相反数、绝对值、倒数的综合练习(一)培训资料
数轴、相反数、绝对值专题练习(含答案)
数轴、相反数、绝对值专题训练1. 若上升5m 记作+5m ,则-8m 表示___________;如果-10元表示支出10元,那么+50元表示_____________;如果零上5℃记作5℃,那么零下2℃记作__________;太平洋中的马里亚纳海沟深达11 034m 11 034m(即低于海平面11 034m ),则比海平面高50m 的地方,它的高度记作海拔___________,比海平面低30m 的地方,它的高度记作海拔___________.2. 把下列各数填入它所在的集合里:-2,7,32-,0,2 013,0.618,3.14,-1.732,-5,+3①正数集合:{ …}②负数集合:{ …}③整数集合:{ …}④非正数集合:{ …}⑤非负整数集合:{ …}⑥有理数集合:{ …}3. a ,b 为有理数,在数轴上的位置如图所示,则下列关于a ,b ,0三者之间的大小关系,正确的是( )b 0aA .0<a <bB .a <0<bC .b <0<aD .a <b <04. 00.5121,小.5. 在数轴上大于-4.12的负整数有______________________.6. 到原点的距离等于3的数是____________.7. 数轴上表示-2和-101的两个点分别为A ,B ,则A ,B 两点间的距离是______________.8. 已知数轴上点A 与原点的距离为2,则点A 对应的有理数是____________ 点B 与点A 之间的距离为3,则点B 对应的有理数是________________.9. 在数轴上,点M 表示的数是-2,将它先向右移4.5个单位,再向左移5个单位到达点N ,则点N 表示的数是_________.10. 文具店、书店和玩具店依次坐落在一条东西走向的大街上,文具店在书店西 边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在( )A .玩具店B .文具店C .文具店西边40米D .玩具店东边-60米11. 如图是正方体的表面展开图,请你在其余三个空格内填入适当的数,使折成正方体后相对的面上的两个数互为相反数.0.5-3-1第11题图 第12题图 12. 上图是一个正方体盒子的展开图,请把-10,8,10,-3,-8,3这六个数字分别填入六个小正方形,使得折成正方体后相对的面上的数字互为相反数.13. 下列各组数中,互为相反数的是( )A .0.4与-0.41B .3.8与-2.9C .)8(--与8-D .)3(+-与(3)+-14. 下列化简不正确的是( )A.( 4.9) 4.9--=+ B .9.4)9.4(-=+- C .9.4)]9.4([+=-+- D .[( 4.9)] 4.9+-+=+15. 下列各数中,属于正数的是( )A .)2(-+B .-3的相反数C .)(a --D .-3的相反数的相反数16. a ,b 是有理数,它们在数轴上的对应点的位置如图所示,把a ,-a ,b ,-b 按照从小到大的顺序排列正确的是( )aA .-b <-a <a <bB .b >-a >a >-bC .-b <a <-a <bD .-b <b <-a <a17. 有理数的绝对值一定是( )A .正数B .整数C .正数或零D .非正数18. 下列各数中:-2,31+,3-,0,2-+,-(-2),2--,是正数的有_______________________________.19. 填空:5.3-=______; 21+=_______; 5--=_______;3+=_______; _______=1; _______=-2.20. 若x <0,则|-x |=_______;若m <n ,则|m -n |=________.21. 若|x |=-x ,则x 的取值范围是( )A .x =-1B .x =0C .x ≥0D .x ≤022. 若|a |=3,则a =______;若|3|=a ,则a =______;若|a |=2,a <0,则a =______.23. 若|a |=|b |,b =7,则a =______;若|a |=|b |,b =7,a ≠b , 则a =______.24. 填空:(1)311--=_______;(2)2.42.4--=____-____=_____;(3)53++-=___+____=____;(4)22--+=|_____-____|=_____;(5)3 6.2-⨯=____×____=_____;(6)21433-÷-=____÷____=____×____=_____. 25、化简下列各数的符号: (1)-(-173); (2)-(+233); (3)+(+3); (4)-[-(+9)]26、若|x|=4,则x=_______________;若|a-b|=1,则a-b=_________________;27、若-m>0,|m|=7,求m.28、若|a+b|+|b+z|=0,求a,b的值。
相反数、绝对值、倒数的综合练习(一)
一、知识点1、 正数前面可以加“+”号,也可以不加“+”号。
2、 判断一个数是不是负数,要看它是不是在正数的前面加“—”号,而不是看它是不是带有“—”号。
注意“—a ”不一定是负数。
3、 相反意义的量是成对出现的。
4、 0是有理数,也是整数,也是最小的自然数。
5、 奇数、偶数也可以扩充到负数,如—1,—21,—53…等都是奇数;—2,—22,—26^等都是偶数。
6、 整数也可以看作分母为1的分数。
7、 a 的相反数是a -,但—a 不一定是负数。
8、 求一个式子的相反数,一定要将整个式子加上括号,再在括号前面加上“—”号,例如y x -的相反数是—(y x -),即x y -。
9、 多重符号的化简 化简的结果取决与正数前面负号“—”的个数,“奇负偶正”。
10、当0≥a 时,a a =,即绝对值等于它本身的是非负数;当0≤a 时,a a -=,即绝对值等于它的相反数的是非正数。
11、无论a 为正数、负数或0,0≥a ,称为绝对值的非负性。
12、几个非负数的和为0,则这几个非负数均为0.即0=++++m c b a ,0=====m c b a 则。
13、有理数加法法则:(1)同号两数相加,取相同的负号,并把绝对值相加。
(2)异号两数相加,绝对值相等时,和为0;绝对值不相等时,取绝对值较大数的符号,并把绝对值想减。
14、有理数乘法法则:先看有没有0因数,只要有一个因数是0,积就为0。
在没有0因数的情况下,先定积得符号,再把绝对值之积作为积的绝对值。
(“奇负偶正”,不要忘记写符号“—”)。
15、不是任何数都有倒数,0是没有倒数的。
倒数是它本身的有1±。
16、分数的化简: 不要忽略分数本身的符号,分数的分子、分母及分数本身的符号,改变其中任意两个,分数值不变。
17、(1)在有理数的加减混合计算过程中,先把减法转化成加法。
(2)在有理数的乘除混合计算中,先把带分数化成假分数,在把除法变成乘法。
有乘方的一定要先算乘方。
正负数、数轴、相反数、绝对值、倒数专题训练
有理数第一讲 正负数、数轴、相反数、绝对值、倒数一、梳理知识0⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数负整数有理数正分数分数负分数 注意:小数和百分数可看成分数,有理数中的小数是指有限小数或无限循环小数,π不是有理数,任何分数都是有理数.最小的正整数是____,最小的自然数是 ,最大的负整数是数轴的三要素: 原点、正方向和单位长度.相反数:只有符号不同的两个数叫做互为相反数.相反数的意义:相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.绝对值:数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作a(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩有理数的绝对值都是非负数倒数:乘积是1的两个数互为倒数.有理数大小比较的法则:① 正数都大于0;② 负数都小于0;③ 正数大于一切负数;④两个负数,绝对值大的其值反而小.二、例题例1 把下列数分类23.14020140.3 1.2136910%3π--L , , ,, , , , -1,正数:整数:负分数:有理数:正整数:自然数:例2 (1)有理数,a b 在数轴上的位置如图所示,化简a b a b +++的结果是( )20A a b B b C D a + .2 .2 . . 2(2)有理数,a b 在数轴上的对应点如图所示,则下面式子中正确的是( )①b <0<a ; ②|b|<|a|; ③0ab >; ④a b a b ->+A B C D .1个 . 2个 .3个 . 4个课堂练习:1、有理数a 、b 在数轴上的对应的位置如图所示: 则( ) 0-11a bA .a + b <0B .a + b >0;C .a -b = 0D .a -b >02、有理数,a b 在数轴上的对应点位置如图所示,则,,,a b a b -的大小关系为()例3 (1)在数轴上把-3对应的点移动5个单位长度后,所得到的对应点表示的数是( )A B C D .2 . -8 .2或-8 .不能确定(2)一个数在数轴上所对应的点向左平移6个单位后,得到它的相反数的点,则这个数为( )A B C D .3 . -3 .6 . -6课堂练习:1、在数轴上与-3的距离等于5个单位的点表示的数是( )2、绝对值大于2而小于6的所有整数的和( )A B C D .0 . -12 .12 . 243、下列说法正确的有( )①最大的负整数是1-; ②相反数是本身的数是正数; ③有理数分为正有理数和负有理数; ④在数轴上表示a -的点一定在原点的左边; ⑤ 在数轴上7与9之间的整数是8.A B C D .2个 . 3个 .4个 . 5个例4 (1)若2,1a b ==,那么a b ⋅的值有( )A B C D .1个 . 2个 .3个 . 4个(2)若m 为有理数,则m m -的值为( )A B C D .大于0 . 大于等于0 .小于0 . 小于等于0A B C D .2 . -2 .2和-2 . -8和21、若4,3a b ==,则a b -等于( )A B C D ± .7 . 1 .1 . 1或72、若3=2a -,则+3a 的值为( )A B C D .5 . 8 .5或1 . 8或4例5 (1) 用“>”连接032,,---正确的是 ( )A 、032>-->-B 、302-->>-C 、023<-<--D 、203-<<--(2)有理数,,a b c 的大小关系为0c b a <<<,则下面的判断正确的是( )11000A abc a b c a c b<->-> . B. C.< D. (3)若0ab ≠,则等式a b a b +=+成立的条件是( )0,0000A a b B ab C a b D ab ><<+=> . . . .课堂练习:1、若a b >,则下列各式正确的为( )A a bB a bC a bD a b ><>> . . . .2、已知m 是正整数,则1,,m m m-的大小关系是( ) 1111A B C D m m m m≤≤ .-m<<m . -m<m< .-m<m . -m<m 例6 (1)若a b 与互为相反数,c 的绝对值为2,,m n 互为倒数,则243a b c mn ++-的值为( )13A B C D .1 . .0 . 无法确定 (2)若a 、b 互为相反数,c 、d 互为倒数,则2a+3cd+2b=(3)如果 1.210a b ++-=,那么()()1 1.8a b +-+-+的值为(4)已知,a b 互为相反数,,c d 互为倒数,x 且的绝对值是5, 试求:()3x a b cd a b cd -+++++-1、若a b 与互为倒数,当3a =时,代数式2()b ab a -的值为( ) 23983289A B C D . . . . 2、若a b 与互为倒数,,x y 互为相反数,则()()a b x y ab ++-的值为( )A B C D .0 . 1 .-1 . 无法确定3、若320x y -++=,则x y +的值为4、绝对值不小于1而小于3的整数的和为5、如果0ab ≠,则a ba b +的值不可能为( )2A B C D -、0 、1 、2 、作业1、3-的倒数为( )1133A B C D . . - .3 . -32、如图所示,根据有理数a 、b 、c 在数轴上的位置,下列关系正确的是()3、有理数123,,555---的大小顺序是()4、已知,a b 为有理数,且a >0,b <0,a <|b|,则,,,a b a b --的大小顺序是( ).A b a a b <-<<- .a a b b -<<-<B .a b a b -<<<-C .b a a b -<<-<D 5、6、如果5x+3与-2x+9是互为相反数,则x -2的值是7、数轴上表示互为相反数的两个点之间的距离是243,则这两个数是 8、绝对值大于2且小于5的所有整数的和是( )A .0B .7C .14D .289、已知a 、b 互为相反数,m 、n 互为倒数,求mn m n b a -+)(的值。
第一课:相反数绝对值倒数巩固练习
第一课:相反数绝对值倒数巩固练习1、已知a 的倒数的相反数是715,则a = ;b 的绝对值的倒数是,则b = . 2、-5/3的倒数的绝对值是___________。
3、若a 、b 互为相反数,c 、d 互为倒数,则(a + b)33-cd =__________。
4、一个数和它的倒数相等,则这个数是( ) A .1 B .1- C .±1 D .±1和05、下面说法正确的有( )① π的相反数是-3.14;②符号相反的数互为相反数;③ -(-3.8)的相反数是3.8;④ 一个数和它的相反数不可能相等;⑤正数与负数互为相反数. A.0个 B.1个 C.2个 D.3个6、2++b a 与4)12(-ab 互为相反数,求代数式++-+ba abab b a 33)(21的值. 第二课 数轴、无理数、科学记数法一、与数轴相关的考点 (一)、在数轴上求两点的距离:1、求数轴上3到-5的距离____________________________________________2、数轴上A 点表示2,把A 点先向左移动3个单位在向右移动5个单位得到点B ,则点B 表示的数是_________________3、数轴上和原点的距离等于321的点表示的有理数是 。
(二)、看数轴大小比较和化简代数式。
4、已知有理数a 、b 在数轴上的位置如图所示,下列结论正确的是( )A 、a >bB 、ab <0C 、b —a >0D 、a +b >05、如图所示,a 、b 、c 表示有理数,则a 、b 、c 的大小顺序是( ) A.a b c <<B.a c b <<C.b a c <<D.c b a <<6、实数a ,b在数轴上的位置如图所示,的化简结果为 .二、与科学记数法相关的考点。
7、首届中国(北京)国际服务贸易交易会(京交会)于2012年6月1日闭幕,本届京交会期间签订的项目成交总金额达601.1亿美元,用科学记数法表示应为( ) A .96.01110⨯B .960.1110⨯C .106.01110⨯D .110.601110⨯8、某红外线遥控器发出的红外线波长为0.00000094m,用科学记数法表示这个数( )A 、9.4X10-7B 、9.4x10-8C 、0.94x10-7D 、9.4x10-9三、与无理数相关的考点9、下列实数种中,无理数是( )A 、-2B 、0C 、πD 、10、的值在( )(A )2到3之间 (B )3到4之间 (C )4到5之间 (D )5到6之间第三课、实数的运算1、数的乘方:求几个相同因数a 的积德运算叫做乘方,即n 个a 相乘记作a n.注:-an与(-a n )的区别:___________________________.2、零次幂:若a ≠0,则a=______。
相反数和绝对值重难点题型专训(12大题型+15道拓展培优)原卷版—24-25学年七年级数学上册重难点
相反数和绝对值重难点题型专训(12大题型+15道拓展培优)题型一相反数的辨别与定义题型二判断是否互为相反数题型三利用相反数的意义化简多重符号题型四相反数与数轴的综合题型五绝对值的意义题型六求一个数的绝对值题型七化简绝对值题型八绝对值非负性解题题型九绝对值方程题型十绝对值的其他应用题型十一有理数的大小比较题型十二有理数大小比较的实际应用知识点1:相反数的概念只有符号不同的两个数叫做互为相反数。
①一般地,a与-a互为相反数,a表示任意一个数,可以是正数、负数,也可以是0;②正数的相反数是负数,负数的相反数是正数,0的相反数是本身;③相反数是成对出现的(0除外)。
知识点2:相反数的意义互为相反数的两个数在数轴上对应的点应分别位于原点两侧,且到原点的距离相等。
求任意一个数的相反数,只要在这个数的前面添上“-”号即可(当然最后结果如果出现多重符号需要化简)。
知识点3:多重符号的化简1、一个正数前面不管有多少个“+”号,都可以全部去掉;2、一个正数前面有偶数个“-”号,也可以把“-”号全部去掉;3、一个正数前面有奇数个“-”号,则化简后只保留一个“-”号。
口诀“奇负偶正”,其中“奇偶”是指正数前面的“-”号的个数,“负、正”是指化简的最后结果的符号。
注意:此判断方法是在没有其它运算的情况下适用,如出现其它运算,要视具体情况而论。
知识点4:绝对值1、绝对值的概念:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作a 。
2、绝对值的几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离。
3、绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
即:(1)如果0a >,那么a a =;(2)如果0a =,那么0a =;(3)如果0a <,那么a a =-.可整理为:(0)0(0)(0)a a a a a a >ìï==íï-<î,或(0)(0)a a a a a ³ì=í-<î,或(0)(0)a a a a a >ì=í-£î。
数轴、相反数、绝对值及综合练习
数轴、相反数和绝对值的综合练习一、选择题(每小题3分, 共24分)1.如图, 数轴上点A表示数a, 则-a表示的数是( )A. -1B. 0C. 1D. 22. 在0, 1, -, -1四个数中, 最小的数是( )A. 0B. 1C. -D. -13. 如图, 若|a|=|b|, 则该数轴的原点可能为( )A. A点B. B点C. C点D. D点4. 下列各对数中, 相等的是( )A. -(-)和-0.75B. +(-0.2)和-(+)C. -(+)和-(-0.01)D. -(-)和-(+)5. 一个数的相反数比它的本身小, 则这个数是( )A. 正数B. 负数C. 正数和零D. 负数和零6. 下列说法正确的是( )A. 绝对值等于3的数是-3B. 绝对值小于2的数有±2, ±1, 0C.若|a|=-a, 则a≤0D. 一个数的绝对值一定大于这个数的相反数7. 有理数m, n在数轴上的对应点如图所示, 则下列各式子正确的是( )A. m>nB. -n>|m|C. -m>|n|D. |m|<|n|8. 若a, b是两个有理数, 则下列结论: ①如果a=b, 那么|a|=|b|;②如果|a|=|b|, 那么a=b;③如果a≠b, 那么|a|≠|b|;④如果|a|≠|b|, 那么a≠b.其中一定正确的有( )A. 1个B. 2个C. 3个D. 4个二、填空题(每小题4分, 共32分)9. 计算: |-20|=.10. 若a+=0, 则a=.11. 数轴上点A表示-1, 点B表示2, 则A.B两点间的距离是.12. 将-3, -|+2|, -, -1按从小到大的顺序, 用“<”连接应当是.13. 一只小虫在数轴上先向右爬3个单位, 再向左爬7个单位, 正好停在-2的位置, 则小虫的起始位置所表示的数是.14.如图, 在数轴上点B表示的数是, 那么点A表示的数是.15. 当a=时, |a-1|+5的值最小, 最小值为.16.在数轴上点A对应的数为-2, 点B是数轴上的一个动点, 当动点B到原点的距离与到点A的距离之和为6时, 则点B对应的数为.三、解答题(共44分)17. (6分)根据如图所示的数轴, 解答下面的问题:(1)请你根据图中A, B两点的位置, 分别写出它们所表示的有理数A: ,B: ;(2分)(2)观察数轴, 与点A的距离为4的点表示的数是;(4分)(3)若将数轴折叠, 使得A点与-3对应的点重合, 则B点与数对应的点重合.(6分)18. (8分)把下列各数表示在数轴上, 并用“<”连接起来:, -(-5), -0.5, 0, -|-3|, , -(+2).19. (8分)如图, 图中数轴的单位长度为1.请回答下列问题:(1)如果点A.B表示的数是互为相反数, 那么点C.D表示的数是多少?(2)如果点D.B表示的数是互为相反数, 那么点C.D表示的数分别是多少?20. (10分)(1)已知|a|=8, |b|=5, 且a<b, 试求a, b的值;(2)已知|a-3|+|2b-6|=0, 试求a-b的值.21. (12分)随着网购的快速发展, 相关的快递送达范围也越来越广泛, 惠及乡村. 某快递公司快递员骑摩托车从某快递点出发, 先向东骑行2 km到达A村, 继续向东骑行3 km到达B村, 然后向西骑行9 km到C村, 最后回到快递点.(1)以该快递点为原点, 以向东方向为正方向, 用1个单位长度表示1 km画数轴, 并在该数轴上表示出A、B、C三个村庄的位置;(2)C村离A村有多远?(3)已知摩托车行驶100 km耗油2.5升, 完成此次任务, 摩托车耗油多少升?数轴、相反数和绝对值的六种常见题型1. 在-1, , 0.618, 0, -5%, 2 021, 0.5中, 整数有________个, 分数有________个.2.有五个有理数(不能重复), 同时满足下列三个条件:(1)其中三个数是非正数;(2)其中三个数是非负数;(3)必须有质数和分数.请写出这五个数.3. 下列说法正确的是()A. 有理数是指整数、分数、正有理数、零、负有理数这五类数B. 有理数不是正数就是负数C. 有理数不是整数就是分数D. 有理数不是正数就是分数4. 把下列各数填在相应的大括号里:15, -, 0.81, -3, , -3.1, -2 022, 171, 0, 3.14.正数: { …};负数: { …};正整数: { …};负整数: { …};有理数: {…}.5. 下列说法正确的是()A. 所有的有理数都可以用数轴上的点来表示B. 数轴上的点都用来表示有理数C.正数可用原点右边的点表示, 负数可用原点左边的点表示, 零不能在数轴上表示D. 数轴上一个点可以表示不止一个有理数6. 根据如图所示的数轴, 解答下面的问题:(1)请你根据图中A, B两点的位置, 分别写出它们所表示的有理数: ____________;(2)观察数轴, 写出与点A的距离为4的点表示的数:______________;(3)若将数轴折叠, 使得点A与数-3对应的点重合, 则点B与数________对应的点重合;(4)若数轴上M, N两点间的距离为2 022(M在N的左侧), 且M, N两点经过(3)中折叠后互相重合, 求M, N两点表示的数.7. 如图, 已知A, B, C, D四个点在一条没有标明原点的数轴上.(1)若点A和点C表示的数互为相反数, 则原点为点________;(2)若点B和点D表示的数互为相反数, 则原点为点________;(3)若点A和点D表示的数互为相反数, 请在数轴上标出原点O的位置.8. 如图, 一个单位长度表示2, 观察图形, 回答问题:(1)若B与D所表示的数互为相反数, 则点D所表示的数为多少?(2)若A与D所表示的数互为相反数, 则点D所表示的数为多少?(3)若B与F所表示的数互为相反数, 则点D所表示的数的相反数为多少?9. 下列说法不正确的有()①互为相反数的两个数一定不相等;②如果两个数的绝对值相等, 那么这两个数必定相等;③有理数的绝对值一定大于0;④有理数的绝对值不是负数.A. 1个B. 2个C. 3个D. 4个10. 如图, 数轴的单位长度为1, 请回答下列问题:(1)如果点A, B表示的数互为相反数, 那么点C表示的数是多少?(2)如果点D, B表示的数互为相反数, 那么点C表示的数是正数还是负数?图中所示的5个点中, 哪一个点表示的数的绝对值最小, 最小的绝对值是多少?11. 如图, A, B为数轴上的两个点, A点表示的数为-10, B点表示的数为90.(1)请写出与A, B两点距离相等的M点表示的数;(2)电子蚂蚁P从B点出发, 以3个单位长度/s的速度向左运动, 同时另一只电子蚂蚁Q从A点出发, 以2个单位长度/s的速度向右运动, 经过多长时间这两只电子蚂蚁在数轴上相距35个单位长度?12. 情境问题某工厂负责生产一批螺帽, 根据产品质量要求, 螺帽的内径可以有0.02 mm的误差.抽查5个螺帽, 超过规定内径的毫米数记作正数, 不足规定内径的毫米数记作负数, 检查结果如下表:螺帽编号①②③④⑤内径/mm +0.030 -0.018 +0.026 -0.025 +0.015(1)指出哪些产品是合乎要求的(即在误差范围内);(2)指出合乎要求的产品中哪个质量好一些(即最接近标准);拓展延伸:(3)如果对两个螺帽进行上述检查, 检查的结果分别为a和b, 请利用学过的绝对值知识指出哪个螺帽的质量好一些.。
第五讲 数轴、相反数、绝对值、倒数专题练习
第五讲 数轴、相反数、绝对值、倒数专题练习【知识梳理】⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数正整数整数有理数0 注意:小数和百分数可看成分数,有理数中的小数是指有限小数或无限循环小数,π不是有理数,任何分数都是有理数.最小的正整数是 ,最小的自然数是 ,最大的负整数是 . 数轴的三要素:原点、正方向、单位长度.相反数:只有符号不同的两个数叫做互为相反数.相反数的意义:相反数是成对出现的,不能单独从数轴上看,除0外,互为相反数的 两个数,它们分别在原点两旁且到原点距离相等.绝对值:数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作a⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a有理数的绝对值都是非负数.倒数:乘积是1的两个数互为倒数. 有理数大小比较法则: ①正数都大于0; ②负数都小于0;③正数大于一切负数;④两个负数比较,绝对值大的其值反而小. 【典型例题解析】 1、若||||||0,a b ab aba b ab+-则的值等于 2. 如果m 是大于1的有理数,那么m 一定小于它的( )A.相反数B.倒数C.绝对值D.平方3、如果在数轴上表示a 、b 两上实数点的位置,如下图所示,那么||||a b a b -++化简的结果等于( )A.2aB.2a -C.0D.2b4、已知2(3)|2|0a b -+-=,求ba 的值是( ) A.2B.3C.9D.65、已知两数a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是2,求220062007()()()x a b cd x a b cd -+++++-的值。
6、有3个有理数a,b,c ,两两不等,那么,,a b b c c ab c c a a b------中有几个负数?7、设三个互不相等的有理数,既可表示为1,,a b a +的形式式,又可表示为0,ba,b 的形式,求20062007a b +。
七年级数学上册专题提分精练绝对值、相反数、倒数综合(解析版)
专题06 绝对值、相反数、倒数综合1.已知、互为相反数且,、互为倒数,的绝对值是最小的正整数,求()220102011a b a m cd b +-+-的值. (注:cd =c d ⨯) 解:∵、互为相反数且, ∴a b += ,ab= ; 又 ∵、互为倒数, ∴cd = ;又 ∵的绝对值是最小的正整数, ∴m = ,∴2m = ;∴原式= . 【答案】见解析 【解析】 【详解】试题分析:根据相反数、倒数的性质及绝对值是最小的正整数即可得到结果. ∵、互为相反数且, ∴a b +=0,ab=1-; 又 ∵、互为 ∴cd =1;又 ∵的绝对值是最小的正整数, ∴m =1±,∴2m =1;∴原式=1(1)011--+-=. 考点:相反数,倒数,绝对值点评:解题的关键熟练掌握互为相反数的两个数的和为0,互为倒数的两个数的积为1. 2.若a 与b 互为相反数,x 与y 互为倒数,|m |=2,则式子2a b m m x xy+-+的值为多少? 【答案】6或2 【解析】 【分析】利用a 与b 互为相反数,x 与y 互为倒数可得a +b =0,xy =1,因为 |m |=2,所以分情况讨论当m =2时,当m =﹣2时,分别计算即可. 【详解】解:∵a 与b 互为相反数,x 与y 互为倒数,|m |=2, ∴a +b =0,xy =1,m =±2, 当m =2时,原式=2﹣0+4=6, 当m =﹣2时,原式=﹣2﹣0+4=2,综上可得:式子2||+-+a b m m x xy的值为6或2. 【点睛】本题考查相反数,倒数,绝对值,解题的关键是掌握相反数的性质,倒数的性质以及绝对值的性质.3.已知:a与b互为相反数且a、b均不为零,c是最大的负整数,d是倒数等于本身的数,x是平方等于9的数,试求x+ab+2c﹣a bd+【答案】0或﹣6##-6或0【解析】【分析】根据a与b互为相反数且a、b均不为零,c是最大的负整数,d是倒数等于本身的数,x是平方等于9的数,可以得到a+b=0,ab=﹣1,c=﹣1,d=±1,x=±3,然后代入所求式子计算即可.【详解】解:由题意得,a+b=0,ab=﹣1,c=﹣1,d=±1,x=±3,当x=3时,x+ab+2c﹣a bd+=3+(﹣1)+2×(﹣1)﹣0 d=3+(﹣2)+(﹣1)+0=0;当x=﹣3时,x+ab+2c﹣a bd+=﹣3+(﹣1)+2×(﹣1)﹣0 d=﹣3+(﹣1)+(﹣2)+0=﹣6;由上可得,x+ab+2c﹣a bd+的值是0或﹣6.【点睛】本题考查了相反数、倒数、乘方的意义,以及有理数的混合运算,解答本题的关键是求出a+b=0,ab=﹣1,c=﹣1,d=±1,x=±3.4.已知a,b互为相反数,c,d互为倒数,m的绝对值为4,,求式子a bm cdm+++的值.【答案】5或3-【解析】根据绝对值的意义,相反数的定义和倒数的定义可得0a b +=,1cd =,4m =±,然后分情况代入所求的式子计算即可 【详解】解:a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为4, 0a b ∴+=,1cd =,4m =±,当4m =时,04141054a b m cd m +++=++=++=; 当4m =-时,0-41-4103-4a b m cd m +++=++=++=-; 因此,a bm cd m+++的值是5或3-. 【点睛】本题考查了绝对值的意义,相反数的定义和倒数的定义以及代数式求值,掌握上述知识是解题的关键.5.已知a 与b 互为相反数,c 与d 互为倒数且x 的绝对值是5,求x -4cd +2a +2b 的值. 【答案】1或-9 【解析】 【分析】由题意易得a +b =0,cd =1,x =±5,进而代入求解即可. 【详解】解:∵a 与b 互为相反数,c 与d 互为倒数且x 的绝对值是5, ∴a +b =0,cd =1,x =±5,∴当x =5时,4225401x cd a b -++=-+=; 当x =-5时,则有4225409x cd a b -++=--+=-. 【点睛】本题主要考查代数式的值、相反数的意义及倒数,熟练掌握代数式的值、相反数及倒数是解题的关键.6.若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为2,求式子243a b m cd m ++-的值.【答案】5或-11 【解析】 【分析】由a ,b 互为相反数,c ,d 互为倒数,可以知道0a b +=,1cd =;m 的绝对值为2可知2m =±,分别代入计算即可得到答案.解:a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为2 0a b ∴+=,1cd =,2m =±∴当2m =时,原式042315=⨯-⨯=+当2m =-时,原式()0423111=⨯--⨯=-+ 【点睛】本题考查互为相反数的两数的性质、互为倒数的两数的性质、以及绝对值的定义,牢记相关知识点并准确计算是解题关键.7.已知a ,b 互为相反数,c ,d 互为倒数,|x |=2,|y |=1,且x <y ,求(a +b )x 2+cd (x +y )的值. 【答案】-1和-3 【解析】 【分析】根据a ,b 互为相反数,c ,d 互为倒数,得a +b =0,cd =1,|x |=2,|y |=1,且x <y ,得x =-2,y =1或y =-1,代入计算即可. 【详解】∵a ,b 互为相反数,c ,d 互为倒数, ∴a +b =0,cd =1,∵|x |=2,|y |=1,且x <y , ∴x =-2,y =1或y =-1, 当x =-2,y =1时, (a +b )x 2+cd (x +y ) =0+(-2+1) =0+(-1) =-1当x =-2,y =-1时, (a +b )x 2+cd (x +y ) =0+(-2-1) =-3 【点睛】此题考查的知识点是代数式的化简求值,解答此题的关键是由已知a ,b 互为相反数,c ,d 互为倒数,得a +b =0,cd =1,|x |=2,|y |=1,且x <y ,得x =-2,y =1或y =-1.8.已知:a 、b 互为倒数,c 、d 互为相反数,|m |=5,n 是绝对值最小的数,求代数式5ab ﹣2021(c +d )+n +m 2的值.【解析】 【分析】根据倒数、相反数和绝对值的意义得到,1ab =,0c d +=,5m =±,0n =,则225m =,再代入252021()ab c d n m -+++计算即可得到答案. 【详解】由题可得:1ab =,0c d +=,5m =±,0n =, 225m ∴=,∴原式5120210025=⨯-⨯++,=30. 【点睛】本题考查绝对值、相反数、倒数和有理数的混合运算,解题的关键是掌握求绝对值、相反数、倒数和有理数的混合运算.9.已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值为3,求a +b +x 2-cdx 的值. 【答案】6或12 【解析】 【分析】根据a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是3,可以得到a +b =0,cd =1,x =±3,然后利用分类讨论的方法即可求得所求式子的值. 【详解】解:∵a 、b 互为相反数,c 、d x 的绝对值是3, ∴a +b =0,cd =1,x =±3, 当x =3时,a +b +x 2-cdx =0+9-1×3=6; 当x =-3时,a +b +x 2-cdx =0+9-1×(-3)=12, ∴a +b +x 2-cdx 的值为6或12. 【点睛】本题考查有理数的混合运算,绝对值的意义,相反数和倒数的定义,解答本题的关键是求出a +b =0,cd =1,x =±3.10.若a ,b 互为相反数,c ,d 互为倒数,e 的绝对值为2.求3||a be cd e++-的值. 【答案】5 【解析】 【分析】根据互为相反数的两个数的和等于0可得a +b =0,互为倒数的两个数的乘积是1可得cd=1,根据绝对值的性质求出|e |,然后代入代数式进行计算即可得解. 【详解】解:若a ,b 互为相反数c ,d 互为倒数,e 的绝对值为2, ∴0,1,||2,a b cd e +===3||0321615a be cd e++-=+⨯-=-=. 【点睛】本题考查了代数式求值,主要利用了相反数的定义,绝对值的性质,倒数的定义,熟记概念与性质是解题的关键.11. 若a 、b 互为相反数,c 、d 互为倒数,n 的绝对值为2,求代数式2a bcd n m+-++的值. 【答案】3或-5 【解析】 【分析】利用相反数,倒数,绝对值的代数意义得到0a b +=,1cd =,n=2或-2,再整体代入原式计算即可得到结果. 【详解】根据题意得:0a b +=,1cd =,n=2或-2, 当2n =时,原式=1043-++=; 当n=-2时,原式=1045-+-=-. 【点睛】本题主要考查了求代数式的值以及,相反数,倒数,绝对值,熟练掌握运算法则是解本题的关键.12.已知a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是5,求:22020()2021a b m cd +-+的值.【答案】26. 【解析】 【分析】由相反数,倒数,绝对值的含义求解,,a b cd m +的值,再整体代入即可得到答案. 【详解】解: a 、b 互为相反数, ∴ 0a b +=,c 、d 互为倒数,∴ 1cd =,m 的绝对值是5,∴ 5m =±,225,m =22020()202002512620212021a b m cd +⨯∴-+=-+=.【点睛】本题考查的是相反数,倒数,绝对值的含义,代数式的求值,掌握以上知识及整体代入求代数式的值是解题的关键.13.若m 、n 互为相反数,p 、q 互为倒数,且a =6,求2020()120212m n pq a +++的值.【答案】4或2- 【解析】 【分析】先根据相反数的定义,倒数的定义,绝对值的含义,求解,,m n pq a +的值,再整体代入即可得到答案. 【详解】解:,m n 互为相反数,0,m n ∴+=,p q 互为倒数,1,pq ∴=6,a = 6,a ∴=±当6a =时, 原式202001=16134,20212⨯++⨯=+= 当6a =-时, 原式()()202001=+1+6132,20212⨯⨯-=+-=- 综上:代数式的值为4或 2.- 【点睛】本题考查的是相反数的定义,倒数的定义,绝对值的含义,有理数的加减运算,掌握以上知识是解题的关键.14.已知a b 、互为倒数,、c d 互为相反数,n 的绝对值是2,m 是最大的负整数,求代数式2225242m c d mn ab +-++-的值.【答案】15-或11- 【解析】 【分析】根据倒数,相反数的定义,最大的负整数为-1,绝对值的意义,得ab =1,c +d =0,m =-1,n =±2,分别讨论n 的值进而代入求值即可得到答案. 【详解】解:∵a 、b 互为倒数,c 、d 互为相反数,n 的绝对值是2,m 是最大的负整数, ∴1,0,2,1ab c d n m =+===-, ∴2n,当2n =时,原式125(2)1522⎛⎫=-+-+-=- ⎪⎝⎭当2n =-时,原式12521122⎛⎫=-+-+=- ⎪⎝⎭∴代数式的值是15-或11-. 故答案为:-15或-11. 【点睛】本题主要考查代数式求值,掌握倒数,相反数的定义,最大的负整数为-1,绝对值的意义,正确理解倒数,相反数的定义,绝对值的意义,以及分类讨论思想是解题的关键.15.若a 、b 互为相反数,且ab≠0,c 、d 互为倒数,2x =,求()20202020202023-+⎛⎫⎛⎫++- ⎪⎪⎝⎭⎝⎭a b a cd x b 的值. 【答案】-2 【解析】 【分析】根据a 、b 互为相反数,且0ab ≠,c 、d 互为倒数,||2x =,可以得到0a b +=,1cd =,24x =,1ab=-,然后代入所求的式子,即可求得所求式子的值. 【详解】解:a 、b 互为相反数,且0ab ≠,c 、d 互为倒数,||2x =, 0a b ∴+=,1cd =,24x =,1ab=-, ∴2020202020202()()(3)a b acd x b++-+- 2019202020200()(1)(1)43=+-+-- 0114=++-2=-.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 16.已知a 与b 互为相反数,c 与d 互为倒数,m 的绝对值为2,求2||a b cd m m +-+的值. 【答案】当2m =时,原式1=,当2m =-时,原式3=- 【解析】 【分析】利用相反数,倒数,以及绝对值的代数意义求出a+b ,cd 以及m 的值,代入原式计算即可得到结果. 【详解】由题意得0a b +=,1cd =,2m =±; 当2m =时,2||0121a b cd m m +-+=-+=, 当2m =-时,2||0123a b cd m m +-+=--=-. 【点睛】本题考查了代数式求值,利用相反数,倒数,以及绝对值的代数意义求出a+b ,cd 以及m 的值是解本题的关键.17.已知a 、b 互为倒数,c 、d 互为相反数,m 为最大的负整数,n 的绝对值为2,试求3325242m c d mn ab +-++-的值. 【答案】-15或-11 【解析】 【分析】根据倒数,相反数的定义,最大的负整数为-1,绝对值的意义,得ab =1,c +d =0,m =-1,n =±2,进而代入求值即可得到答案.【详解】由题意得:ab =1,c +d =0,m =-1,n =±2,①当n =2时,原式=1-25-(-1)2-13-2-1522++⨯==, ②当n =-2时,原式=1-25-(-1)(-2)-132-1122++⨯=+=,∴3325242m c d mn ab +-++-=-15或-11. 【点睛】本题主要考查代数式求值,掌握倒数,相反数的定义,最大的负整数为-1,绝对值的意义,是解题的关键.18.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,求m 2﹣cd+||a bm +的值. 【答案】3 【解析】 【分析】根据相反数性质、倒数定义和绝对值的性质得出a+b=0、cd=1,m=2或m=-2,代入计算可得. 【详解】根据题意知a+b=0、cd=1,m=2或m=-2, 原式=0412-+ =4-1 =3 【点睛】本题主要考查有理数的混合运算,熟练掌握相反数性质、倒数定义和绝对值的性质及有理数的混合运算的顺序和法则是解题的关键19.如图,是一个“有理数转换器”(箭头是数进入转换器的路径,方框是对进入的数进行转换的转化器)(1)求当小明输入3-、95两个数时输出的结果;(2)当输出的结果为0时,求输入的数值(写两个即可);(3)在正数、0、负数中,试探究这个“有理数转化器”不可能输出的数.【答案】(1)当小明输入3-时,输出的结果为13;当小明输入95时,输出的结果为95;(2)输入的数值是0或5;(注:答案不唯一)(3)在正数、0、负数中,这个“有理数转化器”不可能输出的数是负数. 【解析】【分析】(1)根据有理数的大小比较法则、相反数、绝对值运算计算“有理数转换器”即可得; (2)根据输出结果为0,可推出这个数进入“相反数”和“绝对值”方框时是0,从而可推出进入“数大于2”方框时是0,由此即可得;(3)根据进入“相反数”方框后,有两个选择,即倒数和绝对值,再根据倒数和绝对值的运算即可得出答案.【详解】(1)32-<,进入“相反数”方框,结果为3,再进入“倒数”方框,结果为13,输出 925<,进入“相反数”方框,结果为95-,再进入“绝对值”方框,结果为95,输出 故当小明输入3-时,输出的结果为13;当小明输入95时,输出的结果为95; (2)当输入的数值是0时,02<,进入“相反数”方框,结果为0,再进入“绝对值”方框,结果为0,输出,符合要求当输入的数值是5时,52>,进入“加上5-”方框,结果为0,02<,进入“相反数”方框,结果为0,再进入“绝对值”方框,结果为0,输出,符合要求答:输入的数值是0或5;(注:答案不唯一)(3)由“有理数转换器”可知,进入“相反数”方框后,有两个选择:①当其为正数时,进入“倒数”方框,输出的结果仍是正数;②当其为非正数(即负数和0)时,进入“绝对值”方框,输出的结果是非负数(即正数和0)因此,在正数、0、负数中,这个有理数转化器”不可能输出的数是负数.【点睛】本题考查了新型程序图的有理数运算,读懂程序图,掌握相反数、倒数、绝对值运算是解题关键.20.如图是一个“有理数转换器”(箭头是表示输入的数进入转换器路径,方框是对进入的数进行转换的转换器).(1)你认为这个“有理数转换器”不可能输出 数.(2)当小羽输入6时,输出的结果是 ;当小羽输入﹣78时,输出的结果是 ;当小羽输入-2021时,输出的结果是 .(3)你认为当输入时,其输出结果是0.(4)有一次,小羽在操作的时候,输入有理数n,输出的结果是2,且知道|n|≤21,你判断一下,小羽可能输入的是什么数?请把它们都写出来,并说明理由.【答案】(1)负;(2)1;87;12021;(3)0或7n(n为正整数);(4)132或-12或2或412.【解析】【分析】(1)逆向观察转换器,从输出结果倒推求解;(2)将三个数分别代入转化器中进行计算;(3)结合绝对值和倒数的意义,从转化器倒推分析求解;(4)设输入的数为n,分4<n<7,0<n≤4,-21≤n<0,7<n≤21四种情况分析讨论,然后结合转换器中的运算程序计算求解.【详解】解:(1)观察转化器可得:当取到相反数环节后,为正数时取倒数输出,非正数时取绝对值输出,∴输出的结果一定是非负数,即这个“有理数转换器”不可能输出负数,故答案为:负;(2)当输入6时,6>4,∴6+(-7)=-1,-1<4,-1的相反数为1,1>0,∴输出1的倒数为1;当输入﹣78时,﹣78<4,∴﹣78的相反数为78,78>0,∴输出78的倒数为87;当输入-2021时,-2021<4,∴-2021的相反数为2021,2021>0,∴输出2021的倒数1 2021;故答案为:1;87;12021;(3)∵0没有倒数,0的相反数是0,0的绝对值是0,∴当输入的数小于等于4时,输入0时,输出的结果为0,当输入的数大于4时,输入7的倍数时,输出结果为0,综上,当输入0或7n(n为正整数)时,输出结果为0;(4)①当4<n<7时,n-7<0,则n-7的相反数为7-n,且7-n>0,由于输出结果为2,∴7-n=12,即n=132;②当-21≤n<0时,其相反数为-n,且-n>0,由于输出结果为2,∴-n=12,即n=-12;③当0<n≤4时,其相反数为-n,且-n<0,∴-n的绝对值为n,由于输出的结果为2,∴此时n=2;④当7<n≤21时,n-7×3=n-21,且n-21<0,n-21的相反数为21-n,且20-n>0,∵输出结果为2,∴21-n=12,即n=412,综上,小强可能输入的是132或-12或2或412.【点睛】本题考查的是倒数、绝对值及相反数的概念,解答此题的关键是弄清图表中所给的程序,在解(4)时要注意分类讨论.。
专题十二:相反数、绝对值与倒数综合列式计算(方法专题);人教版七年级上学期培优专题讲练(含答案)
专题十二:相反数、绝对值与倒数综合列式计算专题导入1。
-3的绝对值是_______;若一个数绝对值为3,则这个数是________。
1。
3,3或-32。
-7的相反数是_______,a 的相反数是________。
2。
7,-a3。
-5的相反数是______,倒数是______,绝对值是_______。
3。
5,-15,54。
a 的相反数是-2,b 倒数是15,则a+b=_______。
4。
75。
a 的平方等于它本身,则a=_____;b 的立方等于它本身,则b=______;c 的相反数等于它本身,则c=_____。
5。
0或1;0或1或-1;0方法点睛1。
求解与相反数、绝对值、倒数相关的综合列式题型时,要熟知相关概念,必要时需要分类讨论。
2。
有理数a (a ≠0)的相反数为-a ,倒数为1a ,绝对值为|a|={a ,(a >0);0,(a =0);−a ,(a <0)。
3。
相反数等于本身的数是0;平方等于本身的数有0和1;立方等于本身的数为0和±1。
4。
若a 与b 互为相反数,则a+b=0;若a 与b 互为倒数,则ab=0;若|a|=0,则a=0。
典例精讲1.已知a 与b 互为相反数,x 与y 互为倒数,c 的绝对值等于2,求a+b 2+xy −14c 的值.举一反三2.如果a ,b 互为相反数,c ,d 互为倒数,x 的绝对值是1,求代数式a+b x+x 2+cd 的值.3.若a ,b 互为相反数,c ,d 互为倒数,m 到原点的距离为2,求2(a +b )+3cd ﹣|﹣m |的值.专题过关4.已知a 与b 互为相反数,c ,d 互为倒数,x 的绝对值是﹣2的相反数的倒数,y 不能作除数,求:2(a +b )2019﹣2(cd )4+1x+y 2021的值.5.已知a 、b 互为相反数,c 、d 互为倒数,m 是绝对值最小的数,且(x ﹣1)2+|y ﹣2|=0,求5a +2b +3cdb +xy +m4cd的值. 6.已知:a 与b 互为相反数,c 与d 互为倒数,m 的绝对值为5,求式子|a−1+b|4−2cd +m的值.7.已知a ,b 互为相反数,c ,d 互为倒数,|x ﹣1|=2,求cd x+(a +b )x ﹣|x |的值.8.已知(a ﹣3)2+|b ﹣2|=0,c 和d 互为倒数,m 和n 的绝对值相等,且mn <0,y 为最大的负整数.求(y +b )2+m (a +cd )+nb 2的值.【参考答案】1.解:根据题意得:a +b =0,xy =1,c =±2, 当c =2时,原式=0+1−12=12; 当c =﹣2时,原式=0+1+12=32. 2.解:根据题意得:a +b =0,cd =1,x 2=1, 则原式=1+1=2.3.解:∵a ,b 互为相反数,c ,d 互为倒数,m 到原点的距离为2, ∴a +b =0,cd =1,|m |=2, ∴|﹣m |=|m |=2, ∴2(a +b )+3cd ﹣|﹣m | =2×0+3×1﹣2 =0+3﹣2 =1.4.解:根据题意,可得a +b =0,cd =1,|x |=12,y =0, (1)当x =12时,2(a+b)2019﹣2(cd)4+1x+y2021=0﹣2+2+0=0;(2)当x=−12时,2(a+b)2019﹣2(cd)4+1x+y2021=0﹣2﹣2+0=﹣4.5.解:由题意可知:a+b=0,cd=1,m=0,∵(x﹣1)2+|y﹣2|=0,∴x=1,y=2,∴原式=5a+2b+3b+2+0=5a+5b+2=5(a+b)+2=2.6.解:根据题意得:a+b=0,cd=1,m=5或﹣5,当m=5时,原式=|a+b−1|4−2cd+m=14−2+5=314;当m=﹣5时,原式=14−2﹣5=﹣634.7.解:∵a,b互为相反数,c,d互为倒数,|x﹣1|=2,∴a+b=0,cd=1,x=3或﹣1,①当x=﹣1时,原式=﹣1﹣1=﹣2;②当x=3时,原式=13−3=−83.8.解:∵(a﹣3)2+|b﹣2|=0,∴a﹣3=0,a=3,b﹣2=0,b=2,∵c和d互为倒数,∴cd=1,∵m和n的绝对值相等,且mn<0,∴m+n=0,∵y为最大的负整数,∴y=﹣1,∴(y+b)2+m(a+cd)+nb2=(﹣1+2)2+m(3+1)+4n =1+4(m+n)=1+0=1.。
完整版绝对值与相反数的练习题.doc
绝对值与相反数的练习题一、选择题1.绝对值等于其相反数的数一定是( )A.负数B.正数C.负数或零D.正数或零2.若│x│+x=0,则x一定是()A.负数B.0 C.非正数D.非负数3、绝对值最小的有理数的倒数是()A. 1 B、-1 C、0 D、不存在4、在有理数中,绝对值等于它本身的数有()A、1个B、2个C、3个D、无数多个5、下列说法错误的是()A、一个正数的绝对值一定是正数B、一个负数的绝对值一定是正数C、任何数的绝对值都不是负数D、任何数的绝对值一定是正数6、│a│= -a, a一定是()A、正数B、负数C、非正数D、非负数7、下列说法正确的是()A、两个有理数不相等,那么这两个数的绝对值也一定不相等B、任何一个数的相反数与这个数一定不相等C、两个有理数的绝对值相等,那么这两个有理数不相等D、两个数的绝对值相等,且符号相反,那么这两个数是互为相反数8、-│a│= -3.2,则a是()A、3.2B、-3.2 C 3.2或-3.2 D、以上都不对9、|x-1|+|x-2|+|x-3|的最小值为( )A、1B、2C、3D、410、若a、b互为相反数,c、d互为倒数,且m的绝对值为2,求为()A、1B、-1C、2D、-2二,填空题1.绝对值最小的数是_____.2.若b<0且a=|b|,则a与b的关系是______.3.一个数大于另一个数的绝对值,则这两个数的和一定_____0(填“>”或“<”).4.如果|a|>a,那么a是_____.5.如果-|a|=|a|,那么a=_____.6.已知|a|+|b|+|c|=0,则a=_____,b=_____,c=_____.7.一个正数增大时,它的绝对值_____,一个负数增大时,它的绝对值_____.(填增大或减小)8、绝对值等于它本身的有理数是_____,绝对值等于它的相反数的数是_____.9、│x│=│-8│,则x=_____,若│a│=9,则a=_____三.解答题1.如果|a|=4,|b|=3,且a>b,求a,b的值.2、若|x|=4,则x=_______________;若|a-b|=1,则a-b=_________________;3、若︳2x-1︳与︳3y-4︳互为相反数,求y-x的值4、│a-2│+│b-3│+│c-4│=0,则a+2b+3c的值四、去掉下列各数的绝对值符号:(1)若x<0,则|x|=________________;(2)若a<1,则|a-1|=_______________; (3)已知x>y>0,则|x+y|=________________; (4)若a>b>0,则|-a-b|=__________________.五、比较-(-a)和-|a|的大小关系。
有理数中相反数、绝对值、倒数(真题)
有理数中相反数、绝对值、倒数(真题)1.相反数实数a和-a叫做互为相反数.零的相反数是零.一般地,数轴上表示互为相反数的两个点,分别在原点的两旁,并且离原点的距离相等.要点诠释:两个互为相反数的数的运算特征是它们的和等于零,即如果a和b互为相反数,那么a+b=0;反过来,如果a+b=0,那么a和b互为相反数.2.绝对值一个实数的绝对值就是数轴上表示这个数的点与原点的距离.一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;零的绝对值是零,即如果a>0,那么|a|=a;如果a<0,那么|a|=-a;如果a=0,那么|a|=0.要点诠释:从绝对值的定义可以知道,一个实数的绝对值是一个非负数.3.倒数.倒数的性质:(1)同符号,不同数值;(2)乘积为1的两个数叫做倒数,0没有倒数.4.实数大小的比较在数轴上表示两个数的点,右边的点所表示的数较大.5.有理数的运算(1)运算律:加法交换律 a+b=b+a;加法结合律 (a+b)+c=a+(b+c);乘法交换律 ab=ba;乘法结合律 (ab)c=a(bc);分配律 a(b+c)=ab+ac.(3)运算顺序:在加、减、乘、除、乘方、开方这六种运算中,加、减是第一级运算,乘、除是第二级运算,乘方、开方是第三级运算.在没有括号的算式中,首先进行第三级运算,然后进行第二级运算,最后进行第一级运算,也就是先算乘方、开方,再算乘、除,最后算加、减.算式里如果有括号,先进行括号内的运算.如果只有同一级运算,从左到右依次运算.典题精炼:1. 计算﹣(﹣3)=,|﹣3|=,(﹣3)=,(﹣3)=.2、化简﹣(﹣)的结果是.3、 2019的相反数是.4、数5的相反数是.5、计算:|﹣4|﹣()=.6、点A在数轴上的位置如图所示,则点A表示的数的相反数是.7、有理数9的相反数是. 8、﹣2011的相反数是.9、﹣5的相反数是. 10、﹣4的绝对值是.11、﹣3的相反数是;的立方根是.12、已知a与b的和为2,b与c互为相反数,若=1,则a=.13、﹣1的相反数是,﹣0.1的倒数是,﹣11的绝对值是.14、的相反数的倒数是15、下列说法错误的是(只填序号).①有理数分为正数和负数;②所有的有理数都能用数轴上的点表示:③符号不同的两个数互为相反数;④两数相加,和一定大于任何一个加数;⑤两数相减,差一定小于被减数.16、-的相反数是;的倒数是.17、点A在数轴上的位置如图所示,则点A表示的数的相反数是.18、计算:﹣(﹣2)=.19、某有理数满足它的绝对值等于它的相反数,写出一个符合该条件的数.有理数加减及混合运算一.知识要点:1.加法法则:同号相加符号不变,并把绝对值相加;异号加法绝对值相减,符号取绝对值大的符号;互为相反数相加和为0;0与任何数相加仍得这个数.2.减法法则:减去一个数,等于加上这个数的相反数.3.加减混合运算:连加、连减和加减混合,统一转化为省略加号的和的形式,即代数和.4.代数和简便计算:(1)正负数归类 (2)互为相反数对消(3)凑整数(或局部对消) (4)同分母计算(避免通分)二、典题精炼【题型一 有理数加减计算】1.计算:(1)-17+24+(-16)-(-6) (2)1-(-2)+32---5(3)(-9)-(+9)-(-18)-9 (4)(-30)-(+8)+(-6)-(-17)(5)(71-)-(72-)-731+1 (6)(431-)+877-432-853-25三、典题精炼【题型二 有理数乘除法计算】(1)﹣20+(﹣14)﹣(﹣18)﹣13 (2)27-18+43-32(3)(+)﹣(﹣)﹣|﹣3| (4)(5)﹣64÷3×(6)∣-2∣2+∣+7∣7+∣0∣(7)(8)(9)﹣2+3×(﹣1)﹣(﹣4)×2.(10)[(﹣1)+(1﹣)×]÷(﹣3+2)(11)(﹣3)÷2÷(﹣)+4+2×(﹣)(12)2﹣(﹣+)×36.。
人教版 七年级上册 第一章综合练习(二) 数轴、相反数、绝对值、倒数
数轴、相反数、绝对值、倒数综合练习知识储备1.概念:规定了原点、正方向、单位长度的直线叫做数轴。
三要素:原点、正方向、单位长度2.对应关系:数轴上的点和有理数是一一对应的。
一、数轴比较大小:在数轴上,右边的数总比左边的数大。
3.应用求两点之间的距离:两点在原点的同侧作减法,在原点的两侧作加法。
(注意不带“+”“—”号)1.概念只有符号不同的两个数叫做相反数。
(注意:0的相反数是0)(几何意义:在数轴上,离原点距离相等的两个点所表示的数叫做相反数。
)2.性质:若a与b互为相反数,则a+b=0,即a=-b;反之,若a+b=0,则a与b互为相反数。
二、相反数两个符号:符号相同是正数,符号不同是负数。
3.多重符号的化简多个符号:三个或三个以上的符号的化简,看负号的个数,当“—”号的个数是偶数个时,结果取正号当“—”号的个数是奇数个时,结果取负号1、概念:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。
①一个正数的绝对值是它的本身a >0,|a|=a;反之,|a|=a,则a≥02.运算法则②一个负数的绝对值是它的相反数a = 0,|a|=0;反之, |a|=﹣a,则a<0③0的绝对值是0a<0, |a|=‐a三、绝对值注:非负数的绝对值是它本身,负数的绝对值是它的相反数。
3.性质:绝对值是a (a>0) 的数有2个,他们互为相反数。
即±a。
4.非负性:任意一个有理数的绝对值都大于等于零,即|a|≥0。
几个非负数之和等于0,则每个非负数都等于0。
即若|a|+|b|=0,则a=0,b=01.概念:乘积为1的两个数互为倒数。
(倒数是它本身的数是±1;0没有倒数)四、倒数2.性质:若a与b互为倒数,则a·b=1;反之,若a·b=1,则a与b互为倒数。
1.数轴比较法:在数轴上,右边的数总比左边的数大。
五、比较大小2.代数比较法:正数大于零,负数小于零,正数大于一切负数。
绝对值倒数相反数综合练习题
绝对值、倒数、相反数练习题一、选择题1. -2的绝对值是( )(A )-2. (B )2. (C )-21. (D )21.2. -m的相反数是( )(A )-m. (B )m. (C )m 1. (D )m 1-.3. 下列说法错误的是( )(A )0的相反数是0. (B )正数的相反数是负数.(C )一个数的相反数必是正数. (D )互为相反数的两个数到原点的距离相等.4. 若a =34,则a 的值为( )(A )34. (B )43. (C )34或34-. (D )43或43-.5. 绝对值等于本身的有理数共有( )(A )1个. (B )2个. (C )0个. (D )无数个.6. 下列各组数中,互为相反数的有( )⑴ 3. 2 与 -2. 3 ⑵ -(- 4)与 – 8 ⑶ – (- 8)与 – 8 ⑷ -21与-[-(-21)](A )1组. (B )2组. (C )3组. (D )4组.7. 下列式子正确的是( )(A )3-->2--. (B )0<2-. (C )5-<4--. (D )8--=)8(--.8. 下列说法正确的个数有( )⑴所有的有理数都能在数轴上找到唯一的一点 ⑵数轴上每一点都表示有理数⑶0是最小的有理数 ⑷因为负数小于零,所以031<⎪⎭⎫ ⎝⎛--(A )1个. (B )2个. (C )3个. (D )0个.9. 以下是关于5.1-这个数在数轴上的位置的描述,其中正确的描述是( )(A )在25-左边. (B )在0. 1右边. (C )在原点与34-之间. (D )在56-左边. 10. 在数轴上2-与2之间的有理数有( )(A )5个. (B )4个. (C )3个. (D )无数个.二、填空题11. 最大的负整数是________,最小的正整数是_____________.12. -2在原点___边,距原点____个单位长度,数5在数轴上距原点____个单位,-5距5___个单位.13. _________的相反数是本身.14. ()8--是_________的相反数. ()2-+是___________的相反数.15. 在数轴上表示离开原点的距离是3,那么a =__________.16. 2的相反数的绝对值是________________.17. 绝对值不大于2的整数是__________________.18. 如果m 2-与1-m 互为相反数,那么m=_____________.19. 若032=-+-y x ,则____________,__________==y x . 20. 若_____________,0,2,3=+<==b a b b a 则.三、解答题21. 计算下列各题(1)1113---+- (2)2324-⨯-÷-(3)43311-÷- (4)71249-⨯-22. 把211,0,5.4,3,2--在数轴上表示出来.23. 某城市早上测得的温度是3℃,中午测量时发现温度上升了5℃,晚上测量时比中午下降了6℃,问晚上的气温比早上气温变化了多少记作什么借助数轴加以分析.24. 化简下列各数:(1) ()2-- (2)()6.2+-(3)()5.3++(4)()8-+ (5)()[]4+-+(6)()[]6---25. 已知b a 和互为相反数,m 、n 互为倒数,(),2--=c 求c mn b a ++.26. 已知y x y x y x +>==求且,,12,7的值.27. 已知c b a c b a 32,0432++=-+-+-计算.28. 在数轴上有三个点A、B、C,如图所示:⑴将B点向左移动4个单位,此时该点表示的数是多少⑵将C点向左移动6个单位得到数x1,再向右移2个单位得到x2,x1,x2分别是多少用“>”把B,x1,x2连接起来.⑶怎样移动A、B、C中的两点,才能使3个点表示的数相同有几种方法。
相反数和绝对值专项练习题库
相反数与绝对值专项练习练习一(A级)一、选择题:(1)a的相反数是( )(A)-a (B)1a(C)-1a(D)a-1(2)一个数的相反数小于原数,这个数是( )(A)正数 (B)负数 (C)零 (D)正分数(3)一个数在数轴上所对应的点向右移到5个单位长度后,得到它的相反数的对应点,则这个数是( )(A)-2 (B)2 (C)52(D)-52(4)一个数在数轴上的对应点与它的相反数在数轴上的对应点的距离为12单位长,则这个数是( )(A)12或-12(B)14或-14(C)12或-14(D)-12或14二、填空题(1)一个数的倒数是它本身,这个数是________;一个数的相反数是它本身,这个数是__________;(2)-5的相反数是______,-3的倒数的相反数是____________ 。
(3)103的相反数是________,1132⎛⎫-⎪⎝⎭的相反数是_______,(a-2)的相反数是______;三、判断题:(1)符号相反的数叫相反数;() (2)数轴上原点两旁的数是相反数;()(3)-(-3)的相反数是3;() (4)-a一定是负数;()(5)若两个数之和为0,则这两个数互为相反数;()(6)若两个数互为相数,则这两个数一定是一个正数一个负数。
()练习一(B级)1.下列各数:2,0.5,23,-2,1.5,-12,-32,互为相反数的有哪几对?2.化简下列各数的符号:(1)-(-173); (2)-(+233); (3)+(+3); (4)-[-(+9)] 。
3.数轴上A点表示+7,B、C两点所表示的数是相反数,且C点与A点的距离为 2,求B点和C点各对应什么数?4.若a>0>b,且数轴上表示a的点A与原点距离大于表示b的点B 与原点的距离,试把a,-a,b,-b这四个数从小到大排列起来。
5.一个正数的相反数小于它的倒数的相反数,在数轴上,这个数对应的点在什么位置?6.如果a,b表示有理数,在什么条件下,a+b和a-b互为相反数?a+b与a-b的积为2?练习二(A级)一、选择题:1.已知a≠b,a=-5,|a|=|b|,则b等于( )(A)+5 (B)-5 (C)0 (D)+5或-52.一个数在数轴上对应的点到原点的距离为m,则这个数的绝对值为( )(A)-m (B)m (C)±m (D)2m3.绝地值相等的两个数在数轴上对应的两点距离为8,则这两个数为( )(A)+8或- 8 (B)+4或-4 (C)-4或+8 (D)-8或+44.给出下面说法: <1>互为相反数的两数的绝对值相等; <2>一个数的绝对值等于本身,这个数不是负数; <3>若|m|>m,则m<0; <4>若|a|>|b|,则a>b,其中正确的有( ) (A)<1><2><3>; (B)<1><2<4>; (C)<1><3><4>; (D)<2><3><4>5.一个数等于它的相反数的绝对值,则这个数是( )(A)正数和零; (B)负数或零; (C)一切正数; (D)所有负数6.已知|a|>a,|b|>b,且|a|>|b|,则( )(A)a>b (B)a<b (C)不能确定 D.a=b7.-103,π,-3.3的绝对值的大小关系是( )(A)103->|π|>|-3.3|; (B)103->|-3.3|>|π|;(C)|π|>103->|-3.3|; (D)103->|π|>|-3.3|8.若|a|>-a,则( )(A)a>0 (B)a<0 (C)a<-1 (D)1<a二、填空题:(1)在数轴上表示一个数的点,它离开原点的距离就是这个数的____________;(2)绝对值为同一个正数的有理数有_______________个;(3)一个数比它的绝对值小10,这个数是________________;(4)一个数的相反数的绝对值与这个数的绝对值的相反数的关系是______________;(5)一个数的绝对值与这个数的倒数互为相反数,则这个数是________________;(6)若a<0,b<0,且|a|>|b|,则a与b的大小关系是______________;(7)绝对值不大一3的整数是____________________,其和为_____________;(8)在有理数中,绝对值最小的数是_____;在负整数中,绝对值最小的数是_____;(9)设|x|<3,且x>1x,若x为整数,则x=_________________;(10)若|x|=-x,且x=1x,则x=_________________。
2.3 绝对值和相反数综合练习(北师大版)
深圳龙文教育个性化辅导教学案教师:丰成学生:年级:初一__学科:数学日期:星期:时段:一、课题 2.3 绝对值和相反数综合练习二、教学目标1、正确的理解绝对值和相反数的含义2、掌握绝对值和相反数的运算3、学会怎样运用知识解决实际问题三、教学重难点1、正确的理解绝对值和相反数的含义2、掌握绝对值和相反数的运算3、学会怎样运用知识解决实际问题四、教学课时 1 课时五、教学方法讲授法、练习法、讨论法六、教学过程绝对值与相反数(1)【课前预习】1、先画一条数轴,在数轴上表示下列各数的点,并比较它们的大小:—4,2.4,0,—21,—3,1.2、一天,汽车司机张师傅从车站出发,沿东西方向行驶,规定向东为正,若向东行驶3千米,记作_____ ;若向西行驶2千米,记作_____.3、数轴上表示数—3的点A到原点的距离是,表示数5的点B到原点的距离是,A、B两点之间的距离是.4、数轴上到原点的距离是2的点有个,表示的数是.【课堂重点】1、小明的家在学校西边3km处,小丽的家在学校东边2km处.(1)如果把学校门前的大街看成一条数轴,把学校看成原点(向东的方向为正方向),你能把小明和小丽家的位置在数轴上表示出来吗?(2)从数轴上看,哪家离学校较近?哪家离学校较远?2、数轴上表示一个数的点与原点的距离,叫做这个数的.用符号“”表示.教学过程3、如图,你能说出数轴上A、B、C、D、E、F各点所表示的数的绝对值吗?4、想一想:(1)任何有理数的绝对值都是数;(2)绝对值最小的数是.5、例3:某厂生产闹钟,从中抽取5件检验时,比标准时间多的记为正数,比标准时间少的记为负数,请根据下表,选出最准确的闹钟.1 2 3 4 5+2s -3.5s 6s +7s -4s误差不超过5秒的为合格品,否则为次品,问有几台合格?6、练习:某车间生产一批圆形零件,从中抽取8件进行检验,比规定直径长的毫米数记为正数,比规定直径短的毫米数记为负数,检查记录如下:1 2 3 4 5 6 7 8+0.3 -0.2 -0.3 +0.4 0 -0.1 -0.5 +0.3指出第几个零件最标准?最接近标准的是哪个零件?误差最大的是哪个零件?【课后巩固】1、填空:(1)|-3|=______,|121|=_____,|-0.4|=______,|0|=_____,|9|=______,|-2|=________;(2)绝对值小于3的所有整数是________________,非正整数是____________;(3)若|x|=6,则x =__________;(4)在数轴上点A表示-65,点B表示43,则点___________离原点的距离近些.2、计算:(1)|—3|×|—6.2| (2)|—5| + |—2.49|(3)—|—83| (4) |—32|÷|314|知识的传播不再是一种给予而是一种需求,一种渴求,这是课堂追求的最高境界!中小学1对1全科个性化辅导 教育是一项良心工程 华强北分校:0755-教 学 过 程绝对值与相反数(2) 【课前预习】1、化简:____,12= ____,2.1=- ____;4=- ____,4= ____,4=--.____4=-2、比较大小:—21 —31; |—5| |-3.5|;|—5| 0; |—3| |3、绝对值小于4的整数是_________,,绝对值不小于4的非负整数是_________,a 的绝对值等于5,则a 的值为______.4、绝对值是4的数有_ __个,分别为_____. 【课堂重点】1、小明的家在学校西边3km处,小丽的家在学校东边3km处.(1)你能将小明家、小丽家和学校的相对位置在数轴上表示出来吗?(小明家用点A 表示,小丽家用点B 表示,学校用点O 表示)(2)观察A 、B 两点表示的数,你发现了什么?2、观察下列各对有理数,你发现了什么?与同学交流.2和-2,0.8和-0.8,231和-231. 总结出相反数的概念:3、数a 的相反数可表示为 ;则-5的相反数可表示为_______ ;而我们知道—5 的相反数是___ . 所以得结论:4、练习:(1)下列说法正确的是 ( )A.正数的绝对值是负数;B.符号不同的两个数互为相反数;C.π的相反数是 ―3.14;D.任何一个有理数都有相反数. (2)一个数的相反数是非正数,那么这个数一定是 ( )A.正数B.负数C.零或正数D.零【课后巩固】1、填空:-2的相反数是 , 3.75与 互为相反数,相反数是其本身的数是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相反数、绝对值、倒数的综合练习(一)
周末练习
1、 在下列各数中,负数有哪些?分数有哪些?
2
2,2013,3
1%,80,213,5,0,3-+--+-
2、 下列结论正确的是( )
A 、不大于0的数一定是负数
B 、海拔高度是0米表示没有高度
C 、0是正数与负数的分界
D 、不是正数的数一定是负数
3、 下列说法正确的有( )
①小数都是有理数。
②存在最小的自然数。
③-0.01是分数,也是有理数。
④有最大得负数。
A 、0个
B 、1个
C 、2个
D 、3个
4、 有下列各数:
()()()()()[]()[]()[]2,2,2,2,2,2,2--++-+---+----+++,其中有( )个负数。
A 、2个
B 、3个
C 、4个
D 、5个
5、 下列各组中互为相反数的是( )
A 、()()q q +--+与
B 、()()q q ++--与
C 、()()q q -+--与
D 、()()[]q q -+---与
6、 下列说法错误的是( )
A 、-1是最大的负整数
B 、在数轴上表示-5与-3的点的距离为2个单位长度
C 、到原点距离为3个单位长度的点,数轴上只有1个
D 、点A 从数轴上表示2的点开始移动5个单位长度,到大表示7或-3的点
7、下列说法正确的是( )
A 、两个加数之和一定大于每一个加数
B 、两数之和一定小于每一个加数
C 、两个数之和一定介于这两个数之间
D 、以上皆有可能
8、若,0,0><+ab b a 则有( )
A 、0,0>>b a
B 、0,0><b a
C 、0,0<<b a
D 、0,0<>b a
9、绝对值不小于212且不大于3
15的整数有 。
10、-1.5的倒数为 。
11、与-6的倒数相加的和等于0的数是 。
12、若一个数的相反数为非负数,则这个数是 。
13、若02013=-x ,则=x 。
14、若,33-=-x x 则x 的取值范围是 ; 若()55--=-y y ,则y 的取值范围是 。
15、已知b a 、互为倒数,且n m n m ab +=+
则,0= 。
16、已知n m 、互为倒数,则mn -的相反数是 。
17、若的值是则且n m n
m n m +<==,0,2,3 。
18、已知,那么,且,,c b a c b a >>===321a = ,b = ,c = 。
19、式子的变化而变化,的值随m 63-m +当m = 时,有最小值63-m +,最小值是 。
20若A ,B 两点表示的数是相反数,且这两点相距8个单位长度,在数轴上标出A ,•B 两点,并指出A ,B 两点所表示的数.
21、已知a a a a -+++->1242,2化简.
22、已知的值。
求,且y x y x y x ,,99,100<==
23、定义新运算:规定
,3,44,4,3,,-=O -=-=∆==-=O -=∆b a b a b a a b a b b a 则根据以上规定比较()()7575-O -∆与的大小。
24、企业今年第一季度盈利22000元,第二季度亏损8000元,则该企业今年上半年的效益为多少?
25、某出租车一天从A 地出发,在南北方向的路上行驶,如果规定向东行驶为正方向,向西行驶为负,一天中行驶记录如下(单位:千米):-14,+7,-9,+8,+6,-14,-13。
(1)当出租车停止时出租车在A 的什么方向多少千米处?
(2)如果每千米耗油0.1升,则从出发到停止共耗油多少升?
26、已知()的值求y x y y x 63,07322
-=-+-。
已知b 、a 互为相反数,d c 、互为倒数,x 的绝对值是3。
求式子x 2+(a+b+cd)+(a+b)2+(-cd)的值。
27、当x 取什么值时,式子()152
--x 取得最小值?并求这个最小值。
28、我们知道,点A ,B 在数轴上分别表示有理数a,b 两点之间的距离b a AB -=,所以3-x 的几何意义是数轴上表示有理数3的点与表示有理数x 的点之间的距离。
根据上述材料,请借助数轴解答下列问题:
(1)若x x 则,53=-= ;
(2)若x x x 则,13+=-= 。