蚀和质量轻的特点。
碳化硅在高温下的氧化是其损害的主要原因。
(2)碳化硅的合成①碳化硅的冶炼方法合成碳化硅所用的原料主要是以SiO为主要成分的脉石2英或石英砂与以C为主要成分的石油焦,低档次的碳化硅可用地灰分的无烟煤为原料。
辅助原料为木屑和食盐。
含量尽可能高,杂碳化硅有黑、绿两种。
冶炼绿碳化硅时要求硅质原料中SiO2可稍低些。
对石油焦的要质含量尽量低。
生产黑碳化硅时,硅质原料中的SiO2求是固定碳含量尽可能高,灰分含量小于1.2%,挥发分小于12.0%,石油焦的粒度通常在2mm或1.5mm以下。
木屑用于调整炉料的透气性能,通常的加入量为3% ~5%(体积)。
食盐仅在冶炼绿碳化硅时使用。
硅质原料与石油焦在2000~2500℃的电阻炉内通过以下反应生成碳化硅:+3C→SiC+2CO↑-526.09KjSiO2CO通过炉料排出。
碳化硅材料参数
碳化硅材料参数1. 碳化硅材料概述碳化硅(Silicon Carbide,简称SiC)是一种重要的陶瓷材料,由硅(Si)和碳(C)元素组成。
碳化硅具有优异的物理、化学和机械性能,被广泛应用于高温、高压、高频电子器件、光电子器件、热管理和结构材料等领域。
2. 碳化硅材料的主要参数2.1 物理参数•密度:碳化硅的密度通常在3.21 g/cm³到3.23 g/cm³之间,具有较低的密度,使其在轻质结构材料中具有优势。
•熔点:碳化硅的熔点约为2730℃,具有较高的熔点,使其在高温应用中能够保持稳定性。
•热膨胀系数:碳化硅的线膨胀系数随温度的升高而减小,具有较低的热膨胀系数,使其在高温应用中具有优异的热稳定性。
•硬度:碳化硅具有极高的硬度,通常在9.0到9.5之间,接近于钻石的硬度,使其在耐磨、耐腐蚀和抗刮擦等方面表现出色。
2.2 电学参数•绝缘性能:碳化硅具有较高的击穿电压和较低的漏电流,具有优异的绝缘性能,适用于高电压绝缘材料。
•导电性能:碳化硅具有较高的电导率,可用作导电材料或电子器件的基底材料。
•介电常数:碳化硅的介电常数通常在9到10之间,具有较低的介电常数,使其在高频电子器件中具有优异的性能。
2.3 热学参数•热导率:碳化硅具有较高的热导率,通常在120到150 W/(m·K)之间,具有优异的热传导性能,适用于高温导热材料。
•热稳定性:碳化硅具有较高的熔点和较低的热膨胀系数,具有优异的热稳定性,可在高温环境下长期稳定运行。
2.4 机械参数•强度:碳化硅具有较高的抗弯强度和抗压强度,具有优异的机械强度,可用于高负荷和高应力环境。
•脆性:碳化硅具有较高的脆性,不易塑性变形,易于出现裂纹和断裂,因此在使用过程中需要注意避免过大的应力和冲击。
3. 碳化硅材料的应用碳化硅材料由于其优异的性能,在多个领域得到了广泛应用,主要包括:•电子器件:碳化硅可用作高功率、高频率电子器件的基底材料,如功率MOSFET、功率二极管和射频器件等。
第三代半导体面SiC碳化硅器件及其应用修订稿
第三代半导体面S i C碳化硅器件及其应用集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]第三代半导体面-S i C(碳化硅)器件及其应用作为一种新型的半导体材料,SiC以其优良的物理化学特性和电特性成为制造短波长光电子器件、高温器件、抗辐照器件和大功率/高额电子器件最重要的半导体材料.特别是在极端条件和恶劣条件下应用时,SiC器件的特性远远超过了Si器件和GaAs器件.因此,SiC器件和各类传感器已逐步成为关键器件之一,发挥着越来超重要的作用.从20世纪80年代起,特别是1989年第一种SiC衬底圆片进入市场以来,SiC器件和电路获得了快速的发展.在某些领域,如发光二极管、高频大功率和高电压器件等,SiC器件已经得到较广泛的商业应用.发展迅速.经过近10年的发展,目前SiC器件工艺已经可以制造商用器件.以Cree为代表的一批公司已经开始提供SiC器件的商业产品.国内的研究所和高校在SiC材料生长和器件制造工艺方面也取得厂可喜的成果.虽然SiC材料具有非常优越的物理化学特性,而且SiC器件工艺也不断成熟,然而目前Si C器件和电路的性能不够优越.除了SiC材料和器件工艺需要不断提高外.更多的努力应该放在如何通过优化S5C器件结构或者提出新型的器件结构以发挥SiC材料的优势方面.1 SiC分立器件的研究现状目前.SiC器件的研究主要以分立器件为主.对于每一种器件结构,共最初的研究部是将相应的Si或者GaAs器件结构简单地移植到SiC上,而没有进行器件结构的优化.由于SiC的本征氧化层和Si相同,均为SiO2,这意味着大多数Si器件特别是M帕型器件都能够在SiC上制造出来.尽管只是简单的移植,可是得到的一些器件已经获得了令人满意的结果,而且部分器件已经进入厂市场. SiC光电器件,尤其是蓝光发光二极管在20世纪90年代初期已经进入市场,它是第一种大批量商业生产的SiC器件.日前高电压SiC肖特基二极管、SiC射频功率晶体管以及SiC MOSFET和MESFET等也已经有商业产品.当然所有这些SiC产品的性能还远没有发挥SiC材料的超强特性,更强功能和性能的SiC器件还有待研究与开发.这种简单的移植往往不能完全发挥SiC材料的优势.即使在SiC器件的一些优势领域.最初制造出来的SiC器件有些还不能和相应的Si或者CaAs器件的性能相比.为了能够更好地将SiC材料特性的优势转化为SiC器件的优势,目前正在研究如何对器件的制造工艺与器件结构进行优化或者开发新结构和新工艺以提高SiC器件的功能和性能.1.1 SiC肖特基二极管肖特基二极管在高速集成电路、微波技术等许多领域有重要的应用.由于肖特基二极管的制造工艺相对比较简单,所以对SiC肖特基二极管的研究较为成熟.普渡大学最近制造出了阻断电压高达4.9kV的4H-SiC肖特基二极管,特征导通电阻为43mΩc㎡,这是目前SiC肖特基二极管的最高水平.通常限制肖特基二极管阻断电压的主要因素是金—半肖特基接触边沿处的电场集中.所以提高肖特基二极管阻断电压的主要方法就是采用不同的边沿阻断结构以减弱边沿处的电场集中.最常采用的边沿阻断结构有3种:深槽阻断、介质阻断和pn结阻断.普放大学采用的方法是硼注入pn结阻断结构,所选用的肖特基接触金属有Ni,Ti.2000年4月Cree和Kansai联合研制出一只击穿电压高达12.3kV的SiC整流器,主要采用了新的外延工艺和改进的器件设计.该器件具有很低的导通电阻,正向导通电压只有 V ,电流密度高,可以达到100A/c㎡,是同类Si器件的5倍多. SiC功率器件由于SIC的击穿电场强度大约为Si的8倍.所以SiC功率器件的特征导通电阻可以做得小到相应S i器件的1/400.常见的功率器件有功率MOSFET、IGBT以及多种MOS控制闸流管等.为了提高器件阻断电压和降低导通电阻,许多优化的器件结构已经被使用.表1给出了已报道的最好的SiC功率MOSFET器件的性能数据Si功率MOSFET的功率优值的理论极限大约为5MW/㎡.除了横向DM0SFET因为特征导通电阻较高而使得优值较小外,其他Si C功率器件的功率优值均大于Si功率MOSFET器件的理论极限,特别是普渡大学制造的UMOS累积型FET的大功率优值是Si极限值的25倍.1.3 SiC开关器件到目前为止,S zC开关器件,无论是MOSFETs还是半导体闸流管,通常都是采用纵向器件结构,用衬底作为阴极.关态时,电压被一个反偏的pn结阻断.为了获得更高阻断电压,该pn的一边即“漂移区”很厚,而且掺杂浓度要低,所以纵向SiC功率开关器件的阻断电压主要依赖于漂移区的掺杂浓度和厚度.漂移区厚度一定时,不管掺杂浓度如何,总存在一个最大可能的阻断电压.然而至今,所能获得的SiC外延层的厚度最大只有10μm这就决定了最大可能的阻断电压大约为1600V.有效克服这一限制的方法就是改变器件的结构,即采用横向器件结构.普渡大学已经采用横向器件结构制造出了横向DMOSFETs.首先在绝缘4H—SiC讨底上外延n型SiC,然后在外延层上制造器件.显然,横向器件结构的最大阻断电压不受外延层厚度的限制,采用这种结构已经制造出了阻断电压高达2.6kV的LDMOSFETs.然而目前的横向LDMOSFET的特征导通电阻还比较高,这主要是因为当用横向结构代替纵向结构时.所需的器件面积将会增大.如果能够把减小表面电场概念和器件设计结合起来,那么导通电阻能够做得比相应的纵向器件还低.1.4 SiC 微波S件SiC的高饱和漂移速度、高击穿场强和高热导率特性使得SiC成为1--10GHz 范围的大功率微波放大器的理想材料.短沟道SiC MESFETs的特征频率已经达到22GH z.最高指荡频率f可以达到50GHz.静电感应晶体管(SITs)在600MHz时功率可以达到470W(功率密度为1.36W/mm),3GHz时功率为38W(1.2W/mm).由于SiC的热导率很高(GaAs的]0倍,GaN的3倍),工作产生的热量可以很快地从衬底散发.通过改进器件结构,SiC SITs的特征频率目前可以达到7GHz.最近普渡大学在半绝缘4H—SiC上制造出了一种亚微米T型栅MESFETs,饱和漏电流为350mA/mm,跨导为20m5/mm,漏击穿电压为120V,最大可获得的射频功率密度为3.2W/mm.1. 5 SiC器件的高温特性S iC器件在300°C以上高温条件下的工作特性也被大量研究, NASA制造的6H—SiC掩埋栅JE2T在600°C高温下表现出很好的低泄漏开关特性.然而,该器件在此高温下只工作了30个小时,器件发生了很小的退化,退化原因是接触金屑的氧化.但是当SiC 器件在惰性气体环境中工作,在600°C高温下寿命要长得多.只要改善工艺控制的精确性并解决好接触金属和封装问题,SiC器件的高温寿命就会大大提高.2 SiC集成电路的研究现状与S1C分立器件追求高电压、大功率、高频以及高温特性不同,SiC集成电路的研究目标主要是获得高温数字电路,用于智能功率ICs的控制电路.由于SiC集成电路工作对内部电场很低,所以微管缺陷的影响将大大减弱,这可以从第一片单片SiC集成运算放大器芯片得到验证,实际成品宰远远高于微管缺陷所决定的成品率,因此,基于SiC的成品率模型与Si和CaAs材料是明显不同的.该芯片是基于耗尽型NMOSFET技术.主要是因为反型沟道SiC MOSFETs的有效载流子迁移率太低.为了提高Sic的表面迁移率,就需要对SiC的热氧化工艺进行改进与优化.美国普渡大学在SiC集成电路方面做了大量工作.1992年研制成功厂基于反型沟道6H—SiC N MOSFETs单片数字集成电路.该芯片包含与非门、或非门、同或门、二进制计数器和半加器电路,在25°C到300°C的温度范围内均可正常工作.1995年采用钒注入隔离技术制造出第一个SiC平面MESFET Ics通过精确控制钒的注入量,可以获得绝缘SiC.在数字逻辑电路中,CMOS电路比NMOS电路具有更大的吸引力.1996年9月制造出第一片6H—SiC CMOS数字集成电路.该器件使用了注入n阶和淀积氧化层,但是由于其他的工艺问题,该芯片中PMOSFETs的阂值电压太高.在1997年3月制造第二代SiC CMOS电路时.采用了注入p阱和热生长氧化层工艺.通过工艺改进得到的PMOSEFTs的阂值电压大约为-4.5v.该芯片上所有的电路都能在室温到300°C范围内很好地工作,采用单一电源供电,电源电压可以为5--15V之间的任意电压.随着衬底圆片质量的提高,将能制造出功能更强和成品率更高的集成电路.然而,当SiC材料和工艺问题基本解决以后,器件和封装的可靠性问题将上升为影响高温SiC集成电路性能的主要因素.3 SiC器件的应用现状SiC器件在高温、高频、大功率、高电压光电子及抗辐照等方面具有巨大的应用潜力.3.1 SiC器件在高温环境中的应用在航空航天和汽车设备中,电子器件经常要在高温下工作,如飞机发动机、汽车发动机、在太阳附近执行任务的航天器以及卫星中的高温设备等.使用通常的Si或者GaAs器件,因为它们不能在很高的温度下工作,所以必须把这些器件放在低温环境中,这里有两种处理方法:一种是把这些器件放在远离高温的地方,然后通过引线和连接器将它们和所需控制的设备连接起来;另一种是把这些器件放在冷却盒中,然后放在高温环境下.很明显,这两种方法都会增加额外的设备,增加了系统的质量,减小了系统可用的空间,使得系统的可靠性变差.如果直接使用可以在高温下工作的器件,将可以消除这些问题.SIC器件可以直接工作在3M—枷Y,而不用对高温环境进行冷却处理.SiC电子产品和传感器能够被安装在炽热的飞机发动机内部和其表面上,在这种极端工作条件下它们仍然能够正常发挥功能,大大减轻了系统总质量并提高可靠性.基于SiC器件的分布控制系统可以消除在传统的电子屏蔽控制系统中所用引线和连接器的90%.这一点极为重要,因为在当今的商用飞机中、引线和连接器问题是在停工检修时最经常遇到的问题.根据美国空军的评估,在F—16战斗机中使用先进的SiC电子产品,将使该飞机的质量减轻几百公斤,工作性能和燃料效率得到提高,工作可靠性更高,维护费用和停工检修期大大减少.同样,SiC电子器件和传感器也可以提高商用喷气客机的性能,据报测对每架客机附加的经济利润可以达到数百万美元.同样,SiC高温电子传感器和电子设备在汽车发动机上的使用将能做到更好的燃烧监控与控制,可以使汽车的燃烧更清洁、效率更高.而且,SiC发动机电子控制系统在125°C以上也能很好地工作,这就减少了发动机隔箱内的引线和连接器的数量,提高汽车控制系统的长期可靠性.现在的商用卫星需要散热器去驱散航天器电子器件所产生的热量,并且需要防护罩来保护航天器电子器件免受空间辐射的影响.由于SiC电子器件不但可以在高温下工作,而且具有很强的抗幅照特性,所以SiC电子器件在航天器上的使用能够减少引线和连接器的数量以及辐射防护罩的大小和质量.如果发射卫星到地球轨道的成本是以质量计,那么使用SiC电子器件减轻的质量可以提高卫星工业的经济性和竞争力.使用高温抗辐照SiC器件的航天器可以用来执行太阳系周围的更具挑战性的任务.将来,当人们在太阳周围和太阳系内行星的表面执行任务时,具有优良高温和抗辐射特性的SiC电子器件将发挥关键性的作用、对于在太阳附近工作的航天器来讲,SiC电子器件的使用可以减少航天器的防护和散热设备,于是在每一个运载工具中可以安装更多的科学仪器.3.2 SiC器件的微波应用SiC器件除了可以在高温下工作以外,还具有很多优良的微波特性。
碳化硅衬底片出货标准
碳化硅衬底片出货标准一、目的本标准规定了碳化硅衬底片出货的要求,以确保产品满足客户和公司的高品质要求。
二、碳化硅衬底片出货标准1. 尺寸精度(1)长宽尺寸:±0.5mm;(2)厚度尺寸:±0.1mm。
2. 表面质量(1)表面应光滑、洁净,无划痕、杂质、色差及明显凹陷;(2)表面粗糙度Ra应不大于0.5μm。
3. 化学成分(1)碳含量应在规定范围内,以保证材料的物理和机械性能;(2)其他微量元素含量也应符合相关标准。
4. 物理性质(1)密度应为3.15g/cm³左右,以符合材料强度和刚度的要求;(2)热膨胀系数应在规定范围内,以适应不同的应用环境。
5. 机械性能(1)硬度:HV1000以上;(2)抗拉强度:≥1000MPa;(3)抗压强度:≥800MPa;(4)抗弯强度:≥250MPa。
6. 热学性能(1)热导率:≥300W/m·K;(2)热膨胀系数:≤4×10-6/℃。
7. 光学性能透光率应在规定范围内,以适应不同的光学应用。
8. 稳定性(1)尺寸稳定性:在25℃温度下放置24小时,尺寸变化率应不大于0.5%;(2)化学稳定性:在规定的环境条件下,经过一定时间后,其化学成分和物理性质应保持稳定。
9. 无缺陷产品应无裂纹、气泡、夹杂物等明显缺陷。
在出货前,需进行严格的质量检验,确保产品无缺陷。
检验人员发现不合格的产品时,检验员有权拒绝在检验报告上签字,并可同时拒绝继续接收不合格的产品.只有当用户同意降低检验水平并采取相应措施后才接收产品.重大质量不合格将依据公司有关规定对责任部门实施考核,由质量控制部负责统计汇总每月不合格批次并上报总经理。
每年由质量管理部组织相关部门对各类不合格的质量情况进行评审,并采取相应的纠正预防措施。
只有当用户同意降低检验水平并采取相应措施后才接收产品.重大质量不合格将依据公司有关规定对责任部门实施考核,由质量控制部负责统计汇总每月不合格批次并上报总经理。
3英寸高纯半绝缘6H-SiC单晶的研制
p yia vprt np r( V me o .I i k o nta nt gn oc p scro i e — slt g hs l a o a so P T) t d t s nw h t ioe eu y ab ns ei sminuai c r t h r t n i n
( )=NC
Ps c+2 i i ps z c
:
2
() 5
当生 长气 氛压力 降低 时 , 些含 S、 分 的分 有 ic组 压可 能高 过生 长气 氛 , 分组分 将逸 出 , 生长 室 内 部 使
碳硅 比发生变化 。这种情况下 , 碳硅 比 x不再仅是
温度 的函数 , 还与 生 长 室压 力 有 关 。计 算 240K、 8
王利杰 等 : 寸高纯半 绝缘 6 SC单 晶的研制 3英 H-i
43 3
计和材料优选 、 源粉纯化与合成 , 以及籽 晶粘结等工 艺都与生长 2 英寸掺钒半绝缘 6 —i HS C单晶一致 , 大尺 寸单 晶的生 长技术 , 已有 专 门讨论 。本 部 也 分重 点 描述 高纯 半绝 缘 的实 现 。 PT v 生长碳化硅单晶使用的坩埚及其保温系统由 不 同密度的石墨构成 , 料为碳化 硅粉末 , 原 这些石 墨构 件 和粉末 不可避免 地吸 附空气 中 的氮 , 又由于生长 环 境通常为几帕到几百帕 , 在这种生 长条件下 , 吸附的氮
( h 6hR sa hIstt, E C Taj 0 2 0 C ia T e t eer ntu C T , in n3 02 , hn ) 4 c ie i
A s at 一 c ihp rysminua n ( P I 6 —i igecytl spe ae u cs ul b bt c:3i h hg u t e — sl ig H S ) H SC s l rs rp rd sces l y r n i i t n ai f y
碳化硅衬底双晶衍射-概述说明以及解释
碳化硅衬底双晶衍射-概述说明以及解释1.引言1.1 概述概述碳化硅衬底双晶衍射是一种在晶体材料研究领域中常常被运用的技术。
双晶衍射是指在晶体中存在两个略有偏转的晶格,这种略微的偏转使得晶体的特定方向成为光学的散射中心。
碳化硅作为一种优良的半导体材料,其特性使得它成为了研究双晶衍射的理想选择。
本文旨在介绍碳化硅衬底双晶衍射的原理、特性、应用前景以及总结。
首先,我们将详细探讨碳化硅衬底的特性,包括其物理和化学性质。
其次,我们将解释双晶衍射的原理,包括它如何发生并如何影响材料的结构和性能。
在进一步讨论之后,我们将重点关注碳化硅衬底双晶衍射的应用前景。
由于碳化硅材料的优越性能,碳化硅衬底双晶衍射在各个领域都有广阔的应用前景,特别是在光学器件、半导体器件和纳米技术方面。
最后,我们将总结本文的主要内容,并对碳化硅衬底双晶衍射的未来研究方向进行展望。
通过本文的阐述,读者将能够全面了解碳化硅衬底双晶衍射的重要性和应用前景,认识到其在材料研究中的潜力和意义。
我们希望通过推广这一研究领域的知识,进一步促进碳化硅衬底双晶衍射技术的发展和应用。
1.2文章结构文章结构部分内容可以包括以下信息:文章结构部分将介绍本文的组织结构和各个章节的内容概要,以便读者明确了解整篇文章的编排和逻辑。
本文分为引言、正文和结论三个主要部分。
引言部分首先对整篇文章进行概述,介绍了碳化硅衬底双晶衍射的研究背景和意义。
其次,描述了本文的结构,包括各个章节的内容和主要研究目的。
正文部分将详细介绍碳化硅衬底的特性,包括其物理、化学性质等方面的内容。
然后,解释双晶衍射的原理,涵盖了衍射现象的基本原理以及其在碳化硅衬底中的应用。
结论部分将展望碳化硅衬底双晶衍射的应用前景。
同时,对整篇文章进行总结和归纳,强调本文的主要发现和研究结果。
通过以上章节的编排,本文将全面介绍碳化硅衬底双晶衍射的原理、特性和应用前景,为读者提供深入了解和研究该领域的指导和参考。
文章1.3 目的部分的内容:本文的目的在于探究碳化硅衬底双晶衍射的原理及其应用前景。
热氧化和薄膜制备技术
3.2 热生长二氧化硅薄膜
7.缓冲层/ 热氧化层
当氮化硅直接沉积在硅衬底上时,界面存在极大 应力和界面态密度,多采用Si3N4/SiO2/Si 结 构。场氧化时,SiO2会有软化现象,可消除氮 化硅与衬底之间的应力。通常采用热氧化生成 ,厚度很薄。
3.2 热生长二氧化硅薄膜
二氧化硅的制备 硅表面形成SiO2的方法很多:热氧化、热分解淀
和离子注入的掩模,防止掺杂杂质损失而覆盖在掺杂 膜上的覆盖膜或钝化膜; 外延薄膜— 器件工作区; 多晶硅薄膜— MOS 器件中的栅级材料,多层金属化的 导电材料以及浅结器件的接触材料; 金属膜和金属硅化物薄膜— 形成低电阻内连、欧姆接触 及用来调整金属与半导体之间的势垒。
3.1 概述
二、用于制备薄膜的材料种类繁多,例如:
湿氧氧化相当于干氧氧化和水汽氧化的综合, 其速率也介于两者之间。具体的氧化速率取决 于氧气的流量、水汽的含量。氧气流量越大, 水温越高,则水汽含量越大,氧化膜的生长速 率和质量越接近于水汽氧化的情况。反之,就 越接近于干氧氧化。
3.2 热生长二氧化硅薄膜
一般湿氧氧化是由携带气体通过水浴后,含有水 汽的氧气进入石英管对硅片进行氧化,而水汽 的多少由水浴的温度控制,同时水浴的质量也 将影响氧化层质量的好坏。
1800?C
SiO+3C = 2CO SiC 空气较少
3.2 热生长二氧化硅薄膜
掩蔽性质:B、P、As等杂质在SiO2的扩散系数远小于在Si中的 扩散系数。DSi > DSiO2 SiO2 膜要有足够的厚度。杂质在一定 的扩散时间、扩散温度下,有一最小厚度。
绝缘性质:SiO2能带宽度约9 eV。 热击穿、电击穿、混合击穿:
SiO2 +4HF SiF4 2H2O SiF4 +2HF H2SiF6
六英寸碳化硅衬底规格书
六英寸碳化硅衬底规格书摘要:一、引言二、六英寸碳化硅衬底的市场需求三、国产六英寸碳化硅衬底的进展四、六英寸碳化硅衬底的优势五、结论正文:一、引言碳化硅(SiC)作为一种高性能的半导体材料,以其优异的物理和化学性能在电子、电力、新能源等领域得到广泛应用。
六英寸碳化硅衬底作为碳化硅器件的基础材料,其国产化进程备受关注。
本文将探讨六英寸碳化硅衬底的市场需求、国产进展、优势及未来发展。
二、六英寸碳化硅衬底的市场需求一直以来,全球导电型碳化硅衬底市场被Cree等国际厂商主导,而我国亟待实现自主创新,提高碳化硅衬底材料的国产化率。
随着我国碳化硅产业的发展,六英寸碳化硅衬底市场需求日益增长,国产化进程也在加速。
三、国产六英寸碳化硅衬底的进展近年来,我国一批企业如露笑科技、三安光电、天岳先进、东尼电子等在碳化硅衬底领域取得了突破。
露笑科技已成功研发6英寸碳化硅衬底片,并形成销售,进入产业化放量阶段。
此外,露笑科技非公开发行股票申请获证监会核准批复,募集资金将投向第三代功率半导体(碳化硅)产业园项目、大尺寸碳化硅衬底片研发中心项目等,进一步推动六英寸碳化硅衬底的研发和生产。
四、六英寸碳化硅衬底的优势六英寸碳化硅衬底相较于国外产品具有以下优势:1.价格优势:国产六英寸碳化硅衬底降低了进口产品的依赖,降低了碳化硅器件的生产成本。
2.技术优势:国产六英寸碳化硅衬底性能稳定,已达到国际主流水平,能够满足国内市场需求。
3.供应链优势:国产六英寸碳化硅衬底有望实现产业链的国产化,打造国内碳化硅产业生态圈。
五、结论随着我国碳化硅产业的快速发展,六英寸碳化硅衬底国产化进程加速,国内企业纷纷加入竞争。
LED碳化硅衬底基础概要
LED碳化硅衬底基础概要碳化硅又称金钢砂或耐火砂。
碳化硅是用石英砂、石油焦(或煤焦)、木屑(生产绿色碳化硅时需要加食盐)等原料在电阻炉内经高温冶炼而成。
碳化硅主要分为黑色碳化硅和绿色碳化硅两种,均为六方晶体,比重为3.20~3.25,显微硬度为2840~3320kg/mm2。
其中:黑碳化硅是以石英砂,石油焦和优质硅石为主要原料,通过电阻炉高温冶炼而成。
其硬度介于刚玉和金刚石之间,机械强度高于刚玉,性脆而锋利。
绿碳化硅是以石油焦和优质硅石为主要原料,添加食盐作为添加剂,通过电阻炉高温冶炼而成。
其硬度介于刚玉和金刚石之间,机械强度高于刚玉。
碳化硅的硬度很大,具有优良的导热和导电性能,高温时能抗氧化。
可以作为磨料,可用来做磨具,如砂轮、油石、磨头、砂瓦类等。
还可以作为冶金去氧剂和耐高温材料。
碳化硅主要有四大应用领域,即: 功能陶瓷、高级耐火材料、磨料及冶金原料。
并且高纯度的单晶,可用于制造半导体、制造碳化硅纤维。
碳化硅(SiC)由于其独特的物理及电子特性,在一些应用上成为最佳的半导体材料: 短波长光电元件,高温,抗幅射以及高频大功率元件。
主要优势如下:1. 宽能级(eV)4H-SiC: 3.26 6H-Sic: 3.03 GaAs: 1.43 Si: 1.122. 高热传导率(W/cm?K@RT)4H-SiC:3.0-3.8 6H-SiC: 3.0-3.8 GaAs: 0.5 Si: 1.5 3. 高击穿电场(V/cm)4H-SiC: 2.2x106 6H-SiC: 2.4x106 GaAs: 3x105 Si: 2.5x1054. 高饱和电子迁移速度(cm/sec @E 2x105V/cm)4H-SiC: 2.0x107 6H-SiC: 2.0x107 GaAs: 1.0x10 Si: 1.0x107由于碳化硅的宽能级,以其制成的电子元件可在极高温下工作,可以抵受的电压或电场八倍于硅或砷化鎵,特别适用于制造高压大功率元件如高压二极体。
山东天岳6寸碳化硅衬底规格书
山东天岳6寸碳化硅衬底规格书(原创版)目录1.山东天岳公司简介2.6 英寸碳化硅衬底的特点和优势3.6 英寸碳化硅衬底的应用领域4.山东天岳在碳化硅衬底领域的发展前景正文一、山东天岳公司简介山东天岳先进科技股份有限公司(以下简称“山东天岳”)是一家专注于碳化硅衬底材料研发、生产和销售的高新技术企业。
成立于 2008 年,公司致力于为广大客户提供高品质的碳化硅衬底产品,以满足市场需求。
经过多年的发展,山东天岳已经成为国内碳化硅衬底领域的领军企业,产品远销海内外。
二、6 英寸碳化硅衬底的特点和优势6 英寸碳化硅衬底是山东天岳的主打产品之一,具有以下特点和优势:1.高导电性:6 英寸碳化硅衬底具有高导电性,可降低器件的导通电阻,提高器件的开关速度。
2.高热导率:6 英寸碳化硅衬底具有高热导率,有利于器件的散热,提高器件的可靠性。
3.宽禁带:6 英寸碳化硅衬底具有宽禁带,使得器件具有更高的电压承受能力。
4.良好的化学稳定性:6 英寸碳化硅衬底具有良好的化学稳定性,适应各种恶劣环境。
三、6 英寸碳化硅衬底的应用领域6 英寸碳化硅衬底广泛应用于以下领域:1.功率电子器件:由于其高导电性、高热导率和宽禁带等特点,6 英寸碳化硅衬底可广泛应用于功率电子器件,如功率放大器、开关等。
2.射频器件:6 英寸碳化硅衬底在射频器件中也有广泛应用,如射频放大器、滤波器等。
3.光电子器件:6 英寸碳化硅衬底在光电子器件中有着良好的应用前景,如光放大器、光开关等。
四、山东天岳在碳化硅衬底领域的发展前景山东天岳在碳化硅衬底领域具有很高的发展前景。
首先,随着科技的进步和市场需求的增长,碳化硅衬底材料在半导体领域的应用将越来越广泛。
其次,山东天岳在碳化硅衬底材料的研发和生产方面具有很强的技术实力,多次获得国家级荣誉和奖项。
最后,山东天岳不断拓展国内外市场,与多家知名企业建立了长期合作关系,为公司的发展奠定了坚实基础。
6寸碳化硅pvt炉的指标_概述说明以及解释
6寸碳化硅pvt炉的指标概述说明以及解释1. 引言1.1 概述本文将对6寸碳化硅PVT炉的指标进行概述、说明和解释。
通过介绍炉体尺寸要点、温控系统要点和压力控制要点等关键指标,帮助读者全面了解该型号炉的技术规格和特性。
1.2 文章结构本文分为五个部分,分别是引言、6寸碳化硅PVT炉的指标、概述说明、解释和结论。
在引言部分,我们将简要介绍文章内容和结构,为读者提供整体框架。
1.3 目的本文旨在向读者全面介绍6寸碳化硅PVT炉的各项指标,并深入解释这些指标对炉体性能的影响以及工艺参数与指标之间的关系。
通过优化方案解释和实践案例分享,我们希望能够揭示该型号炉在不同应用领域中的重要性,为未来发展方向和应用前景提供展望。
以上是“1. 引言”部分内容的详细清晰描述,请根据需要适当调整或补充。
2. 6寸碳化硅PVT炉的指标2.1 炉体尺寸要点炉体尺寸是6寸碳化硅PVT炉的重要指标之一。
其尺寸大小对于炉内反应区域的容量和反应过程中物质传输等影响至关重要。
在设计6寸碳化硅PVT炉时,需要考虑以下几个炉体尺寸要点:- 内径(直径):内径决定了炉内反应区域的空间大小,对于生长晶体的尺寸有着直接影响。
- 高度:炉体的高度有助于控制反应室内部气流的形成和流动,确保均匀的温度分布和物质传输。
2.2 温控系统要点温控系统是6寸碳化硅PVT炉中另一个关键指标。
通过有效地控制温度,可以保证晶体生长过程中的稳定性和均匀性。
下面是温控系统方面需要考虑的要点:- 温度范围:温度范围决定了炉子可以达到的最高温度和最低温度,这取决于实际生长晶体的需求。
- 温度均匀性:温度均匀性对于晶体生长的质量和一致性非常关键,确保反应室内各个位置的温度差异尽可能小。
- 温控精度:温控精度决定了炉子可以实现多大程度上的温度控制,通常以摄氏度为单位。
2.3 压力控制要点压力控制是6寸碳化硅PVT炉中另一个重要指标。
通过调节压力,可以改变反应室中气相组分以及物质传输过程。
碳化硅衬底精密加工技术
碳化硅衬底精密加工技术冯玢;潘章杰;王磊;郝建民【摘要】介绍了一种包含多线切割、研磨、抛光等主要工序的75 mm(3英寸)碳化硅衬底精密加工技术,该技术成功对本单位自主研制的碳化硅衬底进行精密加工.实验过程中使用了几何参数测试仪、强光灯、微分干涉显微镜(DIC)、原子力显微镜(AFM)、扫描电镜(SEM)等检测手段对加工工艺效果进行监控.通过该技术制备出了几何尺寸参数良好、表面质量优良的碳化硅晶片.【期刊名称】《电子工业专用设备》【年(卷),期】2013(000)005【总页数】5页(P23-26,64)【关键词】碳化硅衬底;精密加工;多线切割;研磨;抛光;粗糙度【作者】冯玢;潘章杰;王磊;郝建民【作者单位】中国电子科技集团公司第四十六研究所,天津300222;中国电子科技集团公司第四十六研究所,天津300222;中国电子科技集团公司第四十六研究所,天津300222;中国电子科技集团公司第四十六研究所,天津300222【正文语种】中文【中图分类】TN304.2+4碳化硅单晶作为第三代宽禁带半导体材料,具有禁带宽度大、击穿电场高、饱和电子漂移速度高、热导率大等特点,其特殊性能在许多特殊领域得到广泛应用[1]。
碳化硅衬底加工技术是器件制作的重要基础,只有在成功的加工技术的支持下,才能将碳化硅材料的性能发挥出来。
然而,由于碳化硅晶体具有高硬、高脆、耐磨性好、化学性质极其稳定的特点,使得碳化硅晶片的精密加工非常困难,利用常规晶体材料的加工技术和工艺,无法获得高质量的碳化硅晶片。
1 实验原理我们根据碳化硅材料的固有特性,借鉴成熟半导体材料的加工技术,经过大量的工艺试验,突破了碳化硅材料加工的关键工艺。
图1所示为碳化硅材料精密加工技术主要加工工艺流程图。
图1 碳化硅衬底精密加工技术主要工艺流程1.1 多线切割工艺原理多线切割工艺就是将晶锭(见图2)按照一定的晶向,将晶锭切割成表面平整、厚度均匀一的切割片,以便于后面的研磨加工。
sic衬底等级分类
sic衬底等级分类1. 3C-SIC衬底3C-SIC衬底是一种具有立方晶体结构的SIC衬底。
它具有较低的杂质含量和较高的晶体质量,表现出良好的电学和热学性能。
3C-SIC 衬底通常用于制造功率电子器件、光电子器件和传感器等应用领域。
2. 4H-SIC衬底4H-SIC衬底是一种具有四方晶体结构的SIC衬底。
它具有较高的晶体质量和较好的热传导性能,被广泛应用于高功率、高频率和高温度的电子器件制造。
4H-SIC衬底被认为是目前最适合制造高压、高频率功率器件的衬底材料。
3. 6H-SIC衬底6H-SIC衬底是一种具有六方晶体结构的SIC衬底。
它具有优异的机械强度和化学稳定性,被广泛应用于高温、高压力和强腐蚀环境下的电子器件制造。
6H-SIC衬底在航空航天、能源和化工等领域具有重要的应用价值。
除了以上三种主要的SIC衬底等级,还存在其他一些特殊的SIC衬底等级,如2H-SIC衬底和15R-SIC衬底。
它们在晶体结构和性能方面有所差异,适用于特定的应用需求。
SIC衬底等级的分类主要基于晶体结构和性能特点。
不同的等级适用于不同的电子器件制造需求。
例如,对于功率电子器件,需要具有较高的电导率和热传导性能的4H-SIC衬底;而对于光电子器件,需要更好的光学性能和表面光洁度的3C-SIC衬底更为合适。
SIC衬底等级的选择还取决于制造成本和可用性。
一般来说,高等级的SIC衬底具有更高的制造成本和较低的可用性,因为其晶体质量要求更高。
因此,根据具体的应用需求和经济考虑,选择适当的SIC衬底等级是非常重要的。
SIC衬底的制备技术也在不断发展,以提高晶体质量和降低制造成本。
目前,主要的制备方法包括物理气相沉积(PVD)、化学气相沉积(CVD)和熔融法等。
这些方法可以根据不同的材料需求和制备条件选择合适的SIC衬底等级。
SIC衬底是一种重要的材料,用于制造各种电子器件。
不同的SIC 衬底等级具有不同的晶体结构和性能特点,适用于不同的应用需求。
20千瓦碳化硅三相PFC参考设计说明书
20kW SiC-Based Three Phase PFC Reference Design20千瓦碳化硅三相PFC参考设计Order Part Number: IVCT-REF00003目录1 简介 (2)2 硬件组成部分 (4)3 测量结果 (5)4 参数说明 (14)5 附录 (15)1 简介三相PFC是一种高效率大功率无桥功率因数校正电路。
它主要用于各种大功率电力电子设备中的第一级。
图1-1所展示的是三相PFC主电路图。
这个电路的Q1~Q6都是是高速SiC (碳化硅)MOSFET管。
这一参考设计的额定功率为20KW。
它使用本公司生产的1200V 50mΩ SiC MOSFET IV1Q12050T4, 以及专用碳化硅MOSFET驱动IC IVCR1401用于高速桥臂。
实物图如图1-2所示。
Co图1-1 三相PFC拓扑结构图1-2 三相无桥PFC实物图1.1三相无桥PFC三相无桥PFC是一种大功率AC-DC的拓扑结构。
本设计的PFC是工作在连续模式(CCM)。
SiC MOSFET工作频率在65kHZ。
由于碳化硅MOSFET有极小的输出电容和接近零的反向恢复,它是硬开关电路的理想开关器件。
与传统的IGBT应用相比,开关频率得到很大的提升,同时可以保持98%的高效率。
1.2门级驱动SiC MOSFET的门级驱动信号使用的是型号为IVCR1401的驱动芯片,是一款在8管脚封装集成负压驱动,并提供所有必需的保护和通信功能的碳化硅MOSFET栅极驱动芯片,具有更快的开关速度,新型碳化硅MOSFET专用栅极驱动芯片内部集成了负压电路,在无需外加负压电源的情况下,可以完成输出负压驱动提供更多的噪声裕量,使系统更稳定运行于各种复杂的应用环境,集成的过饱和/过流保护功能,响应时间可编程,且最快响应仅有数百纳秒,可以更及时的保护碳化硅器件在各种干扰甚至短路情况下不损坏,同时将侦测到的错误信号向控制器汇报,新型碳化硅MOSFET栅极驱动芯片还内置了5V电源给隔离器供电,简化了配合隔离器芯片的电路设计。
SiC碳化硅资料
碳化硅分类及性质:利用碳化硅具有耐高温,强度大,导热性能良好,抗冲击,作高温间接加热材料,如坚罐蒸馏炉,精馏炉塔盘,铝电解槽,铜熔化炉内衬,锌粉炉用弧型板,热电偶保护管等。
钢铁利用碳化硅的耐腐蚀,抗热冲击耐磨损,导热好的特点,用于大型高炉内衬提高了使用寿命。
冶金选矿碳化硅硬度仅次于金刚石,具有较强的耐磨性能,是耐磨管道,叶轮.泵室.旋流器,矿斗内衬的理想材料,其耐磨性能是铸铁.橡胶使用寿命的5--20倍&def也是航空飞行跑道的理想材料之一。
建材陶瓷砂轮工业利用其导热系数.热辐射,高热强度大的特性,制造薄板窑具,不仅能减少窑具容量,还提高了窑炉的装容量和产品质量,缩短了生产周期,是陶瓷釉面烘烤烧结理想的间接材料。
节能利用良好的导热和热稳定性,作热交换器,燃耗减少20%,节约燃料35%,使生产率提高20-30%,特别是矿山选厂用排放输送管道的内放,其耐磨程度是普通耐磨材料的6--7倍。
磨料粒度及其组成按GB/T2477--83。
磨料粒度组成测定方法按GB/T2481--83。
珠宝合成碳化硅(Synthetic Moissanite)又名合成莫桑石、合成碳硅石(化学成分SiC),色散0.104比钻石(0.044)大,折射率2.65-2.69(钻石2.42),具有与钻石相同的金刚光泽,“火彩”更强,比以往任何仿制品更接近钻石。
这是由美国北卡罗来那州的C3公司制造生产的,已拥有世界各国生产合成碳化硅的专利,正在向全世界推广应用。
喷砂除锈:该品采用棕刚玉微粉经高强压力挤压.高温烧结成型.硬度适中.干净清洁.不易破碎.可反复多次使用.喷砂效果好,1、.钢铁.钢管.钢结构不锈钢制品的表面亚光处理.喷涂前喷砂除锈处理。
2、用于各种模具的清理3、可清除各类机件拉应力,增加疲劳寿命4、半导体器件、塑封对管上锡前的清理去除边刺5、医疗器械、纺织机械及各类五金制品的喷丸强化光饰加工6、各种金属管、有色金属精密铸件的清理及去除毛刺残渣高铝喷丸(刚玉球)的产品特性:1、软硬兼备—采用优质材料生产而成,即有一定的机械强度,AL2O3含量大于等于68﹪,硬度可达6-7莫氏,又有足够的弹性,可反复使用数次,不易破碎,所喷器件效果相同,比普通金刚砂的使用寿命长3倍以上。