自回归移动平均模型

合集下载

【生产管理】计量学1-自回归移动平均模型分析

【生产管理】计量学1-自回归移动平均模型分析

23
当系数序列绝对可加时,MA(∞)过程的均值、 方差和协方差,都可以从MA(∞)的相应结果简 单推广得到:
E(Yt )
lim
j
E(
t
1 t 1
2 t 2
j t j )
0
Var(Yt )
lim
j
E(t
1 t 1
2 t 2
jt j )2
lim
j
2
(1
12
2 j
)
k Cov(Yt ,Ytk ) (k k 1 1 k22
32
性质
1 1 2
k 1 k 1 2 k 2
0
11
2 2
2
(1
2
)
2
(1 2 )[(12 )2
12
]
(1
2
)
2
(1 2 )[(11 2 )(1 1 2 )]
33
3、AR(p)模型
AR(p)模型为:
p
Yt 1Yt 1 pYt p t iYt i t
这些模型分别记为MA(2)、MA(q)和MA(∞)。
9
引进滞后算子L( Lt t1, L2t t2 , ),移动
平均模型可分别表示为:
Yt
Yt t t1 (1 L)t (L)t
Yt t 1t1 2t2 (11L 2L2 )t 2 (L)t
q
Yt j t j (11L 2L2 q Lq )t q (L)t j0
12
(三)自回归滑动平均模型
既包含一系列白噪声扰动的加权平均,也包含 时间序列本身滞后项加权平均的混合时间序列 过程。这样的过程称为“自回归移动平均过 程”,记为ARMA。
最简单的自回归移动平均过程包括一阶自回归 项和一阶移动平均项,即

Ch2 自回归移动平均模型

Ch2 自回归移动平均模型
2
随机过程
• 由随机变量构成的一个有序序列称为随机过程,通常记 为 {x(s, t ), s ∈ S , t ∈ T } S是样本空间,T为序数集。 • 对于每个t (t∈T),x(•, t)是样本空间S中的随机变量; • 对于每个s(s∈S),x(s,•)是随机过程在序数集T中的一次 实现。一般将随机过程简称为过程,记为{xt}或xt 。 • 随机过程的一次观测结果称为时间序列,{xt, t∈T}用表 示。时间序列数据是所要研究变量的观测值按时间先后 顺序排列的一组数据。如果我们把1997年1月1日至 2002年12月31日间每个交易日收盘时的中信指数按时 间先后排列起来,得到了中信指数时间序列。 • 通常,分析的数据是等时间间隔的,从而是一个离散的 时间序列。 • 研究时间序列{xt}的目的,就是分析xt与其过去值{xt-1, xt-2,…}间的动态相关性。如果用线性模型分析,意味着 3 xt与其过去值{xt-1, xt-2,…}存在着线性关系。
=ψk E a
γ k = E ( xt xt − k ) = E (at + ψ 1 at −1 + ... + ψ k at − k + ...)(at − k + ψ 1 at − k −1 + ...)
( )+ψ
2 t −k
k +1
ψ 1 E (a
2 t − k −1
)+


2
∑ψ ψ
k =0 j
(
)
(
)
• 称这个随机过程为强平稳过程。其中,F(•)表示n个随 机变量的联合分布函数,这意味着该平稳过程所有存在 的矩都不随时间的变化而变化。 • 强平稳表明了 x 和 x 的概率分布相同, {x , x } 的联合分布和 {xt +k , xt + k }的联合分布相 • 同,…, {xt , xt , xt } 的联合分布和 {xt , xt , xt } 的联合分 • 7 布相同。

自回归AR模型、移动平均MA模型与自回归移动平均ARMA模型的比较分析

自回归AR模型、移动平均MA模型与自回归移动平均ARMA模型的比较分析

自回归AR模型、移动平均MA模型与自回归移动平均ARMA模型的比较分析系统中某一因素变量的时间序列数据没有确定的变化形式,也不能用时间的确定函数描述,但可以用概率统计方法寻求比较合适的随机模型近似反映其变化规律。

(自变量不直接含有时间变量,但隐含时间因素)1.自回归AR(p)模型(R:模型的名称 P:模型的参数)(自己影响自己,但可能存在误差,误差即没有考虑到的因素)(1)模型形式(εt越小越好,但不能为0:ε为0表示只受以前Y的历史的影响不受其他因素影响)yt=φ1yt-1+φ2yt-2+……+φpyt-p+εt式中假设:yt的变化主要与时间序列的历史数据有关,与其它因素无关;εt不同时刻互不相关,εt与yt历史序列不相关。

式中符号:p模型的阶次,滞后的时间周期,通过实验和参数确定;yt当前预测值,与自身过去观测值yt-1、…、yt-p是同一序列不同时刻的随机变量,相互间有线性关系,也反映时间滞后关系;yt-1、yt-2、……、yt-p同一平稳序列过去p个时期的观测值;φ1、φ2、……、φp自回归系数,通过计算得出的权数,表达yt 依赖于过去的程度,且这种依赖关系恒定不变;εt随机干扰误差项,是0均值、常方差σ2、独立的白噪声序列,通过估计指定的模型获得。

(2)识别条件当k>p时,有φk=0或φk服从渐近正态分布N(0,1/n)且(|φk|>2/n1/2)的个数≤4.5%,即平稳时间序列的偏相关系数φk为p步截尾,自相关系数rk逐步衰减而不截尾,则序列是AR(p)模型。

实际中,一般AR过程的ACF函数呈单边递减或阻尼振荡,所以用PACF函数判别(从p阶开始的所有偏自相关系数均为0)。

(3)平稳条件一阶:|φ1|<1。

二阶:φ1+φ2<1、φ1-φ2<1、|φ2|<1。

φ越大,自回归过程的波动影响越持久。

(4)模型意义仅通过时间序列变量的自身历史观测值来反映有关因素对预测目标的影响和作用,不受模型变量相互独立的假设条件约束,所构成的模型可以消除普通回归预测方法中由于自变量选择、多重共线性等造成的困难。

自回归移动平均模型

自回归移动平均模型
12
线性时间序列
z 如果要生成一个不独立的序列,我们可以利用白
噪声的线性组合,

∑ xt = at +ψ 1at−1 +ψ 2at−2 + ... = ψ j at− j
j=0
z 其中,ψ0=1,{at}为白噪声序列。
z 平实均际而上生,成上观式测将序白列噪x声t。{a依t}这的种现方行式值生和成过的去过值程的 称为线性过程,实际上是移动平均过程。
矩都不随时间的变化而变化。
{ } { } z 强平稳表明了 xt1 和 xt1+k的概率分布相同,
z
xt1 , xt2 的联合分布和 xt1+k , xt2 +的k 联合分布相同,…,
{ } { } z xt1 , xt2 ," xtn 同。
的联合分布和
xt1 , xt2 ," xtn
的联合分布相
7
z 2研与,…究其}时过间间去的序值动{列态xt{-相1x,t}x关的t-2性,目…。的}存如,在果就着用是线线分性性析关模xt系与型。其分过析去,值意{x味t-1着, x3xt-t
滞后算子
z 滞后算子“L”是这样定义的 Lxt = xt−1
z Lxt就是时间序列{xt}在第t-1时刻的值xt-1
z 自相关函数(ACF)定义为, ρk = γ k γ 0
z 间对系“,于相它每似可个”的以k,度作ρ量为k是。xt过的程一在次相实隔现时与间时为移kk的后一的对同值一的次相实关现关之 z 注=要ρ。意-k。,自ρk相只关是函k的数函在数建,立与自观回测归值移的动时平期均t无模关型,时而非且常,重ρk
z 因此,当k=0时,则 γ 0 − φγ −1 = σ 2 = γ 0 − φγ 1

差分整合移动平均自回归模型

差分整合移动平均自回归模型

差分整合移动平均自回归模型差分整合移动平均自回归模型,简称ARIMA模型,是一种常用的时间序列分析方法。

它可以用来对非平稳时间序列进行建模和预测,常用于经济、金融、股票、气象等领域。

本文将介绍ARIMA模型的基本原理、建模方法和应用实例。

一、ARIMA模型的基本原理ARIMA模型是由自回归(AR)、移动平均(MA)和差分(I)三个部分组成的。

其中,自回归部分是指用过去的数据来预测未来的数据,移动平均部分是指用过去的误差来预测未来的数据,差分部分是指对非平稳序列进行差分处理,使其成为平稳序列。

ARIMA模型的一般形式可以表示为ARIMA(p,d,q),其中p是自回归项数,d是差分次数,q是移动平均项数。

ARIMA模型的基本原理是建立在时间序列的平稳性基础上的。

平稳序列是指时间序列的均值、方差和自协方差函数都不随时间发生变化。

在实际应用中,很多时间序列都是非平稳的,例如股票价格、经济增长率等,这时需要对其进行差分处理,使其成为平稳序列。

二、ARIMA模型的建模方法ARIMA模型的建模方法包括模型识别、参数估计、模型检验和预测四个步骤。

1. 模型识别模型识别是指确定ARIMA模型的阶数。

一般采用自相关函数(ACF)和偏自相关函数(PACF)来进行识别。

ACF是指时间序列的自协方差函数,PACF是指在去除其他相关性的影响后,时间序列的自相关函数。

通过观察ACF和PACF的图形,可以确定ARIMA模型的阶数。

一般情况下,如果ACF呈现出指数衰减的趋势,而PACF在某个阶数后截尾,就可以确定AR模型的阶数。

如果ACF和PACF都呈现出指数衰减的趋势,就可以确定MA模型的阶数。

如果ACF呈现出周期性的趋势,就可以确定差分的阶数。

2. 参数估计在确定了ARIMA模型的阶数之后,需要对模型的参数进行估计。

估计方法包括最小二乘估计法、极大似然估计法和贝叶斯估计法等。

其中,最小二乘估计法是指通过最小化残差平方和来估计模型的参数;极大似然估计法是指通过最大化似然函数来估计模型的参数;贝叶斯估计法是指通过贝叶斯公式来估计模型的参数。

时序预测中的ARIMA模型详解(Ⅱ)

时序预测中的ARIMA模型详解(Ⅱ)

时序预测中的ARIMA模型详解时序预测是一项重要的研究课题,它涉及到对未来一段时间内的数据进行预测和分析。

在时序预测中,ARIMA(自回归移动平均)模型是一种常用的预测方法,它能够对时间序列数据进行建模和预测,具有较好的预测效果。

本文将对ARIMA模型进行详细地介绍和分析,以便读者更好地了解和应用该模型。

1. ARIMA模型的基本概念ARIMA模型是由自回归(AR)模型、差分(I)运算和移动平均(MA)模型组成的。

AR模型是指时间序列数据与其过去若干个时间点的值之间存在线性关系,而MA模型是指时间序列数据与其滞后值的误差之间存在线性关系。

差分运算是指对时间序列数据进行差分处理,将非平稳时间序列数据转换成平稳时间序列数据。

ARIMA模型能够很好地处理非平稳时间序列数据,并且适用于各种类型的时间序列预测问题。

2. ARIMA模型的建模过程ARIMA模型的建模过程包括模型识别、参数估计和模型检验三个步骤。

模型识别是指根据时间序列数据的自相关函数(ACF)和偏自相关函数(PACF)来确定ARIMA模型的阶数。

参数估计是指利用最大似然估计方法对ARIMA模型的参数进行估计。

模型检验是指对所建立的ARIMA模型进行残差检验,以验证模型的拟合效果和预测能力。

这三个步骤是建立ARIMA模型的关键,需要认真对待和仔细分析。

3. ARIMA模型的应用场景ARIMA模型适用于多种时间序列预测问题,例如股票价格预测、气温预测、销售额预测等。

在金融领域,ARIMA模型能够较好地捕捉股票价格的波动规律,帮助投资者进行风险控制和收益预测。

在气象领域,ARIMA模型能够准确地预测未来的气温变化趋势,为农业生产和城市规划提供重要参考。

在商业领域,ARIMA模型能够有效地预测销售额的变化,帮助企业制定营销策略和库存管理计划。

可以看出,ARIMA模型具有广泛的应用前景和市场需求。

4. ARIMA模型的局限性尽管ARIMA模型在时序预测中具有较好的预测效果,但它也存在一定的局限性。

差分整合移动平均自回归模型

差分整合移动平均自回归模型

差分整合移动平均自回归模型差分整合移动平均自回归模型(ARIMA)是一种经典的时间序列分析方法,被广泛应用于经济、金融、气象等领域。

本文将介绍ARIMA 模型的基本原理、建模方法和应用案例,并探讨其优缺点及未来发展方向。

一、ARIMA模型的基本原理ARIMA模型是由自回归模型(AR)、移动平均模型(MA)和差分模型(I)三部分组成的,其基本原理可以用以下公式表示:ARIMA(p,d,q) = AR(p) + I(d) + MA(q)其中,p表示自回归模型的阶数,d表示差分模型的阶数,q表示移动平均模型的阶数。

ARIMA模型的基本思想是将时间序列分解为趋势、季节性和随机性三个部分,并通过建立这三个部分之间的关系来预测未来数据。

具体来说,ARIMA模型的建立过程可以分为以下几步:1. 数据预处理:对时间序列进行平稳性检验,确定需要进行差分的阶数d,使得序列的均值和方差不随时间变化。

2. 模型选择:根据自相关函数(ACF)和偏自相关函数(PACF)的图形分析,选择合适的自回归模型AR(p)和移动平均模型MA(q)。

3. 参数估计:采用极大似然估计或最小二乘法等方法,估计模型的参数。

4. 模型检验:对模型进行残差分析,检验其是否符合假设条件,如残差序列是否为白噪声。

5. 预测应用:利用已建立的模型对未来时间序列进行预测,评估预测效果。

二、ARIMA模型的建模方法ARIMA模型的建模方法主要包括两种:自顶向下(top-down)和自底向上(bottom-up)。

自顶向下方法是先确定ARIMA模型的大致形式,再通过参数估计和模型检验来细化模型。

这种方法适用于已有一定经验和知识的专家,能够快速建立合适的模型,但容易忽略数据的特殊性。

自底向上方法是从数据出发,逐步建立ARIMA模型。

这种方法需要对数据进行详细的分析和处理,能够更好地反映数据的特征,但需要大量的计算和时间。

在实际应用中,ARIMA模型的建立方法需要根据具体情况进行选择,综合考虑建模目的、数据特征、时间和计算资源等因素。

自回归移动平均模型课件

自回归移动平均模型课件
假定某个时间序列是由某一随机过程生成,即假定 时间序列Xt的每一个数值都是从一个概率分布中随机 得到,如果时间序列Xt 满足:
1)均值E(Xt )= 是与时间t 无关的常数; 2)方差Var(Xt )=2是与时间t 无关的常数; 3)协方差Cov(Xt , Xt +k)=k 是只与时期间隔k 有关,
第一节 随机时间序列的特征
第二节 随机时间序列分析模型
第三节 协整分析与误差修正模型
第四节 向量自回归模型
自回归移动平均模型
1
§4.1 随机时间序列的特征
一、随机时间序列模型简介 二、趋势平稳与差分平稳 三、时间序列平稳性的检验
自回归移动平均模型
2
一、随机时间序列模型简介
一个标有时间脚标的随机变量序列被称为时间序 列(time series)。
(**)
检验(*)式是否存在单位根=1,也可通 过(**)式判断是否有 =0。
自回归移动平均模型
20
一般地:
检验一个时间序列Yt的平稳性,可通过检验带 有截距项的一阶自回归模型
Yt = +Yt-1+ t 中的参数是否小于1。
(*)
或者:检验其等价变形式
Yt = +Yt-1+ t 中的参数是否小于0 。
中减去 a + t,结果是一个平稳过程。
自回归移动平均模型
13
一般时间序列可能存在一个非线性函数形式的 确定性时间趋势,例如可能存在多项式趋势:
Y t a 1 t2 t2 n tn u t (**)
t = 1, 2, , T
同样可以除去这种确定性趋势,然后分析和预 测去势后的时间序列。对于中长期预测而言,能 准确地给出确定性时间趋势的形式很重要。如果 Yt 能够通过去势方法排除确定性趋势,转化为平 稳序列,称为退势平稳过程。

arima模型

arima模型

arima模型ARIMA模型(英语:AutoregressiveIntegratedMovingAverage model),差分整合移动平均自回归模型,又称整合移动平均自回归模型(移动也可称作滑动),是时间序列预测分析方法之一。

ARIMA(p,d,q)中,AR是“自回归”,p为自回归项数;MA为“滑动平均”,q为滑动平均项数,d为使之成为平稳序列所做的差分次数(阶数)。

“差分”一词虽未出现在ARIMA的英文名称中,却是关键步骤。

定义非平稳时间序列,在消去其局部水平或者趋势之后,其显示出一定的同质性,也就是说,此时序列的某些部分与其它部分很相似。

这种非平稳时间序列经过差分处理后可以转换为平稳时间序列,那称这样的时间序列为齐次非平稳时间序列,其中差分的次数就是齐次的阶。

将记为差分算子,那么有对于延迟算子,有因此可以得出设有d阶其次非平稳时间序列,那么有是平稳时间序列,则可以设其为ARMA(p,q)模型,即其中,分别为自回归系数多项式和滑动平均系数多项式。

为零均值白噪声序列。

可以称所设模型为自回归求和滑动平均模型,记为ARIMA(p,d,q)。

当差分阶数d为0时,ARIMA模型就等同于ARMA模型,即这两种模型的差别就是差分阶数d是否等于零,也就是序列是否平稳,ARIMA模型对应着非平稳时间序列,ARMA模型对应着平稳时间序列。

建立ARIMA模型的方法步骤时间序列的获取时间序列的获取可以通过实验分析获得,亦或是相关部门的统计数据。

对于得到的数据,首先应该检查是否有突兀点的存在,分析这些点的存在是因为人为的疏忽错误还有有其它原因。

保证所获得数据的准确性是建立合适模型,是进行正确分析的第一步保障。

时间序列的预处理时间序列的预处理包括两个方面的检验,平稳性检验和白噪声检验。

能够适用ARMA模型进行分析预测的时间序列必须满足的条件是平稳非白噪声序列。

对数据的平稳性进行检验是时间序列分析的重要步骤,一般通过时序图和相关图来检验时间序列的平稳性。

时间序列分析模型

时间序列分析模型

时间序列分析模型时间序列分析模型是一种通过对时间序列数据进行建模和分析的方法,旨在揭示数据中的趋势、季节性、周期和不规则波动等特征,并进行预测和决策。

时间序列分析模型在经济、金融、市场、气象、医学等领域都有广泛的应用。

本文将介绍几种常见的时间序列分析模型。

1. 移动平均模型(MA)移动平均模型是时间序列分析中最简单的模型之一。

它基于一个基本假设,即观察到的时间序列数据是对随机误差的线性组合。

该模型表示为:y_t = c + e_t + θ₁e_(t-1) + θ₂e_(t-2) + … + θ_qe_(t-q)其中,y_t 是观察到的数据,c 是常数,e_t 是随机误差,θ₁,θ₂,…,θ_q 是移动平均项的参数,q 是移动平均项的阶数。

2. 自回归模型(AR)自回归模型是基于一个基本假设,即观察到的时间序列数据是过去若干时间点的线性组合。

自回归模型表示为:y_t = c + ϕ₁y_(t-1) + ϕ₂y_(t-2) + … + ϕ_p y_(t-p) + e_t其中,y_t 是观察到的数据,c 是常数,e_t 是随机误差,ϕ₁,ϕ₂,…,ϕ_p 是自回归项的参数,p 是自回归项的阶数。

3. 自回归移动平均模型(ARMA)自回归移动平均模型将自回归模型和移动平均模型结合在一起,用于处理同时具有自相关和移动平均性质的时间序列数据。

自回归移动平均模型表示为:y_t = c + ϕ₁y_(t-1) + ϕ₂y_(t-2) + … + ϕ_p y_(t-p) + e_t +θ₁e_(t-1) + θ₂e_(t-2) + … + θ_qe_(t-q)其中,y_t 是观察到的数据,c 是常数,e_t 是随机误差,ϕ₁,ϕ₂,…,ϕ_p 是自回归项的参数,θ₁,θ₂,…,θ_q 是移动平均项的参数,p 是自回归项的阶数,q 是移动平均项的阶数。

4. 季节性自回归移动平均模型(SARIMA)季节性自回归移动平均模型是自回归移动平均模型的扩展,用于处理具有季节性和趋势变化的时间序列数据。

sarima知识基础

sarima知识基础

sarima知识基础
时间序列分析是统计学中一个重要的领域,它涉及对按时间顺序排列的数据点进行分析。

时间序列数据通常用于预测未来的趋势、模式或行为。

在时间序列分析中,SARIMA(季节性自回归移动平均模型)是一个常用的模型,它结合了季节性、自回归和移动平均三种成分。

以下是SARIMA模型的一些基础知识:
1. 季节性(S):季节性成分指的是时间序列数据中重复出现的模式,如每年的零售业旺季。

2. 自回归(AR):自回归成分指的是时间序列数据的前几个值对当前值的影响。

例如,今天的股票价格可能会受到前几天价格的影响。

3. 移动平均(MA):移动平均成分指的是时间序列数据中过去几个观测值的平均对当前值的影响。

例如,今天的气温可能会受到过去几天气温平均值的影响。

SARIMA模型通常表示为SARIMA(p, d, q)(P, D, Q)S,其中p和q分别代表自回归和移动平均成分的阶数,P和Q分别代表季节性自回归和季节性移动平均成分的阶数,d和D分别代表非季节性和季节性差分次数,S代表季节周期的长度。

SARIMA模型在预测时间序列数据时具有广泛的应用,如气象预报、能源消耗预测、旅游业收入预测等。

通过选择合适的SARIMA模型参数,可以更好地捕捉时间序列数据中的趋势、季节性和周期性,从而提高预测的准确性。

1。

自回归滑动平均模型

自回归滑动平均模型

自回归滑动平均模型自回归滑动平均模型(ARMA)是一种常用的时间序列模型,用于预测未来值的方法。

它结合了自回归模型(AR)和滑动平均模型(MA),能够更好地捕捉时间序列数据的特征。

自回归模型是基于过去的观察值来预测未来值的模型。

它假设未来值和过去值之间存在相关性,即当前值与之前的若干值相关联。

自回归模型将过去的观察值作为自变量,当前值作为因变量,通过调整自变量系数来预测未来值。

滑动平均模型是通过给定的窗口大小,在当前值与其前面若干值的线性组合的基础上,对未来值进行预测的模型。

滑动平均模型认为当前值的变动由之前几个值的加权平均引起,权重通过最小化预测误差来确定。

ARMA模型结合了自回归模型和滑动平均模型的优点,既可以捕捉时间序列数据的历史趋势,也可以考虑数据的随机波动。

ARMA模型的一般形式为ARMA(p,q),其中p是自回归模型的阶数,q是滑动平均模型的阶数。

使用ARMA模型进行预测时,首先需要确定模型的阶数。

可以通过观察自相关函数(ACF)和偏自相关函数(PACF)来确定。

ACF和PACF可以展现数据的相关性和延迟效应,根据它们的曲线图可以估计出ARMA模型的阶数。

确定了模型的阶数后,就可以使用最小二乘法或极大似然法来估计模型的系数。

然后,可以利用估计出的系数进行模型的拟合和预测。

如果模型的残差序列与随机序列相似,说明模型的预测效果较好。

总之,自回归滑动平均模型是一种常用的时间序列预测方法,它综合考虑了过去观察值的相关性和随机波动,可以较好地捕捉时间序列数据的特征。

但在使用ARMA模型进行预测时,需要注意选择适当的阶数,并根据模型的残差序列来评估预测效果。

自回归滑动平均模型(ARMA)是时间序列分析中的一种重要工具,常用于预测未来的数值或观测序列。

该模型结合了自回归(AR)和滑动平均(MA)两种模型的优点,既能考虑序列的历史信息,又能捕捉随机波动的特征,使得预测结果更加准确和可靠。

在ARMA模型中,自回归(AR)部分用于描述当前值与历史值之间的相关性,滑动平均(MA)部分用于描述当前值与误差(即残差)之间的相关性。

ARIMA模型自回归移动平均模型

ARIMA模型自回归移动平均模型

自回归移动平均模型Autoregressive Integrated Moving Average Model,简记ARIMA什么是ARIMA模型ARIMA模型全称为自回归移动平均模型Autoregressive Integrated Moving Average Model,简记ARIMA,是由和于70年代初提出的一著名,所以又称为box-jenkins模型、博克思-詹金斯法;其中ARIMAp,d,q称为差分自回归移动平均模型,AR是自回归, p为自回归项; MA为移动平均,q 为移动平均项数,d为时间序列成为平稳时所做的差分次数;ARIMA模型的基本思想ARIMA模型的基本思想是:将预测对象随时间推移而形成的数据序列视为一个随机序列,用一定的来近似描述这个序列;这个模型一旦被识别后就可以从时间序列的过去值及现在值来预测未来值;现代统计方法、在某种程度上已经能够帮助企业对未来进行预测;ARIMA模型预测的基本程序一根据时间序列的、自相关函数和偏自相关函数图以ADF单位根检验其、趋势及其季节性变化规律,对序列的平稳性进行识别;一般来讲,经济运行的时间序列都不是平稳序列;二对非平稳序列进行平稳化处理;如果数据序列是非平稳的,并存在一定的增长或下降趋势,则需要对数据进行差分处理,如果数据存在异方差,则需对数据进行技术处理,直到处理后的数据的自相关函数值和偏相关函数值无显著地异于零;三根据时间序列模型的识别规则,建立相应的模型;若平稳序列的偏相关函数是截尾的,而自相关函数是拖尾的,可断定序列适合AR模型;若平稳序列的偏相关函数是拖尾的,而自相关函数是截尾的,则可断定序列适合MA模型;若平稳序列的偏相关函数和自相关函数均是拖尾的,则序列适合;四进行,检验是否具有统计意义;五进行,诊断残差序列是否为白噪声;六利用已通过检验的模型进行;相关链接各国的box-jenkins模型名称ARlMA模型案例分析案例一:ARlMA模型在海关税收预测中的应用2008年;海关税收预算计划8400亿元.比2007年实际完成数增加%,比2007年预算数增加%;为了对2008年江门海关税收总体形势进行把握,笔者尝试利用SAS软件的时间序列预测模块建立ARIMA模型,对2008年江门海关税收总值进行预测;从预测结果来看,预测模型拟合度较高,预测值也切合实际情况,预测模型具有一定的应用价值;现将预测的方法、原理以及影响税收工作的相关因素分析;一、ARlMA模型原理ARIMA模型全称为自回归移动平均模型Autoregressive Integrated Moving Average Model,简记ARIMA;是由博克思BoxfFfl詹金斯Jenkins于70年代初提出的一著名时问序列预测方法,所以又称为box--jenkins模型、博克思一詹金斯法;其中ARIMAp,称为差分自回归移动平均模型,AR是自回归,P为自回归项;MA为移动平均,q为移动平均项数,d为时间序列成为平稳时所做的差分次数;ARIMA模型可分为3种:1自回归模型简称AR模型;2简称MA模型;3简称ARIMA 模型;ARIMA模型的基本思想是:将预测对象随时问推移而形成的数据序列视为—个随机序列.以时间序列的自相关分析为基础.用一定的来近似描述这个序列;这个模型一旦被识别后就可以从时间序列的过去值及现在值来预测未来值;ARlMA模型在经济预测过程中既考虑了经济现象在时间序列上的依存性,又考虑了随机波动的干扰性,对于经济运行短期趋势的预测准确率较高,是近年应用比较广泛的方法之一;二、应用ARIMA模型进行预测每月税收数据.可以看作是随着时间的推移而形成的一个随机时间序列,通过对该时间序列上税款值的随机性、平稳性以及季节性等因素的分析,将这些单月税收值之间所具有的相关性或依存关系用数学模型描述出来,从而达到利用过去及现在的税收值信息来预测未来税收情况的目的;一对序列取对数和作差分处理,形成稳定随机序列ARIMA模型建模的基本条件是要求待预测的数列满足平稳的条件,即个体值要围绕序列均值上下波动,不能有明显的上升或下降趋势,如果出现上升或下降趋势,需要对原始序列进行差分平稳化处理;从上图可看出,江门海关自2002年以来的实际入库税收值数列波动性较明显,且呈现出一定的上升趋势,不能直接用AHIMA模型进行建模;取对数可以消除数据波动变大趋势,对数列进行一阶差分,可以消除数据增长趋势性和季节性;从下图可以看出,预测数列取对数并作一阶差分后的图形显示基本消除了性的影响,趋于平稳化,满足ARIMA模型建模的基本要求;二模型参数的估计时间序列预测模块的自相关分析包括对自和偏的分析,通过对比分析从而实现对时间序列特性的识别;从计算结果可知,自相关函数1步截尾,偏自相关函数2步截尾,白相关函数通过白噪声检验;根据变换数列的自相关函数和偏自相关函数的特点,并经过反复测试,对ARIMA模型的参数进行估计.三个参数定为d=l,p=2和q=l;对参数进行检验;从检验结果可知,参数估计全部通过.拟合优度统计量表中给出了残差序列的方差和,以及按AIC和SBC标准计算的和,这两个值都较小,表明对预测模型拟合得较好;从残差的自相关检验结果数据中.可以得知残差通过白噪声显著性检验;预测模型最终形式为:1+Z=1+Bu其中,Z=logX;B为后移算子,u为随机干扰项三应用模型预测;利用上面确定的模型进行预测;预测模型2007年税收的拟合值是亿元,跟实际税收值亿元比较,误差为%,表明预测模型拟合度较高,预测模型具有一定的应用fir值;把预测模型向前推12个月进行预测,得到2008年各月税收数据,全年累计税收预计均值为亿元,实际税收值会围绕此值上下波动;需要说明的是,由于利用模型向前预测1一12月的数据,预测时间越长,难度越大,也下降,若到年中再次预测时,预测精度将会进一步提高;这个税收预测值是基于当前水平、水平不变或提高的基础上,挖掘税收样本数据自身涵盖的信息.利用分析方法,建立预测模型得出的理论预测值,一旦实际外部环境和条件发生变化,例如国家实施、升值过快、大幅变动、对外的变化等,将对结果生一定的影响;三、其他可能对2008年税收工作产生影响的主要因素一个别商品税收变化影响巨大2007年占关区税收总值80%前20位大类税源,与2006年占关区税收总值80%前20位大类税源商品相比,新增了大豆、印刷和装订机械及零件、棉纱线,少了空气调节器、初级形状的聚丙烯和初级形状的聚乙烯.新增的三项收总值为亿元;占关区税收总值%,其中,大豆2007年税款高达亿元,2006年仅为15万元,影响巨大;另外,煤和钢材的税收值大幅增长;液化石油气、纺织品包括服装和纺织纱线、纸及纸板未切成形的税收下降幅度较大;主要税源商品的不稳定,为关区税收工作增加了难度;二本地企业异地纳税仍保持较大规模据统计,2007年江门关区企业在异地进口应税货值亿元人民币,比2006年增长%,应征税收为亿元,较2006年增长%.占江门区同期应征税收总额的四成多;从分布来看,大部分本地企业异地纳税进口行为分布在广州口岸;在广州口岸纳税亿元,下降占异地纳税总值的%;另外;在黄埔口岸纳税亿元,下降%;在拱北口岸纳税亿元,增加3倍从商品来看,异地纳税进口的商品主要是废塑料、废五金、木浆、冰乙酸、正丁醇、脂肪醇、冻猪杂碎、IEl挖掘机、初级形状聚乙烯等商品,税款均超过千万元,部分商品曾经在本关区口岸大量进口;废塑料进口3亿元,下降%;废五金进口亿元,增长%;木浆进口7783万元,增长%;冰乙酸进口6593万元,下降%;正丁醇进口3498万元,增长倍;脂肪醇进口3366万元;%;冻猪杂碎进口3313万元,增长倍;旧挖掘机进口3101万元,下降%;初级形状聚乙烯进口2539万元,下降54%;其中正丁醇、冻猪杂碎和废五金进口增长迅猛;三主要纳税大户变化较大2007年占关区税收总值60%前20位纳税企业,与2006年占关区税收总值60%前20位纳税企业相比,有12家企业新上榜,更新率为60%;新增的2家纳税企业嘉吉投资中国和北京华特安科经贸有限公司共纳税亿元,占关区税收总值的15%;影响巨大;而海洋石油阳江实业有限公司的纳税额从2006年的亿元下降到2783万元,该企业的税款下fl手x,l 2007年关区税收工作带来了较大的影响;主要纳税大户的不稳定,加大了2008年关区税收工作的不确定性;四加工贸易内销补税和出口征税的影响2007年,江门关区应征税收为亿元,增长%;内销补税不含后续补税为7909万元,增长%;后续补税为594万元,增长%;2007年江门关区品征税160万元,增长倍;江门关区的税收以一般贸易进口征税为主,但由于进出口值占关区进出口总值的比重超过一半.因而加强加工贸易内销征税工作,充分挖掘加贸内销补税潜力,可以为关区税收总量增长提供支持;虽然当前出口征税占关区税收总值的比重非常少,但由于国家不断调整外贸政策,2008年出口需要征收商品涉及300多个税号,而且相当多的商品率高达15—20%,预计江门关区出口关税将会保持大幅增长态势,为关区税收总量增长提供补充;综合来看,只要大类税源商品如己内酰胺、大豆、煤、钢材和废纸等保持2007年的进口规模,其他税源商品进口没有大幅下降,2008年的税收总额就能够保持甚至超过2007年的税收水平,如果液化石油气、纺织品和纸及纸板恢复2006年的进口水平,同时将本关区企业从异地报关引导回本关区,今年税收总额将比2007年小幅增长;结合应用前面的时间序列模型的预测结果,综合多方面因素,预计全年累计税收均值为亿元;案例二:基于ARIMA模型的备件消耗预测方法一、引言随着技术的进步和军事的变革,快速响应战场需求是装备战斗力的重要指标之一;要快速响应战场需求就要有强有力的后勤保障和支持,部队需要保证有一定数量备件;而实际中却常常由于没有足够的备件导致装备不能快速形成战斗力;由于造成备件短缺的重要原因是使用的备件需求预测方法和模型不够精确,故尝试用差分自回归滑动平均模型,即ARIMAp,d,q模型,对备件消耗进行预测;1备件消耗预测的ARIMAp,d,q模型求和自回归滑动平均模型AutoregressiveIntegrated Moving Average Model,简称ARIMA,由Box和Jenkins于70年代初提出的时间序列预测方法,又称为B-J模型、博克思-詹金斯法;其中ARIMAp,d,q称为差分自回归滑动平均模型,AR是自回归,MA为滑动平均,p、q分别为对应的阶数,d为时间序列成为平稳时所做的差分次数;1.基本思路首先需要明确建立模型的前提是在预测的这段时间内,影响该类备件消耗量的主要因素不发生大变故;在此前提下,将备件消耗的历史视为一个时间序列,即为一组依赖于时间t的随机变量序列;这些变量间有依存性和相关性,并表现出一定的规律性,如能根据这些消耗数据建立尽可能合理的统计模型,就能用这些模型来解释数据的规律性,就可利用已得到的备件消耗数据来预测未来消耗数据,也就能得出备件需求做好的备件供应;2.模型描述备件消耗预测ARIMAp,d,q模型实质是先对非平稳的备件消耗历史数据Yt进行dd=0,1,dots,n次差分处理得到新的平稳的数据序列Xt,将Xt拟合ARMAp,q模型,然后再将原d次差分还原,便可以得到Y_t的预测数据;其中,ARMAp,q的一般表达式为:1式中,前半部分为自回归部分,非负整数p为自回归阶数,为自回归系数,后半部分为滑动平均部分,非负整数q为滑动平均阶数,为滑动平均系数;Xt为备件消耗数据相关序列,εt为WN0,σ2;当q=0时,该模型成为ARp模型:2当p=0时,该模型成为MAq模型:33.备件消耗预测建模流程通过建立ARIMAp,d,q模型进行备件消耗预测的基本流程,如下图;1获取数据并进行预处理.收集装备使用阶段某备件消耗的数据序列,记为;利用游程检验法来判断该序列是否为平稳序列,如为非平稳序列,用差分的方法,即:,对序列进行平稳化预处理,每次差分后数据进行,直到差分所得数据可以通过平稳性检验,记为d次差分,得到新的平稳序列;取前N组或全部数据作为观测数据,进行零均值化处理,即:,得到一组预处理后的新序列;2ARMA模型的识别通过计算预处理后的序列的自相关函数ACF和偏自相关函数PACF来进行模型识别;具体的计算公式为:4;根据上述计算结果,并依据表1的模型识别原则,可以确定符合的模型;ARMAp,q模型识别原则模型ARp MAq ARMA自相关函数拖尾,指数衰减或振荡有限长度,截尾q步拖尾,指数衰减或振荡偏自相关函数有限长度,截尾p步拖尾,指数衰减或振荡拖尾,指数衰减或振荡3参数估计和模型定阶参数估计和模型定阶是建立备件消耗预测模型的重要内容,二者相互影响;在上述模型识别的基础上,利用样本矩估计法、最小二乘估计法或等对ARMAp,q的未知参数,即自回归系数、滑动平均系数以及白噪声方差进行估计,得出\widehat{\varphi}_1,\ldots,\widehat{\varphi}_p,\widehat{\theta}_1,\ldots,\widehat{\theta}_q,\wid ehat{\sigma}^2;利用AIC、BIC准则进行模型定阶;具体步骤;4模型检验首先要检验所建立模型是否能满足平稳性和可逆性,既要求下式6、式7根在单位圆外,具体公式如下:67再进一步判断上述模型的残差序列是否为白噪声,如果不是,则需要重新进行模型识别,如果是,则通过检验,得出软件模型:8 5备件消耗量预测根据上述预测模型,依据一步预测的方法对进行预测,并考虑前面所进行的d次差分,还原为备件消耗数据Yt的预测结果,根据该预测结果来进行备件的配置;二、案例应用1.原始数据及预处理以航空兵场站某种航材备件3年的消耗率件/1000h来进行分析和预测;取前30组数据建立模型,并用后面的几组数据对模型进行预测验证;3年的原始数据的时间序列如下图,是有关备件消耗统计时间2001年1月到2003年12月-备件消耗率件/1000h的某航材备件消耗数据;从上图中可以看出,数据有明显递增的趋势,为非平稳序列;尝试进行一次差分对数据进行平稳化处理,结果表明仍未平稳,然后再做一次差分,再对进行2次差分后的数据进行,可以通过检验,故接受数据具有平稳性的原假设;可得出d等于2,并将数据进行零均值化,下面进一步确定ARMAp,q模型;2.建立模型并进行参数估计计算零均值化后序列的自相关函数ACF和偏自相关函数PACF,结果如下图;其中,上下两条线为±;由图可以看出0≤p≤3,0≤q≤2;尝试建立ARMAp,q模型;对p、q可能的组合进行参数估计,并利用AIC准则进行定阶,并对估计出的参数进行平稳性和可逆性检验,结果表明都在单位圆外,可以初步确定满足要求的最佳模型为ARMA3,1模型,即:9式9中{εt}为WN0,;3.白噪声检验对已经通过平稳性和可逆性检验的模型9进行白噪声检验4≤m≤6,检验结果如图4;由上图中检验结果可看出,对应于上面m的值,都有m,可通过白噪声检验,模型合理;4.预测及结果分析根据模型9,用一步预测的方法对后4组数据进行预测,并与移动平均法进行对比,如表2;对预测结果进行多角度评价,具体选用的指标包括:平均绝对误差:10平均相对误差:11预测均方差:12其中,y_i为备件消耗序列的实际数据,为模型预测数据;预测结果对比移动平均法5 ARIMA模型时间真实值预测值MAE MRE MSE 预测值MAE MRE MSE129% %8注释:5是由上表预测结果及各项评价指标的对比可知,ARIMA模型预测结果明显优于移动平均法,从平均相对误差上来看,ARIMA模型为%,比移动平均法提高了将近15%,且预测的均方差也较小,仅;由此可见:该模型能较准确地预测出备件消耗的变化趋势,可为备件消耗量的预测提供依据;另由于ARIMA模型建立在历史数据的基础上,故搜集的历史数据越多,模型越准确;该建模方法能综合反映装备使用的实际情况,具有很好的模型适应性;模型具有较高的预测准确度,且有较成熟的软件支持SPSS、Matlab等,易于推广,可进行备件消耗预测,确定备件需求。

自回归移动平均模型ARMA(p,q

自回归移动平均模型ARMA(p,q

Hale Waihona Puke 图10.4.1由图10.4.1可以看出p = 1和q = 1,即样本数据具有 ARMA(1,1)模型过程。
(二)模型的估计 模型的理论计算过程较繁杂,我们这里仍然直接利 用EViews软件计算:
在工作文件主窗口点击Quick/Estimate Equation , 在Equation Specification 对话框中填入 y ma(1) ar(1) 便得到模型ARMA(1,1)的估计结果,如图10.4.2所示:
图10.4.2
由图10.4.2可以知道模型为:
yˆ t =0.0134yt-1+ut+0.945ut-1
而这个计算是一个复杂的过程,为了实际应用的方 便我们采用直接利用计算机软件EViews来判断p和q 的数值各是多少,从而就确定了模型和模型的阶数。 在样本数据窗口,点击View/Correlogram 然后在对 话框中选择滞后期数,我们这里选取12,再点击 “OK”得到自相关系数和偏自相关系数及其图形, 如图10.4.1所示:
在实际应用中,用ARMA(p,q)拟合实际数据时所 需阶数较低,p和q的数值很少超过2。因此, ARMA模型在预测中具有很大的实用价值
二、ARMA模型阶数的确定和模型的估计 (一)ARMA模型阶数的确定 是建立AR模型、MA模型还是ARMA模型?这就 需要确定p和q的数值各是多少,为此需要计算 样本数据的自相关系数和偏自相关系数。
最简单的自回归移动平均模型是ARMA(1,1),其
yt 1 yt1 ut 1ut1
(10.4.1)
模型ARMA(p,q)
yt 1 yt1 2 yt2 p yt p ut 1ut1 2 ut2 q utq
(10.4.2)

交通流量预测中的ARIMA模型及改进方法

交通流量预测中的ARIMA模型及改进方法

交通流量预测中的ARIMA模型及改进方法交通流量预测在城市规划、交通管理和智能交通系统等领域具有重要的应用价值。

ARIMA模型是一种常用的时间序列分析方法,可以用于交通流量的预测。

本文将介绍ARIMA模型的基本原理,并探讨一些改进方法,以提高交通流量预测的准确性和稳定性。

一、ARIMA模型的基本原理ARIMA模型是一种广泛使用的经典时间序列分析方法,其全称为自回归移动平均模型(ARIMA, Autoregressive Integrated Moving Average)。

ARIMA模型包括三个部分,自回归(AR)、差分(Integrated)和移动平均(MA)。

下面分别介绍这三个部分的含义。

1. 自回归(AR)部分自回归是指时间序列当前值与前面p个时刻的值之间的关系。

AR(p)模型可以表示为:其中,yt表示时间序列的当前值,φi表示自回归系数,εt表示白噪声误差。

2. 差分(Integrated)部分差分是指对时间序列进行d次差分,以消除非平稳性。

差分的目的是使得时间序列更加平稳,便于建模和预测。

3. 移动平均(MA)部分移动平均是指时间序列当前值与过去q个误差项之间的关系。

MA(q)模型可以表示为:其中,θi表示移动平均系数。

ARIMA模型即为将AR、差分和MA三个部分相结合的模型,可以表示为ARIMA(p, d, q)。

二、ARIMA模型的改进方法尽管ARIMA模型在交通流量预测中有较好的效果,但仍然存在一些问题,如对非平稳序列的建模困难、模型参数的选择和模型的稳定性等。

下面将介绍几种常用的ARIMA模型改进方法。

1. 季节性ARIMA模型(SARIMA)SARIMA模型适用于具有明显季节性变化的交通流量预测。

其改进之处在于增加了季节性差分,并引入季节性自回归和季节性移动平均项。

SARIMA模型可以表示为SARIMA(p, d, q)(P, D, Q)s。

2. 自适应ARIMA模型(ARIMA-GARCH)ARIMA-GARCH模型利用GARCH模型对ARIMA模型的残差进行建模,提高了对时间序列波动性变化的估计能力。

arima模型

arima模型

ARIMA模型(英语:自回归综合移动平均模型),差分综合移动平均自回归模型,也称为综合移动平均自回归模型(移动也可以称为滑动),是时间序列预测分析方法之一。

在ARIMA(p,d,q)中,AR是“自回归”,p是自回归项的数量;MA是“移动平均数”,q是移动平均项的数量,d是使其成为固定序列的差(顺序)的数量。

尽管ARIMA 的英文名称中没有出现“difference”一词,但这是关键的一步。

非平稳时间序列在消除其局部水平或趋势后显示出一定的同质性,也就是说,该序列的某些部分与其他部分非常相似。

经过微分处理后,可以将该非平稳时间序列转换为平稳时间序列,称为均质非平稳时间序列,其中差值的数量为齐次。

因此,可以得出结论如果存在一个D阶非平稳时间序列,那么如果存在一个平稳时间序列,则可以称为ARMA(p,q)模型,其中,它们是自回归系数多项式和移动平均系数多项式。

零均值白噪声序列。

该模型可以称为自回归求和移动平均模型,表示为ARIMA(p,d,q)。

当差分阶数D为0时,ARIMA模型等效于ARMA模型,即两个模型之间的差分为差分阶数D是否等于零,即序列是否平稳。

ARIMA模型对应于非平稳时间序列,而ARMA模型对应于平稳时间序列。

时间序列的预处理包括两个测试:平稳性测试和白噪声测试。

ARMA 模型可以分析和预测的时间序列必须满足平稳非白噪声序列的条件。

检查数据的平稳性是时间序列分析中的重要步骤,通常通过时间序列和相关图进行检查。

时序图的特点是直观,简单,但误差较大。

自相关图,即自相关和部分自相关函数图,相对复杂,但结果更准确。

本文使用时序图直观地判断,然后使用相关图进行进一步测试。

如果非平稳时间序列有增加或减少的趋势,则需要进行差分处理,然后进行平稳性测试,直到稳定为止。

其中,差异的数量为ARIMA(p,d,q)的顺序。

从理论上讲,差异的数量越多,时间序列信息的非平稳确定性信息的提取就越充分。

从理论上讲,差异数量越多越好。

varma向量自回归移动平均模型python实现

varma向量自回归移动平均模型python实现

Varma向量自回归移动平均模型是一种经济学和金融学领域常用的时间序列分析模型。

它可以用来预测和解释时间序列数据的变化趋势,对于金融市场的波动和趋势分析具有重要意义。

本文将介绍如何使用Python实现Varma模型,并对其原理和应用进行讨论。

一、Varma向量自回归移动平均模型的概念和原理Varma模型是由向量自回归模型(Var)和向量移动平均模型(Ma)组合而成的。

向量自回归模型是一种多变量时间序列模型,它假设当前时刻的多个变量值与过去若干时刻的所有变量值相关。

向量移动平均模型则是一种多变量时间序列模型,它假设当前时刻的多个变量值与过去若干时刻的随机误差相关。

Varma模型可以用数学公式表示为:Yt = C + Φ1Yt-1 + Φ2Yt-2 + ... + ΦpYt-p + Θ1et-1 + Θ2et-2 + ... + Θqet-q + et其中,Yt是一个k维向量,表示当前时刻的k个变量值;C是一个k 维向量,表示常数项;Φ1, Φ2, ..., Φp是k×k维矩阵,表示自回归项的系数;Θ1, Θ2, ..., Θq是k×k维矩阵,表示移动平均项的系数;et 是一个k维向量,表示当前时刻的随机误差。

二、Python实现Varma模型的步骤1. 数据准备我们需要准备时间序列数据,包括多个变量的观测值。

可以使用Pandas库读取和处理数据,将其转换为DataFrame类型。

2. 模型拟合接下来,我们使用statsmodels库中的VARMAX类拟合Varma模型。

首先要指定自回归阶数p和移动平均阶数q,并且调用fit方法拟合模型。

还需要考虑是否包含常数项C和是否使用最大似然估计方法进行参数估计。

3. 模型诊断拟合完成后,需要对模型进行诊断,检验模型的拟合效果和假设检验的显著性。

可以使用statsmodels库中的diagnostic检验函数进行自相关性、异方差性等方面的检验。

自回归移动平均模型解析

自回归移动平均模型解析

第二章 自回归移动平均模型一些金融时间序列的变动往往呈现出一定的平稳特征,由Box 和Jenkins 创立的ARMA 模型就是借助时间序列的随机性来描述平稳序列的相关性信息,并由此对时间序列的变化进行建模和预测。

第一节 ARMA 模型的基本原理ARMA 模型由三种基本的模型构成:自回归模型(AR ,Auto-regressive Model ),移动平均模型(MA ,Moving Average Model )以及自回归移动平均模型(ARMA ,Auto-regressive Moving Average Model )。

2.1.1 自回归模型的基本原理 1.AR 模型的基本形式AR 模型的一般形式如下:t p t p t t t y y y y εφφφ+++++=--- 2211c其中,c 为常数项, p φφφ 21, 模型的系数,t ε为白噪声序列。

我们称上述方程为p 阶自回归模型,记为AR(p )。

2.AR 模型的平稳性此处的平稳性是指宽平稳,即时间序列的均值,方差和自协方差均与时刻无关。

即若时间序列}{t y 是平稳的,即μ=)(t y E ,2)(σ=t y Var ,2),(s s t t y y Cov σ=-。

为了描述的方便,对式(2.1)的滞后项引入滞后算子。

若1-=t t x y ,定义算子“L ”,使得1-==t t t x Lx y ,L 称为滞后算子。

由此可知,k t t kx x L -=。

对于式子(2.1),可利用滞后算子改写为:t t p p t t t y L y L Ly y εφφφ+++++= 221c移项整理,可得:t t p p y L L L εφφφ+=----c )1(221AR(p )的平稳性条件为方程01221=----pp L L L φφφ 的解均位于单位圆外。

3.AR 模型的统计性质(1)AR 模型的均值。

假设AR(p )模型是平稳的,对AR(p )模型两边取期望可得:)c (E )(Ε2211t p t p t t t y y y y εφφφ+++++=---根据平稳序列的定义知,μ=)(E t y ,由于随即干扰项为白噪声序列,所以0)(E =t ε,因此上式可化简为:021)1(φμφφφ=----p所以,pφφφφμ----=2101(2)AR 模型的方差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1) 自回归模型及其性质
• 定义 • 平稳条件 • 自相关函数 • 偏自相关函数 • 滞后算子形式
① 自回归模型的定义
• 描述序列{xt}某一时刻t和前p个时刻序列 值之间的相互关系 xt 1xt1 2 xt2 p xt p t 随机序列{εt}是白噪声且和前时刻序列xk (k<t )不相关,称为p阶自回归模型, 记为AR(p)


3 t 3


• 均值
E(t ) 0 E(xt ) 0
成立
• 方差
Var
( xt
)


2
(1

2


4


6
)
(1)t充分大时Var (xt
)


2

1
2
,与t无关
满足这两个
(2) 1时,Var (xt )为有限常数 条件成立
AR(1)平稳的条件
• 自协方差
等,则称xt 为随机过程 当取T为离散集,如T , 2,1,0,1,2,或 T 1,2,等,则称xt 为随机序列
随机序列的现实
• 对于一个随机序列,一般只能通过记录 或统计得到一个它的样本序列x1,x2,···, xn, 称它为随机序列{xt}的一个现实
• 随机序列的现实是一族非随机的普通数 列
0 1, k k , k 1
自相关函数的估计
T
ˆx

(xt x)(xtk x)
t 1 T

(xt x)2
rˆk rˆ0
t 1
x
1 T
T t 1
xt
平稳序列的判断
ρk
ρk
1
1
0
k
平稳序列的自相关函数
迅速下降到零
0
k
非平稳序列的自相关函数
缓慢下降
2)
Varxt
2(与t无关的有限常数) x
3) 对任意整数t和k, r t,t+k只和k有关rt,tk rk
• 随机序列的特征量随时间而变化,称为非平 稳序列
xt t
xt t
平稳序列的特性
• 方差
rt ,t

r0

E[(xt


)2
]


2 x
• 自相关函数:
k

rk

2 x

rk r0
rt,s rs,t
rt,t Var (xt )
时间序列的统计性质
• 自相关函数
t,s
rt , s rtt rss
t,s s,t
t,t 1
2. 平稳时间序列
• 所谓平稳时间序列是指时间序列
{xt, t=0,±1,±2,···}
对任意整数t, Ex2 ,且满足以下条件: t 1) 对任意t,均值恒为常数 Ext (与t无关的常数 )
二. 随机时间序列模型及其性质
• 随机时间序列 • 平稳时间序列 • 随机时间序列模型
1. 随机时间序列
• 随机过程与随机序列 • 时间序列的性质
(1) 随机过程与随机序列
设T为某个时间集,对t T,取xt为随机变量,
对于该随机变量的全体xt ,t T
当取T为连续集,如T (,)或T [0,)
主要内容
• 确定性时间序列模型 • 随机时间序列模型及其性质 • 时间序列模型的估计和预测
一. 确定性时间序列模型
• 时间序列:各种社会、经济、自然现象 的数量指标按照时间次序排列起来的统 计数据
• 时间序列分析模型:解释时间序列自身 的变化规律和相互联系的数学表达式
确定性时间序列模型
• 滑动平均模型 • 加权滑动平均模型 • 二次滑动平均模型 • 指数平滑模型
(1) 滑动平均模型
yˆt

yt

yt 1
N
ytN 1
tN
作用:消除干扰,显示序列的趋势性变化,并用 于预测趋势
(2) 加权滑动平均模型
yˆtw


a0 yt

a1 yt1
N
aN 1 ytN 1
其中
N 1
ai
i0 1 N
tN
作用:消除干扰,显示序列的趋势性变化;并通 过加权因子的选取,增加新数据的权重,使趋势 预测更准确
一类特殊的平稳序列 ——白噪声序列
• 随 均机值序为列零{,xt方}对差任为何有x限t和常xt都数不相关,且
Ext 0
r0


2 x
rk 0(k 0)
• 正态白噪声序列:白噪声序列,且服从 正态分布
3. 随机时间序列模型
• 自回归模型(AR) • 移动平均模型(MA) • 自回归—移动平均模型(ARMA)
• 自协方差函数
rk E(xt xtk )
Ext (1xtk1 x2 tk2 xp tk p tk ) Ext1xtk1 Ext2 xtk2 Ext p xtk p 1 rk1 2rk2 prk p
rt,tk Cov(xt , xtk )
E(xt xtk )
2 k (1 2 4 6 )
t充分大时,rt ,t k

2 1
k 2
k Var(xt )
仅与k有关,与t无关
结论: 1 时,一阶自回归序列渐进平稳
③ AR(p)的自相关函数
(2) 时间序列的统计性质(特征量)
• 均值函数:某个时刻t的性质

E(xt ) t xpt (x)dx
pt (x)是xt 的概率密度函数
时间序列的统计性质
• 自协方差函数:两个时刻t和s的统计性质 rt,s Cov(xt , xs ) E(xt Ext )( xs Exs )
(3) 二次滑动平均模型
yˆˆt

yˆt

yˆ t 1
N
yˆtN 1
tN
对经过一次滑动平均产生的序列再进行滑动平均
(4) 指数平滑模型
yˆt yˆt1 ( yt1 yˆt1) yˆt yt1 (1 ) yˆt1
0 1 平滑常数
本期预测值是前期实际值和预测值的加权和
② (一阶)自回归序列平稳的条件
xt xt1 t xt1 xt2 t1

xt t t1 2t2 3t3
均值为零? 是否平稳? 方差为有限常数?
自协方差与t无关?
AR(1)平稳的条件
xt
t
t1 2t2
相关文档
最新文档