探讨当前深基坑支护结构设计优化
深基坑支护结构设计的优化方法
0 引言要保障高层建筑的安全性、稳定性,延长高层建筑的寿命,那么高层建筑的深基坑支护是重要基石。
如果深基坑支护结构设计合理、技术精湛、施工方法成熟,那么高层建筑的质量会比较高,品质会比较好。
但是目前我国的深基坑支护成本比较高,技术不够成熟,还需要进一步优化。
1 深基坑支护结构概述1.1 深基坑工程特性分析要做好深基坑支护结构的设计,必须深入分析了解深基坑工程的特性,才能做到有的放矢,设计出科学合理的深基坑支护结构设计方案。
当前,我国的深基坑工程具有以下特点:一是施工作业具有地域差异性与多变性。
深基坑工程可能是在平坦的土地上进行,可能在山区,也可能在街道。
正是施工作业地域的变化性决定了所采用的支护方式的不一致,必须根据地形的变化选择安全有效的支护方法。
二是深基坑工程中的支护是临时性的,它只是为了保障深基坑工程的顺利进行而设立的临时性支撑。
这就意味着在设计支护结构时不仅要考虑安全性和稳定性,也要考虑等深基坑工程完毕后如何拆除的问题。
三是深基坑工程的专业要求比较高。
深基坑工程是建筑工程的基础,它对施工人员的要求相对比较高,需要施工前有专业的施工团队进行科学合理的设计,综合考虑各方面的因素,也需要在施工工程中,施工人员对方案充分认知和了解,做好各个施工细节,只有这样才能确保深基坑工程保质保量地完成[1]。
1.2 深基坑支护结构类别分析当前,我国常用的深基坑支护结构大致可以分四类。
一是土地墙支护,这种支护方式是在土地中钉入钉子来固定土地,是成本最低、最常用的支护方式。
但是这种支护方式对地形具有比较高的要求,需要在施工环境较好的平坦土地实行。
二是深层搅拌桩的支护,这种支护方式主要是将化学物质注入施工泥土中,从而让泥土变得坚硬,易于施工,是较为经济实惠的方式。
三是排桩的支护形式,这种支护方式主要运用一些材料如混凝土等在施工泥土的地方排桩,以增强土地硬度,方便施工。
这样的支护方式适用性比较强,在地形不好,受水影响比较大的地方都比较适用。
论深基坑支护施工设计问题及建议措施
论深基坑支护施工设计问题及建议措施摘要:深基坑工程是随着城市建设事业的发展而出现的一种较类型的岩土工程,基坑支护设计是一个综合性的岩土工程问题既涉及土力学中典型强度与稳定问题,又包含了变形问题。
随着对这些问题的认识及其对策研究的深入,越来越多的新技术在深基坑工程中也得到应用。
本文分析深基坑支护施工设计,提出了施工中存在的问题及建议。
关键词:深基坑;支护;施工;设计Abstract: This paper analyzes the deep excavation support design, proposed construction problems and recommendations.Key words: deep pit; support; construction; design一、深基坑支护施工设计的现状分析目前的建筑施工,其中的深基坑支护因其专业性较强,一般都分包给了岩土专业施工公司,比较大的公司一般是当地的勘察设计施工单位,另外,还有一些规模和实力较强的专业公司,当前市场上,个人岩土公司也有一些。
从设计和施工资质上看:比较大的岩土专业施工公司既有施工资质又有设计资质;而一些小的岩土专业施工公司只有施工资质,而没有设计资质,这种情况在当前的岩土工程施工中为数较多。
最近两年,一些业主为了提前开工等多种因素,在招标时改变常规,对地下岩土工程部分在结构主体招标前先进行招标,随之而来出现了一些新现象:许多大的建筑总承包单位为了抢占市场,纷纷参与了投标,一些大的建筑总承包单位进入了岩土工程施工。
然而,不论是业主还是监理单位,他们都忽视了建筑总承包单位一般都没有岩土工程设计资质的问题,这给将来的施工造成了很多隐患。
从承包模式看:基坑支护施工一般都实行分包,有些是业主直接将基坑工程分包给了专业公司,然后纳入总承包单位管理;而另一种模式是业主将基坑任务交给了总承包单位,而由总承包单位进行分包。
前一种模式因业主将任务直接分包,故在总包单位管理时易出现管理难的问题,而后一种模式容易出现工程质量问题。
深基坑支护工程的设计与施工优化
接缝精度等质量保证可靠性高 具有耐久性,可回拔修正再使 用; 施工方便、快捷、造价低、工期短 ;与多道钢支撑结合,
适合软土地 区较深基坑 :但是 ,板桩式 围护 结构 接头防水性能 差 ,打桩震动及挤土对 周围环境影响较大 ,不适合在防水要求 高的基坑及建筑密集城市市 区使用 ,另外还不适合在硬土层 中
二、深基坑支护结构设计优化
深基坑支护结构由围护结构及支撑两部分组成。围护结构
主要承受基坑开挖后 的水压 力及 土压 力。支撑主要是用于传递 围护结构传来的荷载 。围护结 构较 支撑结构型式复杂 ,它的选 型很大程度上决定 了深基坑支护工程的安全性和经济性 。
中挖孔灌注桩施工劳动保护条件差;不能用于地下水位以下不
2柱列式围护结构 施工过程当中噪声和振动小,刚度大, . 就地浇制施工,对周围环境影D, ; BJ 施工方便、造价低廉、成  ̄ 桩质量容易保证 ; 但是接头防水差,要根据地质条件从注浆、 搅拌桩、旋喷桩中选择适当的方法来解决防水问题 ; 在砂砾层
跟卵石层 中方工慎 用;整体 刚度差 ,不适合兼作主体结构 : 缸 其
施 工。
设计不仅仅要追求一个 “ 安全”的深基坑,还要是一个 “ 最优”
的深基坑。现代城市建设和发展 以及 技术 进步对深基坑支护的 设计跟旋工提 出了一个更高 的要求 ,既要 技术安全可靠 ,又要 经济上节约 ,同时还要满足 周边环境控 制的 目的。这就要就对 深基坑支 护的设计和施工 的全过程进行优化。
复杂、造价较高,要求较高的施工技术和管理水平。
4自 . 立式 水泥土挡 墙 适合 于软土地 区、环 境保护要 求不 高 ,但支护深度一般要小于等于 7 ;这种施工工艺低噪音、低 m 振动 、结构止水性能较 好 ,造价经 济 :但是 围护挡墙较宽 ,一 般需要 3 4 ,需要 占用基地红线 内一部分面积。 - m 5 组合式 围护结 构 SM 法结构止 水性好 ,结构 强度 可 . W工
深基坑支护结构设计的优化方法8篇
深基坑支护结构设计的优化方法8篇第1篇示例:深基坑支护是指在进行基坑开挖施工过程中为了防止地基塌方、保护周边建筑物和道路安全而采取的支护措施。
深基坑开挖和支护工程是城市建设中常见的施工项目,而深基坑支护结构设计的优化方法成为了工程领域中的研究热点。
深基坑支护结构设计的优化方法包括多个方面,例如支护结构的选择、设计参数的优化、施工工艺的优化等。
在选择支护结构时,需要考虑地下水位、土质情况、周边建筑物、施工工艺等因素,以便选择最合适的支护结构类型。
设计参数的优化包括墙体厚度、支撑间距、钢筋配筋等参数的优化,以提高支撑结构的安全性和经济性。
而施工工艺的优化可以通过优化施工顺序、采用先进的施工技术等手段来提高深基坑支护工程的施工效率和质量。
在深基坑支护结构设计的优化方法中,最重要的是要充分考虑地质条件和周边环境,以便选择最适合的支护结构类型。
还需要充分利用先进的计算机软件和施工技术,以实现对设计参数和施工工艺的优化。
通过系统的研究和实践,不断改进深基坑支护结构的设计和施工方法,可以有效提高支护结构的安全性和经济性,为城市建设提供更可靠的保障。
在深基坑支护结构设计的优化方法中,需要充分考虑地质条件和周边环境。
地质条件主要包括土质情况、地下水位和地表荷载等因素。
土质情况对支护结构的稳定性和变形有着直接影响,需要通过地质勘察和试验数据来评价土的承载力和变形特性。
地下水位对基坑开挖和支护工程的施工和稳定性都有很大影响,需要根据地下水位情况选择适当的支护结构类型和设计参数。
地表荷载主要包括来自道路、建筑物、地铁等周边结构的荷载,需要通过结构分析和计算来评价其对支护结构的影响。
在选择支护结构类型时,需要充分考虑地质条件和周边环境因素。
深基坑支护结构种类繁多,包括钢支撑、混凝土墙、挡墙、桩墙等各种类型,需要根据具体的地质条件和施工要求来选择最适合的支护结构类型。
钢支撑结构适用于较宽的基坑和较小的变形要求,能够快速安装和拆除,适合于快速施工的项目;混凝土墙结构适用于较深的基坑和较大的变形要求,能够提供较大的稳定性和承载力,适合于长期固定的项目;桩墙结构适应于较软的土层和需要较高的承载能力和变形控制的项目,能够提供较好的抗浪涌能力,适合于复杂环境下的项目。
建筑工程施工中深基坑支护的施工技术探究
建筑工程施工中深基坑支护的施工技术探究引言在建筑工程中,深基坑的支护工作是施工中十分重要的一环。
深基坑的支护工作直接关系到施工安全和地下水位的控制,同时也影响着周围环境和建筑物的稳定。
对深基坑支护的施工技术进行探究和优化至关重要。
本文将对深基坑支护的施工技术进行探究,分析其在建筑工程中的重要性,并探讨当前存在的问题以及未来的发展方向。
一、深基坑支护的重要性1. 施工安全深基坑支护工作对施工安全有着直接的影响。
在进行深基坑施工时,如果没有进行有效的支护措施,很容易导致基坑坍塌事故的发生,从而造成严重的人员伤亡和财产损失。
通过科学合理的支护工程来确保基坑的稳定,是施工安全的基础。
2. 地下水位控制在进行深基坑施工时,地下水位的控制是一个十分重要的问题。
如果地下水位得不到有效的控制,很容易导致基坑内部积水,从而影响施工进度和工程质量。
通过支护工程有效地控制地下水位,保证基坑内部干燥,是深基坑施工的关键问题之一。
3. 周围环境和建筑物的稳定深基坑支护工程还会直接影响到周围环境和建筑物的稳定。
如果基坑支护工程不够完善,在进行施工时会对周围的道路、房屋等造成影响,甚至可能引发土地沉降、建筑物倾斜等问题,从而影响周围环境和建筑物的稳定性。
1. 基坑支护结构类型深基坑支护的施工技术包括多种结构类型,常见的包括支撑墙、护坡桩、钢支撑等。
支撑墙是将水泥浆片状注射灌浆成一道墙,用于支撑基坑周围的土层,护坡桩则是通过在土层内挖孔灌浆来支护基坑,而钢支撑则是通过特殊的钢材将基坑围护起来。
在选择支护结构时,需要根据具体工程的要求和地质条件进行合理的选择,以达到最佳的支护效果。
2. 施工材料的选择和使用在深基坑支护的施工过程中,材料的选择和使用是十分重要的。
包括支护墙的浆料、护坡桩的灌浆材料、钢支撑的特殊钢材等都需要进行合理的选择和使用。
需要根据地质条件和工程要求进行相应的设计和施工计划,以确保材料的合理使用和施工质量的保障。
深基坑支护结构设计的优化方法8篇
深基坑支护结构设计的优化方法8篇第1篇示例:深基坑支护结构设计的优化方法随着城市建设的不断发展,深基坑工程在城市建设中扮演着重要的角色。
深基坑工程是指地下结构物深度超过一定范围,需要对周边土体进行支护和加固的工程。
在深基坑工程中,基坑支护结构设计的优化是提高工程施工效率和确保工程安全的关键。
本文将从不同的角度探讨深基坑支护结构设计的优化方法。
在深基坑工程中,基坑支护结构设计的基本原则是保证工程施工的安全性和稳定性。
基坑支护结构设计的基本原则包括以下几点:1. 根据地质条件确定支护结构类型:在进行基坑支护结构设计时,首先要根据地质勘察结果确定地下结构的地质条件,包括土层性质、地下水位等信息,以选择合适的支护结构类型。
2. 合理确定基坑支护结构的深度:基坑支护结构的深度应根据周边土体的承载能力和基坑深度等因素综合考虑,避免过度挖掘导致地基沉降或支护结构失稳。
3. 选择合适的支护材料和施工工艺:基坑支护结构设计应根据具体情况选择合适的支护材料和施工工艺,确保支护结构的稳定性和耐久性。
2. 地下水位控制:地下水位是影响基坑支护结构稳定的重要因素,过高的地下水位容易导致基坑支护结构失稳。
在基坑支护结构设计中需要采取有效的地下水位控制措施,如井点降水、深井抽水等。
3. 优化支护结构类型:在进行基坑支护结构设计时,应根据地质条件和基坑深度选择合适的支护结构类型,如横向支撑结构、嵌岩支护结构等,避免因支护结构类型选择不当导致工程事故。
4. 采用新型支护材料:随着科技的发展,新型支护材料的不断推出,如钢筋混凝土、高分子材料等,这些新型支护材料具有更好的抗压强度和耐用性,可以提高基坑支护结构的稳定性和安全性。
5. 结构优化设计:在进行基坑支护结构设计时,可以采用计算机模拟分析等方法,对支护结构进行优化设计,提高支护结构的承载能力和稳定性,减少施工成本和工程周期。
三、总结深基坑支护结构设计的优化是保障工程安全和提高施工效率的关键。
深基坑支护结构设计的优化方法
深基坑支护结构设计的优化方法深基坑是指在建筑施工过程中,为了便于施工和稳定周围土壤而采用的一种地下暂时性开挖结构。
深基坑工程,特别是大跨度、高高度和复杂地质条件下的深基坑工程,由于土壤条件的不同,坑深度的不同,开挖和支护过程中土壤的力学行为的不同,面临着多种不同的技术难题和安全风险。
深基坑支护结构的设计优化方法是指通过合理的结构参数和施工工艺的选择,对基坑支护结构进行综合考虑和优化设计,以提高工程的安全性、经济性和效益。
以下是几种常见的深基坑支护结构设计优化方法:1. 结构参数的确定:在深基坑支护结构设计过程中,需要确定不同结构参数,包括支撑杆的直径和间距、支撑框架的布置和大小、锚杆的数量和分布等。
通过合理选择结构参数,可以使得基坑支护结构在抗震、变形和承载等方面具有良好的性能。
2. 材料的选择:选用适当的材料对于深基坑支护结构的性能优化至关重要。
支撑杆的强度、刚度和腐蚀性能直接影响着支撑结构的安全性和寿命。
正确选择材料类型和规格,可以提高基坑支护结构的抗震、变形和承载能力。
3. 施工工艺的优化:深基坑支护结构的设计不仅要考虑结构本身的工作性能,还要兼顾施工过程中的可行性和经济性。
通过优化施工工艺,可以有效减少工程的施工周期和成本,并降低施工风险。
4. 数值模拟分析:利用现代计算机软件,进行有限元分析和数值模拟,可以对深基坑支护结构的工作性能进行准确预测和评估。
通过模拟分析,可以优化结构参数的选择和施工工艺的设计,提高基坑支护结构的安全性和经济性。
5. 施工质量控制:深基坑支护结构的设计优化需要与施工质量的控制相结合。
通过合理的施工工序和质量控制措施,可以确保深基坑支护结构的施工质量,进而提高工程的安全性和可靠性。
6. 监测与评估:深基坑支护结构的设计优化需要进行实时监测和评估。
通过对基坑支护结构的变形和应力的监测,可以及时发现和排除安全隐患,确保基坑支护结构在使用过程中的稳定性和安全性。
深基坑支护结构的设计优化方法是通过合理选择结构参数、材料和施工工艺,利用数值模拟分析和实时监测评估,确保基坑支护结构在施工和使用过程中的稳定性和安全性,以及提高工程的经济性和效益。
基坑支护方案优化研究及其应用
基坑支护方案优化研究及其应用随着城市化进程的加快,建筑行业得到了迅速的发展。
在这个背景下,基坑支护技术的优化变得尤为重要。
本文将介绍基坑支护方案优化的必要性、当前存在的问题以及优化方案等内容,旨在推动建筑行业的可持续发展。
基坑支护是建筑工程中重要的一环,其质量直接关系到整个工程的安全性。
传统的基坑支护方案往往缺乏针对性,不能满足复杂多变的地质和环境条件。
因此,对基坑支护方案进行优化势在必行。
优化基坑支护方案不仅可以提高工程质量,降低工程风险,还能有效缩短工期,减少成本投入。
同时,这也有助于提高建筑行业的整体水平,推动我国建筑事业的蓬勃发展。
地质勘察不细致:地质勘察是制定基坑支护方案的基础,但当前部分工程的地质勘察不够细致,导致对地质条件的了解不足,从而影响支护方案的可靠性。
支护结构不合理:部分工程的支护结构未充分考虑实际情况,导致支护效果不佳。
例如,支护桩的长度不足或直径过小,都会影响支护结构的稳定性。
设计与施工脱节:在设计过程中,有时会出现设计与施工脱节的情况,导致施工难度加大,甚至影响工程质量。
例如,设计中的锚杆参数与实际施工条件不符,会给施工带来很大的困难。
加强地质勘察:对地质勘察工作提出更高的要求,确保对地质条件有充分的了解。
在进行地质勘察时,应选择有经验的勘察单位,并使用先进的勘察设备和技术,以确保数据的准确性和可靠性。
优化支护结构:根据实际情况,选择合适的支护结构形式,并确定合理的结构参数。
例如,对于深度较深的基坑,可采用桩锚支护或地下连续墙支护等形式,以确保支护结构的稳定性和可靠性。
加强设计与施工的衔接:在设计过程中,应充分考虑施工条件和实际情况,确保设计方案具有可实施性和可靠性。
同时,在施工过程中,应严格按照设计要求进行施工,确保工程质量。
详细了解工程地质条件,包括土层分布、岩土性质、地下水情况等。
根据工程实际需要,选择合适的支护结构形式,并进行详细的结构设计。
在施工过程中,严格按照设计要求进行施工,并对施工过程进行全面监控,确保工程质量。
狭小场地深基坑支护方案优化设计
狭小场地深基坑支护方案优化设计清晨的阳光透过窗帘的缝隙,洒在了满是图纸和设计方案的桌面上。
我深吸一口气,开始构思这个狭小场地深基坑支护方案的优化设计。
一、基坑支护结构的优化1.采用桩基+地下连续墙的组合形式,增强基坑的稳定性。
桩基深入地下,为基坑提供强有力的支撑,而地下连续墙则能有效防止土体流失,两者结合,形成一道坚实的防线。
2.墙体材料的选择至关重要。
我们可以选用高强度、低渗透性的混凝土,提高墙体的抗渗性能,减少地下水的影响。
3.墙体厚度也要适当调整。
在保证强度的基础上,适当减小墙体厚度,既能节省材料,又能减轻施工负担。
二、降水方案的优化1.采用井点降水法,通过设置排水井,将地下水引入井中,再通过排水管道排出。
这种方法既高效又环保。
2.降水过程中,要密切关注水位变化,及时调整排水井的位置和数量,确保基坑内水位始终处于可控状态。
3.为防止地下水对周边建筑和道路的影响,可以在基坑周边设置止水帷幕,减少地下水的渗透。
三、施工工艺的优化1.采用分段施工法,将基坑分为若干个施工段,逐个击破。
这样可以有效减少施工过程中的相互干扰,提高施工效率。
2.在狭小场地内,施工机械的选用尤为重要。
我们可以选用小型、灵活的施工设备,如微型挖掘机、小型吊车等,以适应场地限制。
3.施工过程中,要充分利用信息化技术,如无人机监控、智能化控制系统等,实时掌握施工进度和质量,确保施工安全。
四、监测与应急方案的优化1.建立完善的监测系统,对基坑周边的建筑物、道路、地下管线等进行实时监控,发现异常情况立即采取措施。
2.制定应急预案,针对可能出现的各种风险,如土体位移、水位上升等,提前制定应对措施,确保施工过程中的安全。
3.加强与周边单位和居民的沟通,及时了解他们的需求和意见,确保施工顺利进行。
写着写着,我仿佛看到了基坑支护方案的优化设计在脑海中逐渐清晰起来。
这个方案不仅考虑了施工过程中的各种因素,还充分考虑了周边环境和居民的需求,力求做到安全、高效、环保。
深基坑支护结构优化设计
深基坑支护结构优化设计
支护结构经济性评价
支护结构经济性评价
▪ 支护结构经济性评价的重要性
1. 支护结构经济性评价是深基坑支护设计的重要环节,能够有 效降低工程成本,提高经济效益。 2. 通过经济性评价,可以对支护结构的材料、工艺、施工方法 等进行优化,从而达到降低成本、提高效率的目的。 3. 支护结构经济性评价还可以为决策者提供科学依据,帮助他 们做出最优的决策。
模糊逻辑优化设计
1. 模糊逻辑是一种处理不确定性信息的方法,它通过定义模糊集和模糊规则,使得系统能够处理不 精确的数据和知识。 2. 在深基坑支护结构优化设计中,可以利用模糊逻辑来处理设计参数的不确定性和复杂性,从而得 到更优的设计方案。 3. 模糊逻辑已经成为一种重要的优化工具,在土木工程等领域得到了广泛应用。
感谢聆听
深基坑支护结构设计原则
▪ 深基坑支护结构设计原则
1. 安全性:深基坑支护结构设计应确保施工过程中的安全,防止坍塌、滑坡等事故 的发生。 2. 稳定性:深基坑支护结构设计应保证其在各种工况下的稳定性,包括地下水位变 化、地震等。 3. 经济性:深基坑支护结构设计应考虑经济因素,尽可能降低施工成本,提高经济 效益。 4. 环保性:深基坑支护结构设计应考虑环保因素,尽可能减少对周围环境的影响。 5. 可施工性:深基坑支护结构设计应考虑施工条件,尽可能简化施工流程,提高施 工效率。 6. 可维护性:深基坑支护结构设计应考虑后期维护,尽可能降低维护成本,提高维 护效率。
深基坑支护结构优化设计
支护结构类型及其特点
支护结构类型及其特点
▪ 支撑结构类型
1. 土钉墙:采用钢筋混凝土或钢支撑与土体共同作用,具有施 工速度快、经济性好等优点。 2. 钢支撑:采用钢制支撑结构,具有承载能力强、稳定性好等 优点。 3. 混凝土支撑:采用混凝土支撑结构,具有承载能力强、稳定 性好等优点。 4. 混凝土防渗墙:采用混凝土防渗墙,具有防渗效果好、稳定 性好等优点。 5. 地下连续墙:采用地下连续墙,具有承载能力强、稳定性好 等优点。 6. 钢筋混凝土支撑:采用钢筋混凝土支撑结构,具有承载能力 强、稳定性好等优点。
基坑支护工程施工优化建议
基坑支护工程施工优化建议-结构理论目前,深基坑工程支护技术向复合、组合型方向发展,由水泥土桩墙止水帷幕、竖向支护桩(钻孔灌注桩或预应力管桩)、混凝土压顶板(或圈梁)组成的竖向复合型支护结构,或联合水平锚、土钉、斜锚、支撑,具有止水和支护双重技术效果的挡墙支护结构。
结合基坑所在地的周围环境状况、地层岩土特性合理选择支护结构形式,施工中采用合理的方法和施工工艺,是确保基坑支护结构稳定、基础施工安全的重要因素。
本文为针对某基坑支护工程实施过程中,阐述监理的一些方案优化建议和实施体会。
1工程概况及特点本工程的地下建筑面积6972m2,地下室一层,局部两层,地下室开挖面积约6100m2,±0.000相当于绝对标高7.950m,现场自然地面绝对标高约7.600m。
本工程基坑一层地下室基坑的大面开挖深度 6.750〜8.750m,局部两层地下室深坑大面开挖深度10.050m。
2地层岩土特性开挖层面基地位于②层粉土夹粉砂层,②层标贯击数高达21〜29击, 层厚10m以上;支护体系进入④层粉质粘土夹粉土层。
场地地下水位初见水位与稳定水位基本一致,场地平均历史最高水位6.50m,常年平均水位5.50m;①、②层土共同组成场地上部松散岩类孔隙潜水含水层,③层土为其相对隔水地板;①层水平渗透系数平均为1.24x10-4cm/s;②层土水平渗透系数平均为9.21x10-4cm/s。
表场地工程土层地质情况3基坑支护结构选型基坑围护体主要用钻孔灌注桩排桩墙+双排深层搅拌桩(及单排深层搅拌桩加旋喷桩)+支撑体系的形式,局部(主要是已建大楼周围部位)采用了二重管高压旋喷桩的形式。
3.1基坑围护体系:全部用钻孔灌注桩,桩径①700和①800。
3.2止水帷幕体系:基坑南侧采用单排双轴深层搅拌桩,桩径700,桩间搭接400;基坑西侧、北侧采用双排双轴深层搅拌桩,桩径700,桩间搭接200;基坑东侧与原已建大楼的接触处采用二重管高压旋喷桩作为止水帷幕;桩长按照进入④层土或-20m标高处;深层搅拌桩水泥掺入量16%(约280Kg/m3),水灰比0.55,四搅两喷工艺;高压旋喷桩桩径大于800,喷射压力大于25Mpa,水泥掺入量300Kg/m,水灰比1.0。
关于深基坑支护技术的细部结构优化研究
关于深基坑支护技术的细部结构优化研究【内容摘要】随着我国城市化步伐的加快,城市建筑规模也在不断扩大,面对土地资源有限的状况,充分的利用地下空间成为了一个城市建筑发展的方向。
发展城市地下空间,不仅对于城市现代化基础设施建设、防灾救灾和国防建设有着积极的作用,也是建设可持续发展的现代化城市的重要的战略策略。
而这种趋势势必对于建筑过程中深基坑工程带来更多的挑战,对深基坑工程的结构设计方案和支护技术细部结构优化提出了更高的要求。
本文就深基坑支护技术的细部结构优化进行分析,从而探索有效可行的方案。
【关键词】深基坑支护技术细部结构面对深基坑建筑工程,基坑支护结构不尽要满足地下结构施工的基坑周边环境的正常使用需求,还要尽可能的节约造价,从而实现工程的经济效益和社会效益。
深基坑支护技术的优化包括两方面的内容,一是深基坑支护技术实施方案的优化,二是深基坑支护技术的细部结构优化。
后者在工程顺利施工和节省造价上起着至关重要的作用。
一、深基坑支护概念深基坑支护是指为了保证地下结构施工及基坑周边环境的安全,对深基坑侧壁及周边环境采用的支挡、加固与保护的措施。
深基坑的施工建筑有一下要求。
深基坑施工时深度及现场环境工程进度来确定施工方案,制定方案后保总监理工程师审批,应当符合规范及法律要求才能施工。
深基坑施工必须解决地下水位,一般采用轻型井点抽水,使地下水位降低到基坑底1.0米以下,必须有专人负责24小时,做好抽水记录。
深基坑上下应挖好阶梯或者支撑靠梯,禁止踩踏支撑上下作业,在坑四周应该设置安全栏杆等。
为了更好的实现施工要求和提高安全指数,深基坑支护技术也在随着技术的发展而不断更新。
二、现阶段我国深基坑支护技术优化中存在的问题随着深基坑支护问题研究的不断深入,现在的深基坑支护技术已经取得了一些优化效果,但是根据目前形势来看,深基坑工程在施工过程中事故频发,而且发生事故后造成的伤亡损失很大,后果相当严重,究其原因,与施工安全预控措施不到位等有着直接关系,也有设计方案出现偏差造成的,因此,现阶段我国深基坑支护技术还存在一些问题。
建筑工程施工中深基坑支护的施工技术探讨
建筑工程施工中深基坑支护的施工技术探讨随着城市建设的不断扩张和现代化建设的不断推进,越来越多的高层建筑和地下设施需要在城市中拔地而起。
而随之而来的就是对深基坑支护施工技术的需求。
深基坑支护施工技术是指在建筑施工过程中,为了保障建筑物和周围环境的安全,所采取的一系列支护措施和技术手段。
本文将就深基坑支护施工技术进行探讨,包括支护结构设计、施工工艺和材料选择等方面的内容。
一、支护结构设计深基坑支护的结构设计是深基坑支护工程中最为重要的一环。
深基坑的支护结构设计需要考虑多种因素,包括地质条件、地下水情况、附近建筑物和管线等。
在进行深基坑支护结构设计时,需要进行全面的勘察和分析,以确定最合适的支护结构方案。
常见的深基坑支护结构包括钢支撑、混凝土支撑、土方支撑等。
在设计支护结构时,需要考虑支撑的稳固性、承载能力以及施工难易程度等因素。
也需要考虑不同支护结构之间的组合应用,以及施工过程中可能出现的变化和调整。
二、施工工艺深基坑支护工程的施工工艺是建筑工程中的重要一环。
在深基坑支护施工过程中,需要根据不同的支护结构设计方案,合理安排施工工艺,以确保施工的顺利进行和支护效果的达到。
在施工工艺中,首先需要进行地面的准备工作,包括清理现场、设置围护板、搭设支撑架等。
接着是进行深基坑的开挖工作,需要根据地质情况和设计要求选择合适的开挖方式和工具。
在开挖过程中,需要随时监测和分析地下水变化情况,及时采取措施调整。
在基坑开挖完成后,需要进行支护结构的安装和搭设,这时需要根据设计要求,选择合适的支护材料和施工工艺。
最后是进行基坑的回填和复原工作,恢复原有地面的基本状况。
三、材料选择深基坑支护工程中所使用的材料也是至关重要的。
合适的支护材料能够保障深基坑支护结构的稳固性和承载能力,同时也能够减少施工难度和施工成本。
在进行深基坑支护工程施工前,需要对支护材料进行充分的选择和准备。
常见的支护材料包括钢材、混凝土、木材等。
钢材是深基坑支护工程中最常用的材料之一,其优点是强度高、稳定性好,适用于各种支护结构的搭设。
地铁深基坑工程支护结构优化设计
地铁深基坑工程支护结构优化设计地铁作为城市交通系统的重要组成部分,进入城市后往往需要进行地下隧道施工。
在地下隧道施工中,深基坑工程是一个重要的组成部分,而其支护结构的优化设计对于施工的安全和效率具有非常重要的意义。
本文将就地铁深基坑工程支护结构的优化设计展开讨论。
一、地铁深基坑工程概述地铁深基坑工程是指在城市地铁工程建设中所进行的深基坑开挖和支护工程。
深基坑工程的施工一般以地下水位较高、邻近建筑物较多的区域为主。
在进行深基坑工程时,首先需要进行开挖,然后进行支护工程以保证施工的安全性和完整性。
1. 基础墙支护基础墙支护是常见的深基坑工程支护结构,通过设置搅拌桩、钢筋混凝土墙等形式进行支护,以保证基坑的稳定和安全。
基础墙支护的优点是结构稳定,施工方便,适用范围广。
2. 土钉墙支护土钉墙支护是利用土钉将土体与支护墙面连结在一起,形成一个整体来进行支护的一种方式。
土钉墙支护的优点是施工速度快,适用于软土层和管理土层的支护。
3. 挡土墙支护挡土墙支护是采用混凝土挡土墙、钢板桩等形式进行支护,其结构承载能力较强,适用于抗承力要求较高的地区。
1. 安全性原则地铁深基坑工程支护结构设计的首要原则是保证施工和使用安全。
在进行支护结构设计时,需要考虑基坑的地质条件、邻近建筑物情况、地下水位等因素,以及进行相应的计算和分析,以保证支护结构具有足够的承载能力和稳定性。
2. 经济性原则地铁深基坑工程支护结构设计需要考虑施工成本、材料使用等因素,以使支护结构的设计既能保证安全,又能尽可能减少施工成本。
1. 地质勘察在地铁深基坑工程支护结构设计中,首先需要进行地质勘察,了解基坑周围的地下水位、地质条件、邻近建筑物等情况,以为后续的设计提供准确的数据。
2. 选择合适的支护结构类型根据地质勘察结果和工程实际情况,选择合适的支护结构类型,在基础墙支护、土钉墙支护、挡土墙支护等的结构类型中进行选择和比较,以确定最适合的支护结构类型。
关于深基坑支护方案的选择与优化策略
关于深基坑支护方案的选择与优化策略
Se l e c t i on a n d Op t i mi z e St r a t e g y o f De e p F ou n d a t i o n Pi t Su p p o r t i n g Sc h e me
开挖多工组 同时开工 ,施工噪音少 ,工期容 易控制 , 施工质量也容易得到控制。在本案例中的 1 2 m基坑 就采用人工挖桩的方式。 ( 2 )土钉墙支护结构 该支护结构 由 5部分构成,分别是原位土体 、 钢筋 网片、钢筋拉 杆、喷射混凝土面层、注浆土钉 体等 。该结构巧妙 地利用 了基坑边壁土体 的力学 强 度 ,并将壁 土体作 为 自身支护结构的一部分 。钢筋 网片通 过注浆土钉 与喷射 混凝土面层连在一起 ,由 于钢 筋网片 自身的柔韧性 ,使得这种支护结构 的稳 定性大 大提 高,同时,由于土钉的加筋作用 ,改善 了被加 固土体 的力学性能 ,对 内固段的应力分布状 况得到很好 的改善 。 目前,我国的土钉支护技术 已经相对成熟 ,在 实 际 的 工程 中 ,这 种 方法 的 应 用 也 相 对 十 分 广 泛 。 但是 ,这种 防护结构属被动支护结构 ,其侧 向变形 控 制 不 易控 制 ,与 桩 锚 支 护 相 比 , 侧 向 变 形 较大 。 根据上 述分析并结合对工程 的实际分析 ,我们 采用桩锚支护结构 。
1 . 设 计 原 则
【 关键 词】 深基坑 支护 施工
坑维护 结构 的变形 量降低 到最小程度 。同时 ,桩锚 支护结构可 以实现信 息化 施工,如在施工过程 中, 我们可 以根据基坑 的发展趋势 以及变形的大小 ,相 应 的对 预应 力值进 行调节, 以使对变形做到有效控
深基坑支护结构设计的优化方法
深基坑支护结构设计的优化方法随着城市建设的不断发展,深基坑工程在城市建设中扮演着至关重要的角色。
深基坑工程是指施工深度超过一定限度的基坑工程,通常涉及土力学、结构力学、水文地质学等多个学科知识。
在深基坑工程中,基坑支护结构设计是至关重要的一环,它直接关系到基坑的稳定性和安全性。
如何优化深基坑支护结构设计成为了一个重要课题。
深基坑支护结构设计的优化方法可以从多个方面进行探讨,包括结构形式选择、材料选用、施工工艺等方面。
本文将介绍一些深基坑支护结构设计的优化方法,以期为相关从业人员提供一些参考和启发。
1. 结构形式选择在深基坑支护结构设计中,结构形式的选择是至关重要的。
常见的深基坑支护结构形式包括钢支撑、混凝土墙、护土墙等。
在选择结构形式时,需要根据实际工程情况综合考虑多个因素,包括基坑深度、周边土体情况、地下水位等。
在一般情况下,可以优先考虑使用混凝土墙或护土墙进行支护,因为这些结构形式具有稳定性好、施工工艺简便等优点。
而对于较大深度的基坑,可以考虑使用钢支撑结构,由于钢支撑结构的刚度大、变形小,适合用于抵抗大变形。
2. 材料选用3. 施工工艺深基坑支护结构的施工工艺直接关系到结构的质量和性能。
在进行深基坑支护结构设计时,需要充分考虑施工工艺,以保证结构的安全性和可靠性。
施工工艺包括基坑开挖、结构浇筑、支撑安装、连接构件安装等多个方面。
在进行深基坑支护结构设计时,需要对这些施工工艺进行深入分析和研究,以提出合理的施工方案和措施。
在深基坑支护结构设计中,我们可以借鉴一些优化方法,以期提高结构的稳定性和安全性。
可以通过优化结构形式的选择来提高结构的稳定性,可以通过合理的材料选用来提高结构的承载能力,可以通过合理的施工工艺来提高结构的质量和性能。
通过以上优化方法的运用,可以有效地提高深基坑支护结构设计的水平,为城市建设提供更加稳定和安全的基础设施。
深基坑支护结构设计的优化方法是一个复杂而又重要的课题。
通过不断地研究和实践,我们可以不断地提高深基坑支护结构设计的水平,为城市建设的发展做出更大的贡献。
深基坑开挖中的支护结构设计
深基坑开挖中的支护结构设计随着城市建设的发展,深基坑的开挖在土木工程中起着重要的作用。
深基坑开挖中的支护结构设计是确保工程稳定和安全的关键。
本文将探讨深基坑开挖中的支护结构设计原则、常用的支护结构类型以及设计过程中需要考虑的因素。
在深基坑开挖过程中,地下水的渗流以及土体的水平和垂直变位是常见的问题。
因此,支护结构设计时需要考虑以下几个原则。
首先,支护结构应能够承受土体的水平和垂直压力,确保基坑的稳定性。
其次,支护结构需要具备一定的刚度和强度,以抵抗地下水渗流和土体的变形。
此外,支护结构还应能够减小振动和噪音,保护周边建筑物和环境。
在实际工程中,常见的支护结构类型包括土钉墙、深层连续墙、钢支撑和深层开挖桩。
土钉墙是一种经济、适用范围广泛的支护结构,其工作原理是利用钢筋混凝土土钉在土体中传力。
深层连续墙是通过连续的混凝土墙板连接,增加整个支护结构的刚度和强度。
钢支撑在深基坑开挖中得到了广泛应用,其优点是结构稳定,承载能力强。
深层开挖桩则是通过打入深层土体中的钢筋混凝土桩,以提供足够的支撑力。
在支护结构设计过程中,工程师需要考虑多个因素。
首先,对于具体的工程情况,如土壤类型、坑内水位、地上建筑物等,需要进行详细的勘察和分析。
其次,需要评估支护结构的承载能力和刚度,在结构设计中考虑地震、滑移和沉降等因素。
同时,还需设计相应的水平和垂直排水系统来应对地下水渗流。
此外,施工的安全性和可行性也需要在设计过程中考虑,并合理安排施工方法和时间。
在深基坑开挖中,支护结构设计是一个复杂的工程,需要综合考虑多个因素并进行详细的分析。
在实际工程中,根据具体情况选择合适的支护结构类型,并进行相应的设计。
合理的支护结构设计能够确保施工过程的稳定性和安全性,同时也能够减小对周边环境和建筑物的影响。
综上所述,深基坑开挖中的支护结构设计是确保工程稳定和安全的关键。
在设计过程中需要考虑地下水渗流、土体变形等因素,并根据实际情况选择合适的支护结构类型。
岩土工程施工中深基坑支护问题探究
岩土工程施工中深基坑支护问题探究随着城市建设的不断发展,越来越多的高层建筑、地下停车场、地下商业综合体等深基坑工程应运而生。
而深基坑的支护问题一直是岩土工程领域的一个热点问题,其施工过程中存在着很多技术难点和安全风险。
对深基坑支护问题进行探究和研究,对于相关领域的工程技术人员具有重要的指导意义。
一、深基坑的定义深基坑是指在地下开挖深度较大(深度一般大于3米)的基坑,常见的深基坑支护包括悬挑式支护、土方支护、桩墙支护、分段法支护等多种形式。
深基坑的支护结构主要是为了保证周边建筑及交通设施的安全,同时保证基坑周边工作区域和地下管线的顺利施工。
在深基坑工程中,支护结构的设计和施工是整个工程中最为重要的环节之一。
其稳定性和安全性直接关系到周边环境的安全和施工工艺的顺利进行。
二、深基坑支护的挑战1. 地质情况复杂在进行深基坑支护工程时,往往会面临地质情况复杂的问题。
地下水位的高低、土层的稳定性、地下管线等各种地质因素都会对深基坑支护带来一定的挑战。
尤其是在城市中心区域,地下管线交织、地质条件多变,这就要求工程师在设计深基坑支护结构时,要对地质情况进行充分的调查和分析,以确保支护结构的稳定和可靠。
2. 建筑物和交通设施的保护深基坑的开挖对周围的建筑物和交通设施带来了一定的风险。
在施工过程中,若基坑支护结构出现问题,可能会对周边建筑物和交通设施带来损害。
如何在施工过程中保证周围建筑物和交通设施的安全是深基坑支护工程中的一大挑战。
3. 施工技术复杂深基坑支护工程的施工技术较为复杂,需要采用各种先进的施工方法和技术。
悬挑式支护工程需要使用大型起重设备,土方支护需要采用挖掘机等大型机械设备,桩墙支护需要进行桩基础的打桩施工等等。
这就要求深基坑支护工程具备较强的技术实力和现场管理水平,以确保施工过程的安全和有效进行。
三、深基坑支护解决方案1. 地质勘察和分析在进行深基坑支护工程之前,需要对地质情况进行充分的勘察和分析。
深基坑支护结构研究
深基坑支护结构研究随着城市建设的发展,深基坑在建筑工程中的应用越来越广泛。
深基坑作为建筑物地下部分的围护结构,起到了保护和支撑地下工程的重要作用。
本文将探讨深基坑支护结构的研究现状和未来发展趋势。
1. 深基坑支护结构的分类深基坑支护结构可以根据其材料和形式进行分类。
根据材料的不同,可以将支护结构分为钢支撑结构、混凝土支撑结构和复合材料支撑结构。
根据形式的不同,可以将支护结构分为刚性支撑结构和柔性支撑结构。
2. 深基坑支护结构的设计原则深基坑支护结构的设计需要考虑多个方面的因素。
首先,要确保支护结构足够强固,能够承受地下水压力和土体负荷。
其次,要考虑施工过程中的安全性和可行性,确保施工过程顺利进行。
此外,还要考虑支护结构的经济性和环境友好性。
3. 深基坑支护结构的研究方法深基坑支护结构的研究方法主要包括理论分析、实验研究和数值模拟。
理论分析可以通过建立数学模型和力学方程,分析支护结构的受力和变形情况。
实验研究可以通过搭建实际的支护结构进行力学性能测试和变形观测。
数值模拟可以通过计算机软件对支护结构进行模拟分析,得出预测结果。
4. 深基坑支护结构的应用案例深基坑支护结构在实际工程中有着广泛的应用。
例如,在地铁工程中,深基坑支护结构被用于地下车站和通道的建设。
在高层建筑工程中,深基坑支护结构被用于地下车库和商业空间的建设。
这些应用案例为深基坑支护结构的研究提供了实际的数据和经验。
5. 深基坑支护结构的未来发展趋势随着建筑工程的不断发展,深基坑支护结构也在不断创新和完善。
未来的发展趋势包括材料的改进、设计方法的优化和施工技术的提升。
材料的改进可以提高支护结构的强度和耐久性,设计方法的优化可以提高支护结构的安全性和经济性,施工技术的提升可以提高施工效率和质量。
总结深基坑支护结构的研究在城市建设中具有重要的意义。
通过分类、设计原则、研究方法、应用案例和未来发展趋势的探讨,我们可以更好地理解深基坑支护结构在地下工程中的作用和应用前景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
探讨当前深基坑支护结构设计优化
作者:李舒玉
来源:《中国建筑金属结构·下半月》2013年第09期
摘要:深基坑支护结构设计在当前深基坑工程中应用中很重要,而支护结构的方案有很多,如何做好支护结构的优化是亟待解决的问题之一。
本文对当前深基坑支护结构设计优化进行分析。
关键词:深基坑;支护方案;细部结构;优化设计
中图分类号:TU473 文献标识码:A 文章编号:1671-3362(2013)09-0068-02
1 支护结构准备工作的最佳化
支持结构的最佳方案是整个深基坑支护结构设计的重要组成部分,对于这个方案的管理和维护关系到整个流程的最终结果。
在整个工程的操作过程中,我们往往很容易忽视这个环节的重要性。
因此,为了提高整个工程的质量和操作的有效性,为了优化工程的质量,为了最终的方案成功,需要对这一流程的各个细节给予高度关注,有关的职能人员需要给予专业化的培训。
1.1 方案优选顺序
1.1.1 设计用于方案操作的数学化规范模型,给每个环节给予标准的科学规划
1.1.2 统一指标值的工作
1.1.3 根据多个目标综合评比的最佳适合方案
1.2 层次分析法得出权重 qi的具体过程
1.2.1 层次结构模型的建立是第1步
根据工程当中出现的具体的问题,我们需要具体问题具体分析,从实践的角度出发建立矩阵模型,只有合理的模型,科学的规划才能得出最优化的效果。
1.2.2 判断矩阵的建设是第2个环节
判断矩阵也是整个矩阵中很重要的一个步骤,它关系到了整个判断是否精准,关系到整个流程和最终方案的实施的效果。
上面的很多数据决定着整个方案的整体规划,体现着工作人员的专业化水平,最终决定着方案的最终结果。
1.2.3 关于层次的排序和一致性的检验
2 支护结构细部优化
对最终选择方案的优化是上一个环节之后需要做的具体工作。
对于所选择的方案进行优化决定着方案实施过程中以及最终方案采纳的成功度,是一个很实际的问题。
实际的优化总体而言总共包括4个具体环节:决策(设计)变量、目标函数、约束条件和优化算法。
通过具体的函数的计算以及函数的验算得出有效的数据,然后根据最终的对比得出需要的结果。
2.1 决定变量的确定
2.2 目标函数的确定
2.3 优化算法
3 结语
对深基坑支护方案和所选支护类型细部结构的设计计算两个方面的优化进行了比较全面的比较和研究。
这样的方案相比较而言也是很有通过率的,对于实际问题的解决也很有效果。
这两种方案的优化设计都是非常有利于在实践的操作中进行运用的。
通过软件可以求解这样一个非线性有约束的多元函数的最小值,进行方案推进。
最后我们得出研究结论:在优化深基坑支护方案和支护类型的操作上效果明显。
参考文献
[1] 廖瑛,夏海力.深基坑支护系统的模糊综合评判[J].科技通报,2004,20(4):
334―338.。