第2章 高分子的晶态结构

合集下载

材料化学第2章高分子材料的结构

材料化学第2章高分子材料的结构

X
CH2
C n
H
有不对称碳原子,所以有旋光异构。
注:对高分子来说,关心不是具体构型(左旋或 右旋),而是构型在分子链中的异同,即:
全同(等规)、间同或无规。
34
c
aC b
高分子链上有 取代基的碳原子 可以看成是不对
d
R RR R R
称碳原子
HHHH
将锯齿形碳链 H 排在一个平面上,
RH
RH
取代基在空间有 不同的排列方式。
以大分子链中的重复单元数目表示,记作 DP
注:重复单元与结构单元的异同:
5
(1) 由一种结构单元组成的高分子
一个高分子如果是由一种单体聚合而成,其重复单 元与结构单元相同。
例如:聚苯乙烯
n CH2 CH 聚合
CH2-CH-CH2-CH-CH2-CH
缩写成
CH2 CH n
n 表示重复单元数,也称为链节数, 在此等于聚合度
(6) 单体单元(monomer unit): 与单体的化学组成完全相同只是化学结构不同的 结构单元。
4
(7) 聚合度(degree of polymerization): 聚合物分子中,结构单元的数目叫聚合度。 聚合度是衡量高分子大小的一个指标。
有两种表示法:
以大分子链中的结构单元数目表示,记作 xn
2.6 高分子材料的结构
前言 一、定义
1. 高分子化合物 是指分子量很高并由共价键连接的一类化合物 . 又称:高分子化合物、大分子化合物、高分子、
大分子、高聚物、聚合物 Macromolecules, High Polymer, Polymer
分子量:一般高达几万、几十万,甚至上百万, 范围在104~106

高分子材料晶态结构课件.ppt

高分子材料晶态结构课件.ppt

2.基本结构单元的不同
小分子:原子、分子和离子 高分子:分子链段
高分子材料晶态结构课件
3.6.1 高分子链在晶体中的构象
影响因素:分子链本身和分子链间相互 作用两种因素。
1.分子间力会影响链的相互堆砌,即影 响分子间的构象和链和链之间的堆砌密 度。如:氢键,范得华力等。
高分子材料晶态结构课件
高分子结晶的特点
1.晶区与非晶区共存。由于高分子为长 链结构,链上的原子通过共价键相连接, 因此结晶时链段是不能充分自由运动的, 必定妨碍其作规整的堆积和排列,使得 在高分子晶体内部往往含有比低分子晶 体更多的晶格缺陷。如果晶格缺陷比较 严重的话,会导致出现所谓准晶结构, 甚至会成为非晶区。
高分子材料晶态结构课件
3.6.2高分子材料晶态结构模型
1、缨状微束模型
高分子材料晶态结构课件
结构特点
晶区和非晶区互相穿插,同时存在;一 根分子链可以同时穿过几个晶区和非晶 区,在晶区中,分子链互相平行排列形 成规整的结构,但晶区的尺寸很小 (10nm左右),晶区在通常情况下是无 规取向的;而在非晶区中,分子链的堆 砌是完全无序的。这个模型又叫两相结 构模型(
高分子材料晶态结构课件
IV. 聚合物结晶过程的影响因素
(1)分子链结构 聚合物的结晶能力与分子链结构密切相关,凡分子结
构对称(如聚乙烯)、规整性好(如有规立构聚丙烯)、 分子链相互作用强(如能产生氢键或带强极性基团,如聚 酰胺等)的聚合物易结晶。
分子链的结构还会影响结晶速度,一般分子链结构越 简单、对称性越高、取代基空间位阻越小、立体规整性越 好,结晶速度越快。
(2)高分子液晶的分类 高分子液晶有三种不同的结构类型:近晶型、向列型和
胆甾型(三种模型的分子链可动)。

第二章高分子化合物

第二章高分子化合物

❖ 取代基R排列在主链平面的同侧,这种构型称 为全同立构 (如A)。
❖ 取代基R交替出现在主链的两侧,这种构型称 为间同立构 (如B)。
❖ 取代基R无规则地排列在主链平面两侧时,称 为无规立构(如C)。
❖ 全同立构和间同立构的高分子化合物称为等规 高聚物;无规立构的高分子化合物称为无规高 聚物。
导偶极,诱导偶极与永久偶极间的相互作用力称为诱 导力 。 ❖ 其能量一般在6.3~12kJ/mol
❖ 范德华力只有当分子间距离在0.28~0.5nm之 间时才会产生,其作用力的大小与距离的六次 方成反比。
❖ 2.氢键力
❖ 氢键是指氢原子与两个负电性较大而半径 较小的原子例如(F、O、N等)相结合而产 生的作用力
是物质间普遍存在着的一种作用力。
❖ ⑴色散力:当分子中由原子正负电中心在瞬间内的偏 离而造成瞬时偶极,瞬时偶极间的相互作用力。
❖ 色散力的能量一般在0.8~8kJ/mol ❖ ⑵取向力:极性分子永久偶极间的相互静电作用力 ❖ 其能量在12~21kJ/mol ❖ ⑶诱导力:非极性分子能在极性分子的作用下产生诱
❖ 一、高分子化合物分子运动的特点 ❖ 1.运动单元的多重性 ❖ 大分子中不仅链段、支链、取代基可以运动,整个
大分子也可以运动。 ❖ 2.大分子热运动是一个松弛过程 ❖ 高分子化合物通过热运动从一种平衡状态过渡到另
一平衡状态需要一定的松弛时间。 ❖ 3.大分子热运动对温度的依赖性 ❖ 温度对分子热运动有两种作用:首先使运动单元活
取代基的数量等 。 ❖ (3)外界因素 ❖ 主要是温度 。
三、高分子化合物的聚集态结构
❖ 聚集态结构指的是许许多多单个大分子在高分子化 合物内部的排列状况及相互联系,也称为超分子结 构或微结构。

高分子物理第二章习题及解答

高分子物理第二章习题及解答

第二章2.1聚合物的晶态和非晶态结构2.1.1内聚能密度例2-1 根据高聚物的分子结构和分子间作用能,定性地讨论表2-3中所列各高聚物的性能。

表2-3线形高聚物的内聚能密度高聚物内聚能密度兆焦/米3 卡/厘米3聚乙烯259 62聚异丁烯272 65天然橡胶280 67聚丁二烯276 66丁苯橡胶276 66聚苯乙烯305 73高聚物内聚能密度兆焦/米3 卡/厘米3聚甲基丙烯酸甲酯347 83聚醋酸乙烯酯368 88聚氯乙烯381 91聚对苯二甲酸乙二酯477 114尼龙66 774 185聚丙烯腈992 237解:(1)聚乙烯、聚异丁烯、天然橡胶、聚丁二烯和丁苯橡胶都有较好的柔顺性,它们适合于用作弹性体。

其中聚乙烯由于结构高度对称性,太易于结晶,从而实际上只能用作塑料,但从纯C-C单键的结构来说本来应当有很好的柔顺性,理应是个橡胶。

(2)聚苯乙烯、聚甲基丙烯酸甲酯、聚醋酸乙烯酯和聚氯乙烯的柔顺性适中,适合用作塑料。

(3)聚对苯二甲酸乙二酯、尼龙66和聚丙烯腈的分子间作用力大,柔顺性较差,刚性和强度较大,宜作纤维。

可见一般规律是内聚能密度<70卡/厘米3的为橡胶;内聚能密度70~100的为塑料;>100的为纤维。

2.1.2 比容、密度、结晶度例2-2 由文献查得涤纶树脂的密度ρc=1.50×103kg·m-3,和ρa=1.335×103kg·m-3,内聚能ΔΕ=66.67kJ·mol-1(单元).今有一块1.42×2.96×0.51×10-6m3的涤纶试样,重量为2.92×10-3kg,试由以上数据计算:(1)涤纶树脂试样的密度和结晶度;(2)涤纶树脂的内聚能密度.解(l) 密度结晶度或(2) 内聚能密度文献值CED=476(J·cm-3)例2-3 试从等规聚丙烯结晶(α型)的晶胞参数出发,计算完全结晶聚丙烯的比容和密度。

第二章 高分子的聚集态结构详解

第二章 高分子的聚集态结构详解

晶体结构=空间点阵+结构单元
点阵
Polymer Physics (Yu CAO)
直线点阵——分布在同一直线上的点阵 平面点阵——分布在同一平面上的点阵
空间点阵——分布在三维空间的点阵
晶胞
Polymer Physics (Yu CAO)
晶胞和晶系
1,晶胞:空间格子中划出的大小和形状完全一样 的平行六面体,以代表晶格结构的基本重复单元, 这种在三维空间中具有周期性排列的最小单位 2,晶胞参数:a,b,c 和 ,, 3,晶系:七种晶胞类型构成晶系
结晶聚合物的重 要实验证据
X射线衍射曲线
Inte ns ity (cps )
1000 500 0 10 20 30 40 50 Polar angle (degree)
Polymer Physics (Yu CAO)
2.2.1 晶体结构的基本概念
晶体:物质内部的质点三维有序周期性排列
把组成晶体的质点抽象成为几何点,由这些等同的几何点的集 合所以形成的格子,称为空间格子,也称空间点阵。 点阵结构中,每个几何点代表的是具体内容,称为晶体的结构 单元。
氢键:≦40kJ/mol
小分子间相互作用能 < 共价键键能
2.1.2高分子间的相互作用非常大
高分子的特点:大 其中的链单元数:103~105 链单元间的相互作用
Polymer Physics (Yu CAO)
小分子间的相互作用
高分子间相互作用能 》共价键键能
高聚物无气态
高聚物气化所需的能量 》破坏化学键所需的能量
Polymer Physics (Yu CAO)
内聚能密度—衡量高分子间相互作用力的大小
高聚物 CED(J/cm3) 高聚物 CED(J/cm3)

高分子物理课件第二章

高分子物理课件第二章
< 1.0, 原因:更多的晶格缺陷造成非晶区。
2、同质多晶现象
聚乙烯的稳定晶系是斜方晶系,拉伸时可形成 三斜或单斜晶系。
同质多晶现象:由于结晶条件的变化,引起分 子链构象的变化或者堆积方式的改变,一种聚合 物可以形成几种不同的晶型。
形成的晶型不同,聚合物所表现出来的性能 也不相同。
3、 聚丙烯的晶胞结构
基于内聚能的加和性,即原子或基团摩尔吸引力常 数Gi的加和
CED
Gi
i
M0
CED与高聚物物理性质之间的关系
a. CED < 300 J/cm3时(70cal/cm3) 聚合物都是非极性的,分子间作用力主要是色散力,比较 弱,分子链属于柔性链,具有高弹性,作橡胶使用。 b. CED > 400 J/cm3时(100cal/cm3) 聚合物都是极性的,由于分子链上有强的极性基团或分子 间能形成氢键,分子间作用力较强,加上易于结晶和取向, 作纤维使用 c. 300 J/cm3 < CED < 400 J/cm3时(70-100cal/cm3) 聚合物的分子间作用力居中,适宜作塑料使
但是在用X射线研究聚合物的凝聚态结构时,人们 发现:聚合物内部确实存在着三维有序的规整结构。
结晶聚合物最重要的实验证据为:
x射线衍射花样(图)——一系列同心圆(德拜环) (非晶聚合物—弥散环或称无定形晕) 衍射曲线—尖锐的衍射峰 (非晶聚合物—很钝的衍射峰)
实验证明:如果高分子链本身具有必要 的规整结构,同时给予适宜的条件(温度等), 就会发生结晶,形成晶体。
纤维(>100)
解释PE的 CED < 300J/cm3 却作为塑料使用,Why? PE分子链的结构非常规整,很容易结晶, 从而使材料具有一定的强度,作为塑料使用。

第2章 高分子的晶态结构

第2章 高分子的晶态结构

聚合物的晶胞密度计算
其中:
MZ c N AV
M是结构单元分子量;
Z为单位晶胞中单体(即链结构单元)的数目; 单位晶胞中所含链数 V为晶胞体积; NA为阿佛加德罗常数
PE:以z=2代入上式可得 ρc =1.00g/ml, 而实测的聚乙烯密度, ρ= 0.92~0.96g/cm3。
2.3.2 聚合物的结晶形态
剖析
内聚能密度同分子的极性有关,分子的极性 越小,内聚能密度越 高 低
内聚能密度对聚合物的性能有很大影响,内 聚能密度越高,大分子间的作用力越 从而材料可作为 橡胶 塑料 纤维 使用。
对耐热性材料,要求其内聚能密度
强 弱
高 低
2.3 聚合物的晶态结构
2.3.1 聚合物的晶体结构
2.3.2 聚合物的结晶形态
极性分子的永久偶极与其它分子上(包括极性和非极性分子) 引起的诱导偶极之间的相互作用力。6-31 kJ/mol.
色散力
• 分子之间瞬时偶极之间的相互作用力。0.8-8 kJ/mol.
氢键
与电负性较强的原子结合的氢原子同时与另一个电
负性较强的原子之间的相互作用。这种电负性较强 的原子可以是N、O和卤素原子等。 13-29 kJ/mol.
分子的凝聚态结构
决定
控制成型加工条件
获得
聚合物的基本性能特点
决定
预定材料的结构
得到
材料的性能
预定材料性能
• 2.1 高分子聚集态结构的类型和影响因素
1. 高分子的聚集态结构 Polymer Aggregate Structure 大量高分子聚集体中高分子的空间排列方式。 2. 高分子聚集态结构的类型 Types of Polymer Aggregate Structure 结晶的、非结晶的、液晶态、取向态、织态

高分子物理-第二章.

高分子物理-第二章.

静电力
范德华力 诱导力
高聚物分子间作用力
色散力
氢键
一、静电力
静电力:存在于极性分子与极性分子之间的引力。
偶极矩:极性分子带有的电荷与正负电荷距离的乘积。
qr
静电力相互作用能
Ek
2 3
12
2 2
R 6KT
(12.6~20.9 KJ/mol)
K——波尔兹曼常数
对于聚乙烯醇、聚丙烯腈、PVC、PMMA 之间分子间作用
力主要是静电力。
二、 诱导力
诱导力:极性分子的永久偶极与它在分子上引起的诱导偶极
之间的相互作用力。
诱导偶极的相互作用能为:
E0
112
2
2 2
R6
(6.3~20.9 KJ/mol)
——极化率
诱导力不仅存在于极性与非极性分子之间,也存在于极性与
极性分子之间。
三、 色散力
色散力:存在于一切分子中,是范德华力中最普遍的 一种,分子瞬时偶极之间的相互作用力
色散力作用能:
EL
3 2
I1I I1
2
I
2
1 R6
2
(0.8~8.4 KJ/mol)
I——分子的电离能力
在非极性分子中,分子间的作用力主要是色散力
静电力、诱导力和色散力统称为范德华力,没有方向性和
饱和性。
四、 氢键
氢键:氢键是极性很强 X—H 键的氢原子,与另外一个键
上电负性很大的原子 Y 上的孤对电子相互吸引而形成的
完善晶体
结晶聚合物
无定形物质
衍射仪法
衍射仪主要由X射线机、测角仪、X射线探测器、 信息记录与处理装置组成
只检测平行于 表面的晶面

硕士生高物第二章高分子的链柔顺性 ppt课件

硕士生高物第二章高分子的链柔顺性 ppt课件
高分子主链虽然很长,但通常并不是伸直的,它可以 蜷曲起来,使分子采取多种形态,这些形态可以随条 件和环境的变化而变化。为什么分子链有卷曲的倾向 呢?
大多数高分子主链中存在许多的单键(PE,PP,PS) 的主链是100%的单键,PB聚异戊二烯主链上也有75% 是单键)。
单键是由σ电子组成,σ电子云分布是轴形对称的, 因此高分子在运动时C-C单键可以绕轴旋转(自转) 称2)的自转,带动(3)的公转,(3) 的轨迹也是圆锥面,C4可以出现在圆锥面的任何 位置上。 d.事实上,(1)和(2)同时自转,所以(2) 和(3)同时在公转,所以,(4)的活动余地就 更大了。 e.一个高分子有许多单键,每个单键都能内旋转 ,所以高分子在空间的形态有无穷多个。
3.1.1 低分子的内旋转
从有机中知,C—C,C—O,C—N等单键是 键,其
电子云的分布是轴形对称的。因此由键相连的两个原子 可以相对旋转(内旋转)而不影响其电子云的分布。单 键内旋转的结果是使分子内与这两个原子相连的原子或 基团在空间的位置发生变化
例如乙烷:如果C—C发生内旋转,则分子内与C相连 的H的相对位置就要发生变化(如下图) 这种由于单键内旋转而产生的分子在空间的不同形态称 为构象(conformation)
第(2)键上(C3)出现的位置为m2-1=m 第(3)键上(C4)出现的位置为m3-1= m2 第(4)键上(C5)出现的位置为m4-1=m3
…… 第(i)键上(Ci+1)出现的位置为
mi-1mi-1
二.实际上
内旋转完全自由的C-C单键是不存在的, 因为碳键上总要带有其它原子或基团, 当这些原子或基团充分接近时,电子云 之间将产生斥力使单键的内旋转受到阻 力,所以高分子的形态(构象)也不可 能是无穷多的,而是相当多的

高分子物理第2章

高分子物理第2章

衍射线 入射线 试样
照相底片
照相底片上的德拜环
非晶态PS的衍射花样
晶态等规PS
可以看出,等规立构PS既有清晰的衍射环(同心圆 ——德拜环),又有弥散环,而无规立构PS仅有弥 散环或称无定形晕
由什么事实可证明结晶高聚物中有非晶态结构?
(1)从结晶聚合物大角X射线图上衍射花样 和弥散环同时出现 (2)一般测得的结晶聚合物的密度总是低于由 晶胞参数计算的完全结晶的密度。如PE实测 0.93~0.96,而从晶胞参数计算出为 1.014g/cm3,可见存在非晶态。
如:聚乙烯的稳定晶型是正交晶系,拉伸时则可形成三斜或单斜晶系
2.1 晶态聚合物结构
2.1.3 聚合物的结晶形态(晶体的外形)
——与结晶条件有密切关系 (1) 单晶—极稀溶液中缓慢生长(0.01%),单层片晶 分子链垂直于晶面,规则折叠排列,折叠链模型
聚乙烯PE—菱 形片晶
聚甲醛 POM— 六角形
尼龙6—菱形片晶
材料的性能
预定材料性能
1.1分子间作用力
范德华力(静电力、诱导力、色散力)和氢键。 静电力:极性分子间的引力。 诱导力:极性分子的永久偶极与它在其他原子上引起的诱 导偶极之间的相互作用力。 色散力:分子瞬时偶极之间的相互作用力。 氢键(hydrogen bond) :是极性很强的X-H键上的原子, 与另外一个键上的电负性很大的原子 Y上的孤对电子相互吸 引而形成的一种键 (X-H…Y)
聚4—甲基1 —戊烯 四方形片晶
PE 的TEM和电子衍射照片
2.1.3 聚合物的结晶形态
0.1%<浓度<1%, 多层片晶 为减小表面能,单晶沿螺旋位错中心盘旋生长变厚
聚甲醛POM单晶螺旋生长SEM照片

大学本科高分子物理第二章《聚合物的凝聚态结构》课件

大学本科高分子物理第二章《聚合物的凝聚态结构》课件

===90
Three perpendicular two-fold rotation axis
Monoclinic
a bc ==90; 90One two-fold rotation axis
Triclinic
a bc 90
None
a,b,c – unit vectorial distances
第二章 聚合物的凝聚态结构
本章课时 6
1
固体
凝聚态为物质的物理状态
液体
气体
晶态 液态
相态为物质的热力学状态
气态
高分子凝聚态是指高分子链 之间的几何排列和堆砌状态
液体 固体 液晶态
取向结构
晶态 非晶态
织态结构
2
高分子的 凝聚态结构
决 聚合物的基本 决 定 性能特点 定
材料的 性能
控制成型 加工条件
=bc;= ac;= ab
20
Structure of PE、PP crystal cell
左图:PE的晶体结构 上图:PP的晶体结构
21
晶胞密度求解
c
MZ N AV
M是结构单元分子量;
Z为单位晶胞中单体(即链结构单元)的数目;
V为晶胞体积;
NA为阿佛加德罗常数
22
2.2.2聚合物的结晶形态(晶体的外形)
24
Maltese Cross in Isotactic Polystyrene
偏光显微镜照片
25
Maltese Cross的形成原因
26
Maltese Cross
27
电镜观察的球晶结构
Spherulite model and the Microscopy of PE spherulite 球晶模型及PE球晶的电镜照片

高分子物理-第二章-高分子凝聚态ppt课件.ppt

高分子物理-第二章-高分子凝聚态ppt课件.ppt
子链伸展并沿流动 方向平行排列。
Row nucleation
(4) 串晶 Shish-kebab structure
较低温度下, 边结晶边搅拌
PE
i-PS
(5) 伸直链晶
聚合物在高压 和高温下结晶 时,可以得到 厚度与其分子 链长度相当的 晶片
Extended chain crystal of PE Needle-like extended chain crystal of POM
球晶结构示意图
环带球晶
聚乙烯
偏光显微镜下球晶的生长
聚乙烯在125℃等温结晶
球晶的生长过程
控制球晶大小的方法
球晶的大小对性能有重要影响:球晶大透明性差、 力学性能差,反之,球晶小透明性和力学性能好。
(1) 控制形成速度:将熔体急速冷却,生成较小 的球晶;缓慢冷却,则生成较大的球晶。 (2)采用共聚的方法:破坏链的均一性和规整性, 生成较小球晶。 (3)外加成核剂:可获得小甚至微小的球晶。
《2》折叠链模型 (50年代 A。Keller提出)
实验现象:电子显微镜观察到几十微米范围的PE单晶 测得晶片厚度约为100A,且与分子量无关 X衍射还证明分子主链垂直晶片平面
提出模型:分子链规则地折叠形成厚100A的晶片 晶片再堆砌形成片晶
可以解释:片晶、球晶的结晶形态 不能解释:单晶表面密度比体密度低
nl = 2dhklsinq
n=1, 2, 3, …称为衍射级数
q为衍射角
多晶样品的衍射花样
样品
铝箔的X-射线和电子射线衍射花样
X-射线衍射花样
电子射线衍射花样晶体样品的 Nhomakorabea射曲线2.1.2 聚合物在晶体中的构象
等同周期(或称纤维周期):高分子晶体中, 在 c 轴方向化学结构和几何结构重复单元 的距离。

2-1 第二章 凝聚态-晶态、非晶态

2-1 第二章 凝聚态-晶态、非晶态
第二章 高分子的凝聚态结构
1
• • • • •
2.1晶态聚合物的结构 2.2非晶态聚合物结构 2.3 高分子液晶 2.4 聚合物的取向结构 2.5 多组分聚合物
2
教学内容:聚合物的各种凝聚态结构(晶 态、非晶态、液晶态、取向和织态结构)
教学目的:通过本章的学习全面掌握高分子链之间的 各种排列方式及由此而产生的各种凝聚态结构,弄清 高分子链结构条件和外部条件与凝聚态结构之间的关 系,了解各种凝聚态结构的表征和应用,初步建立凝 聚态结构与性能之间关系。 重点和难点:各种凝聚态结构(晶态、非晶态、液晶 态、取相态、高分子合金的织态)的结构特点、形成 条件和性能差异。
24
空间格子(空间点阵)
• 把组成晶体的质点抽象成为几何点,由这些等同的几 何点的集合所形成的格子,称为空间格子,也称空间 点阵。 • 点阵结构中,每个几何点代表的是具体内容,称为晶 体的结构单元。 • 所以,晶体结构=空间点阵+结构单元
晶体结构与点阵的关系
25
• 直线点阵——分布在同一直线上的点阵
a b c, a b g 90 0
a b c, a g 90 0 , b 90 0
a b c,a b g 90 0
28
晶面和晶面指数
晶格内所有格子点全部集中在相互平行的 等间距的平面群上,这些平面叫做晶面。 晶面与晶面之间的距离叫做晶面间距。
• 具有较大的侧基的高分子,为了减小空间阻碍, 降低位能,则必须采取旁式构象。 例如:全同PP, 聚邻甲基苯乙烯, 聚甲基丙烯酸甲酯PMMA, 聚4-甲基-1-戊烯 , 聚间甲基苯乙烯 等。
39
等规聚丙烯(IPP)
1.PP构象(螺旋构象H31) 2.晶系:单斜、六方、拟六方 3.晶胞俯视图(单斜)

高分子物理第二章

高分子物理第二章

2013-6-13
SBS
2 .1.4 高分子链的支化
1.短链支化 2.长链支化 * 采用不同的聚合方法可以得到不同的支化程度的高 分子。 线性高分子 , 支化高分子
2013-6-13
A Polymer blend
2013-6-13
2013-6-13
高分子链的几种模型
交联型 Crosslinkolymer Dendrime
2013-6-13
1
高分子结构
一级结构 包括结构单元的化学组成、构型、 近程结构 构造和共聚物的序列结构 二级结构 高分子链的形态(构象)以及高 远程结构 分子的大小(分子量及分布) 高分子之间通过范德华力 和氢键形成具有一定规则 排列的聚集态结构。包括 晶态、非晶态、取向态、 液晶态及织态等。
高 分 子 结 构 层 次
基本概念:
等规高聚物:全同立构和间同立构的高聚物。
等规度:高聚物中含有全同立构和间同立构的 总的百分数。
2013-6-13
§ 2、几何异构
1,4加聚的双烯类聚合物 中,主链含有双键。由 于主链双键的碳原子上 的取代基不能绕双键旋 转,当组成双键的两个 碳原子同时被两个不同 的原子或基团取代时, 即可形成顺式、反式两 种构型,它们称作几何 异构体。内双键上基团 在双键一侧的为顺式, 在双键两侧的为反式
2013-6-13
2. 交联点间的平均分子量
2、线型、支化、交联高聚物的区别
• 线形:高聚物可以在适当溶剂中溶解,加热可以 熔融,易于加工成型; • 支化:支化高分子能溶解在某些溶剂中。 • 交联:交联高分子除交联度不太大时能在溶剂中发生
2013-6-13
Rubberlike elasticity. High impact resistance

高分子物理简答题

高分子物理简答题

第二章高分子的链结构1.聚合物的层次结构聚合物的结构包括高分子的链结构和聚合物的凝聚态结构,高分子的链结构包括近程结构一级结构和远程结构二级结构;一级结构包括化学组成,结构单元连接方式,构型,支化于交联;二级结构包括高分子链大小相对分子质量,均方末端距,均方半径和分子链形态构象,柔顺性;三级结构属于凝聚态结构,包括晶态结构,非晶态结构,取向态结构,液晶态结构和织态结构; 2.结构单元的键接方式,许多实验证明自由基或离子型聚合产物中大多数是头—尾键接的,链接方式对聚合物的性能有比较明显的影响;例1:纤维要求分子链中单体单元排列规整,结晶性能好,强度高,便于抽丝和拉伸例2:维尼纶纤维缩水性较大的根本原因:聚乙烯醇PVA做维尼纶只有头—尾键接才能使之与甲醛缩合生成聚乙烯醇缩甲醛;如果是头—头键接额,羟基就不易缩醛化,是产物中保留一部分羟基,羟基的数量太多会使纤维的强度下降;3.聚合物的空间构型概念:结构单元为—CH2—CHR—型的高分子,在每一个结构单元中都有一个手性碳原子,这样,每一个链节就有两种旋光异构体,高分子全部由一种旋光异构体键接而成称为全同立构,由两种旋光异构单元交替键接,称为间同立构,两种旋光异构单元完全无规键接时,则称为无规立构全同立构和间同立构的高聚物有时统称为等规高聚物高聚物中含有全同立构和间同立构的总的百分数是指等规度由于内双键的基团在双键两侧排列的方向不同而有顺式构型与反式构型之分,他们称为几何异构体例:几何构型对聚合物的影响聚丁二烯1,2-加成的全同立构或间同立构的聚丁二烯PB,由于结构规整,容易结晶,弹性很差,只能作为塑料使用;顺式1,4-聚丁二烯链的结构也比较规整,容易结晶,在室温下是一种弹性很好的橡胶,反式1,4-聚丁二烯分子链的结构也比较规整,容易结晶,在室温下是弹性很差的塑料;4. 高分子共聚物共聚物的序列结构常用参数平均序列长度L和嵌段数R;当R=100时表明是交替共聚,R=0时表明是嵌段共聚物例1:聚甲基丙烯酸甲酯PMMA分子带有极性酯基是分子间作用力比聚苯乙稀PS大,因此在高温的流动性差,不宜采取注塑成型法加工;需将PMMA和少量PS共聚可以改善树脂的高温流动性,适用于注塑成型ps. 和少量的丙烯晴AN共聚后,其冲击强度,耐热性,耐化学腐蚀性都有所提高,可供制造耐油的机械零件例2:ABS树脂在结构组成制备工艺上可提高产品的力学性能的方法ABS树脂是丙烯晴,丁二烯和苯乙烯的三元共聚物;其中丙烯晴有CN基,能使聚合物耐化学腐蚀,提高制品的抗张强度和硬度;丁二烯使聚合物呈现橡胶状韧性,这是材料抗冲击强度增高的主要因素;苯乙烯的高分流动性能好,便与加工成型,而且可以改善制品表面光洁度.,ps. ABS是一类性能优良的热塑性塑料例3:SBS在结构和组成上的特点及加工方法概述用阴离子聚合法制得的苯乙烯与丁二烯的嵌段共聚物SBS树脂;丁二烯常温是一种橡胶,而聚苯乙烯是硬性塑料,两者不相容,因此SBS具有两项结构;聚丁二烯段形成连续的橡胶相,聚苯乙烯是热塑性的,聚苯乙烯起交联作用高温下可以破坏也可以重组,所以SBS是一种可以注塑方法进行加工而不需要硫化的橡胶;聚氨酯与其相似,统称热塑性弹性体;5.高分子链的支化例:为什么高压聚乙烯的冲击强度好于低压聚乙烯的冲击强度支化对物理性能的影响有时相当显著,高压聚乙烯低密度聚乙烯LDPE由于支化破坏了分子的规整性,使其结晶度大大降低,低压聚乙烯高密度聚乙烯HDPE是线型分子,易于结晶,故在密度,熔点,结晶度和硬度方面都高于强者;分子链支化程度增加,分子间的距离增加,分子间的作用力减小,因而使拉伸强度降低,但冲击强度会提高;6.高分子链的交联支化高分子能够溶解,交联高分子不熔不熔,只有交联度不大的时候能在溶剂中溶胀;热固性塑料和硫化橡胶都是交联高分子例:硫化橡胶未经硫化交联的橡胶分子之间容易滑动,受力后会产生永久变形,不能回复原状,经硫化的橡胶分子间不能滑移,才有大的可逆弹性变形,所以橡胶一定要经过硫化变成交联结构后才能使用;交联度小的橡胶含硫5%一下弹性较好,交联度大的橡胶含硫20%~30%弹性就差,交联度再增加,机械强度和硬度都将增加,最终失去弹性而变脆;7.高分子链的构象概念:构象:单间内旋转而产生的分子在空间的不同排列形态,由于热运动分子的构象在时刻改变,因此高分子的键的构象是统计性的,由此可知,这种构象是不固定的;构型:大分子链中由化学键所固定的原子在空间的几何排列,这种排列是稳定的要改变构型必经过化学键的断裂和重组;构型包括单体单元的键合顺序,空间构型的规整性,支化度,交联度以及共聚物的组成及序列结构;无规线团:单键内旋转是导致分子链呈蜷曲构象的原因,内旋转愈自由,蜷曲的趋势越大,我们称这种不规则的蜷曲高分子链的构象为无规线团;理想链理想柔性链,自由链接链:高分子键的一种理想化的简单模型,假定高分子的主链由足够多的不占体积的化学键自有链接而成,这些键的取向不受键角以及相邻旋转交的限制,没有位垒的障碍,在空间上的取向几率都相等;自由旋转链:每个链都能在键角限制范围内自由旋转,不考虑空间位阻影响,有足够多的不占体积的化学键自有链接而成,这些键的取向受键角及相邻旋转交的限制,没有位垒障碍;受阻旋转链:同自由旋转链,除不能自由旋转;末端距:对于线性高分子,分子链的一端至另一端的直线距离即为末端距;均方末端距:末端距的平方的平均值,通常用来表征高分子链的尺寸;高斯链:把真实的高分子末端距模型化的一种由n个长度为l的统计单元组成,他的末端距大小分布符合高斯统计函数,这种假想链叫做高斯链Ps.末端距的计算见附录例1. 自由连接链和高斯链的区别1.高斯链的统计单元为链段,自由链接链的链接单元为化学键2.高斯链可以产生链段的回转和取向,自有链接连不能产生化学链的旋转和取向3.高斯链是实际存在的,自有链接连是不存在的4.高斯链研究高分子链的共性,自有链接链是理想化的;例2.聚丙烯是否可以通过单键的内旋转由全同立构变成间同立构,为什么答:不可以;因为全同立构和间同立构是属于构型的范畴,构型是指分子中有化学键所固定的原子在空间的排列;单键的内旋转只会改变构象,而改变构型必须经过化学键的断裂才能实现;例3.为什么只有柔性高分子链才适合做橡胶答:橡胶具有高弹性,弹性模量很小,形变量很大的特点;只有处于蜷曲状态的长链分子才能在外力的作用下产生大形变,才能作为橡胶;蜷曲程度与柔性是相对应的,蜷曲程度越高,柔性越好,所以适合做香蕉的高分子必须具备相当程度的柔性;例4.试述近程相互作用和远程相互作用的含义以及它们对高分子链构象以及柔性的影响答:所谓“近程”和“远程”是根据沿大分子链的走向来区分的,并非为三维空间上的远和近;事实上,即使是沿高分子长链很远的枝节也会由于主链单间内旋转而在三维空间上相互靠的很近;近程相互排斥作用的存在使得实际高分子的内旋转受阻,是指在空间可能有的构象数远远小于自由内旋转的情况,受阻程度越大构象数就越少,高分子链的柔性就越小;远程相互作用可为斥力,也可称为引力;当大分子链中相距较远的原子或原子团由于单键的内旋转,可是其间的距离小于范德瓦尔斯半径而表现为斥力,大于范德瓦尔斯半径为引力,五轮哪种力都使单间内旋转受阻构象数减小,柔性下降,末端距变大;例5. 分子链柔顺性大小顺序聚乙烯PE,聚丙烯PP,聚丙烯晴PAN,聚氯乙烯PVC取代基极性越大,取代基之间的相互作用就越强,高分子链内旋转越困难,柔性越小;取代基的极性顺序为—CN>—CL—CH3—H,所以PE>PP>PVC>PAN例6.请排出分子间作用力的大小聚苯乙烯,聚对苯二甲酸乙二酯和尼龙66,聚乙烯尼龙66>据对苯甲酸乙二酯>聚苯乙烯>聚乙烯尼龙66分子间能形成氢键,因此分子间作用力最大;聚对苯二甲酸乙二酯含有强极性基团,分子间作用力比较大,聚苯乙烯含有侧基,连段运动较困难,分子间作用力较小,聚乙烯是非极性分子,又不含侧基,分子间作用力最小;例7. 请排出结晶难易程度的排序1聚对苯二甲酸乙二酯和聚间苯二甲酸乙二酯,聚乙二酸乙二酯2尼龙66,尼龙1010聚己二酸乙二酯>聚对苯二甲酸乙二酯>聚间苯二甲酸乙二酯,这是由于聚己二酸乙二酯的柔顺性好,聚间苯二甲酸乙二酯对称性不高,尼龙66>尼龙1010尼龙66中氢键密度大于尼龙1010第三章高分子溶液1.聚合物溶解过程和溶剂选择概念:内聚能密度:内聚能是将一摩尔液体或固体分子汽化时所需要的能量,单位体积的内聚能即为内聚能密度;δ溶度参数:溶度参数是内聚能密度的平方根;溶质与溶剂的溶度参数越接近越可能相互溶解;冻胶:是由范德瓦尓斯力交联而成的,加热可以拆散范德瓦尓斯力的交联,使冻胶溶解;凝胶:是高分子链之间以化学键形成的交联结构的溶胀体;例1.聚合物的溶解过程答:聚合物的溶解过程分为两个阶段,先是溶剂分子深入聚合物内部,是聚合物体积膨胀,称为溶胀,然后才是高分子均匀分散在溶剂中形成完全溶解的分子分散的均相体系,对于交联聚合物,在与溶剂接触时也会发生溶胀,但因有交联的化学键束缚,不能再进一步使交联分子拆散,只能停留在溶胀阶段,不会溶解;例2.聚合物的溶解度与分子量的关系:溶解度与聚合物的分子量有关,分子量大的溶解度小,分子量小的溶解度大,对交联聚合物来说,交联度大的溶胀度小,交联度小的溶胀度大;例3.非晶聚合物和结晶聚合物对溶解的影响非晶聚合物的分子堆砌比较松散,分子间的相互作用较弱,因此溶剂分子比较容易渗入聚合物内部使之溶胀和溶解;静态聚合物由于分析排列规整,堆砌紧密,分子间相互作用力很强,以致溶剂分子深入聚合物内部非常困难,因此晶态聚合物的溶解比非晶态聚合物困难得多;溶液的热力学性质溶解过程的自发需要满足△Fm=△Hm-T△Sm<0对于极性聚合物在极性溶剂中,由于高分子溶剂强烈相互作用,分子排列趋于混乱所以△Sm增加溶解时放热△Hm<0且使体系△Fm降低所以溶解过程能自发进行非极性聚合物,溶解过程一般是吸热的△Hm>0,故只有在升高温度T或者减小混合热△Hm才能使体系自发溶解;非极性溶液的混合热△Hm的大小取决于溶度参数,如果两种液体溶度参数接近,则混合热越小,两种液体越能互相溶解;Ps.聚丙烯腈不能溶解在溶度参数与他相接近的乙醇,甲醇,苯酚;乙二醇等溶剂中,这是因为这些溶剂的极性太弱了,只有二甲基甲酰胺,二甲基乙酰胺,乙腈,二甲基亚砜,丙二腈才能使其溶解;丙酮不能溶解聚苯乙烯是丙酮极性太强而聚苯乙烯是弱极性的;可以得出结论,极性聚合物,不但要求它与溶剂的溶度参数中的非极性部分接近,还要求极性部分也接近才能溶解;注:如果溶质与溶剂间能形成结晶性非极性聚合物的溶剂选择最困难,它的溶解包括两个过程:其一是结晶部分的熔融;其二是高分子与溶剂的混合,两者都是吸热的过程,所以要提高温度;除非生成氢键,因为氢键的生成是放热反应;例1.溶剂的选择原则:1)极性相近,要求溶剂的极性和高聚物极性相近,极性高聚物选择极性相当的溶剂;2)溶度参数相近原则,参数越接近,溶解可能性越大,非晶态—非极性比较合适,对于晶态的非极性高聚物需加外界条件,对晶态极性不适用;3)溶剂化原则基团的相互作用溶剂分子与高分子链之间相互吸引作用是高分子链与链之间相互分离导致高分子溶解于溶剂形成溶液;理想溶液概念:理想溶液:是指溶液中溶质分子间溶剂分子间和溶质分子间的相互作用能都相等,溶解过程没有体积变化也没有焓的变化;Huggins参数:是表示高分子溶液混合时相互作用能的变化θ温度:是高分子溶液的一个参数,当T=θ时高分子溶液中的过量化学位为零,与理想溶液中溶剂的化学位没有偏差θ条件:通过选择溶剂和温度使高分子溶液中溶剂的过量化学位为零的条件,这种条件称为θ条件或θ状态;无扰状态:高分子在稀溶液中,一个高分子很难进入另一个高分子所占的区域,即每个高分子都有一个排斥体积;如果高分子链段和溶剂分子相互作用能大于高分子链段与高分子链段的相互作用能,则高分子被溶剂化而扩张,使高分子不能彼此接近,高分子的排斥体积就很大;如果高分子链段与溶剂分子相互作用能等于高分子链段与高分子链段的相互作用能;高分子与高分子可以与溶剂分子一样彼此接近,互相贯穿,这样排斥体积为零,相当于高分子处于无扰状态;这种状态的尺寸就称为无扰尺寸;扩张因子:高分子在良溶剂中,由于溶剂化的作用,是卷曲的高分子链伸展,高分子的均方末端距和均方旋转半径扩大;扩张因子α是指高分子链的均方末端距或均方旋转半径与高分子链在θ状态下的均方末端距或均方旋转半径之比,它表示高分子链的扩张程度;溶胀比:交联高聚物在溶胀平衡时的体积与溶胀前的体积之比例1. 根据高分子的混合自由能,推导出其中溶剂的化学位变化,并讨论在什么条件下高分子溶液中溶剂的化学位变化,等与理想溶液中溶剂的化学位变化答:见附录例2. 高分子溶液在什么情况下与理想溶液的一些热力学性质相近当T=θ时;高分子溶液中溶剂的过量化学位为零;χ1=1/2,高分子处于θ状态,此时高分子溶液与理想溶液的一些热力学性质相近;例3. 什么是θ温度当高于,低于或等于θ温度时,大分子的自然构象有何不同为什么θ温度是高分子溶液的一个参数;当T=θ时,高分子溶液中溶剂△μ=0与理想溶液中的溶剂化学位没有偏差;当T>θ时,溶剂为高分子良溶剂,在良溶剂中,高分子链由于溶剂化而扩张,高分子线团伸展,当T<θ时,溶剂为高分子的不良溶剂,在不良溶剂中,高分子链由于溶剂化作用很弱,高分子链紧缩;当T=θ时,溶剂为高分子的θ溶剂,在θ溶剂中,高分子链段与高分子链段的相互作用能等于高分子链段与溶剂的相互作用能,高分子与高分子可以与溶剂分子一样彼此接近,互相贯穿,这样高分子链的排斥体积为零,相当与高分子链处于无干扰的无规线团;例4.试举出可判定聚合物溶解性好坏的三种热力学参数,并讨论当它们分别为何值时,溶剂是良溶剂,θ溶剂,劣溶剂:过量化学位△μ₁,Huggins参数χ₁,第二维利系数A₂可以判定聚合物溶解性的好坏的三种热力学参数,△μ₁<0,χ₁<1/2,A₂>0时为良溶剂;△μ₁=0,χ₁=1/2,,A₂=0时为θ溶剂;μ₁>0,χ₁>1/2,A₂<0时为劣溶剂;Ps.θ状态与真正的理想溶液还是有区别的,真正的理想溶液没有热效应,任何温度下都呈现理想行为,而在θ温度时的高分子稀溶液只是过量化学位等于0而已;偏摩尔混合热和偏摩尔混合熵都不是理想值,只是两者的非理想效应近似相互抵消;例5.临界共溶温度:是聚合物溶解曲线极大处的温度就是Tc;溶质的分子量越大,溶液的临界共溶温度越高;当温度降至Tc一下某一定值时,就会分离成稀相和浓相,当体系分成两相最终达到相平衡时,每种组分在两相间扩散达到动态平衡,这就要求每种组分在两相间的化学未达到相等;相分离的起始点就是临界点,在临界点,两个相浓度相等;简述荣章法测定聚合物的δ的原理和方法溶胀法可以测定交联聚合物的平衡溶胀比,及交联聚合物达到溶胀平衡时的体积与溶胀前的体积之比;若交联聚合物与溶剂的溶度参数越接近,高分子与溶剂的相互作用愈大,及高分子溶剂化程度愈大,交联网链愈能充分伸展,是交联聚合物的平衡溶胀比增大,若用若干种不同溶度参数的溶剂溶胀聚合物,用溶胀法分别测定聚合物在这些溶剂中的平衡溶胀比,以平衡溶胀比对溶剂的溶度参数作图,找出平衡溶胀比极大值所对应的溶度参数,此溶度参数可作为交联聚合物的溶度参数;Ps.增塑剂为了改善聚合物材料的成型加工性能和使用性能,通常在聚合物树脂中加入高沸点,低挥发性的小分子液体或低沸点固体,以降低玻璃化转变温度和粘流温度,改善树脂流动性,降低粘度石制品有较好的柔韧性,和耐寒性;第四章高分子的多组分体系高分子的相容性概念高温临界共溶温度UCST:高温互容低温分相;低温临界共溶温度LCST:低温互容高温分相;曲线分析见附录临界胶束浓度:将嵌段共聚物溶解在小分子溶剂中,如果溶剂溶解共聚物前段时没有很强的选择性,那么嵌段共聚物的溶液性质与一般均聚物的溶液性质没有和大的差别;但如果溶剂对其中的某一嵌段具有很强的相互吸引作用,在固定温度改变浓度或固定浓度改变温度两种条件下,嵌段共聚物类似于小分子的表面活性剂,与溶剂作用强的嵌段倾向于与溶剂混合,而另一嵌段就倾向于与其它链的相似嵌段聚集在一起,形成胶束,形成胶束的临界条件被称为临界胶束浓度,和临界胶束温度;进一步增加浓度,这些胶束逐渐发生交叠,形成物理凝胶几乎不能流动,形成凝胶的临界浓度称为临界胶束浓度静态光散射通过测定溶液中形成结构的平均分子量来估算是否形成了胶束Ps.UCST,LCST曲线见附录第五章聚合物的非晶态非晶态聚合物的结构模型概念无规线团模型:在非晶态聚合物本体中,分子链的构象与在溶液中的一样,成无规线团状,线团的尺寸在θ状态下高分子的尺寸相当,线团分子之间是任意相互贯穿和无规缠结的,前端的堆砌不存在任何有序的结构,因而非晶态聚合物在凝聚态结构上是均相的;玻璃化转变:玻璃态和高弹态之间的转变称为玻璃化转变,对应的转变温度即玻璃化转变温度;玻璃态:当非晶聚合物在较低的温度下受外力时,有与链段运动被冻结,只能使主链的键长和键角有微小的改变,因此从宏观上来说,聚合物形变是很小的,形变与受力的大小成正比,当外力除去后,形变能立刻回复;这种力学性质称虎克型弹性体,又称普弹体,非晶态聚合物处于具有普弹性的状态,称为玻璃态;玻璃化温度:高聚物分子链开始运动或冻结的温度;它是非晶态高聚物作为塑料使用的最高温度,橡胶使用的最低温度;高弹态:在聚合物受到外力时,分子链可以通过单键的内旋转和链段的改变构象以适应外力的作用,由于这种变形是外力作用促使聚合物主链发生内旋转的过程,它需要的外力显然比聚合物在玻璃态时变形所需外力要小得多,而变形量却大得多,这种性质叫做高弹性,它是非晶态聚合物处在高弹态下特有的力学特征;粘流态:整个分子链运动,松弛时间缩短,在外力作用下发生粘性流动,它是整个分子链互相滑动的宏观表现;形变不可逆外力除去后,形变不能再自发回复自由体积理论:Fox和Flory提出,认为液体或固体物质,其体积由两部分组成:一部分是被分子占据的体积;另一部分是未被占据的自由体积;后者以“孔穴”的形式分散于整个物质之中,正是由于自由体积的存在,分子链才可能发生运动;自由体积理论认为,当聚合物冷却时,起先自由体积逐渐减少,到某一温度时,自由体积达到一最低值,这是聚合物进入玻璃态;在玻璃态下,有与链段运动被冻结,自由体积也被冻结,并保持一恒定值,自由体积“孔穴”的大小及分布也将基本上维持固定;因此对任何聚合物,玻璃化温度就是自由体积达到某一临界值的温度,在这临界值一下,已经没有足够的空间进行分子链构象的调整了;因而聚合物的玻璃态可视为等自由体积状态;不管什么聚合物,发生玻璃化转变时,自由体积分数都等于2.5%;Ps. WLF方程见附录例1::无规线团模型的实验证据1.橡胶的弹性理论完全是建立在无规线团模型基础上的,而且实验证明,橡胶的弹性模量和应力-温度系数关系并不随稀释剂的加入而有反常的改变,说明在非晶态下,分子链是完全无序的,并不存在可被进一步溶解或拆散的局部有序结构2.在非晶聚合物的本体和溶液中,分别用高能辐射是高分子发生交联,实验结果并未发现本体体系中发生分子内教练的倾向比溶液中更大,说明本体中并不存在诸如紧缩的线团或折叠连那些局部有序的结构;3用X光小角散射的实验结果,提别有力的支持了无规线团;.对于分子量相同的聚甲基丙烯酸甲酯试样,用不同的方法光散射,X光散射和中子散射,不同条件下本体或溶液中,测得分子的回转半径相近;并且本体的数据与θ溶剂氯代正丁烷的数据以及所得指向的斜率更为一致,证明非晶态本体中,分子的形态与它在θ溶剂中一样,它们的尺寸都是无扰尺寸例2.两相球粒模型1模型包含了一个无序的粒间相,从而能为橡胶弹性变形的回缩力提供必要的构象熵,因而可以解释橡胶的弹性回缩力;2实验测得许多聚合物的非晶和结晶密度比按分子链成无规线团形态的完全无序的模型计算的密度高,说明有序的粒子相与无序的粒间相并存,两相中由于嵌段的堆砌情况有差别,导致了密度的差别;3模型例子中嵌段的有序堆砌,为洁净的迅速发展准备了条件,这就不难解释许多聚合物结晶速度很快的事实;4某些非晶态聚合物缓慢冷却或热处理后密度增加,电镜下还观察到球粒的增大,这可以用粒子相有序程度的增加和粒子相的扩大来解释;例3.非晶态聚合物形变-温度曲线如果取一块非晶聚合物试样,对它施加一恒定的力,观察试样发生的形变与温度的关系,我们将所得到的曲线称为形变-温度曲线或热机械曲线;当温度较低时,试样呈刚性固体状,在外力作用下只发生非常小的形变;温度升到某一范围后,式样的形变明显的增加,并随后,并在随后的温度区间达到一相对稳定的形变,在这一个区域中,试样变成柔软的弹性体,温度继续升高,形变基本上保持不变;温度再进一步升高,则形变量又逐渐加大,试样最后完全变成粘性流体; Ps.形变温度曲线见附录例4.试用分子运动的观点说明非晶聚合物的三种力学状态和两种转变在玻璃态下,由于温度较低,分子运动的能量很低,不足以克服主链内旋转的位垒,因此不足以激发起链段的运动,链段处于被冻结的状态,只有那些较小的运动单元,如侧基,支链和小链节能运动,当收到外力时,由于链段处于冻结状态,只能使主链的键长和键角有微小的改变,形变很小,当外力除去后形变能立刻回复;随着温度的升高,分子热运动的能量增加,当达到某一温度Tg时,链段运动被激发,聚合物进入高弹态,在高弹态下,链段可以通过单键的内旋转和链段的运动不断地改变构象,但整个分子仍然不能运动;当受到外力时,分子链可以从蜷曲状态变为伸直状态,因而可发生较大形变;温度继续升高,整个分子链也开始运动,聚合物进入粘流态,这时高聚物在外力作用下便发生粘性流动,它是整个分子链互相滑动的宏观表现,外力去除后,形变不能自发回复;玻璃化转变就是链段有运动到冻结的转变,流动转变使整个分子链由冻结到运动的转变;例5.为什么聚合物通常有一份相对确定的玻璃化温度,却没有一个确定的粘流温度随着相对分子量的增加,玻璃化温度会升高,特别是在较低的相对分子质量范围内,这种影响较为明显,但是当相对分子质量增加到一定程度后,玻璃化温度随着相对分子质量的变化很小;而聚合物的粘流温度是整个分子链开始运动的温度,相对分子质量对粘流温度的影响比较明。

高分子物理第二章 高分子的凝聚态结构

高分子物理第二章 高分子的凝聚态结构

范德华力
诱导力:极性分子的永久偶极与它在邻近分子上引起的诱导 偶极之间的相互作用力。6~13KJ/mol
色散力:是分子瞬间偶极之间的相互作用。是一切分子中, 电子在诸原子周围不停的旋转着,原子核也不停的振动着, 在某一瞬间,分子的正负电荷中心不相重合,便产生了瞬间 的偶极。色散力存在于一切分子中,是范德华力最普遍的一 种。0.8~8KJ/mol
立方晶系
六方晶系
四方晶系
三方晶系
正交晶系
单斜晶系
三斜晶系
第二章 高分子的凝聚态结构
2.1.1 晶体结构的基本概念
(3)晶面和晶面指数
结晶格子内所有的格子点全部集中在相互平行的等间 距的平面群上,这些平面叫做晶面
第二章 高分子的凝聚态结构
2.1.1 晶体结构的基本概念
晶面指数 从不同的角度去观察某一晶体,将会见到不同的晶面, 所以需要标记,一般常以晶面指数(Miller指数)来 标记某个晶面
2.1.1 晶体结构的基本概念
(1)空间格子(空间点阵):把组成晶体的质点抽象成 几何点,有这些等同的几何点的集合所形成的格子, 点阵中每个质点代表的具体内容为晶体的结构单元。
晶体结构
= 空间点阵 + 结构基元(重复单元) 第二章 高分子的凝聚态结构
2.1.1 晶体结构的基本概念
(2)晶胞和晶系
第二章 高分子的凝聚态结构
高分子的结构
高分子的结构
高分子链的结构
近程结构 (一次结构)
化 学 组 成 分 子 构 造
共 聚 物 序 列 结 构
远程结构 (二次结构)
构 型
大 小
柔 顺 性
高 分( 子三 聚次 集结 态构 结) 构
第二章 高分子的凝聚态结构
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章 高分子的晶态结构 Crystalline Structure of Polymers
主讲:王小峰 Email:xiaofengwang@
知识准备------凝聚态与相态
凝聚态为物质的物理状态
固体 液体 气体 晶态 液态 气态
相态为物质的热力学状态
高分子凝聚态
是指高分子链之间的几何 排列和堆砌状态,也称为 超分子结构。
三、聚合物的晶体结构(晶系、晶胞参数)的确定
• 1. 利用多晶样品的X射线衍射(WAXD)实验测得的。 • 2. 试样拉伸取向,再在适当条件下处理,使晶体长得 尽可能大而完善,X射线垂直入射样品,得到“纤维
图”。
• 3.利用透射电子显微镜TEM和电子衍射ED、原子力显
微镜AFM。
举例
• 聚乙烯为正交晶系,a=0.740nm, b=0.493nm, c=0.2534nm。 聚乙烯分子链在晶格中排布的情况,晶格角上每一个 锯齿形主链的平面和bc平面呈的夹角41º ,而中央那个 分子链和格子角上的每个分子链主轴平面成82º 。 • 等规聚丙烯单斜晶系, a=0.665nm, b=2.096nm,α=γ= 90º , β=99.2º ,c=0.650nm。但结晶条件不同,还有单 斜、六方、拟六方不同的晶型,晶型不同、聚合物的 性能也不同。 • 晶格缺陷:畸变的点阵结构。
示意图
二、高分子链在晶体的构象
在晶态高分子中,高分子长链为满足排入 晶格的要求,一般都采用比较伸展的构象, 彼此平等排列,使位能最低,才能在结晶 中作规整的紧密堆积。 平面锯齿形和螺旋是结晶高分子链的两种 典型构象。
1. 平面锯齿形构象
2. 螺旋形构象
• 带有较大侧基的高分子, 为了减小空间位阻,以 降低势能,采取旁式构 象或反式旁式相间构象 而形成螺旋状。
影响晶体形态的因素是晶体生长的外部条件和晶体的内部结 构。外部条件包括溶液的成分、温度、所受作用力的方式和 作用力的大小。
形态学的研究手段:广角X射线衍射(WAXD)
偏光显微镜(PLM) 电子显微镜(TEM、SEM) 电子衍射(ED) 原子力显微镜(AFM) 小角X射线衍射(SAXD)等
高分子主要结晶形态的形状结构和形成条件
分子内与分子间氢键的例子


由于长链高分子是由数目很大的小单元(链节或链段) 组成,所以高分子中的分子间力不仅存在于不同的高分
子链间,也存在于同一高分子链内不同的链节或链段单
元之间。 高分子中总的范德华力超过了化学键的作用,使得在解 除所有的范德华力之前化学键就断裂了,所以聚合物没 有气态,只有液态与固态。
极性分子的永久偶极与其它分子上(包括极性和非极性分子) 引起的诱导偶极之间的相互作用力。6-31 kJ/mol.
色散力
• 分子之间瞬时偶极之间的相互作用力。0.8-8 kJ/mol.
氢键
与电负性较强的原子结合的氢原子同时与另一个电
负性较强的原子之间的相互作用。这种电负性较强 的原子可以是N、O和卤素原子等。 13-29 kJ/mol.
• 二、采用共聚的方法:破坏链的均一性和规整性,生 成较小球晶。
• 三、外加成核剂:可获得小甚至微小的球晶。
球晶的大小对性能有重要影响:
球晶大小影响聚合物的力学性能,影响透明性。 球晶大透明性差、力学性能差,反之,球晶小透明性和力 学性能好。
i-PP的α负球晶
3.电镜观察的球晶结构
球晶模型及PE球晶的电镜照片 Spherulite model and the Microscopy of PE spherulite
分子的凝聚态结构
决定
控制成型加工条件
获得
聚合物的基本性能特点
决定
预定材料的结构
得到
材料的性能
预定材料性能
• 2.1 高分子聚集态结构的类型和影响因素
1. 高分子的聚集态结构 Polymer Aggregate Structure 大量高分子聚集体中高分子的空间排列方式。 2. 高分子聚集态结构的类型 Types of Polymer Aggregate Structure 结晶的、非结晶的、液晶态、取向态、织态
成核数目随时间增长而增长。
随时间的增长或溶液浓度的增加,晶核不断长大为片 层束,进而分支生成球晶的雏形,继续生长形成片晶 球形对称排列的球晶。 球晶中心存在两个空区。
2.控制球晶大小的方法:
• 一、控制形成速度:将熔体急速冷却(在较低的温度 范围),生成较小的球晶;缓慢冷却,则生成较大的 球晶。
微观结构看:组成晶体中的质点在三维空 间呈周期性有序排列
2.3.1 聚合物的晶体结构
一、高分子结晶的特点
1. 晶胞由链段组成------聚合物晶胞由一个或多个 高分子链段构成。 2. 高分子链各向异性,没有立方晶系。 3. 结晶不完善,结构复杂,晶区、非晶区及中间结 构共存。
小分子与高分子晶体的区别
三、其他结晶形态
• 树枝状晶:溶液中析出,低温或浓度大,分子 量大时生成。
• 纤维状晶:存在流动场,分子链伸展并沿流动 方向平行排列。 • 串晶:溶液低温,边结晶边搅拌。
• 柱晶:熔体在应力作用下冷却结晶。
• 伸直链晶:高压下熔融结晶,或熔体结晶加压 热处理。
(a)球晶(b)单晶(c)伸直链片晶(d)纤维状晶(e)串晶
液体 固体 液晶态 取向态 晶态
非晶态
高分子的链结构是决定聚合物基本性质的主要因素 高分子凝聚态结构是决定聚合物本体性质的主要因素
链结构与凝聚态结构的重要性比较
对于实际应用的高分子材料或制品,其使用性直接决 定于在加工中形成的凝聚态结构,从此意义上可以说,链结 构只是间接地影响聚合物材料的性能,而凝聚态结构才是直 接影响其性能的因素。
二、球晶(聚合物最常见的结晶形式)
• 形成条件:从浓溶液析出,或从熔体冷结晶时, 在不存在应力或流动的情况下形成。 • 特征:外形呈圆球形,直径0.5~100微米数量 级。 • 在正交偏光显微镜下可呈现特有的黑十字消光 图像和消光同心环现象。 • 黑十字消光图像是聚合物球晶的双折射性质是 对称性反映。消光同心环是由于片晶的协同扭 曲造成的。
3.(3). 环境条件 ① 温度:温度的高低、温度变化的快慢
例:双酚A型聚碳酸酯 ② 外力:有助于或有碍于结晶 天然橡胶
• 2.2 高分子间的作用力
1. 作用力类型及特点 范德华力 (1)类型: 氢键 色散力 诱导力 静电力 分子内 分子间
(2)特点:只能呈现固态、液态,无气态 因为一个高分子与周围高分子之间的 作用力远超过一个化学键的键能。
剖析
内聚能密度同分子的极性有关,分子的极性 越小,内聚能密度越 高 低
内聚能密度对聚合物的性能有很大影响,内 聚能密度越高,大分子间的作用力越 从而材料可作为 橡胶 塑料 纤维 使用。
对耐热性材料,要求其内聚能密度
强 弱
高 低
2.3 聚合物的晶态结构
2.3.1 聚合物的晶体结构
2.3.2 聚合物的结晶形态
• 1957年A.J. Keller 首先发现浓度0.01% 的聚乙烯溶液中,极 缓慢冷却时可生成棱 形片状的、电镜下可 观察到的片晶,呈现 出单晶特有典型的电 子衍射图。 • 随后陆续发现聚甲醛、 尼龙、聚脂等单晶。
一、单晶
PE单晶
螺旋生长
单晶的概念
在极稀(浓度约0.01%)的 聚合物溶液中,极缓慢冷 却时生成具有规则外形的、 在电镜下可观察到的片晶, 并呈现出单晶特有的电子 衍射图。聚合物单晶的横 向尺寸几微米到几十微米, 厚度10nm左右。单晶中高 分子链规则地近邻折叠, 形成片晶。
• 3. 影响高分子聚集态结构的因素
(1).高分子本身的结构因素—有无结晶能力 三 类 聚 合 物
(1)结晶性聚合物:从高分子的化学结构
看具有结晶能力的聚合物。
(2)非结晶性聚合物:从高分子的化学结
构看不具有结晶能力的聚合物。
(3)液晶性聚合物:高分子中含有液晶原,
能够呈现液晶态的聚合物。
3.(2 ). 添加剂 溶剂、着色剂、填充剂、增韧剂等 (PP) (成核剂)
聚乙烯* 聚异丁烯 天然橡胶 聚丁二烯 丁苯胶 聚苯乙烯 聚甲基丙烯酸 甲酯 聚醋酸乙烯酯 聚氯乙烯 聚对苯二甲酸 乙二酯 尼龙66 聚丙烯腈
62 65 67 66 66 73 83 88 91 114 185 237
CED<70卡/厘米3 的高 聚物都是非极性高聚物, 可用作橡胶; 橡胶 (<70) CED在70-100卡/厘米3 之间的高聚物分子间力 适中,适合作塑料使用。 塑料 CED> 100卡/厘米3的高 (70~ 聚物由于分子链上有强 100) 极性基团,或者分子链 间能形成氢键,分子间 纤维 作用力大,可做纤维材 (>100) 料或工程塑料;
• 串晶由伸直链和折叠链组成。
Folded chain
四、串晶
Extended chain
2.3.3 聚合物的晶态结构模型
高分子晶体的概念
高分子链本身具有 必要的规整结构 适宜的温度,外力 等条件
X射线衍射花样
高分子结晶 形成晶体
熔体结晶 方法 玻璃体结晶 溶液结晶
X射线衍射曲线
Intensity (cps)
结晶聚合 物的重要 实验证据
X-ray patterns
晶体:同心圆-德拜环 Debye ring 。 非晶:形成弥散环-无 定形晕。
1. 球晶的成核与生长
• 异相成核与生长
由溶液中的杂质,添加剂、容器壁或其他第三组分 为晶核生长的球晶。
成核数目只与杂质数目有关。 球晶从中心一点向外发散状生长。
(a)异相成核 (b)均相成核
均相成核与生长
由聚合物分子本身形成的晶核。 一般聚合物分子在溶液中处于结晶和溶解的动态平衡 之中,随溶液温度的降低或溶剂的挥发,当达到饱和 溶液的浓度时,聚合物分子形成大于一定尺寸的聚集 体,这种聚集体不能再溶解于溶液中,称晶核。
相关文档
最新文档